JP3163741B2 - Amorphous lithium ion conductive solid electrolyte and method for producing the same - Google Patents

Amorphous lithium ion conductive solid electrolyte and method for producing the same

Info

Publication number
JP3163741B2
JP3163741B2 JP11569592A JP11569592A JP3163741B2 JP 3163741 B2 JP3163741 B2 JP 3163741B2 JP 11569592 A JP11569592 A JP 11569592A JP 11569592 A JP11569592 A JP 11569592A JP 3163741 B2 JP3163741 B2 JP 3163741B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
ion conductive
lithium
lithium ion
conductive solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11569592A
Other languages
Japanese (ja)
Other versions
JPH05310417A (en
Inventor
繁雄 近藤
和典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP11569592A priority Critical patent/JP3163741B2/en
Publication of JPH05310417A publication Critical patent/JPH05310417A/en
Application granted granted Critical
Publication of JP3163741B2 publication Critical patent/JP3163741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、全固体電池、コンデン
サ、固体エレクトロクロミック表示素子等の電気化学素
子の電解質として利用されるリチウムイオン導電性固体
電解質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion conductive solid electrolyte used as an electrolyte for electrochemical devices such as all solid state batteries, capacitors and solid state electrochromic display devices.

【0002】[0002]

【従来の技術】近年、有機リチウム電解質を用いたリチ
ウム二次電池の開発に関する研究が盛んに行われてい
る。有機電解質を用いたリチウム二次電池の開発には、
正極あるいは負極として可逆性に優れた活物質材料の開
発が必要であり、今日、そうした材料探索が盛んに行わ
れている。例えば、このような電池の負極材料に関する
研究は、リチウム金属単独あるいはリチウム合金を用い
たものから、特殊なカーボンを利用しカーボン層間へリ
チウムを可逆的に出し入れさせることのできる反応を利
用したものへと移行してきている。
2. Description of the Related Art In recent years, research on the development of lithium secondary batteries using an organic lithium electrolyte has been actively conducted. For the development of lithium secondary batteries using organic electrolytes,
It is necessary to develop an active material having excellent reversibility as a positive electrode or a negative electrode, and such materials are being actively searched for today. For example, research on negative electrode materials for such batteries has shifted from those using lithium metal alone or lithium alloys to those using reactions that can reversibly move lithium between carbon layers using special carbon. And it is shifting.

【0003】また、正極材料に関しても同様に、活物質
の電気化学的酸化還元によって化学変化を伴うものか
ら、電解質中のLiイオンが活物質中へ出入りする材料
へと、用いられる材料が異なってきている。
[0003] Similarly, the materials used for the positive electrode material are different from those accompanied by a chemical change due to the electrochemical oxidation-reduction of the active material to those in which Li ions in the electrolyte enter and exit the active material. ing.

【0004】一方、電解質に関しては、電池の信頼性を
向上させる為にリチウムイオン導電性固体電解質を必要
としている。しかし、現在の所、優れたリチウムイオン
導電性固体電解質がなく、新しいリチウムイオン導電性
固体電解質材料の研究開発が盛んに行われている。
On the other hand, regarding the electrolyte, a lithium ion conductive solid electrolyte is required to improve the reliability of the battery. However, at present, there is no excellent lithium ion conductive solid electrolyte, and research and development of a new lithium ion conductive solid electrolyte material are being actively conducted.

【0005】こうした固体電解質に関する研究の一つと
して、Li2S・X(XはSiS2、GeS2、P25
23のうち少なくとも一種の硫化物)系硫化物ガラス
が優れたイオン導電性を示すことから盛んに研究されて
いる。
As one of studies on such solid electrolytes, Li 2 SX (X is SiS 2 , GeS 2 , P 2 S 5 ,
At least one sulfide-based sulfide glass of B 2 S 3 has been actively studied because of its excellent ionic conductivity.

【0006】Li2S・X系硫化物ガラスは、XがSi
2のLi2S・SiS2系において特に高い導電率の値
を有し、その値は、5×10-4S/cm程度である。
In the Li 2 S.X sulfide glass, X is Si
It has a particularly high conductivity value in the Li 2 S.SiS 2 system of S 2 , and the value is about 5 × 10 −4 S / cm.

【0007】また、Li2S・X系硫化物ガラスにヨウ
化リチウムを添加したLiI・Li2S・X系ガラスで
は、10-3S/cm程度と比較的高いイオン導電率を持
つことが知られている。
[0007] In the LiI · Li 2 S · X based glass doped with lithium iodide in Li 2 S · X based sulfide glass, have a relatively high ionic conductivity of about 10 -3 S / cm Are known.

【0008】[0008]

【発明が解決しようとする課題】Li2S・X(XはS
iS2、GeS2、P25、B23のうち少なくとも一種
の硫化物)系硫化物ガラスの導電率は、前述のように5
×10-4S/cmという高い値を示すが、電気化学素子
に応用するにはこのイオン導電率がまだ低く、更にこの
材料の化学的な安定性も不充分である。
SUMMARY OF THE INVENTION Li 2 SX (X is S
The conductivity of at least one sulfide-based sulfide glass of iS 2 , GeS 2 , P 2 S 5 , and B 2 S 3 is 5 as described above.
Although it shows a high value of × 10 -4 S / cm, the ionic conductivity is still low for application to an electrochemical device, and the chemical stability of this material is also insufficient.

【0009】また、LiI、LI2S・X系では、10
-3S/cm程度と更に高いイオン導電率を示すが、リチ
ウム金属との接触により固体電解質が還元され導電性が
低下するなど化学的な安定性の面が解決されておらず、
全固体リチウム電池などの電気化学素子への応用開発に
はまだ数々の問題を有している。
In the LiI and LI 2 SX systems, 10
-3 S / cm higher ionic conductivity is shown, but the contact with lithium metal reduces the solid electrolyte and lowers the conductivity.
There are still many problems in the development of applications to electrochemical devices such as all-solid-state lithium batteries.

【0010】本発明の目的は、従来の課題である低い導
電率、あるいは導電率の低下をもたらす化学的安定性の
問題を解決し、優れたリチウムイオン導電性固体電解質
を提供することにある。
An object of the present invention is to solve the conventional problem of low electrical conductivity or the problem of chemical stability that causes a decrease in electrical conductivity, and to provide an excellent lithium ion conductive solid electrolyte.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の非晶質リチウムイオン導電性固体電解質
は、一般式aLi3PO4・bLi2S・cX・dLiI
で表されるリチウムイオン導電性固体電解質であり、式
中のa+b+c+dが1であって、XがSiS2、Ge
2、P25から成る群より選択される一種以上の硫化
物であることを特徴とするものである。
In order to achieve the above object, the amorphous lithium ion conductive solid electrolyte of the present invention has a general formula aLi 3 PO 4 .bLi 2 S.cX.dLiI
Wherein a + b + c + d is 1 and X is SiS 2 , Ge
It is one or more sulfides selected from the group consisting of S 2 and P 2 S 5 .

【0012】また、本発明の非晶質リチウムイオン導電
性固体電解質の製造では、先ず一般式a’Li3PO4
b’Li2S・c’X(式中、a’+b’+c’が1で
あって、Xが前記のものと同じものを示す)で表される
非晶質化合物にLiIを混合し、該混合物を加熱溶融
し、その後急冷することを特徴とするものである。
In the production of the amorphous lithium ion conductive solid electrolyte of the present invention, the general formula a′Li 3 PO 4.
mixing LiI with an amorphous compound represented by b′Li 2 S · c′X (where a ′ + b ′ + c ′ is 1 and X is the same as described above); The mixture is heated and melted, and then rapidly cooled.

【0013】本発明では、前記式中のXがSiS2であ
ることが好ましい。また、前記式中のa、b、cの和が
次式0.9>a+b+c>0.6の関係を満たし、かつ
dが次式0.1≦d≦0.4の関係を満たすことが好ま
しい。
In the present invention, X in the above formula is preferably SiS 2 . In addition, the sum of a, b, and c in the above equation satisfies the following equation: 0.9> a + b + c> 0.6, and d satisfies the following equation: 0.1 ≦ d ≦ 0.4. preferable.

【0014】[0014]

【作用】Li3PO4は、高温領域においてイオン導電性
の高い結晶構造を示すが、室温付近では相転移によって
構造が変わり、イオン導電性が低下することが知られて
いる。
It is known that Li 3 PO 4 has a crystal structure with high ionic conductivity in a high temperature region, but changes its structure due to phase transition near room temperature, resulting in a decrease in ionic conductivity.

【0015】しかし、Li3PO4を室温状態で非晶質状
態を示す材料に加え、これらを高温状態で一旦、非晶質
化させた後、室温状態に戻すことにより、Li3PO4
状態を室温においても非晶質状態に保持させることが可
能となり、室温においても高いイオン導電性をもたせる
ことができることが分かった。
However, Li 3 PO 4 is added to a material which shows an amorphous state at room temperature, and once these materials are made amorphous at a high temperature, and then returned to a room temperature, the Li 3 PO 4 It was found that the state can be maintained in an amorphous state even at room temperature, and high ionic conductivity can be provided even at room temperature.

【0016】これは、非晶質状態となることによって、
即ち、結晶構造の原子の配列がやや乱れた構造をとるこ
とによって結晶性材料とは異なり、リチウムイオンが自
由に動き得るようになり、その結果、イオン導電性が向
上するものと考えられる。特に、一般式a’Li3PO4
・b’Li2S・c’X(式中、a’+b’+c’が1
であって、XがSiS2、GeS2、P25およびB23
から成る群より選択される一種以上の硫化物を示す)で
表される非晶質化合物にLiIを混合し、該混合物を加
熱溶解し、その後急冷することにより合成される本発明
の非晶質リチウムイオン導電性固体電解質は自由に動き
得るリチウムイオンが多くなる結果、a’Li3PO4
b’Li2S・c’Xで表される前記非晶質化合物材料
よりもイオン導電率の高いリチウムイオン導電性固体電
解質となる。
This is because the amorphous state is obtained.
That is, unlike a crystalline material, lithium ions can move freely, and the ionic conductivity is considered to be improved by taking a structure in which the arrangement of atoms in the crystal structure is slightly disordered. In particular, the general formula a′Li 3 PO 4
B′Li 2 S · c′X (where a ′ + b ′ + c ′ is 1)
Wherein X is SiS 2 , GeS 2 , P 2 S 5 and B 2 S 3
The compound of the present invention is synthesized by mixing LiI with an amorphous compound represented by the formula (1), and heating and dissolving the mixture, followed by quenching. The lithium ion conductive solid electrolyte has a large amount of lithium ions that can move freely, resulting in a′Li 3 PO 4.
A lithium ion conductive solid electrolyte having higher ionic conductivity than the amorphous compound material represented by b′Li 2 S · c′X.

【0017】[0017]

【実施例】以下、本発明を具体的に実施例を用い、より
詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to specific examples.

【0018】本発明のリチウムイオン導電性固体電解質
は、一般式a’Li3PO4・b’Li2S・c’X(式
中、a’+b’+c’が1であって、XがSiS2、G
eS2、P25およびB23から成る群より選択される
一種以上の硫化物)で表される非晶質化合物を母材とし
て用い、添加する化合物としてヨウ化リチウム(Li
I)を用いた。
The lithium ion conductive solid electrolyte of the present invention has a general formula a′Li 3 PO 4 .b′Li 2 S.c′X (where a ′ + b ′ + c ′ is 1 and X is SiS 2 , G
An amorphous compound represented by at least one sulfide selected from the group consisting of eS 2 , P 2 S 5 and B 2 S 3 ) is used as a base material, and lithium iodide (Li) is used as a compound to be added.
I) was used.

【0019】母材となる非晶質化合物と、その原料およ
び合成した固体電解質とは大気中の酸素や水分によって
容易に分解するため、取扱はすべて乾燥アルゴン雰囲気
下のドライボックス中で行なった。
Since the amorphous compound serving as the base material, the raw material thereof, and the synthesized solid electrolyte are easily decomposed by oxygen and moisture in the air, all the handling was performed in a dry box under a dry argon atmosphere.

【0020】ここではLiIを始め、用いた試薬は全て
特級を使用し、特にLiIは減圧下400℃で6時間乾
燥した後使用した。
Here, all the reagents used, including LiI, were of a special grade. In particular, LiI was used after drying under reduced pressure at 400 ° C. for 6 hours.

【0021】実施例1 本発明の一例の、一般式aLi3PO4・bLi2S・c
SiS2・dLiI(式中、a+b+c+d=1)で表
される非晶質リチウムイオン導電性固体電解質を以下の
方法で合成した。
Example 1 An example of the present invention, a general formula aLi 3 PO 4 .bLi 2 S.c
An amorphous lithium ion conductive solid electrolyte represented by SiS 2 .dLiI (where a + b + c + d = 1) was synthesized by the following method.

【0022】先ず、一般式b”Li2S・c”SiS
2(b”+c”=1)で表される化合物を合成した。こ
の合成では、硫化リチウム(Li2S)と硫化珪素(S
iS2)をb”=0.3〜0.8となるように混合し、
該混合粉末をガラス状カーボン坩堝中に入れ、これを、
アルゴン気流中950℃で1.5時間溶融し反応させた
後、液体窒素中に投入して急冷することにより、一般式
b”Li2S・c”SiS2(b”+c”=1)で表され
る化合物を得た。
First, the general formula b "Li 2 S.c" SiS
2 A compound represented by (b ″ + c ″ = 1) was synthesized. In this synthesis, lithium sulfide (Li 2 S) and silicon sulfide (S
iS 2 ) is mixed so that b ″ = 0.3-0.8,
Put the mixed powder in a glassy carbon crucible,
After melting and reacting at 950 ° C. for 1.5 hours in an argon gas stream, the mixture is poured into liquid nitrogen and quenched to obtain the general formula b ″ Li 2 S · c ″ SiS 2 (b ″ + c ″ = 1). The compound represented was obtained.

【0023】次に、得られた母材を粉砕し、これにリン
酸リチウム(Li3PO4)を一般式a’Li3PO4
b’Li2S・c’SiS2において、a’=0.01〜
0.3となるように加えて混合し、該粉末をガラス状カ
ーボン坩堝中に入れ、これを、アルゴン気流中950℃
で1.5時間溶融し反応させた後、液体窒素中に投入し
て急冷し、一般式a’Li3PO4・b’Li2S・c’
SiS2(a’+b’+c’=1)で表される化合物を
得た。
Next, the obtained base material was pulverized, and lithium phosphate (Li 3 PO 4 ) was added thereto with the general formula a′Li 3 PO 4.
In b′Li 2 S · c′SiS 2 , a ′ = 0.01 to
0.3, and the mixture was put in a glassy carbon crucible.
And reacted for 1.5 hours, then put into liquid nitrogen and quenched to obtain a general formula a′Li 3 PO 4 .b′Li 2 S.c ′
A compound represented by SiS 2 (a ′ + b ′ + c ′ = 1) was obtained.

【0024】得られたa’Li3PO4・b’Li2S・
c’SiS2材料y量に対し、ヨウ化リチウム(Li
I)d量をy+dが1となるように混合し、該混合粉末
をガラス状カーボン坩堝中に入れ、これを、アルゴン気
流中950℃で1.5時間溶融し反応させた後、液体窒
素中に投入して急冷し、一般式aLi3PO4・bLi2
S・cSiS2・dLiI(a+b+c+d=1)で表
される固体電解質を得た。
The obtained a'Li 3 PO 4 .b'Li 2 S.
C'SiS 2 material y amount to, lithium iodide (Li
I) The amount of d is mixed so that y + d becomes 1, the mixed powder is put into a glassy carbon crucible, which is melted and reacted at 950 ° C. for 1.5 hours in an argon gas stream. And quenched, and the general formula aLi 3 PO 4 .bLi 2
A solid electrolyte represented by S.cSiS 2 .dLiI (a + b + c + d = 1) was obtained.

【0025】合成した固体電解質の特性を調べるため、
交流インピーダンス法によるイオン導電率の測定を行っ
た。
In order to examine the characteristics of the synthesized solid electrolyte,
The ionic conductivity was measured by the AC impedance method.

【0026】得られた結果を図1に示す。縦軸はイオン
導電率を示し、横軸は、(0.01Li3PO4・0.6
4Li2S・0.35SiS2)に対するLiIの添加量
(モル%)を示したものである。図1より導電率はヨウ
化リチウムの添加と共に増大した後、極大を経て、減少
していることが示されており、イオン導電率が最も大き
くなるのは、0.65(0.01Li3PO4・0.64
Li2S・0.35SiS2)・0.35(LiI)であ
り、そのイオン導電率の値は2.7×10-3S/cmで
あった。
FIG. 1 shows the obtained results. The vertical axis indicates the ionic conductivity, and the horizontal axis indicates (0.01Li 3 PO 4 .0.6
4Li 2 S.0.35SiS 2 ), the addition amount (mol%) of LiI. FIG. 1 shows that the conductivity increased with the addition of lithium iodide, then decreased through a maximum, and the ionic conductivity was maximized at 0.65 (0.01 Li 3 PO 3). 4 - 0.64
Li 2 S · 0.35SiS 2 ) · 0.35 (LiI), and the value of the ionic conductivity was 2.7 × 10 −3 S / cm.

【0027】これに対し、ヨウ化リチウムを添加してい
ない0.01Li3PO4・0.64Li2S・0.35
SiS2のイオン導電率は7×10-4S/cmであっ
た。
On the other hand, 0.01 Li 3 PO 4 .0.64 Li 2 S.0.35 to which lithium iodide was not added.
The ionic conductivity of SiS 2 was 7 × 10 −4 S / cm.

【0028】次に、リチウム金属に対する電解質の化学
的安定性を調べた。この安定性を調べるために、合成し
た各種組成の電解質を厚さ0.5mm、直径10mmのディ
スクにプレス成形し、更に、これらディスクの両面にリ
チウム金属ディスクを圧着し、図2に示すような密封セ
ル1を作成した。図中、2はリチウム金属を、3は電解
質をそれぞれ示す。得られたセルの化学的安定性につい
ては、これらセルを60℃の恒温槽に500時間保存
し、それぞれのセルの内部インピーダンスの経時的変化
を測定することにより評価した。
Next, the chemical stability of the electrolyte with respect to lithium metal was examined. To examine this stability, the synthesized electrolytes of various compositions were pressed into disks having a thickness of 0.5 mm and a diameter of 10 mm, and lithium metal disks were pressed on both surfaces of these disks, as shown in FIG. A sealed cell 1 was created. In the figure, 2 indicates lithium metal and 3 indicates an electrolyte. The chemical stability of the obtained cells was evaluated by storing these cells in a thermostat at 60 ° C. for 500 hours and measuring the change over time of the internal impedance of each cell.

【0029】図3は、得られた結果を示したもので、縦
軸はインピーダンス変化を保存前の内部インピーダンス
で規格化して示したものであり、横軸は保存時間を示し
たものである。本結果から明白なように、ヨウ化リチウ
ムが0.7以上では内部インピーダンスの経時変化が著
しく大きくなり、それ以下では内部インピーダンスの増
加が少ないことが分かった。
FIG. 3 shows the obtained results. The vertical axis shows the impedance change normalized by the internal impedance before storage, and the horizontal axis shows the storage time. As is clear from this result, it was found that when the lithium iodide was 0.7 or more, the change with time of the internal impedance became remarkably large, and when it was less than 0.7, the increase in the internal impedance was small.

【0030】実施例2 aLi3PO4・bLi2S・cGeS2系非晶質材料を用
いたリチウムイオン導電性固体電解質aLi3PO4・b
Li2S・cGeS2・dLiIを以下の方法で合成し
た。
Example 2 aLi 3 PO 4 · b Li-ion conductive solid electrolyte aLi 3 PO 4 · b using a Li 2 S · cGeS 2 amorphous material
Li 2 S.cGeS 2 .dLiI was synthesized by the following method.

【0031】先ず、最初に0.6Li2S・0.4Ge
2ガラスを実施例1と同様の方法で合成した。即ち、
硫化リチウム(Li2S)と硫化ゲルマニウム(Ge
2)をモル比で3:2に混合し、該材料粉末をガラス
状カーボン坩堝中に入れ、これを、アルゴン気流中95
0℃で1.5時間反応させた後、液体窒素中に投入して
急冷し、0.6Li2S・0.4GeS2組成の材料を合
成した。続いて、こうして得た材料0.6Li2S・
0.4GeS2を粉砕し、リン酸リチウム(Li3
4)をモル比で97:3に混合し、該粉末をガラス状
カーボン坩堝中に入れ、アルゴン気流中950℃で1.
5時間反応させた。然る後、液体窒素中に投入して急冷
し、0.03Li3PO4・0.58Li2S・0.39
GeS2で表される非晶質材料を合成した。
First, 0.6Li 2 S.0.4Ge
S 2 glass was synthesized in the same manner as in Example 1. That is,
Lithium sulfide (Li 2 S) and germanium sulfide (Ge
S 2 ) was mixed in a molar ratio of 3: 2, and the material powder was placed in a vitreous carbon crucible, which was then mixed with a stream of 95% argon gas.
0 After reacting for 1.5 hours at ° C., rapidly cooled was put into liquid nitrogen to synthesize a material 0.6Li 2 S · 0.4GeS 2 composition. Subsequently, the material 0.6Li 2 S.
0.4 GeS 2 is pulverized, and lithium phosphate (Li 3 P
O 4 ) was mixed in a molar ratio of 97: 3, and the powder was placed in a glassy carbon crucible and placed in a stream of argon at 950 ° C. for 1.
The reaction was performed for 5 hours. Thereafter, quenched was poured into liquid nitrogen, 0.03Li 3 PO 4 · 0.58Li 2 S · 0.39
An amorphous material represented by GeS 2 was synthesized.

【0032】得られた0.03Li3PO4/0.58L
2S・0.39GeS2材料yモル%に対し、塩化リチ
ウム(LiCl)dモル%を加え、該混合粉末をガラス
状カーボン坩堝中に入れ、これを、アルゴン気流中95
0℃で1.5時間溶解し反応させた後、液体窒素中に投
入して急冷し、一般式aLi3PO4・bLi2S・cG
eS2・dLiI(a+b+c+d=1)で表される固
体電解質を得た。
The obtained 0.03Li 3 PO 4 /0.58 L
To y mol% of i 2 S.0.39GeS 2 material, d mol% of lithium chloride (LiCl) was added, and the mixed powder was placed in a glassy carbon crucible.
After dissolving and reacting at 0 ° C. for 1.5 hours, the mixture is poured into liquid nitrogen and quenched to obtain a general formula aLi 3 PO 4 .bLi 2 S.cG
A solid electrolyte represented by eS 2 .dLiI (a + b + c + d = 1) was obtained.

【0033】合成した各種組成の固体電解質の特性を調
べるため、交流インピーダンス法によるイオン導電率の
測定を行なった。
In order to examine the characteristics of the synthesized solid electrolytes of various compositions, the ionic conductivity was measured by an AC impedance method.

【0034】得られた結果を図4に示す。縦軸はイオン
導電率を示し、横軸は(0.03Li3PO4・0.58
Li2S・0.39GeS2)に対するLiIの添加量を
示したものである。図4には、導電率がヨウ化リチウム
の添加と共に増大した後、極大を経て、減少することが
示されている。イオン導電率が最も大きくなるのは、
0.6(0.03Li3PO4・0.58Li2S・0.
39GeS2)・0.40(LiCl)のときであり、
そのときのイオン導電率の値は2.1×10-3S/cm
であった。
FIG. 4 shows the obtained results. The vertical axis indicates the ionic conductivity, and the horizontal axis indicates (0.03Li 3 PO 4 .0.58).
It shows the amount of LiI added to Li 2 S.0.39GeS 2 ). FIG. 4 shows that the conductivity increases with the addition of lithium iodide, then decreases through a maximum. The highest ionic conductivity is
0.6 (0.03Li 3 PO 4 · 0.58Li 2 S · 0.
39GeS 2 ) · 0.40 (LiCl)
The value of the ionic conductivity at that time was 2.1 × 10 −3 S / cm.
Met.

【0035】これに対し、ヨウ化リチウムを添加してい
ない0.03Li3PO4・0.58Li2S・0.39
GeS2のイオン導電率は7×10-4S/cmであっ
た。
On the other hand, 0.03Li 3 PO 4 .0.58Li 2 S.0.39 to which lithium iodide was not added.
The ion conductivity of GeS 2 was 7 × 10 −4 S / cm.

【0036】次に、リチウム金属に対する電解質の化学
的安定性を実施例1と同様にして調べたところ、得られ
た結果は実施例1と同様、ヨウ化リチウムが0.6以上
では内部インピーダンスの経時変化が著しく大きくな
り、それ以下では内部インピーダンスの増加が少なくな
ることが分かった。
Next, the chemical stability of the electrolyte with respect to lithium metal was examined in the same manner as in Example 1. The results obtained were the same as in Example 1. It was found that the change with time became remarkably large, and below that, the increase in the internal impedance was small.

【0037】実施例3 aLi3PO4・bLi2S・cP25系非晶質材料を用
いたリチウムイオン導電性固体電解質aLi3PO4・b
Li2S・cP25・dLiIを以下の方法で合成し
た。
Example 3 aLi 3 PO 4 .b Li-ion conductive solid electrolyte using Li 2 S.cP 2 S 5 type amorphous material aLi 3 PO 4 .b
Li 2 S.cP 2 S 5 .dLiI was synthesized by the following method.

【0038】先ず、最初に0.67Li2S・0.33
25ガラスを実施例1と同様に合成した。即ち、硫化
リチウム(Li2S)と硫化燐(P25)をモル比で
2:1に混合し、該材料粉末をガラス状カーボン坩堝中
に入れ、これを、アルゴン気流中500℃で12時間、
続いて800℃で2時間反応させた後、液体窒素中に投
入して急冷し、0.67Li2S・0.33P25組成
の材料を合成した。
First, 0.67 Li 2 S.0.33
P 2 S 5 glass was synthesized as in Example 1. That is, lithium sulfide (Li 2 S) and phosphorus sulfide (P 2 S 5 ) are mixed at a molar ratio of 2: 1 and the material powder is placed in a glassy carbon crucible, which is then placed in an argon stream at 500 ° C. 12 hours,
After subsequently react 2 hours at 800 ° C., rapidly cooled and poured into liquid nitrogen to synthesize a material 0.67Li 2 S · 0.33P 2 S 5 composition.

【0039】続いて、こうして得られた材料0.67L
2S・0.33P25を粉砕し、リン酸リチウム(L
3PO4)をモル比で97:3に混合し、該粉末をガラ
ス状カーボン坩堝中に入れ、アルゴン気流中950℃で
1.5時間反応させた。然る後、液体窒素中に投入して
急冷し、0.03Li3PO4・0.65Li2S・0.
32P25で示される非晶質材料を合成した。
Subsequently, 0.67 L of the material thus obtained was obtained.
i 2 was ground S · 0.33P 2 S 5, lithium phosphate (L
i 3 PO 4 ) was mixed at a molar ratio of 97: 3, and the powder was placed in a glassy carbon crucible and reacted at 950 ° C. for 1.5 hours in a stream of argon. Thereafter, quenched was poured into liquid nitrogen, 0.03Li 3 PO 4 · 0.65Li 2 S · 0.
An amorphous material represented by 32P 2 S 5 was synthesized.

【0040】得られた0.03Li3PO4・0.65L
2S・0.32P25材料yモル%に対し、塩化リチ
ウム(LiCl)dモル%を加え、該混合粉末をガラス
状カーボン坩堝中に入れ、アルゴン気流中950℃で
1.5時間溶解し反応させた後、液体窒素中に投入して
急冷し、一般式aLi3PO4・bLi2S・cP25
dLiI(a+b+c+d=1)で表される固体電解質
を得た。
The obtained 0.03Li 3 PO 4 0.65 L
To y mol% of i 2 S.0.32P 2 S 5 material, d mol% of lithium chloride (LiCl) is added, and the mixed powder is placed in a glassy carbon crucible, and is heated at 950 ° C. for 1.5 hours in a stream of argon. After dissolving and reacting, the mixture is poured into liquid nitrogen and quenched to obtain a general formula aLi 3 PO 4 .bLi 2 S.cP 2 S 5.
A solid electrolyte represented by dLiI (a + b + c + d = 1) was obtained.

【0041】合成した各種組成の固体電解質の特性を調
べるため、交流インピーダンス法によるイオン導電率の
測定および本固体電解質のリチウム金属に対する化学的
安定性を調べた。
In order to examine the characteristics of the synthesized solid electrolytes of various compositions, the ionic conductivity was measured by an AC impedance method, and the chemical stability of the solid electrolyte to lithium metal was examined.

【0042】得られた結果を図5に示す。縦軸はイオン
導電率を示し、横軸は(0.03Li3PO4・0.65
Li2S・0.32P25)に対するLiIの添加量を
示したものである。イオン導電率が最も大きな値を示し
た組成は、0.7(0.03Li3PO4・0.65Li
2S・0.32P25)・0.30(LiI)のときで
あり、そのときのイオン導電率の値は8.5×10-4
/cmであった。
FIG. 5 shows the obtained results. The vertical axis indicates the ionic conductivity, and the horizontal axis indicates (0.03Li 3 PO 4 · 0.65
It shows the amount of LiI added to Li 2 S.0.32P 2 S 5 ). The composition having the largest value of the ionic conductivity is 0.7 (0.03Li 3 PO 4 · 0.65Li).
2 is when S · 0.32P 2 S 5) · 0.30 in (LiI), the value of the ionic conductivity of that time 8.5 × 10 -4 S
/ Cm.

【0043】これに対し、ヨウ化リチウムを添加してい
ない0.03Li3PO4・0.65Li2S・0.32
25のイオン導電率は4.2×10-4S/cmであっ
た。
On the other hand, 0.03Li 3 PO 4 · 0.65Li 2 S · 0.32 without addition of lithium iodide
The ionic conductivity of P 2 S 5 was 4.2 × 10 −4 S / cm.

【0044】次に、リチウム金属に対する電解質の化学
的安定性を実施例1と同様にして調べたところ、得られ
た結果は実施例1と同様、ヨウ化リチウムが0.6以上
では内部インピーダンスの経時変化が著しく大きくな
り、それ以下では内部インピーダンスの増加が少なくな
ることが分かった。
Next, the chemical stability of the electrolyte with respect to lithium metal was examined in the same manner as in Example 1. The results obtained were the same as in Example 1. It was found that the change with time became remarkably large, and below that, the increase in the internal impedance was small.

【0045】実施例4 aLi3PO4・bLi2S・cB23系非晶質材料を用
いたリチウムイオン導電性固体電解質aLi3PO4・b
Li2S・cB23・dLiIを以下の方法で合成し
た。
[0045] Example 4 aLi 3 PO 4 · bLi 2 S · cB 2 S 3 based lithium ion conductivity an amorphous material solid electrolyte aLi 3 PO 4 · b
Li 2 S.cB 2 S 3 .dLiI was synthesized by the following method.

【0046】先ず、最初に0.5Li2S・0.5P2
5ガラスを実施例1と同様に合成した。即ち、硫化リチ
ウム(Li2S)と硫化ホウ素(B23)をモル比で
1:1に混合し、該材料粉末をガラス状カーボン坩堝中
に入れ、アルゴン気流中500℃で12時間、続いて8
00℃で3時間反応させた後、液体窒素中に投入して急
冷し、0.5Li2S・0.5B23組成の材料を合成
した。
First, 0.5Li 2 S.0.5P 2 S
Five glasses were synthesized as in Example 1. That is, lithium sulfide (Li 2 S) and boron sulfide (B 2 S 3 ) are mixed at a molar ratio of 1: 1 and the material powder is placed in a glassy carbon crucible and placed in an argon stream at 500 ° C. for 12 hours. Then 8
00 After reacting for 3 hours at ° C., rapidly cooled was put into liquid nitrogen to synthesize a material 0.5Li 2 S · 0.5B 2 S 3 composition.

【0047】続いて、こうして得られた材料0.5Li
2S・0.5B23を粉砕し、リン酸リチウム(Li3
4)をモル比で96:4に混合し、該粉末をガラス状
カーボン坩堝中に入れ、アルゴン気流中800℃で3時
間反応させた。然る後、液体窒素中に投入して急冷し、
0.04Li3PO4・0.48Li2S・0.48B2
3で示される非晶質材料を合成した。
Subsequently, 0.5Li of the material thus obtained was obtained.
The 2 S · 0.5B 2 S 3 was pulverized, lithium phosphate (Li 3 P
O 4 ) was mixed at a molar ratio of 96: 4, and the powder was placed in a glassy carbon crucible and reacted at 800 ° C. for 3 hours in an argon stream. After that, put into liquid nitrogen and quench,
0.04Li 3 PO 4・ 0.48Li 2 S ・ 0.48B 2 S
An amorphous material represented by 3 was synthesized.

【0048】得られた0.04Li3PO4・0.48L
2S・0.48B23材料yモル%に対し、ヨウ化リ
チウム(LiI)dモル%を加え、該混合粉末をガラス
状カーボン坩堝中に入れ、これを、アルゴン気流中80
0℃で1.5時間溶融し反応させた後、液体窒素中に投
入して急冷し、一般式aLi3PO4・bLi2S・cB2
3・dLiI(a+b+c+d=1)で表される固体
電解質を得た。
The obtained 0.04Li 3 PO 4 .0.48 L
To y mol% of the i 2 S.0.48B 2 S 3 material, d mol% of lithium iodide (LiI) was added, and the mixed powder was placed in a glassy carbon crucible.
After melting and reacting at 0 ° C. for 1.5 hours, the mixture is poured into liquid nitrogen and quenched to obtain a general formula aLi 3 PO 4 .bLi 2 S.cB 2
A solid electrolyte represented by S 3 .dLiI (a + b + c + d = 1) was obtained.

【0049】合成した各種組成の固体電解質の特性を調
べるため、交流インピーダンス法によるイオン導電率の
測定および本固体電解質のリチウム金属に対する化学的
安定性を調べた。
In order to examine the characteristics of the synthesized solid electrolytes of various compositions, the ionic conductivity was measured by an AC impedance method, and the chemical stability of the solid electrolyte to lithium metal was examined.

【0050】得られた結果を図6に示す。縦軸はイオン
導電率を示し、横軸は(0.04Li3PO4・0.48
Li2S・0.48B23)に対するLiIの添加量を
示したものである。イオン導電率が最も大きな値を示し
た組成は、0.75(0.03Li3PO4・0.65L
2S・0.32B23)・0.25(LiI)のとき
であり、そのときのイオン導電率の値は7.8×10-4
S/cmであった。
FIG. 6 shows the obtained results. The vertical axis indicates the ionic conductivity, and the horizontal axis indicates (0.04Li 3 PO 4 .0.48
This shows the amount of LiI added to Li 2 S.0.48B 2 S 3 ). The composition in which the ionic conductivity showed the largest value was 0.75 (0.03Li 3 PO 4 .65 L).
i 2 S · 0.32B 2 S 3 ) · 0.25 (LiI), and the value of the ionic conductivity at that time is 7.8 × 10 −4.
S / cm.

【0051】これに対し、ヨウ化リチウムを添加してい
ない0.03Li3PO4・0.65Li2S・0.32
23のイオン導電率は1.9×10-4S/cmであっ
た。
On the other hand, 0.03Li 3 PO 4 .0.65Li 2 S.0.32 to which lithium iodide was not added.
The ionic conductivity of B 2 S 3 was 1.9 × 10 −4 S / cm.

【0052】次に、リチウム金属に対する電解質の化学
的安定性を実施例1と同様にして調べたところ、得られ
た結果は実施例1と同様、ヨウ化リチウムが0.6以上
では内部インピーダンスの経時変化が著しく大きくな
り、それ以下では内部インピーダンスの増加が少なくな
ることが分かった。
Next, the chemical stability of the electrolyte against lithium metal was examined in the same manner as in Example 1. The results obtained were similar to those in Example 1; It was found that the change with time became remarkably large, and below that, the increase in the internal impedance was small.

【0053】尚、これら実施例における固体電解質の合
成に際しては、逐次非晶質材料を合成し、目的とする本
発明のリチウム固体電解質を得たが、これらはそれぞれ
において最高の条件を求めるために試行したものであっ
て、電解質組成と合成温度、昇温条件等の諸条件を選択
することにより、簡略化させることができることは勿論
のことである。
In synthesizing the solid electrolytes in these examples, amorphous materials were sequentially synthesized to obtain the intended lithium solid electrolyte of the present invention. It was a trial, and it goes without saying that it can be simplified by selecting various conditions such as the electrolyte composition, the synthesis temperature, and the temperature raising condition.

【0054】[0054]

【発明の効果】本発明の非晶質リチウムイオン導電性固
体電解質は、Li3PO4・Li2S・X(XはSiS2
GeS2、P25およびB23のうち少なくとも一種の
硫化物)系硫化物非晶質材料にヨウ化リチウムを添加す
ることによって得られるものであり、母材のLi2S・
X(Xは前記のものと同じものを示す)系非晶質材料に
比べ、より高いリチウムイオン導電性を示し、リチウム
金属と接触しても化学的変化が少ない。
Amorphous lithium ion conductive solid electrolyte of the present invention exhibits, Li 3 PO 4 · Li 2 S · X (X is SiS 2,
It is obtained by adding lithium iodide to at least one sulfide-based amorphous sulfide material of GeS 2 , P 2 S 5 and B 2 S 3 , and is composed of Li 2 S.
Compared to an X-based (X is the same as described above) -based amorphous material, it exhibits higher lithium ion conductivity and has less chemical change even when in contact with lithium metal.

【0055】その結果、この非晶質リチウムイオン導電
性固体電解質を電池、コンデンサ、エレクトロクロミッ
ク表示素子等の電気化学素子の電解質に用いた場合に
は、極めて実用性の高い電気化学素子を製造することが
できることが期待される。
As a result, when this amorphous lithium ion conductive solid electrolyte is used for an electrolyte of an electrochemical device such as a battery, a capacitor, and an electrochromic display device, an extremely practical electrochemical device is manufactured. Expect to be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1における固体電解質のヨウ化リチウム
(LiI)添加量とイオン導電率との関係を示す図
FIG. 1 is a graph showing the relationship between the amount of lithium iodide (LiI) added to a solid electrolyte and ionic conductivity in Example 1.

【図2】内部インピーダンス測定用セルの断面図FIG. 2 is a cross-sectional view of a cell for measuring internal impedance.

【図3】固体電解質の金属リチウムに対する化学的安定
性を示す図
FIG. 3 is a diagram showing the chemical stability of a solid electrolyte for metallic lithium.

【図4】実施例2における固体電解質のヨウ化リチウム
(LiI)添加量とイオン導電率との関係を示す図
FIG. 4 is a graph showing the relationship between the amount of lithium iodide (LiI) added to a solid electrolyte and the ionic conductivity in Example 2.

【図5】実施例3における固体電解質のヨウ化リチウム
(LiI)添加量とイオン導電率との関係を示す図
FIG. 5 is a graph showing the relationship between the amount of lithium iodide (LiI) added to a solid electrolyte and the ionic conductivity in Example 3.

【図6】実施例4における固体電解質のヨウ化リチウム
(LiI)添加量とイオン導電率との関係を示す図
FIG. 6 is a graph showing the relationship between the amount of lithium iodide (LiI) added to a solid electrolyte and the ionic conductivity in Example 4.

【符号の説明】[Explanation of symbols]

1 密閉セル 2 リチウム金属 3 電解質 1 Closed cell 2 Lithium metal 3 Electrolyte

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01B 25/30 C01B 17/22 CA(STN)Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) C01B 25/30 C01B 17/22 CA (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式aLi3 PO4 ・bLi2 S・c
X・dLiIで表されるリチウムイオン導電性固体電解
質であり、式中のa+b+c+dが1であって、XがS
iS2 、GeS2 、P2 5 およびB2 3 から成る群
より選択される一種以上の硫化物であることを特徴とす
る非晶質リチウムイオン導電性固体電解質。
1. The formula aLi 3 PO 4 .bLi 2 S.c
A lithium ion conductive solid electrolyte represented by X · dLiI, wherein a + b + c + d is 1 and X is S
An amorphous lithium ion conductive solid electrolyte comprising at least one sulfide selected from the group consisting of iS 2 , GeS 2 , P 2 S 5 and B 2 S 3 .
【請求項2】 XがSiS2 である請求項1記載の非晶
質リチウムイオン導電性固体電解質。
2. The amorphous lithium ion conductive solid electrolyte according to claim 1, wherein X is SiS 2 .
【請求項3】 a、b、cの和が次式0.9>a+b+
c>0.6の関係を満たし、かつdが次式0.1≦d≦
0.4の関係を満たす請求項1または請求項2記載の非
晶質リチウムイオン導電性固体電解質。
3. The sum of a, b and c is given by the following equation: 0.9> a + b +
The relationship of c> 0.6 is satisfied, and d is the following formula: 0.1 ≦ d ≦
The amorphous lithium ion conductive solid electrolyte according to claim 1 or 2, which satisfies a relationship of 0.4.
【請求項4】 請求項1記載の非晶質リチウムイオン導
電性固体電解質の製造方法において、先ず一般式a'Li
3 PO4 ・b'Li2 S・c'X(式中、a'+b'+c'が1で
あって、Xが前記のものと同じものを示す)で表される
非晶質材料を合成した後、該非晶質材料にLiIを混合
し、該混合物を加熱溶融し、その後急冷することを特徴
とする非晶質リチウムイオン導電性固体電解質の製造方
法。
4. The method for producing an amorphous lithium ion conductive solid electrolyte according to claim 1, wherein the general formula a′Li
Synthesis of an amorphous material represented by 3 PO 4 .b'Li 2 S.c'X (where a '+ b' + c 'is 1 and X is the same as above) After that, LiI is mixed with the amorphous material, the mixture is heated and melted, and then quenched, followed by quenching.
JP11569592A 1992-05-08 1992-05-08 Amorphous lithium ion conductive solid electrolyte and method for producing the same Expired - Lifetime JP3163741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11569592A JP3163741B2 (en) 1992-05-08 1992-05-08 Amorphous lithium ion conductive solid electrolyte and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11569592A JP3163741B2 (en) 1992-05-08 1992-05-08 Amorphous lithium ion conductive solid electrolyte and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05310417A JPH05310417A (en) 1993-11-22
JP3163741B2 true JP3163741B2 (en) 2001-05-08

Family

ID=14668954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11569592A Expired - Lifetime JP3163741B2 (en) 1992-05-08 1992-05-08 Amorphous lithium ion conductive solid electrolyte and method for producing the same

Country Status (1)

Country Link
JP (1) JP3163741B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030052A1 (en) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 Solid-state battery
WO2015030053A1 (en) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 Solid-state battery and method for manufacturing electrode active material

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495472B2 (en) * 2003-05-30 2014-05-21 日本化学工業株式会社 Lithium sulfide powder and inorganic solid electrolyte
US7416815B2 (en) * 2004-04-01 2008-08-26 Sumitomo Electric Industries, Ltd. Negative electrode member for lithium battery and process for producing the same
JP4165536B2 (en) 2005-06-28 2008-10-15 住友電気工業株式会社 Lithium secondary battery negative electrode member and manufacturing method thereof
CN102017269B (en) * 2008-05-13 2015-09-30 国立大学法人东北大学 Solid electrolyte, its manufacture method and possess the secondary cell of solid electrolyte
JP5141675B2 (en) 2009-12-16 2013-02-13 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
JP5521899B2 (en) * 2010-08-26 2014-06-18 トヨタ自動車株式会社 Sulfide solid electrolyte material and lithium solid state battery
CN103443864B (en) * 2011-03-23 2016-01-13 雅马哈发动机株式会社 The manufacture method of conductive composition, disperse system, conductive composition and solid electrolyte cell
JP6055618B2 (en) * 2012-02-03 2016-12-27 出光興産株式会社 Alkaline ion electrolyte composition
JP6122708B2 (en) * 2013-06-19 2017-04-26 出光興産株式会社 Method for producing sulfide solid electrolyte
JP6070468B2 (en) * 2013-08-02 2017-02-01 トヨタ自動車株式会社 Sulfide solid electrolyte material
JP6067511B2 (en) * 2013-08-16 2017-01-25 トヨタ自動車株式会社 Sulfide solid electrolyte material, positive electrode body and lithium solid state battery
JP5780322B2 (en) * 2014-02-13 2015-09-16 トヨタ自動車株式会社 Sulfide solid electrolyte material and lithium solid state battery
EP3394918A1 (en) * 2015-12-21 2018-10-31 Johnson IP Holding, LLC Solid-state batteries, separators, electrodes, and methods of fabrication
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
TW201841168A (en) * 2017-01-30 2018-11-16 日商三菱瓦斯化學股份有限公司 Ion conductor and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030052A1 (en) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 Solid-state battery
WO2015030053A1 (en) 2013-09-02 2015-03-05 三菱瓦斯化学株式会社 Solid-state battery and method for manufacturing electrode active material
US10038192B2 (en) 2013-09-02 2018-07-31 Mitsubishi Gas Chemical Company, Inc. Solid-state battery
US10147937B2 (en) 2013-09-02 2018-12-04 Mitsubishi Gas Chemical Company, Inc. Solid-state battery and method for manufacturing electrode active material

Also Published As

Publication number Publication date
JPH05310417A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
JP3151925B2 (en) Amorphous lithium ion conductive solid electrolyte and its synthesis method
JP3163741B2 (en) Amorphous lithium ion conductive solid electrolyte and method for producing the same
JP3343934B2 (en) Amorphous lithium ion conductive solid electrolyte and its synthesis method
EP0994071B1 (en) Lithium ion-conductive solid electrolyte and method for producing the same
JP3433173B2 (en) Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery
EP2156503B1 (en) Plastic crystal electrolyte with a broad potential window
CN113677620B (en) Solid electrolyte material synthesis method
US20130298386A1 (en) Method for producing a lithium or sodium battery
JP6564416B2 (en) Sulfide-based solid electrolyte having high ionic conductivity in a wide range of crystallization temperature and method for producing the same
JP3184517B2 (en) Lithium ion conductive solid electrolyte
JP3343936B2 (en) Amorphous lithium ion conductive solid electrolyte and its synthesis method
JP3149524B2 (en) Amorphous lithium ion conductive solid electrolyte and method for producing the same
Tang et al. A dual-halogen electrolyte for protective-layer-free all-solid-state lithium batteries
JP3284215B2 (en) Method for producing sulfide-based lithium ion conductive solid electrolyte
Yang et al. Inorganic All‐Solid‐State Sodium Batteries: Electrolyte Designing and Interface Engineering
JPH09245828A (en) Lithium ion conductive solid electrolyte and totally solid lithium secondary battery
US7351502B2 (en) Solid inorganic glassy electrolyte and method of production thereof
JP3125507B2 (en) Sulfide-based lithium ion conductive solid electrolyte and its synthesis method
JPS6084772A (en) Solid electrolyte battery
WO2024085045A1 (en) Sulfide solid electrolyte and method for producing same, electrode mixture, solid electrolyte layer, and all-solid-state lithium ion secondary battery
JP5652132B2 (en) Inorganic solid electrolyte and lithium secondary battery
WO2021234913A1 (en) Lithium-ion secondary cell and method for manufacturing same
JPH01128355A (en) Nonaqueous solvent cell
KR102180352B1 (en) Sulfide glass ceramic, process for producing the same, and all-solid secondary battery containing the solid electrolyte
CN106785017A (en) A kind of lithium sulfide system solid electrolyte material for adding lithium-tin alloy, silver iodide and silver chlorate and preparation method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080302

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12