JP5495472B2 - Lithium sulfide powder and inorganic solid electrolyte - Google Patents

Lithium sulfide powder and inorganic solid electrolyte Download PDF

Info

Publication number
JP5495472B2
JP5495472B2 JP2005506480A JP2005506480A JP5495472B2 JP 5495472 B2 JP5495472 B2 JP 5495472B2 JP 2005506480 A JP2005506480 A JP 2005506480A JP 2005506480 A JP2005506480 A JP 2005506480A JP 5495472 B2 JP5495472 B2 JP 5495472B2
Authority
JP
Japan
Prior art keywords
lithium
reaction
lithium sulfide
lithium hydroxide
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005506480A
Other languages
Japanese (ja)
Other versions
JPWO2004106232A1 (en
Inventor
川合博之
木ノ瀬豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2005506480A priority Critical patent/JP5495472B2/en
Publication of JPWO2004106232A1 publication Critical patent/JPWO2004106232A1/en
Application granted granted Critical
Publication of JP5495472B2 publication Critical patent/JP5495472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、ポリスルフィドポリマーの製造原料、電子材料、特に無機固体電解質の製造原料として有用な硫化リチウム粉体、その製造方法、該硫化リチウム粉体を用いた無機固体電解質に関するものである。  The present invention relates to a raw material for producing a polysulfide polymer, an electronic material, particularly a lithium sulfide powder useful as a raw material for producing an inorganic solid electrolyte, a production method thereof, and an inorganic solid electrolyte using the lithium sulfide powder.

現在、携帯電話やノートパソコンの電源として大量に使用されているリチウムイオン電池の電解質として、有機溶媒に六フッ化リチウムなどのリチウム塩を溶解した有機電解液が使用されている。この有機電解液は可燃性であり、何らかの原因による昇温、衝撃により発火、爆発等の危険性を有している。また、有機電解液を含むリチウムイオン二次電池では、充放電を繰り返すうちに、リチウム金属表面にデンドライト状リチウム金属が成長して、これが電極間の内部短絡の原因となり、爆発等を引き起こすことが指摘されている。  At present, an organic electrolytic solution in which a lithium salt such as lithium hexafluoride is dissolved in an organic solvent is used as an electrolyte of a lithium ion battery that is used in large quantities as a power source for mobile phones and notebook computers. This organic electrolytic solution is flammable and has a risk of ignition, explosion, etc. due to temperature rise or impact due to some cause. In addition, in lithium ion secondary batteries containing organic electrolytes, dendritic lithium metal grows on the surface of the lithium metal during repeated charging and discharging, which can cause internal short circuit between the electrodes, causing explosion, etc. It has been pointed out.

このような有機電解液を使用したリチウムイオン電池の安全性の向上は積年の願いであり、この問題を解決する手段として、無機固体電解質を使用した全固体型のリチウムイオン電池が提案されている。現在提案されている無機固体電解質としては、例えばLiS−P系、LiS−P系、LiS−SiS系、LiS−Ga系、LiS−GeS系などが提案されている。
これらの無機固体電解質にとって、最も重要な品質特性は、固体電解質としてのイオン伝導度が5×10−4S/cmよりも大きいことが求められる。
Improvement of the safety of lithium ion batteries using such organic electrolytes is a long-awaited wish, and as a means to solve this problem, all solid-state lithium ion batteries using inorganic solid electrolytes have been proposed. Yes. As the inorganic solid electrolyte currently proposed, for example, Li 2 S—P 2 S 5 system, Li 2 S—P 2 S 3 system, Li 2 S—SiS 2 system, Li 2 S—Ga 2 S 3 system, such as Li 2 S-GeS 2 systems have been proposed.
For these inorganic solid electrolytes, the most important quality characteristic is that the ionic conductivity as a solid electrolyte is required to be greater than 5 × 10 −4 S / cm.

従来の硫化リチウムの製造方法としては、例えば、非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを反応させて水硫化リチウムを生成させ、次いでこの反応液を脱硫化水素化して硫化リチウムを生成させる方法、或いは、非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを反応させ、直接硫化リチウムを生成させる方法(特許文献1参照。)、水酸化リチウム、非プロトン性有機溶媒および必要に応じて共沸化合物からなる溶液中に、硫化水素ガスを吹き込み、加熱しながら脱水および脱硫化水素し、系内の残留水分が実質なくなった後、硫化水素ガスの吹き込みを中止し、加熱しながらさらに不活性ガスを吹き込み、脱硫化水素化する硫化リチウムの製造方法(特許文献2参照。)、水酸化リチウムと、硫化水素や水素を含む硫黄蒸気との反応によって硫化リチウムを合成するときに、水酸化リチウムとして粒子の直径が0.1mmから1.5mmの粉体を用い、反応時の加熱温度を水酸化リチウムの融点以下である130°C以上、445°C以下として硫化リチウムを製造する方法(特許文献3参照。)等が提案されている。  As a conventional method for producing lithium sulfide, for example, lithium hydroxide and hydrogen sulfide are reacted in an aprotic organic solvent to produce lithium hydrosulfide, and then this reaction solution is dehydrosulfurized to obtain lithium sulfide. Or a method of directly producing lithium sulfide by reacting lithium hydroxide and hydrogen sulfide in an aprotic organic solvent (see Patent Document 1), lithium hydroxide, aprotic organic solvent, and necessary In response to this, hydrogen sulfide gas is blown into a solution consisting of an azeotropic compound, dehydrated and dehydrogenated with heating, and after the residual moisture in the system has substantially disappeared, the blowing of hydrogen sulfide gas is stopped and heated. In addition, an inert gas is further blown to desulfurize and hydrosulfide lithium sulfide (refer to Patent Document 2), including lithium hydroxide, hydrogen sulfide and hydrogen. When lithium sulfide is synthesized by reaction with sulfur vapor, a powder having a particle diameter of 0.1 mm to 1.5 mm is used as lithium hydroxide, and the heating temperature during the reaction is 130 or lower than the melting point of lithium hydroxide. A method for producing lithium sulfide at a temperature of from ° C to 445 ° C (see Patent Document 3) has been proposed.

しかしながら、特許文献1及び特許文献2により水酸化リチウムを原料として得られる硫化リチウムは、その使用用途としてポリスルフィドポリマー等の用途を主眼にし、また、特許文献3では、無機固体電解質での使用を主眼としているが、この硫化リチウムを用いた無機固体電解質においてもイオン伝導度が不足し、また、分解電圧が低下する等の電気化学的特性に問題が生じやすい。
特開平7−330312号公報 特開2000−247609号公報 特開平9−278423号公報
However, lithium sulfide obtained by using lithium hydroxide as a raw material according to Patent Document 1 and Patent Document 2 mainly focuses on the use of polysulfide polymers and the like, and Patent Document 3 focuses on the use in inorganic solid electrolytes. However, even in this inorganic solid electrolyte using lithium sulfide, the ionic conductivity is insufficient, and problems such as electrochemical characteristics such as a decrease in decomposition voltage tend to occur.
Japanese Patent Laid-Open No. 7-330312 JP 2000-247609 A JP-A-9-278423

本発明者らは、上記実情に鑑み、無機固体電解質の用途にも使用することができる硫化リチウムについて鋭意研究を重ねた結果、特定の精製工程を経た水酸化リチウムを原料として用いると、得られる硫化リチウムのSiO含有量を特定値まで低減でき、更に、該水酸化リチウムと硫化水素の反応を非プロトン性溶媒中で生成する水を留去しながら不活性ガス雰囲気下で150〜190℃で反応を行うか、或いは該水酸化リチウムと硫化水素を非プロトン性溶媒中で生成する水を留去しながら100〜150℃で第1の反応を行い、次いで150〜190℃で不活性ガス雰囲気中で第2の反応を行うかして硫化リチウムを得た後、次いで、洗浄、乾燥工程を不活性ガス雰囲気下又は真空中で行って得られる硫化リチウム粉体は、未反応原料の水酸化リチウムだけでなく、洗浄及び乾燥で副生する水酸化リチウムが特定値以下まで低減されたものとなり、更に、該硫化リチウムを用いた無機固体電解質はイオン伝導度及び分解電圧等の電気化学的特性が優れたものとなることを見出し本発明を完成するに至った。
即ち、本発明の目的は、無機固体電解質の用途にも使用することができる硫化リチウム粉体、その製造方法及びこれを用いたイオン伝導度及び分解電圧等の電気化学的特性に優れた無機固体電解質を提供することにある。
In view of the above circumstances, the present inventors have conducted extensive research on lithium sulfide that can also be used for applications of inorganic solid electrolytes. As a result, lithium hydroxide that has undergone a specific purification step is used as a raw material. The SiO 2 content of lithium sulfide can be reduced to a specific value, and further, 150 to 190 ° C. in an inert gas atmosphere while distilling off the water produced in the reaction of lithium hydroxide and hydrogen sulfide in an aprotic solvent. The first reaction is carried out at 100 to 150 ° C. while distilling off the water that forms the lithium hydroxide and hydrogen sulfide in an aprotic solvent, and then an inert gas at 150 to 190 ° C. Lithium sulfide powder obtained by performing the second reaction in the atmosphere to obtain lithium sulfide and then performing the washing and drying steps in an inert gas atmosphere or in vacuum is an unreacted raw material. In addition to lithium hydroxide, lithium hydroxide produced as a by-product by washing and drying is reduced to a specific value or less. Further, the inorganic solid electrolyte using the lithium sulfide has electric conductivity such as ion conductivity and decomposition voltage. The inventors have found that the chemical characteristics are excellent and have completed the present invention.
That is, the object of the present invention is to provide lithium sulfide powder that can also be used for inorganic solid electrolyte applications, a method for producing the same, and an inorganic solid having excellent electrochemical properties such as ion conductivity and decomposition voltage using the powder. To provide an electrolyte.

本発明が提供する第1の発明は、X線回折分析したときに、硫化リチウムの(111面)の回折ピーク(a)と水酸化リチウムの(101面)の回折ピーク(b)の相対強度比{(b/a)×100}が3以下で、且つSiOの含有量が50ppm以下ある特性を有することを特徴とする硫化リチウム粉体である。
かかる硫化リチウム粉体は、X線回折分析法により求められる(111)面の回折ピークの半値幅が0.15度以下であること、また、平均粒径が10〜80μmであることが好ましく、また、AlとCaの金属元素の含有量が総量で50ppm以下であることが特に好ましい。
The first invention provided by the present invention is the relative intensity of the diffraction peak (a) of lithium sulfide (111 plane) and the diffraction peak (b) of lithium hydroxide (101 plane) when X-ray diffraction analysis is performed. The lithium sulfide powder is characterized in that the ratio {(b / a) × 100} is 3 or less and the content of SiO 2 is 50 ppm or less.
The lithium sulfide powder preferably has a (111) plane diffraction peak half-value width of 0.15 degrees or less determined by X-ray diffraction analysis, and an average particle diameter of 10 to 80 μm. Moreover, it is especially preferable that the content of the metal elements of Al and Ca is 50 ppm or less in total.

また、本発明が提供する第の発明は、前記第1の発明の硫化リチウム粉体を含むことを特徴とする無機固体電解質である。 A second invention provided by the present invention is an inorganic solid electrolyte characterized by including the lithium sulfide powder of the first invention.

以下、本発明をその好ましい実施形態に基づき詳細に説明する。
本発明の硫化リチウム粉体は、該硫化リチウム粉体を線源としてCu−Kα線を用いてX線回折分析したときに、硫化リチウムの2θ=26.98°付近(111面)の回折ピーク(a)と水酸化リチウムに由来する2θ=32.48°付近の(101面)の回折ピーク(b)の相対強度比{(b/a)×100}が3以下、好ましくは2以下であり、更に、本発明に係る硫化リチウム粉体は、前記特性に加えてSiOの含有量が50ppm以下、好ましくは30ppm以下であることにその大きな特徴がある。
Hereinafter, the present invention will be described in detail based on preferred embodiments thereof.
The lithium sulfide powder of the present invention has a diffraction peak around 2θ = 26.98 ° (111 plane) of lithium sulfide when X-ray diffraction analysis is performed using Cu—Kα ray with the lithium sulfide powder as a radiation source. The relative intensity ratio {(b / a) × 100} of the diffraction peak (b) of (101 plane) near 2θ = 32.48 ° derived from (a) and lithium hydroxide is 3 or less, preferably 2 or less. In addition to the above characteristics, the lithium sulfide powder according to the present invention is characterized in that the content of SiO 2 is 50 ppm or less, preferably 30 ppm or less.

硫化リチウムに含まれる不純物としての水酸化リチウムは固体電解質のイオン伝導性を低下させ、更に水酸化リチウムに含まれる水酸基により固体電解質の分解電圧を低下させる。また、このような水酸化リチウムを含有した固体電解質を用いると電極活物質との間でリチウムイオンとプロトンの交換反応が生じてしまうため、所望の電池性能が得られなくなる。一方、硫化リチウムに含まれる不純物としてのSiOは無機固体電解質のガラス状組成物の主骨格に入り込み、その結果イオン伝導性を低下させ、また、無機固体電解質に不要な電子伝導性を生じさせる。Lithium hydroxide as an impurity contained in lithium sulfide lowers the ionic conductivity of the solid electrolyte, and further reduces the decomposition voltage of the solid electrolyte due to the hydroxyl group contained in lithium hydroxide. Further, when such a solid electrolyte containing lithium hydroxide is used, an exchange reaction between lithium ions and protons occurs between the electrode active materials, and thus desired battery performance cannot be obtained. On the other hand, SiO 2 as an impurity contained in lithium sulfide enters the main skeleton of the glassy composition of the inorganic solid electrolyte, resulting in a decrease in ionic conductivity and an unnecessary electronic conductivity in the inorganic solid electrolyte. .

本発明に係る硫化リチウム粉体は不純物としての水酸化リチウム及びSiOが上記範囲内であり、実質的にこれらの不純物を含有しないため、該硫化リチウム粉体を用いた無機固体電解質に、優れたイオン伝導性と分解電圧を付与し、更に無機固体電解質とした場合に電子伝導性が低く抑えられ、優れた電気化学的特性を付与することができる。
なお、本発明において、硫化リチウム粉体中のSiO含有量はICP発光分析法により求められるものである。
Since the lithium sulfide powder according to the present invention contains lithium hydroxide and SiO 2 as impurities within the above range and does not substantially contain these impurities, it is excellent in an inorganic solid electrolyte using the lithium sulfide powder. Further, when the ion conductivity and the decomposition voltage are imparted and the inorganic solid electrolyte is used, the electron conductivity is suppressed to a low level, and excellent electrochemical characteristics can be imparted.
In the present invention, the content of SiO 2 in the lithium sulfide powder is determined by ICP emission analysis.

また、本発明にかかる硫化リチウム粉体は上記特性に加えて線源としてCu−Kα線を用いてX線回折分析したときに、硫化リチウムの2θ=26.98°付近の(111面)の回折ピークの半値幅が0.15度以下、好ましくは0.05〜0.15度であり、工業的に入手可能な硫化リチウムに比べて結晶性が優れていることも特徴の一つであり、このような結晶性の優れた硫化リチウムを用いることで、該硫化リチウムを含む無機固体電解質のイオン伝導性を更に向上させることができる。  In addition to the above characteristics, the lithium sulfide powder according to the present invention has a (111 plane) of lithium sulfide around 2θ = 26.98 ° when X-ray diffraction analysis is performed using Cu—Kα ray as a radiation source. One of the characteristics is that the half-value width of the diffraction peak is 0.15 degrees or less, preferably 0.05 to 0.15 degrees, and the crystallinity is superior to that of commercially available lithium sulfide. By using lithium sulfide having excellent crystallinity, the ionic conductivity of the inorganic solid electrolyte containing lithium sulfide can be further improved.

更に、本発明の硫化リチウム粉体は走査型電子顕微鏡写真(SEM)から求められる平均粒径が10〜80μm、好ましくは20〜60μmであり、工業的に入手可能な硫化リチウムに比べて微細な結晶であり反応性に優れていることも特徴の一つである。  Further, the lithium sulfide powder of the present invention has an average particle size determined from a scanning electron micrograph (SEM) of 10 to 80 μm, preferably 20 to 60 μm, and is finer than industrially available lithium sulfide. One of the characteristics is that it is a crystal and has excellent reactivity.

また、本発明に係る硫化リチウム粉体は、例えば、原料の水酸化リチウムには後述するようにAl及びCaの酸化物、水酸化物等が多く含まれており、これらの不純物は硫化水素と反応せずに電気絶縁性の不純物として残存することから、上記特性に加えて、電気絶縁性のAl及びCaの化合物をAlとCa金属として総量で50ppm以下、好ましくは30ppm以下であると、該硫化リチウムを含む無機固体電解質のイオン伝導性を更に向上させることができることから特に好ましい。  The lithium sulfide powder according to the present invention includes, for example, a large amount of oxides and hydroxides of Al and Ca as described later in the raw material lithium hydroxide, and these impurities include hydrogen sulfide and Since it remains as an electrically insulating impurity without reacting, in addition to the above characteristics, the total amount of electrically insulating Al and Ca compounds as Al and Ca metal is 50 ppm or less, preferably 30 ppm or less. This is particularly preferable because the ionic conductivity of the inorganic solid electrolyte containing lithium sulfide can be further improved.

次いで、本発明の硫化リチウム粉体の製造方法について説明する。
本発明の硫化リチウム粉体は、以下の2つの方法により製造することができる。
1.水酸化リチウムを含む水溶液を精密濾過して精製水酸化リチウムを得る第1工程、次いで得られた精製水酸化リチウムと硫化水素を非プロトン性溶媒中で生成する水を留去しながら150〜190℃で反応させて硫化リチウムを得る第2A工程、次いで該硫化リチウムを有機溶媒で洗浄する第3工程、次いで洗浄を行った硫化リチウムを乾燥する第4工程を含み、前記第2A工程を不活性ガス雰囲気下で行い、前記第3工程〜第4工程を不活性ガス雰囲気下又は真空中で行う方法。
2.水酸化リチウムを含む水溶液を精密濾過して精製水酸化リチウムを得る1工程、次いで得られた精製水酸化リチウムと硫化水素を非プロトン性溶媒中で生成する水を留去しながら100〜150℃で第1の反応を行い、次いで150〜190℃で第2の反応を行って硫化リチウムを得る第2B工程、次いで該硫化リチウムを有機溶媒で洗浄する第3工程、次いで洗浄を行った硫化リチウムを乾燥する第4工程を含み、少なくとも前記第2B工程の第2の反応を不活性ガス雰囲気下で行い、前記第3工程〜第4工程を不活性ガス雰囲気下又は真空中で行う方法。
Subsequently, the manufacturing method of the lithium sulfide powder of this invention is demonstrated.
The lithium sulfide powder of the present invention can be produced by the following two methods.
1. A first step of microfiltration of an aqueous solution containing lithium hydroxide to obtain purified lithium hydroxide, and then 150 to 190 while distilling off the water produced in the aprotic solvent to obtain the purified lithium hydroxide and hydrogen sulfide obtained. A second step of obtaining lithium sulfide by reacting at 2 ° C., then a third step of washing the lithium sulfide with an organic solvent, and then a fourth step of drying the washed lithium sulfide, wherein the step 2A is inactive A method of performing in a gas atmosphere, and performing the third to fourth steps in an inert gas atmosphere or in a vacuum.
2. One step to obtain purified lithium hydroxide by microfiltration of an aqueous solution containing lithium hydroxide, and then 100-150 ° C. while distilling off the water that forms the purified lithium hydroxide and hydrogen sulfide obtained in an aprotic solvent And then the second reaction at 150 to 190 ° C. to obtain lithium sulfide, the third step of washing the lithium sulfide with an organic solvent, and then the washed lithium sulfide. A method of performing at least the second reaction of the second B step in an inert gas atmosphere and performing the third step to the fourth step in an inert gas atmosphere or in a vacuum.

なお、前記の2つの製法では、第1工程及び第3工程〜第4工程は同じ条件下に行う工程である関係上、第1工程、第3工程及び第4工程は2つの製法間で区別せず以下に説明する。  In the above-mentioned two manufacturing methods, the first step, the third step to the fourth step are steps performed under the same conditions, so that the first step, the third step, and the fourth step are distinguished between the two manufacturing methods. This will be explained below.

(第1工程)
第1工程は、水酸化リチウムを含む水溶液を精密濾過を行って主としてSiOの含有量を50ppm以下、好ましくは30ppm以下まで低減させた精製水酸化リチウムを得る工程である。
(First step)
The first step is a step of obtaining purified lithium hydroxide in which the aqueous solution containing lithium hydroxide is subjected to microfiltration to mainly reduce the SiO 2 content to 50 ppm or less, preferably 30 ppm or less.

工業的に入手可能な水酸化リチウム(以下、「粗製水酸化リチウム」と呼ぶ。)は、主としてリチウム含有鉱石を炭酸化して粗製炭酸リチウムとし、この粗製炭酸リチウムと消石灰との反応により得られているため、このような水酸化リチウムには、必然的に不純物としてSiOが100ppm以上、更にはAl及びCaの酸化物、水酸化物等の電気絶縁性の化合物がAl金属として100ppm以上及びCa金属として50ppm以上含有されている。Industrially available lithium hydroxide (hereinafter referred to as “crude lithium hydroxide”) is mainly obtained by carbonating lithium-containing ore into crude lithium carbonate, and obtained by reaction of this crude lithium carbonate with slaked lime. Therefore, in such lithium hydroxide, inevitably SiO 2 is 100 ppm or more as an impurity, and further, an electrically insulating compound such as an oxide or hydroxide of Al and Ca is 100 ppm or more as Al metal and Ca. Containing 50 ppm or more as a metal.

従って、第1工程を実施することでSiOの含有量を当該範囲とすることができる他、Alの酸化物、水酸化物等の電気絶縁性のAl化合物の含有量をAl金属として50ppm以下、好ましくは30ppm以下まで低減させることができる。Therefore, by carrying out the first step, the content of SiO 2 can be within the above range, and the content of an electrically insulating Al compound such as an oxide or hydroxide of Al is 50 ppm or less as Al metal. , Preferably, it can be reduced to 30 ppm or less.

精密濾過の操作は具体的には、まず、前記粗製水酸化リチウムを水に溶解した水酸化リチウム溶液を調製する。水溶液中の粗製水酸化リチウムの濃度は、飽和溶解度以下であれば特に制限はないが、水酸化リチウムの溶解度は溶解させる温度に強く依存することから、例えば、80℃の温度で溶解させるにはLiOHとして1〜12重量%、好ましくは9〜12重量%とすることが好ましい。  Specifically, the microfiltration operation first prepares a lithium hydroxide solution in which the crude lithium hydroxide is dissolved in water. The concentration of the crude lithium hydroxide in the aqueous solution is not particularly limited as long as it is equal to or lower than the saturation solubility. However, since the solubility of lithium hydroxide strongly depends on the temperature at which it is dissolved, for example, to dissolve at a temperature of 80 ° C. LiOH is preferably 1 to 12% by weight, more preferably 9 to 12% by weight.

なお、粗製水酸化リチウムを溶解する水は、少なくとも逆浸透膜、限外ろ過膜、イオン交換膜等を通過させて、Na、K、Ca、Cl、SO等のイオン性不純物を除去した純水を用いることが、溶解する水に由来する不純物の混入を防止できる点で特に好ましい。なお、逆浸透膜、限外ろ過膜又はイオン交換樹脂に通水される被処理水としては、例えば、工業用水、市水、河川水などの原水を凝集ろ過装置及び活性炭等からなる前処理装置で処理し、原水中の懸濁物及び有機物の大半を除去したもの、あるいは、更に、イオン交換樹脂を用いる純水装置で処理されたものなどが用いられる。The water in which the crude lithium hydroxide is dissolved is passed through at least a reverse osmosis membrane, an ultrafiltration membrane, an ion exchange membrane, and the like to remove pure ionic impurities such as Na, K, Ca, Cl, and SO 4. The use of water is particularly preferable because it can prevent contamination of impurities derived from dissolved water. In addition, as the to-be-treated water passed through the reverse osmosis membrane, the ultrafiltration membrane, or the ion exchange resin, for example, a pretreatment device made of raw water such as industrial water, city water, river water, etc. is formed by a coagulation filtration device, activated carbon, etc. In this method, a material obtained by removing most of the suspended matter and organic matter in the raw water, or a material treated with a pure water apparatus using an ion exchange resin is used.

逆浸透膜は、市販の膜モジュールを用いることができ、操作条件等は特に制限はなく常法に従えばよい。具体的には、逆浸透膜の分画分子量は400〜100000、好ましくは1000〜10000であり、材質としては、例えば、酢酸セルロース系、ポリアミド系、架橋ポリアミン系、架橋ポリエーテル系、ポリスルホン、スルホン化ポリスルホン、ポリビニールアルコール等が適宜使用される。膜の形状は平板型、スパイラル型、中空糸型、チューブラー、ブリーフ型など何れであってもよい。  As the reverse osmosis membrane, a commercially available membrane module can be used, and the operating conditions and the like are not particularly limited and may be in accordance with conventional methods. Specifically, the reverse molecular weight of the reverse osmosis membrane is 400 to 100,000, preferably 1000 to 10000. Examples of the material include cellulose acetate, polyamide, crosslinked polyamine, crosslinked polyether, polysulfone, and sulfone. Polysulfone, polyvinyl alcohol and the like are appropriately used. The shape of the membrane may be any of flat plate type, spiral type, hollow fiber type, tubular, brief type and the like.

限外濾過膜は、市販の膜モジュールを用いることができ、操作条件等は特に制限はなく常法に従えばよい。具体的には、限外濾過膜の分画分子量は400〜100000、好ましくは1000〜10000であり、材質としては、再生セルロース、ポリエーテルスルホン、ポリスルホン、ポリアクリルニトリル、ポリビニールアルコール、焼結金属、セラミック、カーボン等が適宜使用される。膜の形状は平板型、スパイラル型、チューブラー型、中空糸型、ブリーツ型などの何れであってもよい。  As the ultrafiltration membrane, a commercially available membrane module can be used, and operating conditions and the like are not particularly limited and may be in accordance with ordinary methods. Specifically, the molecular weight cut off of the ultrafiltration membrane is 400-100000, preferably 1000-10000, and the materials are regenerated cellulose, polyethersulfone, polysulfone, polyacrylonitrile, polyvinyl alcohol, sintered metal. Ceramic, carbon, etc. are used as appropriate. The shape of the membrane may be any of a flat plate type, a spiral type, a tubular type, a hollow fiber type, a breez type and the like.

次いで、前記で調製した所定の濃度の粗製水酸化リチウムを含む水溶液を精密濾過し、SiO、更にはAl、Al(OH)等のAl化合物の不純物成分を含有する不溶分を除去する。Next, the aqueous solution containing the crude lithium hydroxide having a predetermined concentration prepared above is subjected to microfiltration, and an insoluble component containing impurity components of Al compounds such as SiO 2 and further Al 2 O 3 and Al (OH) 3 is removed. Remove.

前記精密濾過は精密濾過膜等の濾過材を用いて実施することができる。用いることができる精密濾過膜は、表面濾過作用を有するスクリーンフィルター、内部濾過作用を有するデプスフィルター等が挙げられるが、本発明において表面濾過作用を有するスクリーンフィルターが効率よく不溶分を除去することができる点で特に好ましい。精密濾過膜の公称孔径は1μm以下、好ましくは0.1〜0.5μmであり、精密濾過膜の材質は、特に制限されるものではないが、例えばコロジオン、セロファン、アセチルセルロース、ポリアクリロニトリル、ポリスルホン、ポリオレフィン、ポリアミド、ポリイミド、ポリビニリデンフロライド等の有機系の膜、あるいは黒鉛、セラミックス、多孔質ガラス等の無機系の膜が挙げられる。また、実験室規模であればPTFEメンブランフィルター等の濾過材が使用できる。スクリーンフィルターの形式は特に制限されるものではないが、カートリッジ式が操作性が容易である点で特に好ましい。これらの精密濾過は、市販の精密濾過装置を用いて、この精密濾過装置に前記で調製した所定の濃度の粗製水酸化リチウム水溶液を導入することにより実施することができる。この精密濾過操作は、減圧または加圧下でおこなうこともできるが、特に制限されるものではなく、通常は、前記で調製した所定の濃度の粗製水酸化リチウム水溶液を送液ポンプにて、温度0〜100℃、好ましくは20〜80℃で、1〜30ml/min、好ましくは5〜15ml/minの流速で精密濾過装置に導入し0.1〜0.5MPa、好ましくは0.2〜0.3MPaの圧力で処理することが好ましい。なお、精密濾過による濾過操作は、水溶液から水酸化リチウムが析出しない温度で濾過操作を行うことが好ましい。  The microfiltration can be performed using a filtering material such as a microfiltration membrane. Examples of the microfiltration membrane that can be used include a screen filter having a surface filtration action, a depth filter having an internal filtration action, and the like. In the present invention, a screen filter having a surface filtration action can efficiently remove insoluble matters. It is particularly preferable in that it can be performed. The nominal pore size of the microfiltration membrane is 1 μm or less, preferably 0.1 to 0.5 μm, and the material of the microfiltration membrane is not particularly limited. For example, collodion, cellophane, acetylcellulose, polyacrylonitrile, polysulfone And organic films such as polyolefin, polyamide, polyimide, and polyvinylidene fluoride, and inorganic films such as graphite, ceramics, and porous glass. Moreover, if it is a laboratory scale, filter media, such as a PTFE membrane filter, can be used. The type of the screen filter is not particularly limited, but the cartridge type is particularly preferable in terms of easy operability. These microfiltrations can be carried out using a commercially available microfiltration apparatus by introducing the above-prepared crude lithium hydroxide aqueous solution having a predetermined concentration into the microfiltration apparatus. This microfiltration operation can be carried out under reduced pressure or under pressure, but is not particularly limited. Usually, the crude lithium hydroxide aqueous solution having the predetermined concentration prepared above is fed at a temperature of 0 with a feed pump. It introduce | transduces into a microfiltration apparatus at the flow rate of 1-30 ml / min, preferably 5-15 ml / min at -100 degreeC, Preferably 20-80 degreeC, 0.1-0.5 Mpa, Preferably it is 0.2-0. It is preferable to process at a pressure of 3 MPa. The filtration operation by microfiltration is preferably performed at a temperature at which lithium hydroxide does not precipitate from the aqueous solution.

上記した精密濾過処理により、多くの場合、SiOの含有量を50ppm以下、好ましくは30ppm以下、更にはAlの含有量を50ppm以下、好ましくは30ppm以下まで低減された精製水酸化リチウムが得られるが、本発明では、更にAl含有量、特にCaの酸化物、水酸化物等の電気絶縁性の不純物の含有量を低減させるため、晶析操作を行うことが好ましい。In many cases, the above-described microfiltration treatment provides purified lithium hydroxide in which the content of SiO 2 is reduced to 50 ppm or less, preferably 30 ppm or less, and further the Al content is reduced to 50 ppm or less, preferably 30 ppm or less. However, in the present invention, it is preferable to perform a crystallization operation in order to further reduce the Al content, particularly the content of electrically insulating impurities such as Ca oxide and hydroxide.

具体的な晶析操作は、前記の精密濾過を行った水酸化リチウムを含有する水溶液から冷却により水酸化リチウムを析出させる方法又は前記の精密濾過を行った水酸化リチウムを含有する水溶液を加熱して一定量の水分を蒸発させて水酸化リチウムを析出させる方法により行うことができるが、本発明において、後者の加熱して水酸化リチウムを析出させる方法が精製水酸化リチウムの回収効率が良い点で特に好ましい。  A specific crystallization operation is a method of precipitating lithium hydroxide by cooling from an aqueous solution containing lithium hydroxide subjected to the above-described microfiltration or an aqueous solution containing lithium hydroxide subjected to the above-described microfiltration. In the present invention, the latter method of precipitating lithium hydroxide by heating is advantageous in that the recovery efficiency of purified lithium hydroxide is good. Is particularly preferable.

加熱して水酸化リチウムを析出させる晶析操作は、前記の精密濾過を行った水酸化リチウムをLiOHとして1〜12重量%、好ましくは9〜12重量%を含有する水溶液を温度80℃以上、好ましくは90〜100℃に加温し、水を10〜70重量%、好ましくは30〜60重量%蒸発除去することにより実施する。この晶析操作において、当該範囲内で水を除去することにより不純物を効率的に除去した精製水酸化リチウムを得ることができる。なお、この加熱による晶析操作は、減圧下に行ってもよい。  The crystallization operation for precipitating lithium hydroxide by heating is carried out by using an aqueous solution containing 1 to 12% by weight, preferably 9 to 12% by weight of the lithium hydroxide subjected to the above-described microfiltration as LiOH, at a temperature of 80 ° C. It is preferably performed by heating to 90 to 100 ° C. and evaporating and removing 10 to 70% by weight, preferably 30 to 60% by weight of water. In this crystallization operation, purified lithium hydroxide from which impurities are efficiently removed can be obtained by removing water within the range. The crystallization operation by heating may be performed under reduced pressure.

かくして晶析を行った精製水酸化リチウムは、SiOの含有量が50ppm以下、好ましくは30ppm以下で、電気絶縁性のAlの酸化物、水酸化物等のAl化合物の含有量がAl金属として25ppm以下、好ましくは15ppm以下、電気絶縁性のCaの酸化物、水酸化物等のCa化合物の含有量がCa金属として25ppm以下、好ましくは15ppm以下で、尚且つ、Al金属とCa金属を総量で50ppm以下、好ましくは30ppm以下まで低減された水酸化リチウムである。The purified lithium hydroxide thus crystallized has a SiO 2 content of 50 ppm or less, preferably 30 ppm or less, and the content of Al compounds such as electrically insulating Al oxides and hydroxides as Al metal. 25 ppm or less, preferably 15 ppm or less, and the content of Ca compounds such as electrically insulating Ca oxide and hydroxide is 25 ppm or less, preferably 15 ppm or less as Ca metal, and the total amount of Al metal and Ca metal The lithium hydroxide is reduced to 50 ppm or less, preferably 30 ppm or less.

(第2A工程・第2B工程)
水酸化リチウムと硫化水素との反応は、下記反応式(1)及び(2)

Figure 0005495472
に従って、硫化リチウムの他、水および硫化水素を副生する。副生する水は生成する硫化リチウムを分解する一つの要因となり、また、上記した反応は平衡反応であることから本発明において水を反応系から除去することで、硫化リチウムの分解を抑制し、また、効率よく反応を行うことができる。(2A process and 2B process)
The reaction between lithium hydroxide and hydrogen sulfide is represented by the following reaction formulas (1) and (2)
Figure 0005495472
Accordingly, water and hydrogen sulfide are by-produced in addition to lithium sulfide. By-product water is one factor that decomposes the generated lithium sulfide, and since the reaction described above is an equilibrium reaction, by removing water from the reaction system in the present invention, the decomposition of lithium sulfide is suppressed, Moreover, it can react efficiently.

第2A工程は前記第1工程で得られた精製水酸化リチウムと硫化水素を非プロトン性溶媒中で生成する水を留去しながら不活性ガス雰囲気下で150〜200℃で反応させ硫化リチウムを生成させる工程である。本発明においてこの第2A工程を選択することにより前記第1工程で得られた精製水酸化リチウムと硫化水素から硫化リチウムを一気に製造することができる。  In step 2A, the purified lithium hydroxide and hydrogen sulfide obtained in step 1 are reacted at 150 to 200 ° C. in an inert gas atmosphere while distilling off the water produced in the aprotic solvent. It is a process of generating. In the present invention, by selecting the second step A, lithium sulfide can be produced at once from the purified lithium hydroxide and hydrogen sulfide obtained in the first step.

一方、第2B工程は前記第1工程で得られた精製水酸化リチウムと硫化水素を非プロトン性溶媒中で生成する水を留去しながら100〜150℃で第1の反応を行い、次いで不活性ガス雰囲気下150〜200℃で第2の反応を行って硫化リチウムを生成させる工程である。この第2B工程を選択することにより前記第1工程で得られた精製水酸化リチウムと硫化水素から前記反応式(1)に従って水硫化リチウムを得た後、次いで前記反応式(2)に従って脱硫化水素化して硫化リチウムを段階的に得ることができる。  On the other hand, in the second step B, the first reaction is carried out at 100 to 150 ° C. while distilling off the water produced from the purified lithium hydroxide and hydrogen sulfide obtained in the first step in an aprotic solvent. In this step, lithium sulfide is generated by performing the second reaction at 150 to 200 ° C. in an active gas atmosphere. By selecting the second step B, lithium hydrosulfide is obtained from the purified lithium hydroxide and hydrogen sulfide obtained in the first step according to the reaction formula (1), and then desulfurized according to the reaction formula (2). Lithium sulfide can be obtained stepwise by hydrogenation.

なお、生成する硫化リチウム自体は非常に不安定な化合物であり、空気に接触すると空気中の水分と反応し加水分解して水酸化リチウムと硫化水素が生成し、この水酸化リチウムは、上記したとおり、該硫化リチウムを無機固体電解質の製造原料として用いる上でイオン伝導性を低下させる一つの要因となる。従って、本発明において前記第2A工程と、前記第2B工程での第2の反応は、少なくとも不活性ガス雰囲気下で行うことが1つの重要な要件となる。  The generated lithium sulfide itself is a very unstable compound, and when it comes into contact with air, it reacts with water in the air and hydrolyzes to produce lithium hydroxide and hydrogen sulfide. As described above, when the lithium sulfide is used as a raw material for producing the inorganic solid electrolyte, it becomes one factor that decreases the ionic conductivity. Therefore, in the present invention, it is one important requirement that the second reaction in the second step A and the second step B be performed at least in an inert gas atmosphere.

用いることができる不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス、窒素ガス等が挙げられる。これらの不活性ガスは製品への不純物の混入を防止するため高純度品を用いることが好ましく、また、水分との接触をさけるため露点−50℃以下、好ましくは−60℃以下のものを用いることが特に好ましい。  Examples of the inert gas that can be used include argon gas, helium gas, and nitrogen gas. These inert gases are preferably high-purity products in order to prevent impurities from entering the product, and those having a dew point of −50 ° C. or less, preferably −60 ° C. or less are used to avoid contact with moisture. It is particularly preferred.

第2A工程及び第2B工程の第1の反応では少なくとも副生する水を反応系外に留去しながら反応を行う。副生する水を反応系外に留去する方法としては、反応容器上部にコンデンサーを設置した反応装置を用い後述する反応温度で反応を行えばよい。この場合、前記不活性ガスは、反応中も常に反応容器に不活性ガスを供給することにより反応系内を常に不活性ガス雰囲気下とすることが好ましい。  In the first reaction of the second A step and the second B step, the reaction is performed while distilling at least water produced as a by-product out of the reaction system. As a method for distilling off the by-produced water out of the reaction system, the reaction may be carried out at a reaction temperature described later using a reaction apparatus provided with a condenser at the top of the reaction vessel. In this case, it is preferable that the inert gas is always in an inert gas atmosphere by always supplying the inert gas to the reaction vessel during the reaction.

第2A工程及び第2B工程の操作は、まず、非プロトン性溶媒に所定量の精製水酸化リチウムを添加し精製水酸化リチウムを含む非プロトン性溶媒の懸濁液を調製し、次いで硫化水素を反応系内に導入する。  In the operations of Steps 2A and 2B, first, a predetermined amount of purified lithium hydroxide is added to an aprotic solvent to prepare a suspension of the aprotic solvent containing purified lithium hydroxide, and then hydrogen sulfide is added. Introduce into the reaction system.

用いることができる非プロトン性溶媒としては、例えばアミド化合物,ラクタム化合物,尿素化合物,有機イオウ化合物,環式有機リン化合物等を、単独溶媒として、または、混合溶媒として使用することができる。  As an aprotic solvent that can be used, for example, an amide compound, a lactam compound, a urea compound, an organic sulfur compound, a cyclic organic phosphorus compound, or the like can be used as a single solvent or as a mixed solvent.

前記アミド化合物としては、例えば、N,N−ジメチルホルムアミド,N,N−ジエチルホルムアミド,N,N−ジメチルアセトアミド,N,N−ジエチルアセトアミド,N,N−ジプロピルアセトアミド,N,N−ジメチル安息香酸アミドなとを挙げることができる。また、前記ラクタム化合物としては、例えば、カプロラクタム,N−メチルカプロラクタム,N−エチルカプロラクタム,N−イソプロピルカプロラクタム,N−イソブチルカプロラクタム,N−ノルマルプロピルカプロラクタム,N−ノルマルブチルカプロラクタム,N−シクロヘキシルカプロラクタム等のN−アルキルカプロラクタム類,N−メチル−2−ピロリドン(NMP),N−エチル−2−ピロリドン,N−イソプロピル−2−ピロリドン,N−イソブチル−2−ピロリドン,N−ノルマルプロピル−2−ピロリドン,N−ノルマルブチル−2−ピロリドン,N−シクロヘキシル−2−ピロリドン,N−メチル−3−メチル2−ピロリドン,N−エチル−3−メチル−2−ピロリドン,N−メチル−34,5−トリメチル−2−ピロリドン,N−メチル−2−ピぺリドン,N−エチル−2−ピペリドン,N−イソプロピル−2−ピペリドン,N−メチル−6−メチル−2−ピペリドン,N−メチル−3−エチル−2−ピペリドンなどを挙げることができる。また、前記尿素化合物としては、例えば、テトラメチル尿素,N,N’−ジメチルエチレン尿素,N,N’−ジメチルプロピレン尿素などを挙げることができる。また、前記有機イオウ化合物としては、例えば、ジメチルスルホキシド,ジエチルスルホキシド,ジフェニルスルホン,1−メチル−1−オキソスルホラン,1−エチル−1−オキソスルホラン,1−フェニル−1−オキソスルホランなどを、また、前記環式有機リン化合物としては、例えば、1−メチル−1−オキソホスホラン,1−ノルマルプロピル−1−オキソホスホラン,1−フェニル−1−オキソホスホランなどを挙げることができる。  Examples of the amide compound include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dipropylacetamide, N, N-dimethylbenzoate. Examples include acid amides. Examples of the lactam compound include caprolactam, N-methylcaprolactam, N-ethylcaprolactam, N-isopropylcaprolactam, N-isobutylcaprolactam, N-normalpropylcaprolactam, N-normalbutylcaprolactam, and N-cyclohexylcaprolactam. N-alkylcaprolactams, N-methyl-2-pyrrolidone (NMP), N-ethyl-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-isobutyl-2-pyrrolidone, N-normalpropyl-2-pyrrolidone, N-normalbutyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone, N-methyl-3-methyl-2-pyrrolidone, N-ethyl-3-methyl-2-pyrrolidone, N-methyl-34,5-trimethyl- 2- Loridone, N-methyl-2-piperidone, N-ethyl-2-piperidone, N-isopropyl-2-piperidone, N-methyl-6-methyl-2-piperidone, N-methyl-3-ethyl-2- And piperidone. Examples of the urea compound include tetramethylurea, N, N′-dimethylethyleneurea, N, N′-dimethylpropyleneurea, and the like. Examples of the organic sulfur compound include dimethyl sulfoxide, diethyl sulfoxide, diphenyl sulfone, 1-methyl-1-oxosulfolane, 1-ethyl-1-oxosulfolane, 1-phenyl-1-oxosulfolane, and the like. Examples of the cyclic organic phosphorus compound include 1-methyl-1-oxophosphorane, 1-normalpropyl-1-oxophosphorane, 1-phenyl-1-oxophosphorane, and the like.

これら各種の非プロトン性溶媒は、1種又は2種以上で用いることができ、これらの中、N−メチル−2−ピロリドン(NMP)が沸点が高く、また、中間生成物の水硫化リチウムを溶解する一方で硫化リチウムを溶解しないことから目的生成物に水硫化リチウムの混入がなく硫化リチウムを容易に回収することができる点で特に好ましい。  These various aprotic solvents can be used alone or in combination of two or more. Among these, N-methyl-2-pyrrolidone (NMP) has a high boiling point, and the intermediate product lithium hydrosulfide is used. It is particularly preferable in that it dissolves but does not dissolve lithium sulfide, so that the target product is free of lithium hydrosulfide and lithium sulfide can be easily recovered.

非プロトン性溶媒に対する精製水酸化リチウムの配合量は、特に制限はないが非プロトン性溶媒1Lに対して10モルを越えると、均一な反応が行えないため硫化水素との反応性が低下し、また、相当量の硫化水素が必要となることから非プロトン性溶媒1Lに対して10モル以下とすることが好ましい。  The compounding amount of the purified lithium hydroxide with respect to the aprotic solvent is not particularly limited, but if it exceeds 10 moles with respect to 1 L of the aprotic solvent, the reaction with hydrogen sulfide decreases because a uniform reaction cannot be performed. Further, since a considerable amount of hydrogen sulfide is required, the amount is preferably 10 mol or less with respect to 1 L of the aprotic solvent.

もう一方の原料の硫化水素は、不純物含有量が少ない高純度のものを用いることが好ましく、特に純度99.9Vol%以上で、水分含有量が2mg/L以下のものを使用することが好ましい。通常、硫化水素そのものは金属に対して腐食性は無いが、水分を含んだ硫化水素は金属に対して腐食性を示し、また、この生成される腐食物は反応系に混入する恐れがある。従って、使用する硫化水素は水分含有量が少なく、また、硫化水素を反応系に供給する配管材料としてガラス等の金属以外の材質、又は配管内面を鏡面研磨した金属材料を用いて腐食による反応液の汚染を防止することが好ましい。  The other raw material, hydrogen sulfide, preferably has a high purity with a low impurity content, and particularly preferably has a purity of 99.9 Vol% or more and a water content of 2 mg / L or less. Normally, hydrogen sulfide itself is not corrosive to metal, but hydrogen sulfide containing moisture is corrosive to metal, and the generated corrosive substance may be mixed into the reaction system. Therefore, the hydrogen sulfide used has a low water content, and the reaction liquid caused by corrosion using a metal material other than metal such as glass or a metal material obtained by mirror polishing the inner surface of the pipe as a pipe material for supplying hydrogen sulfide to the reaction system. It is preferable to prevent contamination.

前記第2A工程での反応条件は反応温度を150〜200℃、好ましくは150〜190℃で行うことが1つの重要な要件となる。この理由は、150℃未満では水硫化リチウムが生成し直接硫化リチウムが得られなくなり、一方、200℃を越えると溶媒の沸点を超える場合があるからである。第2A工程での硫化水素の導入量は、水酸化リチウム(LiOH)に対するモル比で1以上であればよいが、1.5〜4であると原料である水酸化リチウムの残存量を著しく減少させることができることから特に好ましい。硫化水素の添加速度は特に制限はないが、安定した品質のものを得る上で除々に一定速度で反応系内に導入することが好ましい。なお、硫化水素の反応系内への導入のときの温度は、室温下でもよいが上記反応温度まで加温した状態で反応系内に導入することが水酸化リチウムに水和している水分と、反応で生成する水分を速やかに系外に留去することができる点で好ましい。第2A工程での反応は、未反応の水酸化リチウムが残存しないように十分に時間をかけて行う必要があり、また、反応時間は原料仕込み量や濃度等の反応条件により異なるが、多くの場合1時間以上、好ましくは2時間以上とすることが望ましい。  One important requirement for the reaction conditions in the second step A is that the reaction temperature is 150 to 200 ° C, preferably 150 to 190 ° C. The reason for this is that lithium hydrosulfide is generated at a temperature lower than 150 ° C. and lithium sulfide cannot be obtained directly, whereas if it exceeds 200 ° C., the boiling point of the solvent may be exceeded. The amount of hydrogen sulfide introduced in step 2A may be 1 or more in terms of a molar ratio to lithium hydroxide (LiOH), but if it is 1.5 to 4, the residual amount of lithium hydroxide as a raw material is significantly reduced. It is particularly preferable because it can be made. The addition rate of hydrogen sulfide is not particularly limited, but it is preferable to gradually introduce it into the reaction system at a constant rate in order to obtain a stable quality. The temperature at the time of introduction of hydrogen sulfide into the reaction system may be room temperature, but introduction into the reaction system in a state heated to the above reaction temperature and the water hydrated with lithium hydroxide , Which is preferable in that water generated by the reaction can be quickly distilled out of the system. The reaction in the second step A needs to take a long time so that unreacted lithium hydroxide does not remain, and the reaction time varies depending on the reaction conditions such as raw material charge amount and concentration. In this case, it is desirable that the time be 1 hour or longer, preferably 2 hours or longer.

一方、前記第2B工程では100〜150℃、好ましくは110〜150℃で第1の反応を行い、次いで150〜200℃、好ましくは150〜190℃で第2の反応を行うことが1つの重要な要件となる。第1の反応で反応温度を上記範囲とする理由は100℃未満では反応速度が著しく低下し、生成する水を反応系から留去することが困難になり、一方、150℃を越えると硫化リチウムが生成されるためである。また、第2の反応で反応温度を上記範囲とする理由は150℃未満では硫化リチウムが生成されなくなり、一方200℃を越えると溶媒の沸点を越える場合があるからである。第2B工程での硫化水素の導入量は、水酸化リチウム(LiOH)に対するモル比で1以上であればよいが、1.5〜4であると原料である水酸化リチウムの残存量を著しく減少させることができることから特に好ましい。硫化水素の添加速度は特に制限はないが、安定した品質のものを得る上で除々に一定速度で反応系内に導入することが好ましい。なお、硫化水素の反応系内への導入のときの温度は、室温下でもよいが上記第1の反応の反応温度まで加温した状態で反応系内に導入することが水酸化リチウムに水和している水分と、反応で生成する水分を速やかに系外に留去することができる点で好ましい。第1の反応及び第2の反応は、未反応の水酸化リチウムや水硫化リチウムが残存しないように十分に時間をかけて反応を行う必要があり、反応時間は原料仕込み量や濃度等の反応条件により異なるが多くの場合1時間以上、好ましくは2時間以上とすることが望ましい。  On the other hand, in the second step B, it is one important that the first reaction is performed at 100 to 150 ° C., preferably 110 to 150 ° C., and then the second reaction is performed at 150 to 200 ° C., preferably 150 to 190 ° C. Requirements. The reason for setting the reaction temperature in the above range in the first reaction is that the reaction rate is remarkably reduced when the temperature is less than 100 ° C., and it is difficult to distill off the produced water from the reaction system. Is generated. In addition, the reason for setting the reaction temperature in the second reaction in the above range is that lithium sulfide is not generated when the temperature is lower than 150 ° C., whereas the boiling point of the solvent may be exceeded when the temperature exceeds 200 ° C. The amount of hydrogen sulfide introduced in step 2B may be 1 or more in terms of molar ratio to lithium hydroxide (LiOH), but if it is 1.5 to 4, the residual amount of lithium hydroxide as a raw material is significantly reduced. It is particularly preferable because it can be made. The addition rate of hydrogen sulfide is not particularly limited, but it is preferable to gradually introduce it into the reaction system at a constant rate in order to obtain a stable quality. The temperature at the time of introduction of hydrogen sulfide into the reaction system may be room temperature, but introduction into the reaction system in a state heated to the reaction temperature of the first reaction hydrates lithium hydroxide. It is preferable in that the water that is generated and the water generated by the reaction can be quickly distilled out of the system. The first reaction and the second reaction need to be performed with sufficient time so that unreacted lithium hydroxide and lithium hydrosulfide do not remain, and the reaction time depends on the amount of raw material charged, the concentration, etc. Although it depends on the conditions, in many cases it is desirable to set the time to 1 hour or longer, preferably 2 hours or longer.

なお、第2B工程の第1の反応での雰囲気は、水硫化リチウムが比較的安定な化合物であることから、特に制限されるものではないが第1の反応終了後、引き続き第2の反応を行うことができることから不活性ガス雰囲気下とすることが好ましい。また、第1の反応終了後、未反応の水酸化リチウムを固液分離して反応系から除去した後、第2の反応を引続き行ってもよい。  The atmosphere in the first reaction of step 2B is not particularly limited since lithium hydrosulfide is a relatively stable compound, but after the first reaction is completed, the second reaction is continued. Since it can be performed, an inert gas atmosphere is preferable. Further, after the completion of the first reaction, unreacted lithium hydroxide may be solid-liquid separated and removed from the reaction system, and then the second reaction may be continued.

前記第2A工程又は第2B工程の反応終了後、前記の不活性ガスを用いて、不活性ガス雰囲気下として常法により固液分離し、次いで、後述する第3工程で洗浄、次いで第4工程で乾燥を行って製品とする。  After completion of the reaction in the second A step or the second B step, the above inert gas is used to carry out solid-liquid separation by an ordinary method under an inert gas atmosphere, and then cleaning is performed in a third step described later, followed by a fourth step To dry the product.

なお、固液分離後の濾過液は、蒸留等の精製手段を施すことにより第2A工程又は第2B工程で用いる反応溶媒の非プロトン性溶媒として再使用することができる。  In addition, the filtrate after solid-liquid separation can be reused as an aprotic solvent for the reaction solvent used in Step 2A or Step 2B by applying purification means such as distillation.

(第3工程・第4工程)
第3工程は、前記第第2A工程又は第2B工程で得られた硫化リチウムを有機溶媒で洗浄し、水硫化リチウム等の不純物を除去し、次いで、第4工程で乾燥を行って製品とする。
(3rd and 4th steps)
In the third step, the lithium sulfide obtained in the second step A or step 2B is washed with an organic solvent to remove impurities such as lithium hydrosulfide, and then dried in the fourth step to obtain a product. .

本発明において、かかる第3工程及び第4工程は不活性ガス雰囲気下又は真空中で行って、空気中の水分との接触による硫化リチウムの分解を抑制することが一つの重要な要件となる。従って、第3工程及び第4工程では操作に用いる容器内を十分に不活性ガスで置換するか又は真空として洗浄及び乾燥を行う。In the present invention, it is one important requirement to perform the third and fourth steps in an inert gas atmosphere or in a vacuum to suppress the decomposition of lithium sulfide due to contact with moisture in the air. Accordingly, in the third step and the fourth step, the inside of the container used for the operation is sufficiently replaced with an inert gas, or cleaning and drying are performed under a vacuum.

第3工程及び第4工程で用いる不活性ガスとして例えば、アルゴンガス、ヘリウムガス、窒素ガス等が挙げられる。これらの不活性ガスは製品への不純物の混入を防止するため高純度品を用いることが好ましく、また、水分の接触をさけるため露点−50℃以下、好ましくは−60℃以下のものを用いることが特に好ましい。  Examples of the inert gas used in the third step and the fourth step include argon gas, helium gas, nitrogen gas, and the like. These inert gases are preferably high-purity products in order to prevent impurities from entering the product, and those having a dew point of −50 ° C. or less, preferably −60 ° C. or less to avoid contact with moisture. Is particularly preferred.

第3工程での洗浄方法としては、リパルプ法で行うことが洗浄効率が高く効果的に洗浄を行うことができることから特に好ましい。  As the cleaning method in the third step, it is particularly preferable to use the repulping method because cleaning efficiency is high and cleaning can be performed effectively.

洗浄に用いる有機溶媒としては、反応時に使用した溶媒に親和性を示し、硫化リチウムに対して不活性な有機溶媒を用いればよく、上記した非プロトン性溶媒の他、例えばアセトン等の1種又は2種以上で用いることができる。また、かかる有機溶媒は、硫化リチウムの水による分解を避けるため水分含有量が1000ppm以下、好ましくは100ppm以下、特に好ましくは50ppm以下となるまで脱水を行うか又は市販の水分含有量が1000ppm以下、好ましくは100ppm以下、特に好ましくは50ppm以下のものを用いることが特に好ましい。なお、有機溶媒を脱水する方法としては、特に制限されるものではないが、例えば、特開平07−235309号公報或いは特開平07−235310号公報に従って、有機溶媒をゼオライト層に接触させることにより容易に脱水することができる。  As the organic solvent used for washing, an organic solvent which has affinity for the solvent used at the time of reaction and is inert to lithium sulfide may be used. In addition to the aprotic solvent described above, for example, one type such as acetone or the like Two or more types can be used. Further, the organic solvent is dehydrated until the water content is 1000 ppm or less, preferably 100 ppm or less, particularly preferably 50 ppm or less in order to avoid decomposition of lithium sulfide with water, or a commercially available water content is 1000 ppm or less, It is particularly preferable to use one having a concentration of 100 ppm or less, particularly preferably 50 ppm or less. The method for dehydrating the organic solvent is not particularly limited. For example, according to Japanese Patent Application Laid-Open No. 07-235309 or Japanese Patent Application Laid-Open No. 07-235310, it is easy to bring the organic solvent into contact with the zeolite layer. Can be dehydrated.

洗浄終了後、第4工程で、乾燥を行って製品とする。乾燥方法は溶媒が除去できる方法で、尚且つ不活性ガス雰囲気下または真空中で行う方法であれば特に制限されるものではなく、また、乾燥温度は洗浄時に用いた溶媒の揮発温度以上であればよい。  After the completion of cleaning, in the fourth step, drying is performed to obtain a product. The drying method is a method that can remove the solvent, and is not particularly limited as long as it is performed in an inert gas atmosphere or in a vacuum, and the drying temperature is not less than the volatilization temperature of the solvent used during washing. That's fine.

乾燥終了後、所望により粉砕、分級、包装等を行って製品とする。なお、必要に応じて行われる粉砕は、乾燥して得られる硫化リチウム粉体がもろく結合したブロック状のものである場合等に適宜行うが、硫化リチウム粉体の粒子自体は上記特定の平均粒径を有するものである。即ち、得られる硫化リチウム粉体は、走査型電子顕微鏡写真(SEM)から求められる平均粒径が10〜80μm、好ましくは20〜60μmである。  After completion of drying, the product is pulverized, classified, packaged, etc. as desired to obtain a product. The pulverization performed as necessary is appropriately performed when the lithium sulfide powder obtained by drying is in the form of a crumbly bonded block, but the lithium sulfide powder particles themselves are the above-mentioned specific average particles. It has a diameter. That is, the obtained lithium sulfide powder has an average particle diameter determined from a scanning electron micrograph (SEM) of 10 to 80 μm, preferably 20 to 60 μm.

なお、本発明の硫化リチウム粉体における前記第2A工程〜第4工程又は第2B工程〜第4工程の一連の工程、及び必要により行われる粉砕、分級及び包装の操作は不活性ガスで置換した或いは真空としたグローブボックス中等で行えば、空気中の水分との接触を効果的に遮断して一連の操作を容易に行うことができることから特に好ましい。  The series of steps 2A to 4 or 2B to 4 in the lithium sulfide powder of the present invention, and the operations of pulverization, classification and packaging performed as necessary were replaced with inert gas. Alternatively, it is particularly preferable to perform in a vacuum glove box or the like because a series of operations can be easily performed by effectively blocking contact with moisture in the air.

本発明にかかる硫化リチウム粉体は、X線回折的には硫化リチウムの単相を示し、不純物としての水酸化リチウム及びSiOを実質的に含有しないものである。更に、本発明の好ましい実施形態により得られる硫化リチウム粉体は、上記特性に加え、微細で、結晶性に優れ、また、Al及びCaからなる電気絶縁性の不純物も実質的に含有しないものである。The lithium sulfide powder according to the present invention shows a single phase of lithium sulfide in terms of X-ray diffraction, and does not substantially contain lithium hydroxide and SiO 2 as impurities. Further, the lithium sulfide powder obtained according to a preferred embodiment of the present invention is fine, excellent in crystallinity, and substantially free of electrically insulating impurities composed of Al and Ca in addition to the above characteristics. is there.

このような硫化リチウム粉体はポリスルフィドポリマー等の製造原料は勿論、電子材料、特に無機固体電解質の製造原料として好適に用いることができる。  Such lithium sulfide powder can be suitably used not only as a raw material for producing polysulfide polymers but also as a raw material for producing electronic materials, particularly inorganic solid electrolytes.

次いで、本発明の無機固体電解質について説明する。
本発明の無機固体電解質は少なくとも前記硫化リチウム粉体を含有するものである。無機固体電解質中の硫化リチウム粉体の含有量は特に制限されるものでないが、20モル%以上、好ましくは40モル%以上含有することが好ましく、また、本発明の無機固体電解質は結晶質又は非晶質であってもよい。
Next, the inorganic solid electrolyte of the present invention will be described.
The inorganic solid electrolyte of the present invention contains at least the lithium sulfide powder. The content of the lithium sulfide powder in the inorganic solid electrolyte is not particularly limited, but is preferably 20 mol% or more, preferably 40 mol% or more. The inorganic solid electrolyte of the present invention is crystalline or It may be amorphous.

本発明の無機固体電解質を構成する他の化合物としては、例えば、硫化リン(P)、ヨウ化リチウム(LiI)、硫化硼素(B)、硫化ケイ素(SiS)、硫化ゲルマニウム(GeS)、硫化ガリウム(Ga)、硫化アルミニウム(Al)、リン酸リチウム(LiPO)、酸化リチウム(LiO)、硫酸リチウム(LiSO)、酸化リン(P)、硼酸リチウム(LiBO)、LiPO4−x2x/3(xは0<x<4)、LiSiO4−x2x/3(xは0<x<4)、LiGeO4−x2x/3(xは0<x<4)、LiBO3−x2x/3(xは0<x<3)から選ばれる少なくとも1種又は2種以上が挙げられるが、特にこれらに制限されず、本発明において、特に好ましい無機固体電解質の一例を示すと、例えば、LiS、LiS−P、LiS−P−X(式中、XはLiI、B、又はAlから選ばれる少なくとも1種以上)、LiS−P、LiS−SiS、LiS−GeS、LiS−Ga、LiS−B等が挙げられる。Examples of other compounds constituting the inorganic solid electrolyte of the present invention include phosphorus sulfide (P 2 S 5 ), lithium iodide (LiI), boron sulfide (B 2 S 3 ), silicon sulfide (SiS 2 ), sulfide Germanium (GeS 2 ), gallium sulfide (Ga 2 S 3 ), aluminum sulfide (Al 2 S 3 ), lithium phosphate (Li 3 PO 4 ), lithium oxide (Li 2 O), lithium sulfate (Li 2 SO 4 ) , Phosphorus oxide (P 2 O 5 ), lithium borate (Li 3 BO 3 ), Li 3 PO 4-x N 2x / 3 (x is 0 <x <4), Li 4 SiO 4-x N 2x / 3 ( x is selected from 0 <x <4), Li 4 GeO 4-x N 2x / 3 (x is 0 <x <4), Li 3 BO 3-x N 2x / 3 (x is 0 <x <3) Including at least one or two or more selected from Without being limited thereto, in the present invention, particularly preferably an example of an inorganic solid electrolyte, for example, Li 2 S, Li 2 S -P 2 S 5, Li 2 S-P 2 S 5 -X ( wherein , X is LiI, B 2 S 3, or at least one element selected from Al 2 S 3), Li 2 S-P 2 S 3, Li 2 S-SiS 2, Li 2 S-GeS 2, Li 2 S -Ga 2 S 3, Li 2 S -B 2 S 3 , and the like.

更に、本発明の無機固体電解質が非晶質(ガラス)の場合は、リン酸リチウム(LiPO)、酸化リチウム(LiO)、硫酸リチウム(LiSO)、酸化リン(P)、硼酸リチウム(LiBO)等の酸素を含む化合物、LiPO4−x2x/3(xは0<x<4)、LiSiO4−x2x/3(xは0<x<4)、LiGeO4−x2x/3(xは0<x<4)、LiBO3−x2x/3(xは0<x<3)等の窒素を含む化合物を無機固体電解質に含有させることができる。この酸素を含む化合物又は窒素を含む化合物の添加により、形成される非晶質骨格の隙間を広げ、リチウムイオンの移動をスムーズにし、更にイオン伝導性を向上させることができる。Furthermore, when the inorganic solid electrolyte of the present invention is amorphous (glass), lithium phosphate (Li 3 PO 4 ), lithium oxide (Li 2 O), lithium sulfate (Li 2 SO 4 ), phosphorus oxide (P 2 O 5 ), oxygen-containing compounds such as lithium borate (Li 3 BO 3 ), Li 3 PO 4-x N 2x / 3 (x is 0 <x <4), Li 4 SiO 4-x N 2x / 3 (X is 0 <x <4), Li 4 GeO 4-x N 2x / 3 (x is 0 <x <4), Li 3 BO 3-x N 2x / 3 (x is 0 <x <3), etc. The nitrogen-containing compound can be contained in the inorganic solid electrolyte. By the addition of the compound containing oxygen or the compound containing nitrogen, the gap between the formed amorphous skeletons can be widened, the movement of lithium ions can be made smooth, and the ion conductivity can be further improved.

本発明に係る無機固体電解質は、広く公知の方法により製造することができ、その一例を示せば、硫化リチウム粉体と無機固体電解質を構成する他の化合物を混合し、アルゴン等の不活性ガス雰囲気中で、加熱、溶融した後、急冷することによって製造することができる。  The inorganic solid electrolyte according to the present invention can be produced by a widely known method. For example, lithium sulfide powder and other compounds constituting the inorganic solid electrolyte are mixed, and an inert gas such as argon is used. It can be produced by quenching after heating and melting in an atmosphere.

急冷する方法としては、例えば、水冷、液体窒素急冷、双ローラー急冷、スプラット急冷方法等の常用の方法を用いることができる。  As a method for quenching, a common method such as water cooling, liquid nitrogen quenching, twin-roller quenching, or splat quenching method can be used.

本発明に係る無機固体電解質は、粉砕して、或いはシート状に成形し、例えば、少なくとも正極と負極と固体電解質から構成される全固体リチウム電池の固体電解質、あるいは、正極、負極、セパレータ、及びリチウム塩を含有する非水の有機電解液からなるリチウム二次電池において、負極に使用するリチウム金属又はリチウム合金の被覆材として使用することができる。  The inorganic solid electrolyte according to the present invention is pulverized or formed into a sheet, for example, a solid electrolyte of an all-solid lithium battery composed of at least a positive electrode, a negative electrode, and a solid electrolyte, or a positive electrode, a negative electrode, a separator, and In a lithium secondary battery composed of a non-aqueous organic electrolyte containing a lithium salt, it can be used as a coating material for lithium metal or lithium alloy used for the negative electrode.

以下、本発明を実施例により詳細に説明するが本発明はこれらに限定されるものではない。
なお、本発明の実施例において、粗製水酸化リチウムとして市販の水酸化リチウム1水塩を使用した。
この水酸化リチウム試料中の不純物含有量を表1に示す。
なお、この不純物量は、ICP発光分析法、ICP質量分析法及び比濁法によって求めた値である。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
In the examples of the present invention, commercially available lithium hydroxide monohydrate was used as crude lithium hydroxide.
The impurity content in this lithium hydroxide sample is shown in Table 1.
The amount of impurities is a value determined by ICP emission spectrometry, ICP mass spectrometry, and turbidimetry.

Figure 0005495472
Figure 0005495472
Figure 0005495472
Figure 0005495472

(第1工程)
上記した粗製水酸化リチウム1水塩1062gを純水5000gに50℃で溶解し水溶液を調製した。なお、純水はイオン交換樹脂を備えた純水製造装置で処理した水を限外濾過モジュール(旭化学工業社製、分画分子量6000)で処理したものであり、以下の実施例で使用した純水も当該純水と同じ処理をしたものである。
次いで、上記で調製した粗製水酸化リチウムを溶解した水溶液を40℃で孔径0.5μmのPTFE製メンブランフィルターを使用して濾過を行った。
濾過後の濾過液を一部採取し、減圧下に乾燥を行って得られた水酸化リチウム試料中の不純物含有量を表2に示す。
(First step)
The above-mentioned crude lithium hydroxide monohydrate 1062 g was dissolved in pure water 5000 g at 50 ° C. to prepare an aqueous solution. Pure water was obtained by treating water treated with a pure water production apparatus equipped with an ion exchange resin with an ultrafiltration module (manufactured by Asahi Chemical Industry Co., Ltd., molecular weight cut off 6000), and was used in the following examples. Pure water is also subjected to the same treatment as the pure water.
Next, the aqueous solution in which the crude lithium hydroxide prepared above was dissolved was filtered at 40 ° C. using a PTFE membrane filter having a pore size of 0.5 μm.
Table 2 shows impurity contents in a lithium hydroxide sample obtained by partially collecting the filtrate after filtration and drying under reduced pressure.

Figure 0005495472
Figure 0005495472

次いで、95℃に加温し、減圧下に水分を抑留しながら4時間晶析を行った。なお、回収した水分は3300gであった。冷却後、常法により固液分離して析出した水酸化リチウムを回収し、減圧下に乾燥を行って精製水酸化リチウムを得た。
得られた精製水酸化リチウム試料中の不純物含有量及びレーザー回折法により求めた平均粒径を表3に示す。
Next, the mixture was heated to 95 ° C. and crystallized for 4 hours while retaining moisture under reduced pressure. The recovered water was 3300 g. After cooling, the lithium hydroxide deposited by solid-liquid separation by a conventional method was collected, and dried under reduced pressure to obtain purified lithium hydroxide.
Table 3 shows the impurity content in the obtained purified lithium hydroxide sample and the average particle diameter determined by the laser diffraction method.

Figure 0005495472
Figure 0005495472

<第2工程・第3工程・第4工程>
攪拌機及びコンデンサーを備えたフラスコを設置し、第1工程で得られた精製水酸化リチウム1水塩167.9g(4モル)及びN−メチル−2−ピロリドン(NMP)1Lを仕込んだ。
次いで、前記フラスコをアルゴンガス気流下で175℃まで昇温した。次に、配管内面を鏡面研磨したステンレス製の配管を用いて反応液に硫化水素ガスを攪拌下に400ml/minの供給速度で7時間かけて239g(7モル)を吹き込み、吹き込み終了後、更に175℃で2時間反応を行った。なお、反応中は水が副生したが、コンデンサーにより凝縮し系外に抜きだし、また、反応中もアルゴンガスを反応容器のフラスコに供給し続けた。
また、アルゴンガスは純度99.998%以上、露点−60℃以下の日本酸素社製のものを用い、硫化水素ガスは純度99.99%、のジャパンファインプロダクツ社製のものを用いた。
反応終了後、前記のアルゴンガスを用いてアルゴンガスで置換したグローブボックス中で濾過、洗浄及び乾燥を行って硫化リチウム粉体83.6g(収率91%)を得た。
なお、洗浄はアセトン(水分含有量50ppm以下、関東化学社製)500mlを用いてリパルプ法で3回行い、乾燥は、ヒーターをグローブボックス中に設置し110℃で2時間行った。
<Second step, third step, fourth step>
A flask equipped with a stirrer and a condenser was installed, and charged with 167.9 g (4 mol) of purified lithium hydroxide monohydrate obtained in the first step and 1 L of N-methyl-2-pyrrolidone (NMP).
Next, the flask was heated to 175 ° C. under an argon gas stream. Next, using a stainless steel pipe whose inner surface was mirror-polished, hydrogen sulfide gas was blown into the reaction solution with stirring at a supply rate of 400 ml / min over 7 hours, and after completion of the blowing, Reaction was performed at 175 degreeC for 2 hours. Although water was by-produced during the reaction, it was condensed by the condenser and extracted from the system, and argon gas was continuously supplied to the flask of the reaction vessel during the reaction.
The argon gas used was made by Nippon Oxygen Co., Ltd. having a purity of 99.998% or more and a dew point of −60 ° C. or less, and the hydrogen sulfide gas was made by Japan Fine Products Co., Ltd. with a purity of 99.99%.
After completion of the reaction, filtration, washing and drying were performed in a glove box substituted with argon gas using the above-mentioned argon gas to obtain 83.6 g of lithium sulfide powder (yield 91%).
The washing was performed three times by the repulping method using 500 ml of acetone (moisture content of 50 ppm or less, manufactured by Kanto Chemical Co., Ltd.), and the drying was performed at 110 ° C. for 2 hours by installing a heater in a glove box.

<第1工程>
第1工程は実施例1と同じ操作条件で実施した。
<第2工程>
攪拌機及びコンデンサーを備えたフラスコを設置し、第1工程で得られた精製水酸化リチウム1水塩210g(5モル)及びN−メチル−2−ピロリドン(NMP)1Lを仕込んだ。
次いで、前記フラスコをアルゴンガスで置換し、180℃まで昇温した。次に、配管内面を鏡面研磨したステンレス製の配管を用いて反応液に硫化水素ガスを攪拌下に400L/minの供給速度で8時間かけて273g(8モル)を吹き込み、吹き込み終了後、更に180℃で2時間反応を行った。なお、反応中は水が副生したが、コンデンサーにより凝縮し系外に抜きだし、また、反応中もアルゴンガスを反応容器のフラスコに供給し続けた。
また、アルゴンガスは純度99.998%、露点−60℃以下の日本酸素社製のものを用い、硫化水素ガスは純度99.99%、のジャパンファインプロダクツ社製のものを用いた。
反応終了後、前記のアルゴンガスを用い、このアルゴンガスで置換したグローブボックス中で濾過、洗浄及び乾燥を行って硫化リチウム粉体102g(収率89%)を得た。
なお、洗浄はアセトン(水分含有量50ppm以下、関東化学社製)500mlを用いてリパルプ法で3回行い、乾燥は、ヒーターをグローブボックス中に設置し110℃で2時間行った。
<First step>
The first step was performed under the same operating conditions as in Example 1.
<Second step>
A flask equipped with a stirrer and a condenser was installed, and 210 g (5 mol) of purified lithium hydroxide monohydrate obtained in the first step and 1 L of N-methyl-2-pyrrolidone (NMP) were charged.
Next, the flask was replaced with argon gas, and the temperature was raised to 180 ° C. Next, using a stainless steel pipe whose inner surface was mirror-polished, hydrogen sulfide gas was blown into the reaction liquid at a supply rate of 400 L / min with stirring at a supply rate of 400 L / min over 8 hours. The reaction was performed at 180 ° C. for 2 hours. Although water was by-produced during the reaction, it was condensed by the condenser and extracted from the system, and argon gas was continuously supplied to the flask of the reaction vessel during the reaction.
The argon gas used was made by Japan Oxygen Corporation with a purity of 99.998% and a dew point of −60 ° C. or less, and the hydrogen sulfide gas used was made by Japan Fine Products with a purity of 99.99%.
After completion of the reaction, the above argon gas was used, followed by filtration, washing and drying in a glove box substituted with the argon gas, to obtain 102 g of lithium sulfide powder (yield 89%).
The washing was performed three times by the repulping method using 500 ml of acetone (moisture content of 50 ppm or less, manufactured by Kanto Chemical Co., Ltd.), and the drying was performed at 110 ° C. for 2 hours by installing a heater in a glove box.

<第1工程>
第1工程は実施例1と同じ操作条件で実施した。
<第2工程>
攪拌機及びコンデンサーを備えたフラスコを設置し、第1工程で得られた精製水酸化リチウム一水和物84g(2モル)及びN−メチル−2−ピロリドン(NMP)0.5Lを仕込んだ。
次いで、前記フラスコをアルゴンガスで置換し、110℃まで昇温した。次に、ステンレス製の配管を用いて反応液に硫化水素ガスを攪拌下に300L/minの供給速度で4時間かけて103g(3モル)を吹き込んだ。生成した水はコンデンサーにより凝縮し系外に抜き出した。吹き込み終了後、170℃まで昇温し、6時間反応を行った。また、アルゴンガスは純度99.998%、露点−60℃以下の日本酸素(株)社製のものを用い、硫化水素ガスは純度99.99%、のジャパンファインプロダクツ(株)社製のものを用いた。
反応終了後、アルゴンガスで置換したグローブボックス中で濾過、洗浄及び乾燥を行って硫化リチウム40g(収率87%)を得た。
なお、洗浄はアセトン400mlを用いてリパルプ法で行い、乾燥は、110℃で2時間行った。
<First step>
The first step was performed under the same operating conditions as in Example 1.
<Second step>
A flask equipped with a stirrer and a condenser was installed, and 84 g (2 mol) of purified lithium hydroxide monohydrate obtained in the first step and 0.5 L of N-methyl-2-pyrrolidone (NMP) were charged.
Next, the flask was replaced with argon gas, and the temperature was raised to 110 ° C. Next, 103 g (3 mol) was blown in over 4 hours while stirring hydrogen sulfide gas into the reaction solution using a stainless steel pipe at a supply rate of 300 L / min. The produced water was condensed by a condenser and extracted out of the system. After completion of the blowing, the temperature was raised to 170 ° C. and the reaction was performed for 6 hours. Argon gas is 99.998% pure and made by Nippon Oxygen Co., Ltd. with a dew point of −60 ° C. or less, and hydrogen sulfide gas is 99.99% pure by Japan Fine Products Co., Ltd. Was used.
After completion of the reaction, filtration, washing and drying were performed in a glove box substituted with argon gas to obtain 40 g of lithium sulfide (yield 87%).
In addition, washing | cleaning was performed by the repulp method using 400 ml of acetone, and drying was performed at 110 degreeC for 2 hours.

比較例1
水酸化リチウムとして前記第1工程を行う前の粗製水酸化リチウムを用いて、実施例1と同様な操作で硫化リチウム粉体82.7g(収率90%)を合成した。
Comparative Example 1
Using crude lithium hydroxide before performing the first step as lithium hydroxide, 82.7 g of lithium sulfide powder (yield 90%) was synthesized in the same manner as in Example 1.

比較例2
前記第1工程〜第2工程を実施例1と同様に実施し、グローブボックスを大気雰囲気(湿度52%)とし第3工程の洗浄及び乾燥を実施例1と同様に実施し硫化リチウム粉体82g(収率89%)を合成した。
Comparative Example 2
The first to second steps are carried out in the same manner as in Example 1, the glove box is in an atmospheric atmosphere (humidity 52%), and the third step is washed and dried in the same manner as in Example 1 to obtain 82 g of lithium sulfide powder. (Yield 89%) was synthesized.

<硫化リチウムの物性評価>
実施例1〜3及び比較例1〜2で得られた硫化リチウム粉体及び市販の硫化リチウム粉体(比較例3)について、硫化リチウム粉体中のLiとSのモル比、不純物含有量、平均粒径及びX線回折分析を行い、その結果を表4に示した。
なお、LiとSのモル比は、Liを原子吸光法、Sをヨウ素滴定法で測定した値より求め、不純物含有量は、ICP発光分析法、ICP質量分析法及び比濁法によって求めた値である。また、平均粒径は走査型電子顕微鏡写真(SEM)により求めた。
X線回折分析は、線源としてCu−Kα線を用いて、硫化リチウム粉体の2θ=26.98°付近(111面)の回折ピーク(a)に対する水酸化リチウムに由来する2θ=32.48°付近(101面)の回折ピーク(b)の相対強度比{(b/a)×100}及び硫化リチウム粉体の(111)面の回折ピークの半値幅をシェラーの式から求めた。
実施例1で得られた硫化リチウム粉体のX線回折図を図1に、市販の硫化リチウム粉体のX線回折図を図2に示し、また、実施例1で得られた硫化リチウム粉体の走査型電子顕微鏡写真(SEM)を図3に示した。
なお、X線回折はアルゴン雰囲気中で測定した。
<Evaluation of physical properties of lithium sulfide>
About the lithium sulfide powder obtained in Examples 1 to 3 and Comparative Examples 1 and 2 and the commercially available lithium sulfide powder (Comparative Example 3), the molar ratio of Li and S in the lithium sulfide powder, the impurity content, The average particle size and X-ray diffraction analysis were performed, and the results are shown in Table 4.
The molar ratio of Li and S was determined from the value obtained by measuring Li by atomic absorption and S by iodine titration, and the impurity content was determined by ICP emission spectrometry, ICP mass spectrometry, and turbidimetry. It is. Moreover, the average particle diameter was calculated | required by the scanning electron micrograph (SEM).
X-ray diffraction analysis uses Cu-Kα rays as a radiation source, and 2θ = 32. 2 derived from lithium hydroxide with respect to the diffraction peak (a) in the vicinity of 2θ = 26.98 ° (111 plane) of the lithium sulfide powder. The relative intensity ratio {(b / a) × 100} of the diffraction peak (b) near 48 ° (101 plane) and the half width of the diffraction peak of the (111) plane of the lithium sulfide powder were determined from Scherrer's equation.
The X-ray diffraction pattern of the lithium sulfide powder obtained in Example 1 is shown in FIG. 1, the X-ray diffraction pattern of a commercially available lithium sulfide powder is shown in FIG. 2, and the lithium sulfide powder obtained in Example 1 A scanning electron micrograph (SEM) of the body is shown in FIG.
X-ray diffraction was measured in an argon atmosphere.

Figure 0005495472
Figure 0005495472
Figure 0005495472
Figure 0005495472

(無機固体電解質)
実施例4〜6及び比較例4〜6
実施例1〜3および比較例1〜3の硫化リチウム粉体及び硫化ケイ素(ABCR GmbHKG社製)をモル比で60:40となるように秤量し混合した。この混合物をグラッシーカーボン製坩堝に充填し、アルゴンガス気流中で1000℃で2時間溶融した。その後、融液を液体窒素中に滴下することにより固体電解質を得た。
なお、アルゴンガスは純度99.998%以上、露点−60℃以下の日本酸素社製のものを用いた。
このようにして得た固体電解質の電気化学特性を評価するため、下記のイオン伝導度の測定ならびに電気化学的安定性を調べるための電位−電流特性の測定を行った。固体電解質のイオン伝導度は、得られたリボン状の形態を有する固体電解質の両端に電極としてカーボンペーストを塗布し、交流インピーダンス法により測定した。また、電位−電流特性を測定するための測定セルは、固体電解質ガラスを粉砕した粉末を3トン/cmでプレスして、直径10mm、厚さ3mmのペレットとし、このペレットの一方の端面に可逆電極として金属リチウム箔を、反対側の端面にイオンブロッキング電極として白金板をそれぞれ圧接して構成した。この測定セルを用い、8V(vs.Li/Li)まで掃引速度5mV/secで電位掃引し、電位−電流挙動を記録した。
その結果、得られたイオン伝導度(25℃)と8Vまで電位掃引した際に流れた酸化電流値を表5に示す。
(Inorganic solid electrolyte)
Examples 4-6 and Comparative Examples 4-6
The lithium sulfide powders of Examples 1 to 3 and Comparative Examples 1 to 3 and silicon sulfide (manufactured by ABCR GmbH) were weighed and mixed so that the molar ratio was 60:40. This mixture was filled in a glassy carbon crucible and melted at 1000 ° C. for 2 hours in an argon gas stream. Thereafter, the melt was dropped into liquid nitrogen to obtain a solid electrolyte.
Argon gas having a purity of 99.998% or more and a dew point of −60 ° C. or less manufactured by Nippon Oxygen Co., Ltd. was used.
In order to evaluate the electrochemical characteristics of the solid electrolyte thus obtained, the following ionic conductivity measurements and potential-current characteristics were investigated to investigate the electrochemical stability. The ionic conductivity of the solid electrolyte was measured by an AC impedance method by applying carbon paste as electrodes to both ends of the obtained solid electrolyte having a ribbon-like form. In addition, a measurement cell for measuring the potential-current characteristics is obtained by pressing a powder obtained by pulverizing solid electrolyte glass at 3 ton / cm 2 to form a pellet having a diameter of 10 mm and a thickness of 3 mm. A metal lithium foil was used as the reversible electrode, and a platinum plate was used as the ion blocking electrode on the opposite end face. Using this measurement cell, the potential was swept up to 8 V (vs. Li + / Li) at a sweep rate of 5 mV / sec, and the potential-current behavior was recorded.
As a result, the obtained ionic conductivity (25 ° C.) and the oxidation current value that flowed when the potential was swept to 8 V are shown in Table 5.

Figure 0005495472
Figure 0005495472

表5の結果より、本発明の硫化リチウムを用いて作成された無機固体電解質は、比較例のものと比べて高いイオン伝導度を示し、また、比較例のものは本発明の無機固体電解質と比べて高い酸化電流値を示しており、電子伝導性あるいは固体電解質の酸化物分解反応が生じていることを示唆した。  From the results of Table 5, the inorganic solid electrolyte prepared using the lithium sulfide of the present invention showed higher ionic conductivity than that of the comparative example, and the comparative example was compared with the inorganic solid electrolyte of the present invention. A higher oxidation current value was indicated, suggesting that the electron conductivity or the oxide decomposition reaction of the solid electrolyte occurred.

実施例7〜9及び比較例7〜9
実施例1〜3および比較例1〜3の硫化リチウム粉体、硫化ケイ素(ABCR GmbHKG社製)及びリン酸リチウム(日本化学工業社製)をモル比で63:36:1となるように秤量し混合した。この混合物をグラッシーカーボン製坩堝に充填し、アルゴンガス気流中で1000℃で2時間溶融した。次いで、この溶融物を双ローラーで超急冷することにより固体電解質を得た。
このようにして得た固体電解質の電気化学特性を評価するため、実施例3〜4と同様にイオン伝導度及び電位−電流特性の測定を行った。
その結果、得られたイオン伝導度(25℃)と8Vまで電位掃引した際に流れた酸化電流値を表6に示す。
Examples 7-9 and Comparative Examples 7-9
The lithium sulfide powders of Examples 1 to 3 and Comparative Examples 1 to 3, silicon sulfide (manufactured by ABCR GmbH) and lithium phosphate (manufactured by Nippon Kagaku Kogyo Co., Ltd.) are weighed so that the molar ratio is 63: 36: 1. And mixed. This mixture was filled in a glassy carbon crucible and melted at 1000 ° C. for 2 hours in an argon gas stream. Next, the melt was ultra-quenched with a twin roller to obtain a solid electrolyte.
In order to evaluate the electrochemical characteristics of the solid electrolyte thus obtained, ion conductivity and potential-current characteristics were measured in the same manner as in Examples 3-4.
As a result, the obtained ionic conductivity (25 ° C.) and the oxidation current value that flowed when the potential was swept to 8 V are shown in Table 6.

Figure 0005495472
Figure 0005495472

本発明の硫化リチウム粉体は、ポリスルフィドポリマーの製造原料、電子材料、特に本発明の硫化リチウム粉体を用いた無機固体電解質は高いイオン伝導性を示し、また、固体電解質の酸化分解反応が生じにくく、優れた電気化学特性を示すことから、本発明の硫化リチウム粉体は無機固体電解質の製造原料として利用できる。  The lithium sulfide powder of the present invention is a raw material for producing a polysulfide polymer, an electronic material, particularly an inorganic solid electrolyte using the lithium sulfide powder of the present invention has high ionic conductivity, and an oxidative decomposition reaction of the solid electrolyte occurs. The lithium sulfide powder of the present invention can be used as a raw material for producing an inorganic solid electrolyte because it is difficult and exhibits excellent electrochemical characteristics.

[図1]実施例1で得られた硫化リチウム粉体のX線回折図。
[図2]市販品(比較例3)の硫化リチウム粉体のX線回折図。
[図3]実施例1で得られた硫化リチウムの走査型電子顕微鏡写真(SEM)(倍率;×300)
FIG. 1 is an X-ray diffraction pattern of the lithium sulfide powder obtained in Example 1.
FIG. 2 is an X-ray diffraction pattern of a commercially available lithium sulfide powder (Comparative Example 3).
[FIG. 3] Scanning electron micrograph (SEM) of lithium sulfide obtained in Example 1 (magnification: x300)

符号の説明Explanation of symbols

(a)は硫化リチウムの(111)面の回折ピーク。
(b)は水酸化リチウムの(101)面の回折ピーク。
(A) is a diffraction peak of (111) plane of lithium sulfide.
(B) is a diffraction peak of (101) plane of lithium hydroxide.

Claims (5)

X線回折分析したときに、硫化リチウムの(111面)の回折ピーク(a)と水酸化リチウムの(101面)の回折ピーク(b)の相対強度比{(b/a)×100}が3以下で、且つSiOの含有量が50ppm以下ある特性を有することを特徴とする硫化リチウム粉体。 When the X-ray diffraction analysis is performed, the relative intensity ratio {(b / a) × 100} of the diffraction peak (a) of lithium sulfide (111 plane) and the diffraction peak (b) of lithium hydroxide (101 plane) is 3. A lithium sulfide powder characterized by having 3 or less and a SiO 2 content of 50 ppm or less. X線回折分析法により求められる(111面)の回折ピークの半値幅が0.15度以下である請求項1記載の硫化リチウム粉体。   2. The lithium sulfide powder according to claim 1, wherein a half width of a diffraction peak of (111 plane) obtained by X-ray diffraction analysis is 0.15 degrees or less. 平均粒径が10〜80μmである請求項1又は2記載の硫化リチウム粉体。   The lithium sulfide powder according to claim 1 or 2, having an average particle size of 10 to 80 µm. AlとCaの金属元素の含有量が総量で50ppm以下である請求項1乃至3記載の硫化リチウム粉体。   The lithium sulfide powder according to any one of claims 1 to 3, wherein the total content of metal elements of Al and Ca is 50 ppm or less. 請求項1乃至4記載の何れか1項に記載の硫化リチウム粉体を含むことを特徴とする無機固体電解質。   An inorganic solid electrolyte comprising the lithium sulfide powder according to any one of claims 1 to 4.
JP2005506480A 2003-05-30 2004-05-26 Lithium sulfide powder and inorganic solid electrolyte Expired - Lifetime JP5495472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506480A JP5495472B2 (en) 2003-05-30 2004-05-26 Lithium sulfide powder and inorganic solid electrolyte

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003154071 2003-05-30
JP2003154071 2003-05-30
PCT/JP2004/007177 WO2004106232A1 (en) 2003-05-30 2004-05-26 Lithium sulfide powder, method for producing same and inorganic solid electrolyte
JP2005506480A JP5495472B2 (en) 2003-05-30 2004-05-26 Lithium sulfide powder and inorganic solid electrolyte

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013053052A Division JP5690365B2 (en) 2003-05-30 2013-03-15 Method for producing lithium sulfide powder

Publications (2)

Publication Number Publication Date
JPWO2004106232A1 JPWO2004106232A1 (en) 2006-07-20
JP5495472B2 true JP5495472B2 (en) 2014-05-21

Family

ID=33487311

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005506480A Expired - Lifetime JP5495472B2 (en) 2003-05-30 2004-05-26 Lithium sulfide powder and inorganic solid electrolyte
JP2013053052A Expired - Lifetime JP5690365B2 (en) 2003-05-30 2013-03-15 Method for producing lithium sulfide powder

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013053052A Expired - Lifetime JP5690365B2 (en) 2003-05-30 2013-03-15 Method for producing lithium sulfide powder

Country Status (2)

Country Link
JP (2) JP5495472B2 (en)
WO (1) WO2004106232A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833539B2 (en) * 2004-11-26 2011-12-07 日本化学工業株式会社 Lithium sulfide particle powder, method for producing the same, and inorganic solid electrolyte
JP5848801B2 (en) * 2006-10-19 2016-01-27 出光興産株式会社 Lithium ion conductive solid electrolyte sheet and method for producing the same
CN102160232B (en) * 2008-10-03 2014-07-02 丰田自动车株式会社 Process for producing whole solid type lithium battery
JP5303428B2 (en) * 2009-10-16 2013-10-02 出光興産株式会社 Lithium sulfide and method for producing the same
JP5629198B2 (en) * 2009-12-04 2014-11-19 出光興産株式会社 Alkali metal sulfide and method for producing the same
JP2013075816A (en) * 2011-09-13 2013-04-25 Nippon Chem Ind Co Ltd Lithium sulfide, method for producing the lithium sulfide, and method for producing inorganic solid electrolyte
JP2013103851A (en) * 2011-11-11 2013-05-30 Nippon Chem Ind Co Ltd Lithium iodide anhydrate, method for producing lithium iodide anhydrate, solid electrolyte and lithium ion battery
WO2015075925A1 (en) * 2013-11-22 2015-05-28 出光興産株式会社 Method for producing modified metal sulfide
JP6281841B2 (en) * 2014-01-20 2018-02-21 東レ・ファインケミカル株式会社 Method for producing lithium sulfide
JP6508672B2 (en) * 2015-02-16 2019-05-08 古河機械金属株式会社 Method for producing lithium sulfide particles and sulfide-based inorganic solid electrolyte material
JP2016207354A (en) * 2015-04-17 2016-12-08 出光興産株式会社 Production method of sulfide solid electrolyte
JP7154743B2 (en) * 2017-09-20 2022-10-18 出光興産株式会社 Solid electrolyte manufacturing method and manufacturing equipment
JP6836721B2 (en) * 2017-11-13 2021-03-03 トヨタ自動車株式会社 Manufacturing method of trilithium phosphate for non-aqueous secondary batteries
KR102224126B1 (en) * 2018-04-05 2021-03-08 주식회사 세븐킹에너지 Synthesis Process of Ceramic Solid Electrolyte for Lithium Secondary Batteries
JP7235463B2 (en) * 2018-09-26 2023-03-08 古河機械金属株式会社 Sulfide-based inorganic solid electrolyte materials, solid electrolytes, solid electrolyte membranes, and lithium-ion batteries
WO2020105604A1 (en) * 2018-11-19 2020-05-28 三井金属鉱業株式会社 Solid electrolyte, electrode mix, solid electrolyte layer, and all-solid-state battery
JP6676204B2 (en) * 2019-03-27 2020-04-08 古河機械金属株式会社 Method for producing lithium sulfide particles, sulfide-based inorganic solid electrolyte material, and method for producing sulfide-based positive electrode active material
CN110526219A (en) * 2019-08-26 2019-12-03 浙江工业大学 A kind of synthetic method vulcanizing powder for lithium
KR102495178B1 (en) * 2022-05-25 2023-02-06 주식회사 정석케미칼 Manufacturing method of high-purity lithium sulfide through wet and dry processes
KR20240094751A (en) * 2022-12-16 2024-06-25 포스코홀딩스 주식회사 Precusor for producing lithium sulfide and lithium sulfide powder
KR102562588B1 (en) * 2023-01-19 2023-08-02 주식회사 정석케미칼 Manufacturing method of high purity lithium sulfide using mixed organic solvent
KR102562589B1 (en) * 2023-01-20 2023-08-02 주식회사 정석케미칼 Manufacturing method of high-purity lithium sulfide through wet and dry circulation processes
WO2024181099A1 (en) * 2023-03-01 2024-09-06 Agc株式会社 Method for producing lithium hydroxide, method for producing lithium-containing sulfide solid electrolyte raw material, and method for producing sulfide solid electrolyte
CN118307056B (en) * 2024-06-07 2024-09-13 赣州诺威科技有限公司 Modified lithium-rich manganese-based material, preparation method thereof and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375216A (en) * 1989-08-11 1991-03-29 Kanto Chem Co Inc Purification of alkali hydroxide
JPH07330312A (en) * 1994-06-03 1995-12-19 Idemitsu Petrochem Co Ltd Production of lithium sulfide
JPH09245828A (en) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte and totally solid lithium secondary battery
JPH09278423A (en) * 1996-04-16 1997-10-28 Furukawa Co Ltd Production of lithium sulfide
JPH10130005A (en) * 1996-10-28 1998-05-19 Idemitsu Petrochem Co Ltd Production of lithium sulfide and production of polyarylene sulfide
JP2002109955A (en) * 2000-10-02 2002-04-12 Osaka Prefecture Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163741B2 (en) * 1992-05-08 2001-05-08 松下電器産業株式会社 Amorphous lithium ion conductive solid electrolyte and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375216A (en) * 1989-08-11 1991-03-29 Kanto Chem Co Inc Purification of alkali hydroxide
JPH07330312A (en) * 1994-06-03 1995-12-19 Idemitsu Petrochem Co Ltd Production of lithium sulfide
JPH09245828A (en) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte and totally solid lithium secondary battery
JPH09278423A (en) * 1996-04-16 1997-10-28 Furukawa Co Ltd Production of lithium sulfide
JPH10130005A (en) * 1996-10-28 1998-05-19 Idemitsu Petrochem Co Ltd Production of lithium sulfide and production of polyarylene sulfide
JP2002109955A (en) * 2000-10-02 2002-04-12 Osaka Prefecture Sulfide crystallized glass, solid electrolyte, and fully solid secondary cell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012020574; '「安定性を向上させた全固体リチウム電池用新規無機電解質の開発」成果報告書' 平成13年度成果報告書 , 200203, 新エネルギー・産業技術総合開発機構
JPN7011002003; COMPREHENSIVE INORGANIC CHEMISTRY Vol.1, 1973, p357 *
JPN7011002004; Zintl,Harder and Dauth,Ztschr.Elektrochem Bz.40,Nr.8, 1934, p538 *

Also Published As

Publication number Publication date
JP2013189370A (en) 2013-09-26
JP5690365B2 (en) 2015-03-25
WO2004106232A1 (en) 2004-12-09
JPWO2004106232A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP5690365B2 (en) Method for producing lithium sulfide powder
KR101181148B1 (en) Lithium ion conducting sulfide based crystallized glass and method for production thereof
CN111466051B (en) Battery recycling by treating leach liquor with metallic nickel
JP5303428B2 (en) Lithium sulfide and method for producing the same
JP4896520B2 (en) Method for purifying lithium sulfide
JP5311169B2 (en) Lithium ion conductive solid electrolyte, method for producing the same, solid electrolyte for lithium secondary battery using the solid electrolyte, and all solid lithium battery using the solid electrolyte for secondary battery
JP4896108B2 (en) Method for producing high purity lithium carbonate
JP7022135B2 (en) Method for Producing Sodium Iron (II) -Hexacyanoferric (II) Salt Material
US20070248888A1 (en) High-Performance All-Solid Lithium Battery
AU2019252587B2 (en) Process for the recovery of lithium and transition metal using heat
JP7420799B2 (en) Battery recycling by electrolysis of leachate to remove copper impurities
JP2005285572A (en) Precursor for lithium-ion secondary battery anode material, its manufacturing method, and manufacturing method of anode material using it
JP5122809B2 (en) Method for producing lithium fluoride
WO2013011423A1 (en) Solid-state electrolytes based on fluorine-doped oxides
JP4833539B2 (en) Lithium sulfide particle powder, method for producing the same, and inorganic solid electrolyte
JP6536742B2 (en) Method of manufacturing silicon material
KR20240040096A (en) How to Recycle Lithium-Ion Battery Materials
RU2790318C2 (en) Method for extraction of lithium and transition metal, using heating
US20240182316A1 (en) Method for producing lithium compound and apparatus for producing lithium compound
WO2024203897A1 (en) Method for manufacturing lithium hydroxide
JP2009215138A (en) Method of purification of metal fluoride
US20240208831A1 (en) Method of preparing anhydrous lithium iodide
TW202428343A (en) Production of hydrogen and lithium hydroxide in basic media
JP2011198772A (en) Precursor for positive electrode material of lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120620

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R150 Certificate of patent or registration of utility model

Ref document number: 5495472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250