JPH0375216A - Purification of alkali hydroxide - Google Patents

Purification of alkali hydroxide

Info

Publication number
JPH0375216A
JPH0375216A JP20698789A JP20698789A JPH0375216A JP H0375216 A JPH0375216 A JP H0375216A JP 20698789 A JP20698789 A JP 20698789A JP 20698789 A JP20698789 A JP 20698789A JP H0375216 A JPH0375216 A JP H0375216A
Authority
JP
Japan
Prior art keywords
solution
ppm
impurities
iron
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20698789A
Other languages
Japanese (ja)
Other versions
JP2994405B2 (en
Inventor
Toshio Fukuda
寿夫 福田
Shigetaka Hoshino
星野 重孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Chemical Co Inc
Original Assignee
Kanto Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Chemical Co Inc filed Critical Kanto Chemical Co Inc
Priority to JP1206987A priority Critical patent/JP2994405B2/en
Publication of JPH0375216A publication Critical patent/JPH0375216A/en
Application granted granted Critical
Publication of JP2994405B2 publication Critical patent/JP2994405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the purity of an alkali metal hydroxide by adding an aqueous H2O2 solution and a rare earth element inorganic acid salt to the alkali metal hydroxide especially containing alkaline earth metals and iron as impurities, cooling the mixture and subsequently filtering off the produced co- precipitates. CONSTITUTION:1l of the 0.5-5N aqueous solution of an alkali metal hydroxide such as NaOH containing alkaline earth metals such as Ba, Ca, Mg and Sr and iron as impurities is dropwisely mixed with 0.1-5ml of an aqueous H2O2 solution having a concentration of 30% and further mixed with a concentrated solution containing 1-1000mg/ml of the inorganic acid salt such as chloride or nitrate of the rare earth element such as Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Tb or Lu, followed by allowing the solution to stand for a specified time at -10 to 10 deg.C to produce the amorphous hydroxide of the rare earth metal element and further co-precipitate the amorphous hydroxide while adsorbing the impurities. The aqueous solution is filtered to remove the impurities, thereby providing a highly pure alkali metal hydroxide aqueous solution.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は水酸化アルカリの精製法に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for purifying alkali hydroxide.

さらに詳しく言えば本発明は、水酸化アルカリ水溶液に
過酸化水素水と希土類元素の無機酸塩を添加することに
より共沈教法により、水酸化アルカリ中に含まれる不純
物を除去し高品位の水酸化アルカリを得る方法である。
More specifically, the present invention removes impurities contained in alkali hydroxide using a coprecipitation method by adding hydrogen peroxide and an inorganic acid salt of a rare earth element to an aqueous alkali hydroxide solution. This is a method of obtaining alkali oxide.

更に、本発明は、水酸化アルカリ溶液中に溶解度以下に
て含有される微量のアルカリ土類金属及び鉄の除去に関
するものである。
Furthermore, the present invention relates to the removal of trace amounts of alkaline earth metals and iron contained below their solubility in alkaline hydroxide solutions.

〔背景技術〕[Background technology]

近年、分析機器の開発や進歩により分析感度が向上し、
極めて微量の元素の存在も検出し得るようになってきた
。電子部品、磁性材料、触媒、半導体等の材料分野にお
いては、特に新機能の発現を期待し、これらの材料の高
純度化が盛んに試みられている。それに伴い微量の不純
物の分析も行われている。この様に材料の高純度化に伴
い目的とする元素の存在量が微量と゛なりその検出量が
微小になればなるほど、分析に使用される試薬のブラン
ク量は無視できなくなリ、微量分析においては試薬中の
不純物の除去すなわち精製が重要な技術の一つとなって
いる。
In recent years, analytical sensitivity has improved due to the development and advancement of analytical instruments.
It has become possible to detect the presence of even extremely trace amounts of elements. BACKGROUND ART In the field of materials such as electronic components, magnetic materials, catalysts, and semiconductors, efforts are being made to improve the purity of these materials, especially in the hope that new functions will emerge. Along with this, analysis of trace amounts of impurities is also being conducted. In this way, as the purity of materials increases, the abundance of the target element becomes minute, and the detection amount becomes minute, so the blank amount of reagents used for analysis cannot be ignored, and Removal of impurities in reagents, that is, purification, is one of the important technologies.

分析化学において、水酸化アルカリは、各種材料の溶解
、酸性化した試料の中和、キレート樹脂や溶媒抽出等の
分離濃縮時におけるpn調整やアルカリ溶融など、種々
の目的で使用される基本的な試薬であり、広く用いられ
ているが、ソーダニ業から産出される水酸化アルカリ中
にはバリウム、カルシウム、マグネシウム、ストロンチ
ウム、鉄及びアルミニウム等の金属が多く含むことが知
られている。一方、この水酸化アルカリは、その精製が
難しいため高純度の試薬が必要であるにもかかわらず、
未だ、その要望を満たし得る試薬は、存在していない。
In analytical chemistry, alkali hydroxide is a basic compound used for various purposes, such as dissolving various materials, neutralizing acidified samples, adjusting pn and alkali melting during separation and concentration of chelate resins and solvent extraction. Although it is a widely used reagent, it is known that the alkali hydroxide produced from the Sodani industry contains a large amount of metals such as barium, calcium, magnesium, strontium, iron, and aluminum. On the other hand, this alkali hydroxide is difficult to purify and requires highly pure reagents.
As yet, there is no reagent that can meet this demand.

一方、半導体工業においても、水酸化アルカリはウェッ
トエツチングプロセスに使用される。
On the other hand, in the semiconductor industry, alkali hydroxide is also used in wet etching processes.

この場合においても品質向上は重要な課題であり、当然
のことながら微細化の進展と共に、ますます厳しい品質
水準が要求されている。すなわち、試薬中の微粒子、金
属不純物及び微生物は、製品の歩留まりやデバイス特性
の信頼性の低下を招くと言われ、金属不純物を含まない
高純度のものが要求されている。
In this case as well, quality improvement is an important issue, and as a matter of course, as miniaturization progresses, increasingly strict quality standards are required. That is, it is said that fine particles, metal impurities, and microorganisms in reagents cause a decrease in product yield and reliability of device characteristics, and high purity reagents that do not contain metal impurities are required.

従来技術として、一般的には、溶液中に微量(μ9以下
)に含まれる不純物を添加剤によって共沈澱を生威させ
、溶液中から微量に含まれる不純物のみを沈澱物として
除去するという共沈澱法が知られているが、この方法に
おいては、溶液中に、この添加剤が必ず残存することと
なる。すなわち、この沈澱剤自体の溶解度から言っても
その除去は不可能といってよい。したがって、沈澱剤自
体に基づく汚染は避けられない。
As a conventional technique, generally, coprecipitation is performed in which a trace amount (μ9 or less) of impurities contained in a solution is caused to co-precipitate using an additive, and only the trace amount of impurities contained in the solution is removed as a precipitate. A method is known, but in this method, the additive always remains in the solution. In other words, it can be said that it is impossible to remove the precipitant from the solubility of the precipitant itself. Therefore, contamination due to the precipitant itself is inevitable.

例えば共沈澱法を用いた苛性ソーダの精製法の1例につ
いて説明すると、軽金属協会規格のアルミニウム中のカ
ルシウム定量法には、その定量法で使用する6M−苛性
ソーダ溶液を精製する方法が示されている。
For example, to explain one example of a method for refining caustic soda using a coprecipitation method, the method for determining calcium in aluminum specified by the Light Metals Association specifies a method for refining the 6M caustic soda solution used in the method. .

そこに記載されているように6M−苛性ソーダ溶液を、
加熱撹拌し、その間に、鉄塩の濃厚溶液を滴下し、水酸
化鉄の沈澱を熟成させる。これを濾紙を用いて濾過して
除去することによってカルシウムを含まない6M−苛性
ソーダ溶液を得ている。しかしながら、この場合、共沈
澱剤として添加した鉄塩が残存することとなる。苛性ア
ルカリ溶液中にppmレベルで含まれるニッケルの除去
法としては特開昭56−40086記載の方法がある。
6M-caustic soda solution as described therein,
While heating and stirring, a concentrated solution of iron salt is added dropwise to ripen the iron hydroxide precipitate. By filtering and removing this using filter paper, a calcium-free 6M caustic soda solution is obtained. However, in this case, the iron salt added as a coprecipitant remains. As a method for removing nickel contained at ppm level in a caustic alkaline solution, there is a method described in JP-A-56-40086.

この方法は、苛性アルカリ溶液中に次亜塩素酸を添加す
ることによって、ニッケルをより高次の化合物とし、溶
解度を小さくすることにより除去精製する方法である。
In this method, hypochlorous acid is added to a caustic alkaline solution to convert nickel into a higher-order compound, thereby reducing its solubility and purifying it.

この方法においても大量に使用する次亜塩素酸による汚
染が残る。このように従来知られている方法では、添加
した共沈澱剤や酸化剤がアルカリ中に残存する結果、高
純度の苛性アルカリを得る精製法として適さないことが
判明している。
Even in this method, contamination due to the large amount of hypochlorous acid used remains. As described above, it has been found that in the conventionally known methods, the added coprecipitant and oxidizing agent remain in the alkali, and as a result, they are not suitable as a purification method for obtaining highly pure caustic alkali.

〔発明の開示〕[Disclosure of the invention]

本発明者らは、希土類元素の無機酸塩が、アルカリ性下
において少量の過酸化水素水を添加することによって希
土類自体の溶解度を減少させると同時に、それに伴って
アルカリ中の不純物をその希土類の水酸化物に表面吸着
し除去されることを見出した。本発明は、かかる知見に
基づいてなされたものである。すなわち、本発明は、ア
ルカリ土類金属及び鉄を不純物として含有する水酸化ア
ルカリ水溶液に、過酸化水素水と希土類元素の無機酸塩
を添加撹拌し、冷却下に、共沈澱物を生成させ、この共
沈澱物を濾過により除去することを特徴とする水酸化ア
ルカリの精製法を提供するものである。
The present inventors have discovered that by adding a small amount of hydrogen peroxide to an inorganic acid salt of a rare earth element under alkaline conditions, the solubility of the rare earth element itself is reduced, and at the same time, impurities in the alkali are removed from the rare earth water. It has been found that it is adsorbed on the surface of oxides and removed. The present invention has been made based on this knowledge. That is, the present invention involves adding and stirring aqueous hydrogen peroxide and an inorganic acid salt of a rare earth element to an aqueous alkali hydroxide solution containing an alkaline earth metal and iron as impurities, and producing a coprecipitate while cooling. The present invention provides a method for purifying alkali hydroxide, which is characterized by removing this coprecipitate by filtration.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

水酸化アルカリ水溶液は、通常は、0.5〜5M水溶液
として提供されるが、これを冷却し、これに濃度30%
の過酸化水素水を滴下撹拌する。
Alkaline hydroxide aqueous solution is usually provided as a 0.5 to 5M aqueous solution, but this is cooled and added to a concentration of 30%.
Add hydrogen peroxide solution dropwise and stir.

この際鉄等の不純物は、より高次の化合物になり溶解度
自体が減少する。この水酸化アルカリ水溶液中に、更に
希土類元素の無機酸塩の水溶液を撹拌しながら滴下する
。一定時間冷却して放置すると、希土類の酸化物、水酸
化物もしくは水和物等の不定形沈澱を生威し、これに先
の不純物が表面に吸着し共沈澱する。これをフイルター
を用いて濾過することによって水酸化アルカリ溶液中に
ppmレベル又はそれ以下で存在しているバリウム、カ
ルシウム、マグネシウム、ストロンチウム及び鉄等が除
去され、高純度の水酸化アルカリ溶液を得ることができ
る。すなわち、本発明の方法においては、水酸化アルカ
リ水溶液に対し、少量の過酸化水素水を添加し、冷却撹
拌し、更に希土類元素の無機酸塩例えば、希土類元素の
塩化物、臭化物、ぶつ化物、りん酸塩、硫酸塩又は硝酸
塩等の濃厚溶液(通常、1〜1000mg/ mQ”)
を滴下、撹拌、冷却、放置スることにより、希土類元素
の不定形水酸化物が生成し沈澱するが、この際、水酸化
アルカリ水溶液中に微量台まれるアルカリ土類金属や鉄
、コバルト、カドミウム、ニッケル及びクロム等の重金
属が、この希土類の水酸化物に表面吸着され沈澱するも
のであり、この水酸化アルカリ溶液をフィルターを用い
て濾過することによって高純度な水酸化アルカリ溶液が
得られるものである。
At this time, impurities such as iron become higher-order compounds and the solubility itself decreases. An aqueous solution of an inorganic acid salt of a rare earth element is further added dropwise to this aqueous alkali hydroxide solution while stirring. When cooled and left for a certain period of time, amorphous precipitates such as rare earth oxides, hydroxides, or hydrates are formed, and the impurities are adsorbed onto the surface and co-precipitated. By filtering this using a filter, barium, calcium, magnesium, strontium, iron, etc. present in the alkaline hydroxide solution at ppm level or lower are removed, and a highly purified alkaline hydroxide solution is obtained. I can do it. That is, in the method of the present invention, a small amount of hydrogen peroxide is added to an aqueous alkali hydroxide solution, the mixture is cooled and stirred, and then inorganic acid salts of rare earth elements such as chlorides, bromides, butides, etc. of rare earth elements are added. Concentrated solutions such as phosphates, sulfates or nitrates (usually 1-1000mg/mQ”)
By dropping, stirring, cooling, and leaving to stand, amorphous hydroxides of rare earth elements are generated and precipitated. At this time, alkaline earth metals, iron, cobalt, etc. Heavy metals such as cadmium, nickel, and chromium are adsorbed on the surface of this rare earth hydroxide and precipitate. By filtering this alkaline hydroxide solution using a filter, a highly pure alkaline hydroxide solution can be obtained. It is something.

本発明者らは本発明に係わる水酸化アルカリの精製法に
関し、水酸化アルカリの濃度、添加する過酸化水素水の
量と希土類元素の種類及び処理温度について種々検討し
たところ、以下の如き知見を得た。
The present inventors conducted various studies regarding the alkali hydroxide purification method according to the present invention, including the concentration of the alkali hydroxide, the amount of hydrogen peroxide added, the type of rare earth element, and the treatment temperature, and found the following findings. Obtained.

■ 水酸化アルカリ溶液の精製に使用出来る最大濃度は
、水酸化ナトリウムあるいは水酸化カリウムの場合は7
Mであり、好ましくは6M以下である。水酸化リチウム
の場合は、最大濃度は3Mである。それ以上の濃度では
添加する沈澱剤が水酸化アルカリ中に混入する。
■ The maximum concentration that can be used to purify an alkaline hydroxide solution is 7 for sodium hydroxide or potassium hydroxide.
M, preferably 6M or less. For lithium hydroxide, the maximum concentration is 3M. If the concentration is higher than that, the added precipitant will be mixed into the alkali hydroxide.

■ 水酸化アルカリ溶液10.に添加する30%過酸化
水素水の添加量は0.1〜5mO,が好ましいが、特に
好ましくは0.5〜2mQである。0.1mQ以下では
不純物の除去率が低下する。5m(2以上ではより以上
の除去効果が得られない。
■ Alkaline hydroxide solution 10. The amount of 30% hydrogen peroxide added is preferably 0.1 to 5 mO, particularly preferably 0.5 to 2 mO. Below 0.1 mQ, the impurity removal rate decreases. 5 m (at 2 or more, no further removal effect can be obtained).

■ 使用する希土類元素としてはスカンジウム、イツト
リウム、ランタン、セリウム、プラセオジウム、ネオジ
ウム、プロメシウム、サマリウム、ユーロピウム、ガド
リニウム、テルビウム、ジスプロシウム、ホルミウム、
エルビウム、ツリウム、イッテルビウム又はルテチウム
があげられその無機酸塩が用いられる。特に、効果的な
ものはイツトリウム、ネオジウム、ユーロピウム又はツ
リウムの無機酸塩である。
■ Rare earth elements used include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium,
Erbium, thulium, ytterbium or lutetium can be mentioned, and their inorganic acid salts can be used. Particularly effective are inorganic acid salts of yttrium, neodymium, europium or thulium.

■ 処理温度はlO°C〜−10℃の範囲が好ましいが
、特に好ましくは5°C〜−5℃である。10°C以上
では不純物の溶解が増し、除去効果が減少する。。−1
0’c!以下の温度は、より以上の除去効果がなく、経
済的でない。
(2) The treatment temperature is preferably in the range of 10°C to -10°C, particularly preferably 5°C to -5°C. At temperatures above 10°C, the dissolution of impurities increases and the removal effect decreases. . -1
0'c! Temperatures below have no further removal effect and are not economical.

以下に本発明の実施例を掲げ、本発明を具体的により詳
細に説明する。
EXAMPLES The present invention will be specifically explained in more detail with reference to examples of the present invention.

実施例 l 市販の特級水酸化ナトリウム1209を水に溶かし更に
水を加えlQとし、3M−水酸化ナトリウム溶液を調製
する。この溶液に市販の金属標準溶液(11119/ 
mlを用いて、バリウム、カルシウム、マグネシウムお
よびストロンチウムの各溶液各1lIQ添加した。得ら
れた溶液を高周波誘導結合プラズマ発光分析法によって
バリウム、カルシウム、マグネシウム及びストロンチウ
ムを定量したところ、バリウム、カルシウム、マグネシ
ウム及びストロンチウムを約1 ppm含有するもので
あった。この溶液に対し温度0℃において、濃度30%
の過酸化水素水を1.0mQ添加し撹拌する。更に硝酸
イツトリウム溶液(10mgY/mQ)を40mQ添加
1時間撹拌する。0℃にて1日間放置すると白色不定形
の沈澱を生成する。
Example 1 A 3M sodium hydroxide solution is prepared by dissolving commercially available special grade sodium hydroxide 1209 in water and adding water to make 1Q. Add this solution to a commercially available metal standard solution (11119/
ml of each of barium, calcium, magnesium and strontium solutions were added. Barium, calcium, magnesium, and strontium were quantified in the resulting solution by high-frequency inductively coupled plasma emission spectrometry, and the solution was found to contain about 1 ppm of barium, calcium, magnesium, and strontium. For this solution at a temperature of 0°C, the concentration is 30%.
Add 1.0 mQ of hydrogen peroxide solution and stir. Furthermore, 40 mQ of yttrium nitrate solution (10 mgY/mQ) was added and stirred for 1 hour. When left at 0°C for 1 day, a white amorphous precipitate is formed.

その沈澱を、0.2μmのPTFEフィルターを使用し
、減圧濾過する。この3M−水酸化ナトリウム溶液中の
バリウム、カルシウム、マグネシウム、ストロンチウム
及びイツトリウムを高周波誘導結合プラズマ発光分析法
によって定量した。このときのこれらのアルカリ土類金
属とイツトリウムの除去率について以下に示す。
The precipitate is filtered under reduced pressure using a 0.2 μm PTFE filter. Barium, calcium, magnesium, strontium, and yttrium in this 3M sodium hydroxide solution were determined by high-frequency inductively coupled plasma emission spectrometry. The removal rates of these alkaline earth metals and yttrium at this time are shown below.

過酸化水素水1.0mQで添加処理すると、バリウムは
0.O3ppm、カルシウムは0.01ppm、 マグ
ネシウムは0− O5ppm、ストロンチウムは0.O
lppm及びイツトリウムは0.006ppmとなり、
それぞれの除去率はバリウム97%、カルシウム99%
、マグネシウム95%、ストロンチウム99%及びイツ
トリウムは99.998%と、除去効果が良好であるこ
とが認められた。
When added with 1.0 mQ of hydrogen peroxide solution, barium becomes 0. O3ppm, calcium 0.01ppm, magnesium 0-05ppm, strontium 0. O
lppm and yttrium are 0.006ppm,
The respective removal rates are 97% for barium and 99% for calcium.
, 95% of magnesium, 99% of strontium, and 99.998% of yttrium, indicating a good removal effect.

実施例 2 市販の特級、水酸化ナトリウム120gを水に溶かし、
更に水を加えてlQとする。3M−水酸化ナトリウム溶
液を調製する。更に市販の鉄標準溶液(l mgFe/
 mQ)を0.1mQ添加し、高周波誘導結合プラズマ
発光分析法によって鉄を定量し、鉄を0.132ppm
含む3M−水酸化ナトリウム溶液lQを調製する。この
溶液に対し温度O′cにおいて、濃度30%の過酸化水
素水2mQを添加撹拌する。更に硝酸イツトリウム溶液
(10mgY/ mQ)を40mQ添加1時間撹拌する
。0°Cにて3日間放置すると白色不定形の沈澱を生成
する。その沈澱を0.2μmのPTFEフィルターを使
用し減圧濾過する。この3M−水酸化ナトリウム溶液を
高周波誘導結合プラズマ発光分析法にて定量した。この
ときの鉄とイツトリウムの除去率について以下に示す。
Example 2 120g of commercially available special grade sodium hydroxide was dissolved in water,
Further water is added to make 1Q. Prepare a 3M sodium hydroxide solution. Furthermore, a commercially available iron standard solution (l mgFe/
mQ) was added at 0.1 mQ, iron was quantified by high frequency inductively coupled plasma emission spectrometry, and iron was 0.132 ppm.
Prepare a 3M sodium hydroxide solution IQ containing: To this solution, at a temperature of O'c, 2 mQ of hydrogen peroxide solution with a concentration of 30% is added and stirred. Further, 40 mQ of yttrium nitrate solution (10 mgY/mQ) was added and stirred for 1 hour. When left at 0°C for 3 days, a white amorphous precipitate is formed. The precipitate is filtered under reduced pressure using a 0.2 μm PTFE filter. This 3M sodium hydroxide solution was quantified by high frequency inductively coupled plasma emission spectrometry. The removal rates of iron and yttrium at this time are shown below.

鉄濃度0132ppmを処理すると鉄濃度は0.006
ppmとなり除去率は93%である。またイツトリウム
は0.002ppmとなり除去・率は99.999%で
ある。
When iron concentration is 0.132 ppm, iron concentration becomes 0.006.
ppm, and the removal rate is 93%. Moreover, yttrium was 0.002 ppm, and the removal rate was 99.999%.

以上に見られるように0.132ppmの鉄は93%の
除去率を示し、除去効果が良好であることが認められた
。また、添加したイツトリウムもほぼ100%近く除去
することができる。
As seen above, iron at 0.132 ppm showed a removal rate of 93%, and it was recognized that the removal effect was good. In addition, almost 100% of the added yttrium can be removed.

実施例 3 市販の特級水酸化ナトリウム120gを水に溶かし、更
に水を加えてlQとし、3M−水酸化ナトリウム溶液を
調製する。更にl mgFe/ mQの標準溶液をQ、
1m12添加し、高周波誘導結合プラズマ発光分析法に
よって鉄を定量し、鉄を0.130ppm含む3M−水
酸化ナトリウム溶液112を調製する。
Example 3 A 3M sodium hydroxide solution is prepared by dissolving 120 g of commercially available special grade sodium hydroxide in water and adding water to make 1Q. Furthermore, add a standard solution of 1 mgFe/mQ to Q,
A 3M sodium hydroxide solution 112 containing 0.130 ppm of iron is prepared by adding 1 ml of iron and quantifying iron by high-frequency inductively coupled plasma emission spectrometry.

この溶液に対し温度O′Cにおいて、濃度30%の過酸
化水素水2mQを添加撹拌する。更に塩化ネオジウムの
溶液(10mgNd/ mQ>を40m12添加1時間
撹拌する。0°Cにてl昼夜放置すると不定形の沈澱を
生成する。その沈澱を0.2μmのPTFEフィルター
を使用し減圧濾過する。この3M−水酸化ナトリウム水
溶液中の鉄を高周波誘導結合プラズマ発光分析法によっ
て定量した結果、鉄濃度は0.007ppmであり除去
率は95%であることが認められた。
To this solution, at a temperature of O'C, 2 mQ of hydrogen peroxide solution with a concentration of 30% is added and stirred. Further, add 40ml of neodymium chloride solution (10mgNd/mQ>) and stir for 1 hour. If left at 0°C for 1 day and night, an amorphous precipitate will be formed. The precipitate is filtered under reduced pressure using a 0.2μm PTFE filter. As a result of quantifying iron in this 3M sodium hydroxide aqueous solution by high frequency inductively coupled plasma emission spectrometry, it was found that the iron concentration was 0.007 ppm and the removal rate was 95%.

実施例 4 市販の特級水酸化ナトリウム120gを水に溶かし、更
に水を加えてlQとし、3M−水酸化ナトリウム溶液を
調製する。次にl mgFe/ m(lの標準溶液を0
.1mff添加し、高周波誘導結合プラズマ発光分析法
によって鉄を定量し、鉄を0.150ppm含む3M−
水酸化ナトリウム溶液1βを調製する。
Example 4 A 3M sodium hydroxide solution is prepared by dissolving 120 g of commercially available special grade sodium hydroxide in water and adding water to make 1Q. Then l mgFe/m (l of standard solution
.. 1 mff was added, and iron was determined by high-frequency inductively coupled plasma emission spectrometry.
Prepare sodium hydroxide solution 1β.

この溶液を5℃において、濃度30%過酸化水素水2+
1112を添加撹拌する。更に、硝酸イツトリウム溶液
(10+l19Y/ m(2)を40mQ添加1時間撹
拌する。
Add this solution to 30% hydrogen peroxide solution at 5°C.
Add 1112 and stir. Furthermore, 40 mQ of yttrium nitrate solution (10+l19Y/m(2)) was added and stirred for 1 hour.

5℃にて1昼夜放置すると不定形沈澱を生成する。その
沈澱を0.2μmのPTFE フィルターを使用し減圧
濾過する。この3M−水酸化ナトリウム溶液中の鉄とイ
ツトリウムを高周波誘導結合プラズマ発光分析法によっ
て定量した結果、鉄濃度は0.026ppmとなり除去
率は83%であることが認められた。
When left at 5°C for one day, an amorphous precipitate is formed. The precipitate is filtered under reduced pressure using a 0.2 μm PTFE filter. As a result of quantifying iron and yttrium in this 3M sodium hydroxide solution by high frequency inductively coupled plasma emission spectrometry, it was found that the iron concentration was 0.026 ppm and the removal rate was 83%.

実施例 5 市販の特級水酸化ナトリウム120gを水に溶かし、更
に水を加えて1aとし、3M−水酸化ナトリウム溶液を
調製する。更にlrRgcd/++lD、、l mgc
o/ mQ、  l mgNi/ m(l及びl mg
cr/ mQの混合標準溶液を1+IIQ添加し、高周
波誘導結合プラズマ発光分析法によってカドミウム、コ
バルト、ニッケル及びクロムを定量し、カドミウム、コ
バルト、ニッケル及びクロムを約1 ppm含む3M−
水酸化ナトリウム溶液を調製する。この溶液に対し温度
0℃において、濃度30%の過酸化水素水を2taQ添
加撹拌する。更に硝酸イツトリウム溶液(1011+9
Y/ m(1)を40TRQ添加撹拌する。o ′cに
てl昼夜放置すると不定形の沈澱を生成する。
Example 5 A 3M sodium hydroxide solution is prepared by dissolving 120 g of commercially available special grade sodium hydroxide in water and adding water to make 1a. Furthermore, lrRgcd/++LD,, l mgc
o/mQ, l mgNi/m (l and l mg
1+IIQ mixed standard solution of cr/mQ was added, and cadmium, cobalt, nickel, and chromium were determined by high-frequency inductively coupled plasma emission spectrometry.
Prepare sodium hydroxide solution. To this solution, at a temperature of 0° C., 2 taQ of hydrogen peroxide solution with a concentration of 30% is added and stirred. Furthermore, yttrium nitrate solution (1011+9
Add 40TRQ of Y/m(1) and stir. When left for one day and night at o'c, an amorphous precipitate is formed.

その沈澱を0.2μmのPTFEフィルターを使用し減
圧濾過する。この3M−水酸化ナトリウム溶液中のカド
ミウム、コバルト、ニッケル及びクロムを高周波誘導結
合プラズマ発光分析法によって定量した。このときの除
去率を以下に示す。
The precipitate is filtered under reduced pressure using a 0.2 μm PTFE filter. Cadmium, cobalt, nickel, and chromium in this 3M sodium hydroxide solution were determined by high-frequency inductively coupled plasma emission spectrometry. The removal rate at this time is shown below.

処理するとカドミウム0.014ppms コノくルト
00−013pp、 =ツケル0.015ppm及びク
ロム0.3ppmとなり、除去率はそれぞれ、カドミウ
ム86%、コバルト87%、ニッケル95%及びクロム
70%である。
The treatment results in 0.014 ppm of cadmium, 0.015 ppm of cadmium, 0.3 ppm of chromium, and a removal rate of 86% cadmium, 87% cobalt, 95% nickel, and 70% chromium, respectively.

以上の結果より、鉄、カドミウム、コバルト、ニッケル
及びクロムの除去効果が良好なことが認められた。
From the above results, it was confirmed that the removal effect of iron, cadmium, cobalt, nickel and chromium was good.

実施例 6 市販の特級水酸化カリウム3609を水に溶かし、更に
水を加えて112とし、6M−水酸化カリウム溶液を調
製する。更にl mgCa/ mQ、  l mgMg
/ mQ。
Example 6 Commercially available special grade potassium hydroxide 3609 is dissolved in water and further water is added to make 112 to prepare a 6M potassium hydroxide solution. Furthermore l mgCa/mQ, l mgMg
/mQ.

l mgSr/ mQの混合標準液をl+++Q添加し
、高周波誘導結合プラズマ発光分析法によってカルシウ
ム、マグネシウム、ストロンチウムを定量し、カルシウ
ム1.42ppm、マグネシウム1 、O3ppm及び
ストロンチウム1.30ppm含む6M−水酸化カリウ
ム溶液lQを調製する。この水酸化カリウム溶液に対し
温度0°Cにおいて、濃度30%の過酸化水素水をl 
mQを添加撹拌する。更に硝酸イツトリウム溶液(61
9Y/ m12)を20mQ添加1時間撹拌する。0°
Cにて1日間放置すると白色不定形の沈澱を生皮する。
A mixed standard solution of 1 mgSr/mQ was added to 1+++Q, and calcium, magnesium, and strontium were determined by high-frequency inductively coupled plasma emission spectrometry. 6M potassium hydroxide containing 1.42 ppm of calcium, 1 ppm of magnesium, 3 ppm of O, and 1.30 ppm of strontium was added. Prepare solution IQ. Add 1 liter of hydrogen peroxide solution with a concentration of 30% to this potassium hydroxide solution at a temperature of 0°C.
Add mQ and stir. Furthermore, yttrium nitrate solution (61
Add 20 mQ of 9Y/m12) and stir for 1 hour. 0°
When left for one day at C, a white amorphous precipitate is formed.

その沈澱を0.2μmのPTFEフィルターを使用し減
圧濾過する。この6M−水酸化カリウム溶液を高周波誘
導結合プラズマ発光分析法にて定量した。このときのカ
ルシウム、マグネシウム、ストロンチウム及びイツトリ
ウムの除去率について以下に示す。
The precipitate is filtered under reduced pressure using a 0.2 μm PTFE filter. This 6M potassium hydroxide solution was quantified by high frequency inductively coupled plasma emission spectrometry. The removal rates of calcium, magnesium, strontium and yttrium at this time are shown below.

6M−水酸化カリウム溶液を処理するとカルシウム濃度
は0.048ppmとなり除去率は97%である。
When treated with a 6M potassium hydroxide solution, the calcium concentration was 0.048 ppm and the removal rate was 97%.

またマグネシウム濃度は0.036ppmとなり除去率
は97%である。ストロンチウム濃度は0.116pp
inとなり除去率は91%である。イツトリウム濃度は
0.004ppmで除去率は99.99%となり除去効
果が良好であることが認められた。
Moreover, the magnesium concentration was 0.036 ppm, and the removal rate was 97%. Strontium concentration is 0.116pp
in, and the removal rate is 91%. The yttrium concentration was 0.004 ppm and the removal rate was 99.99%, indicating that the removal effect was good.

実施例 7 試薬1級の水酸化カリウム360gを水に溶かし更に水
を加えて1Qとし、6M−水酸化カリウム溶液を調製す
る。この溶液のカルシウム、マグネシウム及びストロン
チウムを高周波誘導結合プラズマ発光分析法によって定
量する。この6M−水酸化カリウム溶液に対し、温度0
℃において、濃度30%の過酸化水素水をl mQを添
加撹拌する。更に硝酸イツトリウム溶液(6myY/ 
1ff)を20mQ添加1時間撹拌する。0℃にて1日
間放置すると白色不定形の沈澱を生成する。その沈澱を
0.2μmのPTFEフィルターを使用し減圧濾過する
。この6M−水酸化カリウム溶液を高周波誘導結合プラ
ズマ発光分析法にて定量した。このときのカルシウム、
マグネシウム、ストロンチウム及びイツトリウムの除去
率について以下に示す。
Example 7 A 6M potassium hydroxide solution is prepared by dissolving 360 g of potassium hydroxide, a first class reagent, in water and adding water to make 1Q. Calcium, magnesium, and strontium in this solution are determined by high-frequency inductively coupled plasma emission spectrometry. For this 6M potassium hydroxide solution, the temperature is 0.
℃, add 1 mQ of hydrogen peroxide solution with a concentration of 30% and stir. Furthermore, yttrium nitrate solution (6myY/
Add 20 mQ of 1ff) and stir for 1 hour. When left at 0°C for 1 day, a white amorphous precipitate is formed. The precipitate is filtered under reduced pressure using a 0.2 μm PTFE filter. This 6M potassium hydroxide solution was quantified by high frequency inductively coupled plasma emission spectrometry. Calcium at this time,
The removal rates of magnesium, strontium and yttrium are shown below.

カルシウム濃度0.540ppmを処理すると温度は0
.001ppmとなり除去率は99%である。またマグ
ネシウムは0.O19ppmが0.005ppmとなり
除去率は74%である。さらにストロンチウムは0.0
15ppmが0.001ppmとなり除去率は93%で
ある。イツトリウムは0.001ppmとなり除去率は
99.998%である。0.1〜0.01ppmレベル
で存在したこれらアルカリ土類元素がO,OO1ppm
レベル;即ちI)pbレベルまで精製される。
When calcium concentration is 0.540 ppm, the temperature is 0.
.. 001 ppm, and the removal rate is 99%. Also, magnesium is 0. O19ppm is 0.005ppm, and the removal rate is 74%. Furthermore, strontium is 0.0
15 ppm becomes 0.001 ppm, and the removal rate is 93%. Yttrium was 0.001 ppm, and the removal rate was 99.998%. These alkaline earth elements that were present at a level of 0.1 to 0.01 ppm were
i.e. I) purified to pb level.

実施例 8 市販の特級水酸化リチウム−水利物1209を水に溶か
し、更に水を加えて1αとし、約3M−水酸化リチウム
溶液を調製する。この溶液のカルシウム、マグネシウム
及びストロンチウムを高周波誘導結合プラズマ発光分析
法によって定量する。この溶液に対し、温度0℃におい
て、濃度30%の過酸化水素水1mQ添加撹拌する。更
に硝酸イツトリウム溶液(61119Y/ l11(2
)を40mQ添加1時間撹拌する。0℃にてl昼夜放置
すると不定形の沈澱を生皮する。その沈澱を0.2μm
のPTFEフィルターを使用し減圧濾過する。この約3
M−水酸化リチウム溶液中のカルシウム、マグネシウム
及びストロンチウムを高周波誘導結合プラズマ発光分析
法によって定量した結果、カルシウム濃度8.7ppm
から0.47ppmとなり除去率は95%であることが
認められた。マグネシウムは0.058ppmから0.
025ppmとなり除去率は57%であり、また、スト
ロンチウムはO,172ppmカラ0.015ppmと
なり除去率は91%であることが認められた。このよう
に水酸化リチウムにおいても良好な精製効果が認められ
た。
Example 8 Commercially available special grade lithium hydroxide - Aquarium 1209 is dissolved in water, and water is further added to give a concentration of 1α to prepare an approximately 3M lithium hydroxide solution. Calcium, magnesium, and strontium in this solution are determined by high-frequency inductively coupled plasma emission spectrometry. To this solution, at a temperature of 0° C., 1 mQ of hydrogen peroxide solution with a concentration of 30% is added and stirred. Furthermore, yttrium nitrate solution (61119Y/l11(2
) was added and stirred for 1 hour. When left for one day and night at 0°C, an amorphous precipitate forms. The precipitate is 0.2μm
Filter under reduced pressure using a PTFE filter. This about 3
As a result of quantifying calcium, magnesium, and strontium in the M-lithium hydroxide solution by high-frequency inductively coupled plasma emission spectrometry, the calcium concentration was 8.7 ppm.
It was found that the removal rate was 0.47 ppm, and the removal rate was 95%. Magnesium ranges from 0.058 ppm to 0.
0.025 ppm, the removal rate was 57%, and strontium was O, 172 ppm, and 0.015 ppm, the removal rate was 91%. In this way, good purification effects were also observed with lithium hydroxide.

実施例 9 市販の特級水酸化ナトリウム240gを水に溶かし、更
に水を加え1aとし、水酸化ナトリウム溶液を精製する
。この溶液に市販の金属標準溶液(l mgca/ m
Q) 、(l mgMg/ mQ)及び(l mgsr
/mQ)の各1mQを添加し、得られた水酸化ナトリウ
ム着液を高周波誘導結合プラズマ発光分析法によって、
カルシウム、マグネシウム及ヒストロンチウムを定量し
たところ、カルシウム、マグネシウム及びストロンチウ
ムを約lppm含有する水酸化ナトリウム溶液であった
。この溶液に対し、温度06Cにおいて濃度30%の過
酸化水素水1m12を添加撹拌する。更に硝酸イツトリ
ウム溶液(6mgY/ m(2)を20mQ添加1時間
撹拌する。0℃にて1日間放置すると白色不定形の沈澱
を生成する。その沈澱を0.2μmのPTFEフィルタ
ーを使用し減圧濾過する。この水酸化ナトリウム溶液中
のカルシウム、マグネシウム、ストロンチウム及びイツ
トリウムを高周波誘導結合プラズマ発光分析法によって
定量した。このときのこれらのアルカリ土類金属とイツ
トリウムの分析値について、表−1に示す。
Example 9 240 g of commercially available special grade sodium hydroxide is dissolved in water, water is further added to make 1a, and the sodium hydroxide solution is purified. Add a commercially available metal standard solution (l mgca/m
Q) , (l mgMg/mQ) and (l mgsr
/mQ), and the resulting sodium hydroxide solution was analyzed by high-frequency inductively coupled plasma emission spectrometry.
When calcium, magnesium and hisstrontium were quantified, it was found that the sodium hydroxide solution contained about 1 ppm of calcium, magnesium and strontium. To this solution, 1 ml of hydrogen peroxide solution with a concentration of 30% is added and stirred at a temperature of 06C. Further, add 20 mQ of yttrium nitrate solution (6 mg Y/m(2) and stir for 1 hour. If left at 0°C for 1 day, a white amorphous precipitate will be formed. The precipitate is filtered under reduced pressure using a 0.2 μm PTFE filter. Calcium, magnesium, strontium, and yttrium in this sodium hydroxide solution were determined by high frequency inductively coupled plasma emission spectrometry.The analytical values of these alkaline earth metals and yttrium are shown in Table 1.

比較例 市販特級水酸化ナトリウム240gを水に溶かし更に水
を加え10.とし、6M−水酸化ナトリウム溶液を調製
する。この溶液に市販の金属標準溶液、l mgca/
 mQSl mgMg/ mQ及び1mg5r/mQの
各1 mQを添加し、得られた水酸化ナトリウム溶液を
高周波誘導結合プラズマ発光分析法によってカルシウム
、マグネシウム及びストロンチウムを定量したところ、
カルシウム、マグネシウム及びストロンチウムを約1 
ppm含有する水酸化ナトリウム溶液であった。この溶
液に対し、温度0℃において硝酸イツトリウム溶液(6
mgY/+10を20wr(l添加1時間撹拌する。O
′Cにて1日間放置すると白色不一定形の沈澱を生成す
る。
Comparative Example 10. Dissolve 240g of commercially available special grade sodium hydroxide in water and add water. and prepare a 6M sodium hydroxide solution. Add commercially available metal standard solution to this solution, l mgca/
1 mQ each of mQSl mgMg/mQ and 1 mg5r/mQ were added, and the resulting sodium hydroxide solution was analyzed for calcium, magnesium, and strontium by high-frequency inductively coupled plasma emission spectrometry.
Calcium, magnesium and strontium about 1
ppm containing sodium hydroxide solution. To this solution, yttrium nitrate solution (6
Add 20wr (l) of mgY/+10 and stir for 1 hour.O
When left for one day at 'C', a white amorphous precipitate is formed.

その沈澱を0.2μmのPTFEフィルターを使用し減
圧濾過する。この水酸化ナトリウム溶液中のカルシウム
、マグネシウム、ストロンチウム及びイツトリウムを高
周波誘導結合プラズマ発光分析法によって定量した。こ
のときのこれらのアルカリ土類金属とイツトリウムの分
析値と除去率を表−1に示す。
The precipitate is filtered under reduced pressure using a 0.2 μm PTFE filter. Calcium, magnesium, strontium, and yttrium in this sodium hydroxide solution were determined by high-frequency inductively coupled plasma emission spectrometry. Table 1 shows the analysis values and removal rates of these alkaline earth metals and yttrium.

表−1実施例9と比較例の除去効果 実施例9        比較例 カルシウム マグネシウム ストロンチウム イツトリウム 0.022 0.054 0.059 0.005 0.059 0.122 0.070 2.450 は認められないがイツトリウムについては大きな差が現
われる。すなわち、添加したイツトリウム濃度は実施例
では検出されない(検出限界は0.005ppm)が、
比較例では添加濃度、120ppmで、その除去率は9
8%であるが、残存するイツトリウム濃度は2.450
ppmもあり、沈澱剤のイツトリウムが水酸化ナトリウ
ム溶液中に多量に残っていることが認められる。
Table-1 Removal effect of Example 9 and Comparative Example Example 9 Comparative Example Calcium Magnesium Strontium Yttrium 0.022 0.054 0.059 0.005 0.059 0.122 0.070 2.450 Not observed However, a large difference appears for yttrium. That is, the added yttrium concentration was not detected in the example (detection limit was 0.005 ppm),
In the comparative example, the additive concentration was 120 ppm, and the removal rate was 9.
8%, but the remaining yttrium concentration is 2.450
ppm, indicating that a large amount of yttrium, a precipitant, remains in the sodium hydroxide solution.

Claims (1)

【特許請求の範囲】 1)アルカリ土類金属及び鉄を不純物として含有する水
酸化アルカリ水溶液に、過酸化水素水と希土類元素の無
機酸塩を添加撹拌し、冷却下に、共沈澱物を生成させ、
この共沈澱物をろ過により除去することを特徴とする水
酸化アルカリの精製法。 2)前記の希土類元素の無機酸塩が、スカンジウム、イ
ットリウム、ランタン、セリウム、プラセオジウム、ネ
オジウム、プロメシウム、サマリウム、ユーロピウム、
ガドリニウム、テルビウム、デイスプロシウム、ホルミ
ウム、エルビウム、ツリウム、イッテルビウム又はルテ
チウムの塩化物又は硝酸塩である請求項1記載の水酸化
アルカリの精製法。
[Scope of Claims] 1) Aqueous hydrogen peroxide and an inorganic acid salt of a rare earth element are added and stirred to an aqueous alkali hydroxide solution containing an alkaline earth metal and iron as impurities, and a coprecipitate is produced under cooling. let me,
A method for purifying alkali hydroxide characterized by removing this coprecipitate by filtration. 2) The rare earth element inorganic acid salts include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium,
The method for purifying alkali hydroxide according to claim 1, wherein the alkali hydroxide is a chloride or nitrate of gadolinium, terbium, disprosium, holmium, erbium, thulium, ytterbium or lutetium.
JP1206987A 1989-08-11 1989-08-11 Purification method of alkali hydroxide Expired - Fee Related JP2994405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1206987A JP2994405B2 (en) 1989-08-11 1989-08-11 Purification method of alkali hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1206987A JP2994405B2 (en) 1989-08-11 1989-08-11 Purification method of alkali hydroxide

Publications (2)

Publication Number Publication Date
JPH0375216A true JPH0375216A (en) 1991-03-29
JP2994405B2 JP2994405B2 (en) 1999-12-27

Family

ID=16532305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1206987A Expired - Fee Related JP2994405B2 (en) 1989-08-11 1989-08-11 Purification method of alkali hydroxide

Country Status (1)

Country Link
JP (1) JP2994405B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761599A2 (en) * 1995-08-29 1997-03-12 Shin-Etsu Handotai Company Limited Method of purifying alkaline solution and method of etching semiconductor wafers
JP2004359538A (en) * 2003-05-09 2004-12-24 Nippon Chem Ind Co Ltd Lithium phosphate aggregate, its manufacture method, and manufacture method of lithium/iron/phosphorus-based complex oxide
JP2006151725A (en) * 2004-11-26 2006-06-15 Nippon Chem Ind Co Ltd Lithium sulfide particle powder, production method therefor and inorganic solid electrolyte
JPWO2004106232A1 (en) * 2003-05-30 2006-07-20 日本化学工業株式会社 Lithium sulfide powder, production method thereof and inorganic solid electrolyte
JP2011518257A (en) * 2008-04-22 2011-06-23 ケメタル・フット・コーポレイション Method for producing high purity lithium hydroxide and hydrochloric acid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761599A2 (en) * 1995-08-29 1997-03-12 Shin-Etsu Handotai Company Limited Method of purifying alkaline solution and method of etching semiconductor wafers
EP0761599A3 (en) * 1995-08-29 1999-01-07 Shin-Etsu Handotai Company Limited Method of purifying alkaline solution and method of etching semiconductor wafers
US6110839A (en) * 1995-08-29 2000-08-29 Shin-Etsu Handotai Co., Ltd. Method of purifying alkaline solution and method of etching semiconductor wafers
JP2004359538A (en) * 2003-05-09 2004-12-24 Nippon Chem Ind Co Ltd Lithium phosphate aggregate, its manufacture method, and manufacture method of lithium/iron/phosphorus-based complex oxide
JP4620378B2 (en) * 2003-05-09 2011-01-26 日本化学工業株式会社 Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide
JPWO2004106232A1 (en) * 2003-05-30 2006-07-20 日本化学工業株式会社 Lithium sulfide powder, production method thereof and inorganic solid electrolyte
JP2013189370A (en) * 2003-05-30 2013-09-26 Nippon Chem Ind Co Ltd Method for producing lithium sulfide powder
JP5495472B2 (en) * 2003-05-30 2014-05-21 日本化学工業株式会社 Lithium sulfide powder and inorganic solid electrolyte
JP2006151725A (en) * 2004-11-26 2006-06-15 Nippon Chem Ind Co Ltd Lithium sulfide particle powder, production method therefor and inorganic solid electrolyte
JP2011518257A (en) * 2008-04-22 2011-06-23 ケメタル・フット・コーポレイション Method for producing high purity lithium hydroxide and hydrochloric acid

Also Published As

Publication number Publication date
JP2994405B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
EP2946024A2 (en) Extraction of metals from metallic compounds
Zhaobo et al. Selectively recovering scandium from high alkali Bayer red mud without impurities of iron, titanium and gallium
JP6336469B2 (en) Method for producing scandium-containing solid material with high scandium content
JP5179095B2 (en) Method for producing high-purity aluminum hydroxide and high-purity aluminum hydroxide obtained by the method
JPS63502890A (en) Production of ultra-pure silver nitrate
JPH0375216A (en) Purification of alkali hydroxide
Lin et al. Role of phase transformation of barium perborates in the effective removal of boron from aqueous solution via chemical oxo-precipitation
KR20130031018A (en) Method for separating individual ca and mg from solutions containing ca and mg, cac2o4 and mgc2o4 produced thereby, and cao and mgo prepared thereby
TWI468488B (en) Method for recycling phosphor powder from scraped
AU2017408055B2 (en) Method for removing fluoride from a zinc-containing solution or suspension, defluoridated zinc sulfate solution and use thereof, and method for producing zinc and hydrogen fluoride or hydrofluoric acid
WO2012002323A1 (en) Magnesium hydroxide and production method for same
JP2006063370A (en) Method for recovering rare earth
JPH04198017A (en) Purification of scandium oxide
JPS5839894B2 (en) Method for removing phosphorus and silicon from water-soluble smelting slag
JP2004521060A (en) Method for removing sodium sulfate from nickel hydroxide waste stream
JP2011038159A (en) Method for recovering molybdenum from waste water containing strong acid
WO2003072503A1 (en) Method of purifying niobium compound and/or tantalum compound
JP4505951B2 (en) Method for producing high purity ferric chloride aqueous solution
JP4699622B2 (en) Method for separating boron-containing solution from R (rare earth) -Fe-B magnet alloy sludge
JP4505952B2 (en) Manufacturing method of high purity ferric chloride aqueous solution
JPS63183138A (en) Refining method for metallic gallium
KR20150076274A (en) Method for removing magnesium impurities in a manganese compound manufacturing process
JP2004307937A (en) Method of treating aluminum-containing alkali waste liquid, and treatment agent used therefor
JP2002121628A (en) Method for recovering cerium
JP2006342007A (en) Method for preparing purified ferric chloride aqueous solution

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees