JPH05306117A - Amorphous lithium ion conductive solid electrolyte and its synthesizing method - Google Patents
Amorphous lithium ion conductive solid electrolyte and its synthesizing methodInfo
- Publication number
- JPH05306117A JPH05306117A JP11451992A JP11451992A JPH05306117A JP H05306117 A JPH05306117 A JP H05306117A JP 11451992 A JP11451992 A JP 11451992A JP 11451992 A JP11451992 A JP 11451992A JP H05306117 A JPH05306117 A JP H05306117A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- amorphous
- solid electrolyte
- ion conductive
- ionic conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Conductive Materials (AREA)
- Primary Cells (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、全固体電池、コンデン
サ、固体エレクトロクロミック表示素子等の電気化学素
子の電解質として利用されるリチウムイオン伝導性固体
電解質に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion conductive solid electrolyte used as an electrolyte for electrochemical devices such as all-solid-state batteries, capacitors and solid electrochromic display devices.
【0002】[0002]
【従来の技術】近年、有機リチウム電解質を用いたリチ
ウム二次電池の開発に関する研究が盛んに行われてい
る。有機電解質を用いたリチウム二次電池の開発には、
正極あるいは負極として可逆性に優れた活物質材料の開
発が必要であり、今日、そうした材料探索が盛んに行わ
れている。例えば、負極材料に関してはリチウム金属単
独あるいはリチウム合金を用いたものから、特殊なカー
ボンを利用し、カーボン層間へリチウムを可逆的に出し
入れさせる反応を利用する方向に進んでいる。2. Description of the Related Art In recent years, much research has been conducted on the development of lithium secondary batteries using organic lithium electrolytes. To develop a lithium secondary battery using an organic electrolyte,
It is necessary to develop an active material material having excellent reversibility as a positive electrode or a negative electrode, and today, such materials are actively searched. For example, with respect to the negative electrode material, the use of lithium metal alone or a lithium alloy has been progressing toward the use of a reaction in which lithium is reversibly taken in and out between carbon layers by using special carbon.
【0003】また、正極材料に関しても同様に、活物質
の電気化学的酸化還元によって化学変化を伴うものから
電解質中のLiイオンが活物質中に出入りする材料が用
いられるようになって来ている。Similarly, with respect to the positive electrode material, a material in which Li ions in the electrolyte enter and leave the active material has come to be used from a material accompanied by a chemical change due to electrochemical redox of the active material. ..
【0004】一方、電解質に関しては、電池の信頼性を
向上させる為にリチウムイオン伝導性固体電解質を必要
としている。しかし、現在の所、優れたリチウムイオン
伝導性固体電解質がなく、新しい固体電解質材料の研究
開発が盛んに行われている。On the other hand, regarding the electrolyte, a lithium ion conductive solid electrolyte is required in order to improve the reliability of the battery. However, at present, there is no excellent lithium-ion conductive solid electrolyte, and research and development of new solid electrolyte materials are actively conducted.
【0005】こうした固体電解質に関する研究の一つと
してLi2 S・X(XはSiS2 、GeS2 、P
2 S5 、B2 S3 の群より選択される一種以上の硫化
物)系硫化物ガラスが優れたイオン伝導性を示す事から
盛んに研究されている。As one of the studies on such a solid electrolyte, Li 2 S.X (X is SiS 2 , GeS 2 , P
One or more sulfide-based sulfide glasses selected from the group of 2 S 5 and B 2 S 3 have been extensively studied because they show excellent ionic conductivity.
【0006】Li2 S・X(XはSiS2 、GeS2 、
P2 S5 、B2 S3 の群より選択される一種以上の硫化
物)系硫化物ガラスは、XがSiS2 のLi2 S・Si
S2系において特に高い伝導率の値を有し、その値は、
5×10-4S/cm程度である。Li 2 S.X (X is SiS 2 , GeS 2 ,
One or more sulfide-based sulfide glasses selected from the group of P 2 S 5 and B 2 S 3 are Li 2 S.Si in which X is SiS 2.
It has a particularly high conductivity value in the S 2 system, and its value is
It is about 5 × 10 −4 S / cm.
【0007】また、Li2 S・X系硫化物ガラスにヨウ
化リチウムを添加したLiI・Li 2 S・X系ガラスで
は、10-3S/cm程度と比較的高いイオン伝導率を持
つとして知られている。In addition, Li2S / X sulfide glass with iodine
LiI · Li with lithium fluoride added 2With S / X type glass
Is 10-3Has a relatively high ionic conductivity of about S / cm
Known as one.
【0008】[0008]
【発明が解決しようとする課題】Li2 S・X(XはS
iS2 、GeS2 、P2 S5 、B2 S3 の群より選択さ
れる一種以上の硫化物)系硫化物ガラスの伝導率は、前
述のように5×10-4S/cmという高い値を示すが、
電気化学素子に応用するにはイオン伝導率がまだ低く、
更に該材料の化学的な安定性が不充分である。Problems to be Solved by the Invention Li 2 S.X (X is S
The conductivity of at least one sulfide-based sulfide glass selected from the group of iS 2 , GeS 2 , P 2 S 5 , and B 2 S 3 is as high as 5 × 10 −4 S / cm as described above. Shows the value,
The ionic conductivity is still low for application to electrochemical devices,
Furthermore, the chemical stability of the material is insufficient.
【0009】また、LiI・Li2 S・X系では、10
-3S/cm程度という高いイオン伝導率を示すが、リチ
ウム金属との接触により固体電解質が還元され伝導性が
低下するなど化学的な安定性が解決されておらず、全固
体リチウム電池などの電気化学素子への応用開発には数
々の問題を有していた。In the LiI / Li 2 S / X system, 10
It has a high ionic conductivity of about -3 S / cm, but its chemical stability has not been resolved, such as the solid electrolyte being reduced due to contact with lithium metal and the conductivity being reduced. There were many problems in application development to electrochemical devices.
【0010】本発明は、従来の課題である低い伝導率あ
るいは伝導率の低下をもたらす化学的安定性の問題を改
善したリチウムイオン伝導性固体電解質とその合成法を
提供しようとするものである。The present invention is intended to provide a lithium ion conductive solid electrolyte and a method for synthesizing the same, which solves the conventional problems of low conductivity or chemical stability leading to a decrease in conductivity.
【0011】[0011]
【課題を解決するための手段】本発明は、a’Li3 P
O4 ・b’Li2 S・c’X(但し、a’+b’+c’
が1であって、XがSiS2 、GeS2 、P2 S5 、B
2 S3 の群より選択される一種以上の硫化物)で表され
る非晶質化合物に複数種のハロゲン化リチウムZを混合
し、該混合物を加熱溶融し、その後急冷することで新し
い非晶質リチウムイオン伝導性固体電解質aLi3 PO
4 ・bLi2 S・cX・dZ(但し、a+b+c+dが
1であって、XがSiS2 、GeS2 、P2 S5 、B2
S3 の群より選択される一種以上の硫化物であり、Zは
複数種のハロゲン化リチウム)を合成し、非晶質リチウ
ムイオン伝導性固体電解質とする。The present invention provides a'Li 3 P
O 4 · b'Li 2 S · c'X (however, a '+ b' + c '
Is 1 and X is SiS 2 , GeS 2 , P 2 S 5 , B
A plurality of kinds of lithium halide Z are mixed with an amorphous compound represented by one or more sulfides selected from the group of 2 S 3 ), the mixture is heated and melted, and then rapidly cooled to obtain a new amorphous form. Lithium ion conductive solid electrolyte aLi 3 PO
4 · bLi 2 S · cX · dZ (where a + b + c + d is 1 and X is SiS 2 , GeS 2 , P 2 S 5 , B 2
A sulfide of one or more kinds selected from the group of S 3, Z combines the lithium halide) of a plurality of types, and amorphous lithium ion conductive solid electrolyte.
【0012】尚、前記一般式aLi3 PO4 ・bLi2
S・cX・dZ(但し、a+b+c+dが1であって、
XがSiS2 、GeS2 、P2 S5 、B2 S3 の群より
選択される一種以上の硫化物であり、Zは複数種のハロ
ゲン化リチウム)で表される非晶質リチウムイオン伝導
性固体電解質は組成比a、b、cの和が0.9≧a+b
+c≧0.4であり、かつdが0.1≦d≦0.6をみ
たすものである場合に化学的安定性に特に優れたものと
なる。The above general formula aLi 3 PO 4 .bLi 2
S · cX · dZ (where a + b + c + d is 1,
Amorphous lithium ion conduction represented by X is one or more sulfides selected from the group of SiS 2 , GeS 2 , P 2 S 5 , and B 2 S 3 , and Z is a plurality of lithium halides). -Based solid electrolyte has a composition ratio of a, b and c of 0.9 ≧ a + b
When + c ≧ 0.4 and d satisfies 0.1 ≦ d ≦ 0.6, the chemical stability is particularly excellent.
【0013】[0013]
【作用】Li3 PO4 は、高温領域においてイオン伝導
性の高い結晶構造を示すが、室温付近では相移転によっ
て構造が変わり、イオン伝導性が低下する事が知られて
いる。It is known that Li 3 PO 4 has a crystal structure with high ionic conductivity in a high temperature region, but the structure changes due to phase transfer at around room temperature, resulting in a decrease in ionic conductivity.
【0014】しかし、Li3 PO4 を室温状態で非晶質
状態を示す材料に加え、これらを高温状態で一旦、非晶
質化させた後、室温状態に戻すことにより、Li3 PO
4 の状態を室温に於いても非晶質状態に保持させること
が可能となり、室温においても高いイオン伝導性をもた
せることが出来ると考えられる。However, Li 3 PO 4 is added to a material exhibiting an amorphous state at room temperature, and these are once made amorphous at a high temperature state and then returned to the room temperature state to obtain Li 3 PO 4.
It is considered that the state of 4 can be maintained in an amorphous state even at room temperature, and high ionic conductivity can be provided even at room temperature.
【0015】これは、非晶質状態となることによって、
即ち、結晶構造の原子の配列がやや乱れた構造をとる
為、結晶性材料とは異なり、リチウムイオンが自由に動
き得るようになる結果、イオン伝導性が向上するものと
考えられる。 特に、a’Li 3 PO4 ・b’Li2 S
・c’X(但し、a’+b’+c’が1であって、Xが
SiS2 、GeS2 、P2 S5 、B2 S3 の群より選択
される一種以上の硫化物)で表される非晶質化合物に複
数種のハロゲン化リチウムZを混合し、該混合物を加熱
溶融し、その後急冷することにより、合成した新しい非
晶質リチウムイオン伝導性固体電解質aLi3 PO4 ・
bLi2 S・cX・dZ(但し、a+b+c+dが1で
あって、XがSiS2 、GeS2 、P2 S5 、B2 S3
の群より選択される一種以上の硫化物であり、Zは複数
種のハロゲン化リチウム)は自由に動き得るリチウムイ
オンが多くなる結果、a’Li3 PO4 ・b’Li2 S
・c’X(但し、a’+b’+c’が1であって、Xが
SiS2 、GeS2 、P2 S 5 、B2 S3 の群より選択
される一種以上の硫化物)で表される非晶質化合物材料
よりもイオン伝導率の高いリチウムイオン伝導性固体電
解質となる。This is due to the amorphous state,
That is, the atomic arrangement of the crystal structure has a somewhat disordered structure.
Therefore, unlike crystalline materials, lithium ions move freely.
As a result, the ionic conductivity is improved.
Conceivable. In particular, a'Li 3POFour・ B'Li2S
C'X (provided that a '+ b' + c 'is 1 and X is
SiS2, GeS2, P2SFive, B2S3Select from the group of
One or more sulfides)
Mix several kinds of lithium halide Z and heat the mixture
By melting and then quenching, a new synthetic
Amorphous lithium ion conductive solid electrolyte aLi3POFour・
bLi2S ・ cX ・ dZ (where a + b + c + d is 1
Yes, X is SiS2, GeS2, P2SFive, B2S3
Is one or more sulfides selected from the group
Species of lithium halide) is a freely moving lithium ion
As a result of increasing the number of ONs, a'Li3POFour・ B'Li2S
C'X (provided that a '+ b' + c 'is 1 and X is
SiS2, GeS2, P2S Five, B2S3Select from the group of
Amorphous compound material represented by one or more sulfides
Lithium-ion conductive solid state battery with higher ionic conductivity than
It becomes a demerit.
【0016】[0016]
【実施例】本発明のリチウムイオン伝導性固体電解質
は、a’Li3 PO4 ・b’Li2S・c’X(但し、
a’+b’+c’が1であって、XがSiS2 、GeS
2 、P2 S5 、B2 S3 の群より選択される一種以上の
硫化物)で表される非晶質化合物を母材として用い、添
加する化合物として複数種のハロゲン化リチウムZ(こ
こで、Z=LiI、LiClあるいはLiBr)を用い
るが、母材となる非晶質化合物と、その原料および合成
した固体電解質が大気中の酸素や水分によって容易に分
解するため、取扱はすべて乾燥アルゴン雰囲気下のドラ
イボックス中で行った。EXAMPLE A lithium ion conductive solid electrolyte of the present invention is a'Li 3 PO 4 .b'Li 2 S.c'X (however,
a ′ + b ′ + c ′ is 1 and X is SiS 2 , GeS
2 , an amorphous compound represented by one or more sulfides selected from the group of P 2 S 5 and B 2 S 3 ) is used as a base material, and a plurality of types of lithium halide Z (here Z = LiI, LiCl or LiBr) is used. However, since the amorphous compound as the base material, the raw material thereof and the synthesized solid electrolyte are easily decomposed by oxygen and moisture in the atmosphere, all handling is performed with dry argon. It was conducted in a dry box under an atmosphere.
【0017】ここではハロゲン化リチウムを始め、用い
た試薬は全て特級を使用し、特にLiI、LiClなど
は減圧下、400°Cで6時間乾燥した後使用した。Here, lithium halide and other reagents used were all of special grade, and LiI, LiCl and the like were used after drying at 400 ° C. for 6 hours under reduced pressure.
【0018】以下、本発明を具体的に実施例を用い、よ
り詳細に説明する。 (実施例1)本発明による非晶質リチウムイオン伝導性
固体電解質の内、aLi3 PO4 ・bLi2 S・cSi
S2 系非晶質材料を用いた非晶質リチウムイオン伝導性
固体電解質aLi3 PO4 ・bLi2 S・cSiS2 ・
dZについての実施例を説明する。Hereinafter, the present invention will be described in more detail with reference to specific examples. (Example 1) of the amorphous lithium ion conductive solid electrolyte according to the present invention, aLi 3 PO 4 · bLi 2 S · cSi
S 2 based non amorphous lithium with amorphous material ion conductive solid electrolyte aLi 3 PO 4 · bLi 2 S · cSiS 2 ·
An example of dZ will be described.
【0019】先ず、b”Li2 S・c”SiS2 (b”
+c”=1)を合成した。この合成は硫化リチウム(L
i2 S)と硫化珪素(SiS2 )をb”=0.3〜0.
8となるように混合し、該混合粉末をガラス状カーボン
坩堝中にいれ、これを、アルゴン気流中950°Cで
1.5時間溶融し反応させた後、液体窒素中に投入して
急冷し、b”Li2 S・c”SiS2 (b”+c”=
1)を得た。First, b "Li 2 S.c" SiS 2 (b "
+ C ″ = 1) was synthesized. This synthesis was performed using lithium sulfide (L
i 2 S) and silicon sulfide (SiS 2 ) with b ″ = 0.3 to 0.
8 to mix, and put the mixed powder in a glassy carbon crucible, melt this in an argon stream at 950 ° C for 1.5 hours to react, and then put into liquid nitrogen to quench. , B "Li 2 S · c" SiS 2 (b "+ c" =
1) was obtained.
【0020】次に、これを粉砕し、リン酸リチウム(L
i3 PO4 )をa’Li3 PO4 ・b’Li2 S・c’
SiS2 において、a’=0.01〜0.3となるよう
に加えて混合し、該粉末をガラス状カーボン坩堝中にい
れ、これを、アルゴン気流中950°Cで1.5時間溶
融し反応させた後、液体窒素中に投入して急冷し、a’
Li3 PO4 ・b’Li2 S・c’SiS2 (a’+
b’+c’=1)を合成した。Next, this was crushed to obtain lithium phosphate (L
i 3 PO 4) to a'Li 3 PO 4 · b'Li 2 S · c '
SiS 2 was added and mixed so that a ′ = 0.01 to 0.3, the powder was put into a glassy carbon crucible, and this was melted at 950 ° C. for 1.5 hours in an argon stream. After the reaction, put it into liquid nitrogen to quench it,
Li 3 PO 4 b'Li 2 S c'SiS 2 (a '+
b ′ + c ′ = 1) was synthesized.
【0021】得られたa’Li3 PO4 ・b’Li2 S
・c’SiS2 材料y量に対し、複数種のハロゲン化リ
チウムZとしてヨウ化リチウム(LiI)、塩化リチウ
ム(LiCl)が0.7:0.3の混合物をd量とり、
y+dが1となるように混合した後、該混合粉末をガラ
ス状カーボン坩堝中にいれ、これを、アルゴン気流中9
50℃で1.5時間溶融し反応させた後、液体窒素中に
投入して急冷しaLi 3 PO4 ・bLi2 S・cSiS
2 ・dZ(a+b+c+d=1)を得た。The obtained a'Li3POFour・ B'Li2S
・ C'SiS2Depending on the amount of material y, multiple halogenated solutions
Lithium iodide (LiI) as lithium Z, lithium chloride
A mixture of 0.7: 0.3
After mixing so that y + d becomes 1, the mixed powder is mixed.
Place in a carbon-like carbon crucible, and put this in an argon stream.
After melting and reacting at 50 ° C for 1.5 hours, in liquid nitrogen
Charge and cool aLi 3POFour・ BLi2S ・ cSiS
2-DZ (a + b + c + d = 1) was obtained.
【0022】合成した固体電解質の特性を調べるため、
交流インピーダンス法によるイオン伝導率の測定を行っ
た。To investigate the characteristics of the synthesized solid electrolyte,
The ionic conductivity was measured by the AC impedance method.
【0023】得られた結果を図1に示した。縦軸はイオ
ン伝導率を示し、横軸は(0.03Li3 PO4 ・0.
58Li2 S・0.39SiS2 )に対する複数種から
なるハロゲン化リチウムZ(但し、Zはヨウ化リチウム
(LiI)、塩化リチウム(LiCl)0.7:0.3
の混合物を用いた)の添加量(モル%)を示したもので
ある。図1よりイオン伝導率はハロゲン化リチウムZの
添加と共に増大した後、極大を経て、減少している事が
示されており、イオン伝導率が最も大きくなるのは、
0.75(0.03Li3 PO4 ・0.58Li2 S・
0.39SiS2)・0.25(0.7LiI、0.3
LiCl)であり、そのイオン伝導率の値は2.3×1
0-3S/cmであった。The obtained results are shown in FIG. The vertical axis represents ionic conductivity, and the horizontal axis represents (0.03Li 3 PO 4 .0.
58Li 2 S.0.39SiS 2 ) lithium halide Z consisting of a plurality of species (where Z is lithium iodide (LiI), lithium chloride (LiCl) 0.7: 0.3).
The amount of addition (mol%) of the mixture (1) was shown. It is shown from FIG. 1 that the ionic conductivity increases with the addition of lithium halide Z, then reaches a maximum and then decreases, and the ionic conductivity becomes maximum.
0.75 (0.03Li 3 PO 4 0.58Li 2 S
0.39SiS 2 ) ・ 0.25 (0.7LiI, 0.3
LiCl) and its ionic conductivity value is 2.3 × 1.
It was 0 -3 S / cm.
【0024】これに対し、ハロゲン化リチウムを添加し
ていない0.03Li3 PO4 ・0.58Li2 S・
0.39SiS2 のイオン伝導率は7×10-4S/cm
であった。On the other hand, 0.03Li 3 PO 4 .0.58Li 2 S.
The ionic conductivity of 0.39SiS 2 is 7 × 10 −4 S / cm.
Met.
【0025】次に、リチウム金属に対する電解質の化学
的安定性を調べるために、合成した各種組成の電解質を
厚さ0.5mm、直径10mmのディスク1にプレス成
形し、更に、ディスク1の両面にリチウム金属ディスク
2,2’を圧着し、図2に示したような密封セル3を作
成した。化学的安定性は、これら密封セル3を60°C
の恒温槽に500時間保存し、それぞれの密封セル3の
内部インピーダンスの経時変化を測定した。Next, in order to investigate the chemical stability of the electrolyte with respect to lithium metal, the synthesized electrolytes of various compositions were press-molded into a disk 1 having a thickness of 0.5 mm and a diameter of 10 mm, and further, on both surfaces of the disk 1. The lithium metal disks 2 and 2'were pressure-bonded to prepare a sealed cell 3 as shown in FIG. The chemical stability of these sealed cells 3 is 60 ° C.
The sample was stored in the constant temperature bath for 500 hours, and the change with time of the internal impedance of each sealed cell 3 was measured.
【0026】図3は得られた結果を示したもので、縦軸
はインピーダンス変化を保存前の内部インピーダンスで
規格化して示した。本結果から明白なように、ハロゲン
化リチウムが0.6以上では内部インピーダンスの経時
変化が著しく大きくなり、それ未満では内部インピーダ
ンスの増加が少ない事が分かった。FIG. 3 shows the obtained results, and the vertical axis shows the impedance change normalized by the internal impedance before storage. As is clear from this result, it was found that when the lithium halide was 0.6 or more, the change in internal impedance with time was significantly large, and when it was less than that, the increase in internal impedance was small.
【0027】(実施例2)実施例1において、a’Li
3 PO4 ・b’Li2 S・c’SiS2 材料y量に対
し、添加する複数種のハロゲン化リチウムZとしてヨウ
化リチウム(LiI)、塩化リチウム(LiCl)の
0.7:0.3の混合物を用いたが、ここでは、これを
ヨウ化リチウム(LiI)0.75:臭化リチウム(L
iBr)0.25からなる混合物をd量に変えた以外は
実施例1と同様にして、aLi3 PO4・bLi2 S・
cSiS2 ・dZ(a+b+c+d=1)を得た。(Example 2) In Example 1, a'Li
3 PO 4 · b′Li 2 S · c′SiS 2 The amount of the material y is 0.7: 0.3 of lithium iodide (LiI) and lithium chloride (LiCl) as a plurality of types of lithium halide Z to be added. A mixture of lithium iodide (LiI) 0.75: lithium bromide (L) was used here.
iBr) 0.25 except that the amount of d was changed to aLi 3 PO 4 .bLi 2 S.
cSiS 2 · dZ (a + b + c + d = 1) was obtained.
【0028】合成した固体電解質の特性を調べるため、
交流インピーダンス法によるイオン伝導率の測定を行っ
た。To investigate the characteristics of the synthesized solid electrolyte,
The ionic conductivity was measured by the AC impedance method.
【0029】得られた結果を図4に示した。縦軸はイオ
ン伝導率を示し、横軸は(0.03Li3 PO4 ・0.
58Li2 S・0.39SiS2 )に対する複数種から
なるハロゲン化リチウムZ(但し、Zはヨウ化リチウム
(LiI)、臭化リチウム(LiBr)が0.75:
0.25の混合物)の添加量(モル%)を示したもので
ある。図4よりイオン伝導率はハロゲン化リチウムZの
添加と共に増大した後、極大を経て、減少している事が
示されており、イオン伝導率が最も大きくなるのは、
0.80(0.03Li3 PO4 ・0.58Li2 S・
0.39SiS2 )・0.20(0.75LiI、0.
25LiBr)であり、そのイオン伝導率の値は2.6
×10-3S/cmであった。The obtained results are shown in FIG. The vertical axis represents ionic conductivity, and the horizontal axis represents (0.03Li 3 PO 4 .0.
58 Li 2 S.0.39SiS 2 ) lithium halide Z composed of a plurality of types (where Z is lithium iodide (LiI) and lithium bromide (LiBr) is 0.75:
0.25 mixture). It is shown from FIG. 4 that the ionic conductivity increases with the addition of lithium halide Z, then reaches a maximum and then decreases, and the ionic conductivity becomes maximum.
0.80 (0.03Li 3 PO 4 0.58Li 2 S
0.39SiS 2 ) · 0.20 (0.75LiI, 0.
25 LiBr) and its ionic conductivity value is 2.6.
It was × 10 -3 S / cm.
【0030】(実施例3)実施例1において、a’Li
3 PO4 ・b’Li2 S・c’SiS2 材料y量に対
し、添加する複数種のハロゲン化リチウムZとしてヨウ
化リチウム(LiI)、塩化リチウム(LiCl)の
0.7:0.3の混合物を用いたが、ここでは、これを
ヨウ化リチウム(LiI)0.7:臭化リチウム(Li
Br)0.1:塩化リチウム(LiCl)0.2からな
る混合物をd量に変えた以外は実施例1と同様にして、
aLi3 PO4 ・bLi2 S・cSiS2 ・dZ(a+
b+c+d=1)を得た。(Example 3) In Example 1, a'Li
3 PO 4 · b′Li 2 S · c′SiS 2 The amount of the material y is 0.7: 0.3 of lithium iodide (LiI) and lithium chloride (LiCl) as a plurality of types of lithium halide Z to be added. Was used, which was used here as lithium iodide (LiI) 0.7: lithium bromide (Li
Br) 0.1: Lithium chloride (LiCl) 0.2 In the same manner as in Example 1 except that the amount of d was changed,
aLi 3 PO 4 · bLi 2 S · cSiS 2 · dZ (a +
b + c + d = 1) was obtained.
【0031】合成した固体電解質の特性を調べるため、
交流インピーダンス法によるイオン伝導率の測定を行っ
た。In order to investigate the characteristics of the synthesized solid electrolyte,
The ionic conductivity was measured by the AC impedance method.
【0032】得られた結果を図5に示した。縦軸はイオ
ン伝導率を示し、横軸は(0.03Li3 PO4 ・0.
58Li2 S・0.39SiS2 )に対する複数種から
なるハロゲン化リチウムZ(但し、Zはヨウ化リチウム
(LiI)0.7、臭化リチウム(LiBr)0.1、
塩化リチウム(LiCl)0.2の混合物)の添加量
(モル%)を示したものである。図5よりイオン伝導率
はハロゲン化リチウムZの添加と共に増大した後、極大
を経て、減少している事が示されており、イオン伝導率
が最も大きくなるのは、0.80(0.03Li3 PO
4 ・0.58Li 2 S・0.39SiS2 )・0.20
(0.7LiI、0.1LiBr、0.2LiCl)で
あり、そのイオン伝導率の値は1.8×10-3S/cm
であった。The obtained results are shown in FIG. The vertical axis is Io
Conductivity and the horizontal axis is (0.03Li3POFour・ 0.
58Li2S ・ 0.39SiS2) From multiple species
Lithium halide Z (where Z is lithium iodide
(LiI) 0.7, lithium bromide (LiBr) 0.1,
Amount of lithium chloride (LiCl) 0.2 mixture)
(Mol%) is shown. From Figure 5, ionic conductivity
Is maximum after increasing with the addition of lithium halide Z
It has been shown that the ionic conductivity decreases after
Is the largest at 0.80 (0.03Li3PO
Four・ 0.58Li 2S ・ 0.39SiS2) ・ 0.20
(0.7LiI, 0.1LiBr, 0.2LiCl)
Yes, its ionic conductivity value is 1.8 × 10-3S / cm
Met.
【0033】(実施例4)aLi3 PO4 ・bLi2 S
・cGeS2 系非晶質材料を用いた非晶質リチウムイオ
ン伝導性固体電解質aLi3 PO4 ・bLi2 S・cG
eS2 ・dZについての実施例を説明する。Example 4 aLi 3 PO 4 .bLi 2 S
· CGeS 2 based amorphous lithium ion conductive solid electrolyte with amorphous material aLi 3 PO 4 · bLi 2 S · cG
An example of eS 2 · dZ will be described.
【0034】先ず、最初に0.6Li2 S・0.4Ge
S2 ガラスを実施例1と同様に合成した。即ち、硫化リ
チウム(Li2 S)と硫化ゲルマニウム(GeS2 )を
モル比で3:2に混合し、該材料粉末をガラス状カーボ
ン坩堝中にいれ、これをアルゴン気流中950°Cで
1.5時間反応させた後、液体窒素中に投入して急冷し
0.6Li2 S・0.4GeS2 組成の材料を合成し
た。続いて、こうして得た材料0.6Li2 S・0.4
GeS2 を粉砕し、リン酸リチウム(Li3 PO4)を
モル比で97:3に混合し、該粉末をガラス状カーボン
坩堝中にいれ、アルゴン気流中950°Cで1.5時間
反応させた。然る後、液体窒素中に投入して急冷し、
0.03Li3 PO4 ・0.58Li2 S・0.39G
eS2 で示される非晶質材料を合成した。First, 0.6Li 2 S.0.4Ge
S 2 glass was synthesized as in Example 1. That is, lithium sulfide (Li 2 S) and germanium sulfide (GeS 2 ) were mixed at a molar ratio of 3: 2, the material powder was put in a glassy carbon crucible, and this was put in an argon stream at 950 ° C. for 1. after 5 hours of reaction was quenched put into liquid nitrogen to synthesize a material 0.6Li 2 S · 0.4GeS 2 composition. Then, the material 0.6Li 2 S.0.4 obtained in this way
GeS 2 was pulverized, lithium phosphate (Li 3 PO 4 ) was mixed at a molar ratio of 97: 3, the powder was put into a glassy carbon crucible, and the mixture was reacted in an argon stream at 950 ° C. for 1.5 hours. It was After that, put it in liquid nitrogen and quench it,
0.03Li 3 PO 4 , 0.58Li 2 S, 0.39G
An amorphous material designated eS 2 was synthesized.
【0035】得られた0.03Li3 PO4 ・0.58
Li2 S・0.39GeS2 材料y量に対し、複数種の
ハロゲン化リチウムZとしてヨウ化リチウム(Li
I)、塩化リチウム(LiCl)が0.8:0.2の混
合物をd量とり、y+dが1となるように混合した後、
該材料粉末をガラス状カーボン坩堝中にいれ、これをア
ルゴン気流中950°Cで1.5時間溶融し反応させた
後、液体窒素中に投入して急冷しaLi3 PO4 ・bL
i2 S・cGeS2 ・dZ(a+b+c+d=1)を得
た。The obtained 0.03Li 3 PO 4 .0.58
Li 2 S.0.39 GeS 2 material y amount, lithium iodide (Li
I) and lithium chloride (LiCl) in a ratio of 0.8: 0.2 are mixed in a d amount, and y + d is mixed to be 1;
The material powder was put into a glassy carbon crucible, and this was melted and reacted at 950 ° C. for 1.5 hours in an argon stream, and then poured into liquid nitrogen and rapidly cooled aLi 3 PO 4 .bL
i 2 S · cGeS 2 · dZ (a + b + c + d = 1) was obtained.
【0036】合成した各種組成の固体電解質の特性を調
べるため、交流インピーダンス法によるイオン伝導率の
測定を行った。In order to investigate the characteristics of the synthesized solid electrolytes of various compositions, the ionic conductivity was measured by the AC impedance method.
【0037】得られた結果を図6に示した。縦軸はイオ
ン伝導率を示し、横軸は(0.03Li3 PO4 ・0.
58Li2 S・0.39GeS2 )に対する複数種のハ
ロゲン化リチウムZの添加量(モル%)を示したもので
ある。図6よりイオン伝導率はハロゲン化リチウムZの
添加と共に増大した後、極大を経て、減少している事が
示されており、イオン伝導率が最も大きくなるのは、
0.85(0.03Li 3 PO4 ・0.58Li2 S・
0.39GeS2 )・0.15(0.8LiI、0.2
LiCl)であり、そのイオン伝導率の値は1.2×1
0-3S/cmであった。The obtained results are shown in FIG. The vertical axis is Io
Conductivity and the horizontal axis is (0.03Li3POFour・ 0.
58Li2S ・ 0.39GeS2) Multiple ha
It shows the addition amount (mol%) of lithium rogenide Z.
is there. From FIG. 6, the ionic conductivity of lithium halide Z is
After increasing with addition, it goes through a maximum and then decreases.
It is shown that the highest ionic conductivity is
0.85 (0.03Li 3POFour・ 0.58Li2S ・
0.39GeS2) ・ 0.15 (0.8LiI, 0.2
LiCl) and its ionic conductivity value is 1.2 × 1.
0-3It was S / cm.
【0038】これに対し、ハロゲン化リチウムを添加し
ていない0.03Li3 PO4 ・0.58Li2 S・
0.39GeS2 のイオン伝導率は2.0×10-4S/
cmであった。On the other hand, 0.03Li 3 PO 4 .0.58Li 2 S
The ionic conductivity of 0.39 GeS 2 is 2.0 × 10 −4 S /
It was cm.
【0039】次に、リチウム金属に対する電解質の化学
的安定性を実施例1と同様にして調べた。Next, the chemical stability of the electrolyte with respect to lithium metal was examined in the same manner as in Example 1.
【0040】得られた結果は実施例1と同様、ハロゲン
化リチウムが0.6以上では内部インピーダンスの経時
変化が著しく大きくなり、それ未満では内部インピーダ
ンスの増加が少なくなる事が分かった。As with the results obtained in Example 1, it was found that when the lithium halide was 0.6 or more, the change in internal impedance with time was significantly large, and when it was less than that, the increase in internal impedance was small.
【0041】(実施例5)実施例4において、a’Li
3 PO4 ・b’Li2 S・c’GeS2 材料y量に対
し、添加する複数種のハロゲン化リチウムZとしてヨウ
化リチウム(LiI)、塩化リチウム(LiCl)が
0.8:0.2の混合物を用いたが、ここでは、これを
ヨウ化リチウム(LiI)0.75:臭化リチウム(L
iBr)0.15:塩化リチウム(LiCl)0.1か
らなる混合物をd量に変えた以外は実施例4と同様にし
て、aLi3 PO4 ・bLi2 S・cGeS2 ・dZ
(a+b+c+d=1)を得た。(Example 5) In Example 4, a'Li
3 PO 4 · b′Li 2 S · c′GeS 2 Material y amount of lithium iodide (LiI) and lithium chloride (LiCl) 0.8: 0.2 as plural kinds of lithium halide Z to be added. A mixture of lithium iodide (LiI) 0.75: lithium bromide (L) was used here.
IBR) 0.15: In the same manner, except that a mixture of lithium chloride (LiCl) 0.1 was changed to d amount as in Example 4, aLi 3 PO 4 · bLi 2 S · cGeS 2 · dZ
(A + b + c + d = 1) was obtained.
【0042】合成した固体電解質の特性を調べるため、
交流インピーダンス法によるイオン伝導率の測定を行っ
た。In order to investigate the characteristics of the synthesized solid electrolyte,
The ionic conductivity was measured by the AC impedance method.
【0043】得られた結果を図7に示した。縦軸はイオ
ン伝導率を示し、横軸は(0.03Li3 PO4 ・0.
58Li2 S・0.39GeS2 )に対する複数種から
なるハロゲン化リチウムZ(但し、Zはヨウ化リチウム
(LiI)0.75、臭化リチウム(LiBr)0.1
5、塩化リチウム(LiCl)0.1の混合物)の添加
量(モル%)を示したものである。図7よりイオン伝導
率はハロゲン化リチウムZの添加と共に増大した後、極
大を経て、減少している事が示されており、イオン伝導
率が最も大きくなるのは、0.75(0.03Li3 P
O4 ・0.58Li2 S・0.39GeS2 )・0.2
5(0.75LiI、0.15LiBr、0.10Li
Cl)であり、そのイオン伝導率の値は1.1×10-3
S/cmであった。The obtained results are shown in FIG. The vertical axis represents ionic conductivity, and the horizontal axis represents (0.03Li 3 PO 4 .0.
58Li 2 S.0.39GeS 2 ) lithium halide Z consisting of plural kinds (where Z is lithium iodide (LiI) 0.75 and lithium bromide (LiBr) 0.1).
5, the mixture amount (mol%) of lithium chloride (LiCl 0.1) is shown. From FIG. 7, it is shown that the ionic conductivity increases with the addition of lithium halide Z, then reaches a maximum and then decreases, and the maximum ionic conductivity is 0.75 (0.03 Li 3 P
O 4 , 0.58 Li 2 S, 0.39GeS 2 ), 0.2
5 (0.75LiI, 0.15LiBr, 0.10Li
Cl) and its ionic conductivity value is 1.1 × 10 −3
It was S / cm.
【0044】(実施例6)aLi3 PO4 ・bLi2 S
・cP2 S5 系非晶質材料を用いた非晶質リチウムイオ
ン伝導性固体電解質aLi3 PO4 ・bLi2 S・cP
2 S5 ・dZについての実施例を説明する。Example 6 aLi 3 PO 4 .bLi 2 S
· CP 2 S 5 based non amorphous lithium with amorphous material ion conductive solid electrolyte aLi 3 PO 4 · bLi 2 S · cP
An example of 2 S 5 · dZ will be described.
【0045】先ず、最初に0.67Li2 S・0.33
P2 S5 ガラスを実施例1と同様に合成した。即ち、硫
化リチウム(Li2 S)と硫化燐(P2 S5 )をモル比
で2:1に混合し、該材料粉末をガラス状カーボン坩堝
中にいれ、これをアルゴン気流中500°Cで12時
間、続いて800°Cで2時間反応させた後、液体窒素
中に投入して急冷し、0.67Li2 S・0.33P2
S5 組成の材料を合成した。続いて、こうして得た材料
0.67Li2 S・0.33P2 S5 を粉砕し、リン酸
リチウム(Li3 PO4 )をモル比で97:3に混合
し、該粉末をガラス状カーボン坩堝中にいれ、アルゴン
気流中950°Cで1.5時間反応させた。然る後、液
体窒素中に投入して急冷し、0.03Li3 PO4 ・
0.65Li2S・0.32P2 S5 で示される非晶質
材料を合成した。First, 0.67 Li 2 S.0.33
P 2 S 5 glass was synthesized as in Example 1. That is, lithium sulfide (Li 2 S) and phosphorus sulfide (P 2 S 5 ) were mixed at a molar ratio of 2: 1 and the material powder was put into a glassy carbon crucible and the mixture was placed in an argon stream at 500 ° C. After reacting for 12 hours and then at 800 ° C. for 2 hours, the mixture was put into liquid nitrogen and rapidly cooled to 0.67Li 2 S.0.33P 2.
A material of S 5 composition was synthesized. Subsequently, the material 0.67Li 2 S.0.33P 2 S 5 thus obtained was pulverized and lithium phosphate (Li 3 PO 4 ) was mixed at a molar ratio of 97: 3, and the powder was mixed with a glassy carbon crucible. It was put in the inside and reacted at 950 ° C. for 1.5 hours in an argon stream. After that, it is put into liquid nitrogen and rapidly cooled to 0.03 Li 3 PO 4
The amorphous material represented by 0.65Li 2 S · 0.32P 2 S 5 were synthesized.
【0046】得られた0.03Li3 PO4 ・0.65
Li2 S・0.32P2 S5 材料y量に対し、複数種の
ハロゲン化リチウムZとしてヨウ化リチウム(Li
I)、塩化リチウム(LiCl)が0.7:0.3の混
合物をd量とり、y+dが1となるように混合した後、
該混合粉末をガラス状カーボン坩堝中にいれ、これを、
アルゴン気流中950°Cで1.5時間溶融し反応させ
た後、液体窒素中に投入して急冷しaLi3 PO4 ・b
Li2 S・cP2 S5 ・dZ(a+b+c+d=1)を
得た。The obtained 0.03 Li 3 PO 4 .0.65
Li 2 S.0.32P 2 S 5 material y amount, lithium iodide (Li
I) and lithium chloride (LiCl) of 0.7: 0.3 are mixed in a d amount and mixed so that y + d is 1,
Put the mixed powder in a glassy carbon crucible,
After melting and reacting at 950 ° C for 1.5 hours in an argon stream, the mixture was poured into liquid nitrogen and rapidly cooled aLi 3 PO 4 · b.
Li 2 S · cP 2 S 5 · dZ (a + b + c + d = 1) was obtained.
【0047】合成した各種組成の固体電解質の特性を調
べるため、交流インピーダンス法によるイオン伝導率の
測定および本固体電解質のリチウム金属に対する化学的
安定性を調べた。In order to investigate the characteristics of the synthesized solid electrolytes of various compositions, the ionic conductivity was measured by the AC impedance method and the chemical stability of the solid electrolyte to lithium metal was examined.
【0048】得られた結果を図8に示した。縦軸はイオ
ン伝導率を示し、横軸は(0.03Li3 PO4 ・0.
65Li2 S・0.32P2 S5 )に対する複数種のハ
ロゲン化リチウム(ヨウ化リチウム、塩化リチウム混合
物)の添加量(モル%)を示したものである。イオン伝
導率が最も大な値を示した組成は、0.75(0.03
Li3 PO4 ・0.65Li2 S・0.32P2 S5 )
・0.25(0.7LiI、0.3LiCl)であり、
そのイオン伝導率の値は1.2×10-3S/cmであっ
た。The obtained results are shown in FIG. The vertical axis represents ionic conductivity, and the horizontal axis represents (0.03Li 3 PO 4 .0.
More of lithium halide (lithium iodide for 65Li 2 S · 0.32P 2 S 5 ), illustrates the addition amount of lithium chloride mixture) (mol%). The composition showing the largest ionic conductivity is 0.75 (0.03
Li 3 PO 4 · 0.65Li 2 S · 0.32P 2 S 5)
-0.25 (0.7LiI, 0.3LiCl),
The value of its ionic conductivity was 1.2 × 10 −3 S / cm.
【0049】これに対し、ハロゲン化リチウムを添加し
ていない0.03Li3 PO4 ・0.65Li2 S・
0.32P2 S5 のイオン伝導率は4.2×10-4S/
cmであった。On the other hand, 0.03Li 3 PO 4 .0.6Li 2 S
The ionic conductivity of 0.32P 2 S 5 is 4.2 × 10 −4 S /
It was cm.
【0050】次に、リチウム金属に対する電解質の化学
的安定性を実施例1と同様にして調べた。Next, the chemical stability of the electrolyte against lithium metal was examined in the same manner as in Example 1.
【0051】得られた結果は実施例1と同様、複数種の
ハロゲン化リチウムが0.6以上では内部インピーダン
スの経時変化が著しく大きくなり、それ未満では内部イ
ンピーダンスの増加が少なくなる事が分かった。As with the results obtained in Example 1, it was found that the change in internal impedance with time is significantly large when the plural kinds of lithium halides are 0.6 or more, and the increase in the internal impedance is small when the amount is less than that. ..
【0052】(実施例7)実施例6において、a’Li
3 PO4 ・b’Li2 S・c’P2 S5 材料y量に対
し、添加する複数種のハロゲン化リチウムZとしてヨウ
化リチウム(LiI)、塩化リチウム(LiCl)が
0.7:0.3の混合物を用いたが、ここでは、これを
ヨウ化リチウム(LiI)0.75、臭化リチウム(L
iBr)0.1、塩化リチウム(LiCl)0.15か
らなる混合物をd量に変えた以外は実施例6と同様にし
て、aLi3 PO4 ・bLi2 S・cP2 S5 ・dZ
(a+b+c+d=1)を得た。Example 7 In Example 6, a'Li
3 PO 4 · b'Li 2 S · c'P 2 S 5 material y amount to a plurality of kinds of lithium iodide as a lithium halide Z adding (LiI), lithium chloride (LiCl) is 0.7: 0 A mixture of 0.3.3 was used, but in this case, lithium iodide (LiI) 0.75 and lithium bromide (L
IBR) 0.1, a mixture of lithium chloride (LiCl) 0.15 in the same manner as in Example 6 except for changing the d quantity, aLi 3 PO 4 · bLi 2 S · cP 2 S 5 · dZ
(A + b + c + d = 1) was obtained.
【0053】合成した固体電解質の特性を調べるため、
交流インピーダンス法によるイオン導電率の測定を行っ
た。To investigate the characteristics of the synthesized solid electrolyte,
The ionic conductivity was measured by the AC impedance method.
【0054】得られた結果を図9に示した。縦軸はイオ
ン伝導率を示し、横軸は(0.03Li3 PO4 ・0.
65Li2 S・0.32P2 S5 )に対する複数種から
なるハロゲン化リチウムZ(但し、Zはヨウ化リチウム
(LiI)0.75、臭化リチウム(LiBr)0.
1、塩化リチウム(LiCl)0.15の混合物)の添
加量(モル%)を示したものである。図9よりイオン伝
導率はハロゲン化リチウムZの添加と共に増大した後、
極大を経て、減少している事が示されており、イオン伝
導率が最も大きくなるのは、0.85(0.01Li3
PO4 ・0.64Li2 S・0.35P2 S5 )・0.
15(0.75LiI、0.1LiBr、0.15Li
Cl)であり、そのイオン伝導率の値は1.7×10-3
S/cmであった。The obtained results are shown in FIG. The vertical axis represents ionic conductivity, and the horizontal axis represents (0.03Li 3 PO 4 .0.
65 Li 2 S.0.32P 2 S 5 ) and a plurality of types of lithium halide Z (provided that Z is lithium iodide (LiI) 0.75, lithium bromide (LiBr) 0.
1 shows the addition amount (mol%) of 1, a mixture of lithium chloride (LiCl) 0.15). From FIG. 9, the ionic conductivity increases with the addition of lithium halide Z, and
It has been shown that after reaching the maximum, it decreases, and the maximum ionic conductivity is 0.85 (0.01 Li 3
PO 4 · 0.64Li 2 S · 0.35P 2 S 5) · 0.
15 (0.75LiI, 0.1LiBr, 0.15Li
Cl) and its ionic conductivity value is 1.7 × 10 −3
It was S / cm.
【0055】(実施例8)aLi3 PO4 ・bLi2 S
・cB2 S3 系非晶質材料を用いたリチウムイオン伝導
性固体電解質aLi3 PO4 ・bLi2 S・cB2 S3
・dZについての実施例を説明する。Example 8 aLi 3 PO 4 .bLi 2 S
· CB 2 S 3 based amorphous lithium material using an ion-conductive solid electrolyte aLi 3 PO 4 · bLi 2 S · cB 2 S 3
An example of dZ will be described.
【0056】先ず、最初に0.5Li2 S・0.5B2
S3 ガラスを実施例1と同様に合成した。即ち、硫化リ
チウム(Li2 S)と硫化ホウ素(B2 S3 )をモル比
で1:1に混合し、該材料粉末をガラス状カーボン坩堝
中にいれ、これを、アルゴン気流中500°Cで12時
間、続いて800°Cで3時間反応させた後、液体窒素
中に投入して急冷し0.5Li2 S・0.5B2 S3 組
成の材料を合成した。続いて、こうして得た材料0.5
Li2 S・0.5B2 S3 を粉砕し、リン酸リチウム
(Li3 PO4 )をモル比で96:4に混合し、該粉末
をガラス状カーボン坩堝中にいれ、アルゴン気流中80
0°Cで3時間反応させた。然る後、液体窒素中に投入
して急冷し、0.04Li3 PO4 ・0.48Li2 S
・0.48B2 S3 で示される非晶質材料を合成した。First, 0.5Li 2 S.0.5B 2
S 3 glass was synthesized as in Example 1. That is, lithium sulfide (Li 2 S) and boron sulfide (B 2 S 3 ) were mixed at a molar ratio of 1: 1 and the material powder was put into a glassy carbon crucible, which was placed in an argon stream at 500 ° C. in 12 hours, followed by after reacting for 3 hours at 800 ° C, was synthesized material was quenched put in liquid nitrogen 0.5Li 2 S · 0.5B 2 S 3 composition. Then the material 0.5 thus obtained
Li 2 S.0.5B 2 S 3 was crushed, lithium phosphate (Li 3 PO 4 ) was mixed at a molar ratio of 96: 4, and the powder was put into a glassy carbon crucible and was placed in an argon stream at 80
The reaction was carried out at 0 ° C for 3 hours. After that, it was put into liquid nitrogen and rapidly cooled to 0.04Li 3 PO 4 .0.48Li 2 S
An amorphous material represented by 0.48B 2 S 3 was synthesized.
【0057】得られた0.04Li3 PO4 ・0.48
Li2 S・0.48B2 S3 材料y量に対し、複数種の
ハロゲン化リチウムZとしてヨウ化リチウム(Li
I)、塩化リチウム(LiCl)が0.65:0.35
の混合物をd量とり、y+dが1となるように混合した
後、該混合粉末をガラス状カーボン坩堝中にいれ、これ
を、アルゴン気流中800°Cで1.5時間溶融し反応
させた後、液体窒素中に投入して急冷しaLi3 PO4
・bLi2 S・cB2 S3 ・dZ(a+b+c+d=
1)を得た。The obtained 0.04 Li 3 PO 4 .0.48
Li 2 S.0.48B 2 S 3 Material y amount of lithium iodide (Li
I) and lithium chloride (LiCl) are 0.65: 0.35
After d amount of the mixture of (1) and (1) were mixed so that y + d was 1, the mixed powder was put into a glassy carbon crucible, and this was melted and reacted at 800 ° C. for 1.5 hours in an argon stream, and then reacted. , Put into liquid nitrogen and rapidly cooled aLi 3 PO 4
・ BLi 2 S ・ cB 2 S 3・ dZ (a + b + c + d =
1) was obtained.
【0058】合成した各種組成の固体電解質の特性を調
べるため、交流インピーダンス法によるイオン伝導率の
測定および本固体電解質のリチウム金属に対する化学的
安定性を調べた。In order to investigate the characteristics of the synthesized solid electrolytes of various compositions, the ionic conductivity was measured by the AC impedance method, and the chemical stability of this solid electrolyte against lithium metal was examined.
【0059】得られた結果を図10に示した。縦軸はイ
オン伝導率を示し、横軸は(0.04Li3 PO4 ・
0.48Li2 S・0.48B2 S3 )に対する複数種
のハロゲン化リチウムの添加量(モル%)を示したもの
である。イオン伝導率が最も大きな値を示した組成は、
0.75(0.03Li3 PO4 ・0.65Li2 S・
0.32B2 S3 )・0.25(0.65LiI、0.
35LiCl)であり、そのイオン伝導率の値は1.8
×10-3S/cmであった。The obtained results are shown in FIG. The vertical axis represents ionic conductivity, and the horizontal axis represents (0.04Li 3 PO 4 ·.
It illustrates amount of a plurality of types of lithium halide (molar%) of 0.48Li 2 S · 0.48B 2 S 3 ). The composition with the highest ionic conductivity is
0.75 (0.03Li 3 PO 4 · 0.65Li 2 S ·
0.32B 2 S 3 ) 0.25 (0.65LiI, 0.
35 LiCl) and its ionic conductivity value is 1.8.
It was × 10 -3 S / cm.
【0060】これに対し、複数種のハロゲン化リチウム
を添加していない0.03Li3 PO4 ・0.65Li
2 S・0.32B2 S3 のイオン伝導率は3.0×10
-4S/cmであった。On the other hand, 0.03Li 3 PO 4 .0.65Li to which plural kinds of lithium halides are not added
The ionic conductivity of 2 S / 0.32B 2 S 3 is 3.0 × 10.
It was -4 S / cm.
【0061】次に、リチウム金属に対する電解質の化学
的安定性を実施例1と同様にして調べた。Next, the chemical stability of the electrolyte against lithium metal was examined in the same manner as in Example 1.
【0062】得られた結果は実施例1と同様、複数種の
ハロゲンリチウムの添加量が0.6以上では内部インピ
ーダンスの経時変化が著しく大きくなり、それ未満では
内部インピーダンスの増加が少なくなる事が分かった。Similar to Example 1, the obtained results show that the change of the internal impedance with time becomes significantly large when the addition amount of the plural kinds of halogen lithium is 0.6 or more, and the increase of the internal impedance decreases when the addition amount is less than that. Do you get it.
【0063】[0063]
【発明の効果】本発明のリチウムイオン伝導性固体電解
質は、Li3 PO4 ・Li2 S・X(XはSiS2 、G
eS2 、P2 S5 、B2 S3 の群より選択される一種以
上の硫化物)系硫化物非晶質材料に複数種のハロゲン化
リチウムからなる混合物を添加することによって得られ
るものであり、母材のLi2 S・X(XはSiS2 、G
eS2 、P2 S5 、B2 S3 の群より選択される一種以
上の硫化物)系非晶質材料に比べ、より高いリチウムイ
オン伝導性を示し、リチウム金属の接触に依っても化学
的変化の少ない固体電解質を提供する事が出来る。Lithium ion conductive solid electrolyte of the present invention exhibits, Li 3 PO 4 · Li 2 S · X (X is SiS 2, G
eS 2 , P 2 S 5 , and one or more sulfides selected from the group of B 2 S 3 ) -based sulfides An amorphous material obtained by adding a mixture of a plurality of types of lithium halides. Yes, the base material Li 2 S · X (X is SiS 2 , G
Compared with one or more sulfide-based amorphous materials selected from the group consisting of eS 2 , P 2 S 5 , and B 2 S 3 , it exhibits higher lithium ion conductivity and is chemically dependent on contact with lithium metal. It is possible to provide a solid electrolyte with little static change.
【0064】その結果、このリチウムイオン伝導性固体
電解質を、電池、コンデンサ、エレクトロクロミック表
示素子等の電気化学素子の電解質に用いても、極めて実
用性の高い電気化学素子を製造することが出来る事が期
待される。As a result, even if the lithium ion conductive solid electrolyte is used as an electrolyte for electrochemical devices such as batteries, capacitors and electrochromic display devices, it is possible to produce an electrochemical device having extremely high practicality. There is expected.
【0065】尚、本発明の実施例に於ける固体電解質の
合成に際しては、逐次非晶質材料を合成し、目的とする
本発明のリチウムイオン伝導性固体電解質を得たが、こ
れはそれぞれに於いて最高の条件を求めるために試行し
たものであって、電解質組成と合成温度、昇温条件等の
諸条件を選択することにより、簡略化させる事が出来る
事は自明の事であり、本発明の範疇に属するものであ
る。また複数種のハロゲン化物の混合比率として単一種
を用いたが、他組成の混合比率においてもイオン伝導性
固体電解質が得られる。従って、他組成の混合比率の電
解質も本発明の範疇に属する事はいうまでもない。In the synthesis of the solid electrolyte in the examples of the present invention, the amorphous material was successively synthesized to obtain the intended lithium ion conductive solid electrolyte of the present invention. It was an attempt to find the best conditions, and it is self-evident that simplification can be achieved by selecting various conditions such as electrolyte composition, synthesis temperature, and temperature rising conditions. It belongs to the category of invention. Further, although a single kind is used as a mixing ratio of a plurality of kinds of halides, an ion conductive solid electrolyte can be obtained even at a mixing ratio of other compositions. Therefore, it goes without saying that the electrolyte having a mixing ratio of other composition also belongs to the category of the present invention.
【図1】a’Li3 PO4 ・b’Li2 S・c’SiS
2 への複数種のハロゲン化リチウム(LiI、LiCl
の混合物)の添加による伝導率変化を示す特性線図FIG. 1 a'Li 3 PO 4 b'Li 2 S c'SiS
2 kinds of lithium halide (LiI, LiCl
Diagram showing the change in conductivity due to the addition of
【図2】内部インピーダンスの測定に用いる密封セルの
断面図FIG. 2 is a cross-sectional view of a sealed cell used for measuring internal impedance.
【図3】リチウム金属に対する化学的安定性を示す特性
線図FIG. 3 is a characteristic diagram showing chemical stability against lithium metal.
【図4】a’Li3 PO4 ・b’Li2 S・c’SiS
2 への複数種のハロゲン化リチウム(LiI、LiBr
の混合物)の添加による伝導率変化を示す特性線図FIG. 4 a'Li 3 PO 4 b'Li 2 S c'SiS
2 kinds of lithium halides (LiI, LiBr
Diagram showing the change in conductivity due to the addition of
【図5】a’Li3 PO4 ・b’Li2 S・c’SiS
2 への複数種のハロゲン化リチウム(LiI、LiB
r、LiClの混合物)の添加による伝導率変化を示す
特性線図FIG. 5: a'Li 3 PO 4 / b'Li 2 S / c'SiS
2 types of lithium halides (LiI, LiB
Characteristic diagram showing the change in conductivity due to the addition of r, a mixture of LiCl)
【図6】a’Li3 PO4 ・b’Li2 S・c’GeS
2 への複数種のハロゲン化リチウム(LiI、LiCl
の混合物)の添加による伝導率変化を示す特性線図FIG. 6 a'Li 3 PO 4 b'Li 2 S c'GeS
2 kinds of lithium halide (LiI, LiCl
Diagram showing the change in conductivity due to the addition of
【図7】a’Li3 PO4 ・b’Li2 S・c’GeS
2 への複数種のハロゲン化リチウム(LiI、LiB
r、LiClの混合物)の添加による伝導率変化を示す
特性線図FIG. 7: a'Li 3 PO 4 / b'Li 2 S / c'GeS
2 types of lithium halides (LiI, LiB
Characteristic diagram showing the change in conductivity due to the addition of r, a mixture of LiCl)
【図8】a’Li3 PO4 ・b’Li2 S・c’P2 S
5 への複数種のハロゲン化リチウム(LiI、LiCl
の混合物)の添加による伝導率変化を示す特性線図FIG. 8: a'Li 3 PO 4 b'Li 2 S c'P 2 S
5 kinds of lithium halides (LiI, LiCl
Diagram showing the change in conductivity due to the addition of
【図9】a’Li3 PO4 ・b’Li2 S・c’P2 S
5 への複数種のハロゲン化リチウム(LiI、LiB
r、LiClの混合物)の添加による伝導率変化を示す
特性線図FIG. 9: a'Li 3 PO 4 / b'Li 2 S / c'P 2 S
5 kinds of lithium halides (LiI, LiB
Characteristic diagram showing the change in conductivity due to the addition of r, a mixture of LiCl)
【図10】a’Li3 PO4 ・b’Li2 S・c’B2
S3 への複数種のハロゲン化リチウム(LiI、LiC
lの混合物)の添加による伝導率変化を示す特性線図FIG. 10 a'Li 3 PO 4 / b'Li 2 S / c'B 2
Several kinds of lithium halides (LiI, LiC) to S 3
Characteristic diagram showing the change in conductivity due to the addition of
1 電解質ディスク 2 リチウム金属ディスク 2’リチウム金属ディスク 3 密封セル 1 Electrolyte Disk 2 Lithium Metal Disk 2'Lithium Metal Disk 3 Sealed Cell
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01M 10/36 A Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display area H01M 10/36 A
Claims (3)
X・dZ(但し、a+b+c+dが1であって、XがS
iS2 、GeS2 、P2 S5 、B2 S3 の群より選択さ
れる一種以上の硫化物であり、Zは複数種のハロゲン化
リチウム)で表される非晶質リチウムイオン伝導性固体
電解質。1. A general formula aLi 3 PO 4 .bLi 2 S.c.
X · dZ (where a + b + c + d is 1 and X is S
Amorphous lithium ion conductive solid represented by one or more sulfides selected from the group of iS 2 , GeS 2 , P 2 S 5 , and B 2 S 3 , and Z is a plurality of lithium halides. Electrolytes.
+c≧0.4であり、かつdが0.1≦d≦0.6をみ
たすことを特徴とする請求項1記載の非晶質リチウムイ
オン伝導性固体電解質。2. The sum of composition ratios a, b and c is 0.9 ≧ a + b.
The amorphous lithium ion conductive solid electrolyte according to claim 1, wherein + c ≧ 0.4 and d satisfies 0.1 ≦ d ≦ 0.6.
チウムイオン伝導性固体電解質の合成法であって、ま
ず、a’Li3 PO4 ・b’Li2 S・c’X(但し、
a’+b’+c’が1であって、XがSiS2 、GeS
2 、P2 S5 、B 2 S3 の群より選択される一種以上の
硫化物)で表される非晶質化合物を合成した後、該非晶
質化合物に複数種のハロゲン化リチウムZを混合し、該
混合物を加熱溶融し、その後急冷することにより合成す
ることを特徴とする非晶質リチウムイオン伝導性固体電
解質の合成法。3. The amorphous liquid according to claim 1 or 2.
A method for synthesizing a solid electrolyte containing thion ion, comprising:
No, a'Li3POFour・ B'Li2S · c'X (however,
a '+ b' + c 'is 1 and X is SiS2, GeS
2, P2SFive, B 2S3One or more selected from the group of
After synthesizing an amorphous compound represented by (sulfide), the amorphous
A plurality of types of lithium halide Z to the organic compound,
The mixture is heated and melted and then quenched to synthesize it.
Amorphous lithium-ion conductive solid state electrode characterized by
Synthesis method of disintegration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11451992A JP3151925B2 (en) | 1992-05-07 | 1992-05-07 | Amorphous lithium ion conductive solid electrolyte and its synthesis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11451992A JP3151925B2 (en) | 1992-05-07 | 1992-05-07 | Amorphous lithium ion conductive solid electrolyte and its synthesis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05306117A true JPH05306117A (en) | 1993-11-19 |
JP3151925B2 JP3151925B2 (en) | 2001-04-03 |
Family
ID=14639786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11451992A Expired - Lifetime JP3151925B2 (en) | 1992-05-07 | 1992-05-07 | Amorphous lithium ion conductive solid electrolyte and its synthesis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3151925B2 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995034515A1 (en) * | 1994-06-13 | 1995-12-21 | Mitsui Petrochemical Industries, Ltd. | Lithium ion-conductive glass film and thin carbon dioxide gas sensor using the same film |
EP1739769A1 (en) * | 2005-06-28 | 2007-01-03 | Sumitomo Electric Industries, Ltd. | Lithium secondary battery anode member and method for manufacturing the same |
JP2012048973A (en) * | 2010-08-26 | 2012-03-08 | Toyota Motor Corp | Sulfide solid electrolyte material and lithium solid battery |
JP2012048971A (en) * | 2010-08-26 | 2012-03-08 | Toyota Motor Corp | Sulfide solid electrolyte material, cathode body, and lithium solid-state battery |
JP2013201110A (en) * | 2011-11-07 | 2013-10-03 | Idemitsu Kosan Co Ltd | Solid electrolyte |
WO2014010169A1 (en) * | 2012-07-12 | 2014-01-16 | 出光興産株式会社 | Method for producing ion-conductive substance, ion-conductive substance, crystallized ion-conductive substance, and cell |
JP2014011033A (en) * | 2012-06-29 | 2014-01-20 | Idemitsu Kosan Co Ltd | Positive electrode mixture |
JP2014056818A (en) * | 2013-08-16 | 2014-03-27 | Toyota Motor Corp | Sulfide solid electrolyte material, cathode body, and lithium solid cell |
WO2014208239A1 (en) | 2013-06-28 | 2014-12-31 | トヨタ自動車株式会社 | Sulfide solid electrolyte material, sulfide glass, solid-state lithium battery, and method for producing sulfide solid electrolyte material |
US8968939B2 (en) | 2009-05-01 | 2015-03-03 | Toyota Jidosha Kabushiki Kaisha | Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material |
WO2015064518A1 (en) * | 2013-10-28 | 2015-05-07 | トヨタ自動車株式会社 | Method for producing sulfide solid electrolyte |
KR20160005775A (en) | 2013-06-28 | 2016-01-15 | 도요타 지도샤(주) | Method for producing sulfide solid electrolyte material |
JP2016512649A (en) * | 2013-02-21 | 2016-04-28 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | Lithium battery with composite solid electrolyte |
JP2017152352A (en) * | 2016-02-26 | 2017-08-31 | トヨタ自動車株式会社 | Sulfide solid electrolyte material, lithium solid battery, and method for manufacturing sulfide solid electrolyte material |
US10008735B2 (en) | 2009-12-16 | 2018-06-26 | Toyota Jidosha Kabushiki Kaisha | Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery |
WO2018164224A1 (en) * | 2017-03-08 | 2018-09-13 | 出光興産株式会社 | Sulfide solid electrolyte particle |
WO2019135317A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
WO2019135318A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
WO2019135316A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
US11411247B2 (en) | 2018-01-05 | 2022-08-09 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11498850B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11498849B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11515565B2 (en) | 2018-01-05 | 2022-11-29 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
US11524902B2 (en) | 2018-01-05 | 2022-12-13 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery |
US11560320B2 (en) | 2018-01-05 | 2023-01-24 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11591236B2 (en) | 2018-01-05 | 2023-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11637287B2 (en) | 2018-01-26 | 2023-04-25 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery using same |
US11652235B2 (en) | 2018-01-26 | 2023-05-16 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
US11682764B2 (en) | 2018-01-26 | 2023-06-20 | Panasonic Intellectual Property Management Co., Ltd. | Cathode material and battery using same |
US11784345B2 (en) | 2018-01-05 | 2023-10-10 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11949064B2 (en) | 2018-11-29 | 2024-04-02 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material, battery, and method for producing battery |
US11955599B2 (en) | 2018-11-29 | 2024-04-09 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material and battery |
-
1992
- 1992-05-07 JP JP11451992A patent/JP3151925B2/en not_active Expired - Lifetime
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5755940A (en) * | 1994-06-13 | 1998-05-26 | Mitsui Petrochemical Industries, Ltd. | Lithium ionic conducting glass thin film and carbon dioxide sensor comprising the glass thin film |
WO1995034515A1 (en) * | 1994-06-13 | 1995-12-21 | Mitsui Petrochemical Industries, Ltd. | Lithium ion-conductive glass film and thin carbon dioxide gas sensor using the same film |
US8709106B2 (en) | 2005-06-28 | 2014-04-29 | Sumitomo Electric Industries, Ltd. | Lithium secondary battery anode member and method for manufacturing the same |
EP1739769A1 (en) * | 2005-06-28 | 2007-01-03 | Sumitomo Electric Industries, Ltd. | Lithium secondary battery anode member and method for manufacturing the same |
US8968939B2 (en) | 2009-05-01 | 2015-03-03 | Toyota Jidosha Kabushiki Kaisha | Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material |
US10707518B2 (en) | 2009-12-16 | 2020-07-07 | Toyota Jidosha Kabushiki Kaisha | Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery |
US10008735B2 (en) | 2009-12-16 | 2018-06-26 | Toyota Jidosha Kabushiki Kaisha | Method of producing a sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery |
JP2012048971A (en) * | 2010-08-26 | 2012-03-08 | Toyota Motor Corp | Sulfide solid electrolyte material, cathode body, and lithium solid-state battery |
US10193185B2 (en) | 2010-08-26 | 2019-01-29 | Toyota Jidosha Kabushiki Kaisha | Sulfide solid electrolyte material and lithium solid state battery |
CN103081206A (en) * | 2010-08-26 | 2013-05-01 | 丰田自动车株式会社 | Sulfide solid electrolyte material and lithium solid state battery |
JP2012048973A (en) * | 2010-08-26 | 2012-03-08 | Toyota Motor Corp | Sulfide solid electrolyte material and lithium solid battery |
US9680179B2 (en) | 2010-08-26 | 2017-06-13 | Toyota Jidosha Kabushiki Kaisha | Sulfide solid electrolyte material, cathode body and lithium solid state battery |
JP2013201110A (en) * | 2011-11-07 | 2013-10-03 | Idemitsu Kosan Co Ltd | Solid electrolyte |
JP2014011033A (en) * | 2012-06-29 | 2014-01-20 | Idemitsu Kosan Co Ltd | Positive electrode mixture |
WO2014010169A1 (en) * | 2012-07-12 | 2014-01-16 | 出光興産株式会社 | Method for producing ion-conductive substance, ion-conductive substance, crystallized ion-conductive substance, and cell |
CN104412338A (en) * | 2012-07-12 | 2015-03-11 | 出光兴产株式会社 | Method for producing ion-conductive material, crystalline ion-conductive material, and battery |
JPWO2014010169A1 (en) * | 2012-07-12 | 2016-06-20 | 出光興産株式会社 | Ion conductive material manufacturing method, ion conductive material, crystallized ion conductive material, and battery |
JP2016512649A (en) * | 2013-02-21 | 2016-04-28 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | Lithium battery with composite solid electrolyte |
DE112014002991B4 (en) | 2013-06-28 | 2022-01-20 | Toyota Jidosha Kabushiki Kaisha | Process for the production of a sulfide solid electrolyte material |
KR20160010555A (en) | 2013-06-28 | 2016-01-27 | 도요타 지도샤(주) | Sulfide solid electrolyte material, sulfide glass, solid-state lithium battery, and method for producing sulfide solid electrolyte material |
KR20160005775A (en) | 2013-06-28 | 2016-01-15 | 도요타 지도샤(주) | Method for producing sulfide solid electrolyte material |
US11011775B2 (en) | 2013-06-28 | 2021-05-18 | Toyota Jidosha Kabushiki Kaisha | Sulfide solid electrolyte material, sulfide glass, solid state lithium battery, and method for producing sulfide solid electrolyte material |
US10084202B2 (en) | 2013-06-28 | 2018-09-25 | Toyota Jidosha Kabushiki Kaisha | Method for producing sulfide solid electrolyte material |
WO2014208239A1 (en) | 2013-06-28 | 2014-12-31 | トヨタ自動車株式会社 | Sulfide solid electrolyte material, sulfide glass, solid-state lithium battery, and method for producing sulfide solid electrolyte material |
US10707525B2 (en) | 2013-06-28 | 2020-07-07 | Toyota Jidosha Kabushiki Kaisha | Method for producing sulfide solid electrolyte material |
JP2014056818A (en) * | 2013-08-16 | 2014-03-27 | Toyota Motor Corp | Sulfide solid electrolyte material, cathode body, and lithium solid cell |
JP2015088226A (en) * | 2013-10-28 | 2015-05-07 | トヨタ自動車株式会社 | Method for manufacturing sulfide solid electrolyte |
WO2015064518A1 (en) * | 2013-10-28 | 2015-05-07 | トヨタ自動車株式会社 | Method for producing sulfide solid electrolyte |
KR20190002399A (en) * | 2016-02-26 | 2019-01-08 | 도요타 지도샤(주) | Sulfide solid electrolyte material, lithium solid battery, and producing method for sulfide solid electrolyte material |
US10361451B2 (en) | 2016-02-26 | 2019-07-23 | Toyota Jidosha Kabushiki Kaisha | Sulfide solid electrolyte material, lithium solid battery, and producing method for sulfide solid electrolyte material |
JP2017152352A (en) * | 2016-02-26 | 2017-08-31 | トヨタ自動車株式会社 | Sulfide solid electrolyte material, lithium solid battery, and method for manufacturing sulfide solid electrolyte material |
WO2018164224A1 (en) * | 2017-03-08 | 2018-09-13 | 出光興産株式会社 | Sulfide solid electrolyte particle |
JPWO2018164224A1 (en) * | 2017-03-08 | 2020-01-09 | 出光興産株式会社 | Sulfide solid electrolyte particles |
US11355780B2 (en) | 2017-03-08 | 2022-06-07 | Idemitsu Kosan Co., Ltd. | Sulfide solid electrolyte particles |
US11498850B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11560320B2 (en) | 2018-01-05 | 2023-01-24 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
WO2019135318A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
US11411247B2 (en) | 2018-01-05 | 2022-08-09 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11427477B2 (en) | 2018-01-05 | 2022-08-30 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
WO2019135316A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
US11498849B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11515565B2 (en) | 2018-01-05 | 2022-11-29 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
US11524902B2 (en) | 2018-01-05 | 2022-12-13 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery |
WO2019135317A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
US11591236B2 (en) | 2018-01-05 | 2023-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11784345B2 (en) | 2018-01-05 | 2023-10-10 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11760649B2 (en) | 2018-01-05 | 2023-09-19 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11682764B2 (en) | 2018-01-26 | 2023-06-20 | Panasonic Intellectual Property Management Co., Ltd. | Cathode material and battery using same |
US11652235B2 (en) | 2018-01-26 | 2023-05-16 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
US11637287B2 (en) | 2018-01-26 | 2023-04-25 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery using same |
US11949064B2 (en) | 2018-11-29 | 2024-04-02 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material, battery, and method for producing battery |
US11955599B2 (en) | 2018-11-29 | 2024-04-09 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material and battery |
Also Published As
Publication number | Publication date |
---|---|
JP3151925B2 (en) | 2001-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05306117A (en) | Amorphous lithium ion conductive solid electrolyte and its synthesizing method | |
Li et al. | NaSICON: A promising solid electrolyte for solid‐state sodium batteries | |
JP3433173B2 (en) | Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery | |
JP3343934B2 (en) | Amorphous lithium ion conductive solid electrolyte and its synthesis method | |
US9748601B2 (en) | Method of manufacturing lithium ion conductive solid electrolyte and lithium-ion secondary battery | |
JP3163741B2 (en) | Amorphous lithium ion conductive solid electrolyte and method for producing the same | |
CN100524927C (en) | Solid electrolyte material system for all solid state lithium battery and preparation method | |
JPH0654687B2 (en) | Glassy oxidation-phosphorus sulfide solid lithium electrolyte | |
Chen et al. | Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells | |
JP3070328B2 (en) | Fibrous solid electrolyte molded body | |
Tron et al. | Synthesis of the solid electrolyte Li2O–LiF–P2O5 and its application for lithium-ion batteries | |
JP3343936B2 (en) | Amorphous lithium ion conductive solid electrolyte and its synthesis method | |
JPH04202024A (en) | Lithium ion conductive solid electrolyte | |
Tang et al. | A dual-halogen electrolyte for protective-layer-free all-solid-state lithium batteries | |
Li et al. | The challenges and perspectives of developing solid-state electrolytes for rechargeable multivalent battery | |
JP3149524B2 (en) | Amorphous lithium ion conductive solid electrolyte and method for producing the same | |
Osterheld | Liquidus diagram for the system lithium orthophosphate-lithium metaphosphate | |
US7351502B2 (en) | Solid inorganic glassy electrolyte and method of production thereof | |
JP7454665B2 (en) | Phosphorus-free sulfide solid electrolyte | |
JP3129018B2 (en) | Lithium ion conductive solid electrolyte and its synthesis method | |
Torres III et al. | Effects of LiPON Incorporation on the Structures and Properties of Mixed Oxy-Sulfide-Nitride Glassy Solid Electrolytes | |
WO2024085045A1 (en) | Sulfide solid electrolyte and method for producing same, electrode mixture, solid electrolyte layer, and all-solid-state lithium ion secondary battery | |
CN106785018B (en) | A kind of lithium sulfide system solid electrolyte material for adding lithium-tin alloy, silver bromide and silver chlorate and preparation method thereof | |
CN106785017A (en) | A kind of lithium sulfide system solid electrolyte material for adding lithium-tin alloy, silver iodide and silver chlorate and preparation method thereof | |
JPH01128355A (en) | Nonaqueous solvent cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20080126 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20090126 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120126 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20130126 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20130126 |