JP3343934B2 - Amorphous lithium ion conductive solid electrolyte and its synthesis method - Google Patents
Amorphous lithium ion conductive solid electrolyte and its synthesis methodInfo
- Publication number
- JP3343934B2 JP3343934B2 JP11452292A JP11452292A JP3343934B2 JP 3343934 B2 JP3343934 B2 JP 3343934B2 JP 11452292 A JP11452292 A JP 11452292A JP 11452292 A JP11452292 A JP 11452292A JP 3343934 B2 JP3343934 B2 JP 3343934B2
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- lithium
- ion conductive
- amorphous
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Glass Compositions (AREA)
- Conductive Materials (AREA)
- Primary Cells (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、全固体電池、コンデン
サ、固体エレクトロクロミック表示素子等の電気化学素
子の電解質として利用されるリチウムイオン伝導性固体
電解質に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion conductive solid electrolyte used as an electrolyte for electrochemical devices such as all solid state batteries, capacitors and solid state electrochromic display devices.
【0002】[0002]
【従来の技術】近年、有機リチウム電解質を用いたリチ
ウム二次電池の開発に関する研究が盛んに行われてい
る。有機電解質を用いたリチウム二次電池の開発には、
正極あるいは負極として可逆性に優れた活物質材料の開
発が必要であり、今日、そうした材料探索が盛んに行わ
れている。例えば、負極材料に関してはリチウム金属単
独あるいはリチウム合金を用いたものから、特殊なカー
ボンを利用し、カーボン層間へリチウムを可逆的に出し
入れさせる反応を利用する方向に進んでいる。2. Description of the Related Art In recent years, research on the development of lithium secondary batteries using an organic lithium electrolyte has been actively conducted. For the development of lithium secondary batteries using organic electrolytes,
It is necessary to develop an active material having excellent reversibility as a positive electrode or a negative electrode, and such materials are being actively searched for today. For example, with regard to the negative electrode material, the use of lithium metal alone or a lithium alloy has been used, and special carbon has been used, and a reaction for reversibly bringing lithium in and out of the carbon layer has been used.
【0003】また、正極材料に関しても同様に、活物質
の電気化学的酸化還元によって化学変化を伴うものから
電解質中のLiイオンが活物質中に出入りする材料が用
いられるようになって来ている。[0003] Similarly, as for the positive electrode material, a material in which Li ions in the electrolyte enter and exit the active material from those accompanied by a chemical change by electrochemical oxidation-reduction of the active material has been used. .
【0004】一方、電解質に関しては、電池の信頼性を
向上させる為にリチウムイオン伝導性固体電解質を必要
としている。しかし、現在の所、優れたリチウムイオン
伝導性固体電解質がなく、新しい固体電解質材料の研究
開発が盛んに行われている。On the other hand, as for the electrolyte, a lithium ion conductive solid electrolyte is required in order to improve the reliability of the battery. However, at present, there is no excellent lithium ion conductive solid electrolyte, and research and development of new solid electrolyte materials are being actively conducted.
【0005】こうした固体電解質に関する研究の一つと
してLi2 S・X(XはSiS2 、GeS2 、P
2 S5 、B2 S3 の群より選択される一種以上の硫化
物)系硫化物ガラスが優れたイオン伝導性を示す事から
盛んに研究されている。As one of the studies on such solid electrolytes, Li 2 SX (X is SiS 2 , GeS 2 , P
It is actively studied since it shows a 2 S 5, B 2 S sulfide least one selected from the group of 3) based sulfide glass is excellent ion conductivity.
【0006】Li2 S・X(XはSiS2 、GeS2 、
P2 S5 、B2 S3 の群より選択される一種以上の硫化
物)系硫化物ガラスは、XがSiS2 のLi2 S・Si
S2系において特に高い伝導率の値を有し、その値は、
5×10-4S/cm程度である。Li 2 SX (X is SiS 2 , GeS 2 ,
One or more sulfide-based sulfide glasses selected from the group consisting of P 2 S 5 and B 2 S 3 are those in which X is SiS 2 and Li 2 S · Si.
It has a particularly high conductivity value in the S 2 system,
It is about 5 × 10 −4 S / cm.
【0007】また、Li2 S・X系硫化物ガラスにヨウ
化リチウムを添加したLiI・Li 2 S・X系ガラスで
は、10-3S/cm程度と比較的高いイオン伝導率を持
つとして知られている。In addition, LiTwoIodine on S / X sulfide glass
LiI.Li with lithium chloride added TwoWith SX glass
Is 10-3Has relatively high ionic conductivity of about S / cm
Known as one.
【0008】[0008]
【発明が解決しようとする課題】Li2 S・X(XはS
iS2 、GeS2 、P2 S5 、B2 S3 の群より選択さ
れる一種以上の硫化物)系硫化物ガラスの伝導率は、前
述のように5×10-4S/cmという高い値を示すが、
電気化学素子に応用するにはイオン伝導率がまだ低く、
更に該材料の化学的な安定性が不充分である。SUMMARY OF THE INVENTION Li 2 SX (X is S
The conductivity of one or more sulfide-based sulfide glasses selected from the group consisting of iS 2 , GeS 2 , P 2 S 5 , and B 2 S 3 is as high as 5 × 10 −4 S / cm as described above. Indicates the value,
The ionic conductivity is still low for application to electrochemical devices,
Furthermore, the chemical stability of the material is insufficient.
【0009】また、LiI・Li2 S・X系では、10
-3S/cm程度という高いイオン伝導率を示すが、リチ
ウム金属との接触により固体電解質が還元され伝導性が
低下するなど化学的な安定性が解決されておらず、全固
体リチウム電池などの電気化学素子への応用開発には数
々の問題を有していた。In the LiI.Li 2 SX system, 10
Despite high ionic conductivity of about -3 S / cm, chemical stability has not been solved, for example, the solid electrolyte is reduced by contact with lithium metal and the conductivity is reduced. The development of application to electrochemical devices had many problems.
【0010】本発明は、従来の課題である低い伝導率あ
るいは伝導率の低下をもたらす化学的安定性の問題を改
善したリチウムイオン伝導性固体電解質とその合成法を
提供しようとするものである。An object of the present invention is to provide a lithium ion conductive solid electrolyte which has solved the problems of chemical stability that causes a low conductivity or a decrease in conductivity, which is a conventional problem, and a method for synthesizing the same.
【0011】[0011]
【課題を解決するための手段】本発明は、a’Li3P
O4・b’Li2S・c’X(但し、a’+b’+c’が
1であって、XがSiS2、GeS2 、B 2S3の群より選
択される一種以上の硫化物)で表される非晶質化合物に
LiBrを混合し、該混合物を加熱溶融し、その後急冷
することで新しい非晶質リチウムイオン伝導性固体電解
質aLi3PO4・bLi2S・cX・dLiBr(但
し、a+b+c+dが1であって、XがSiS2、Ge
S2 、B 2S3の群より選択される一種以上の硫化物)を
合成し、非晶質リチウムイオン伝導性固体電解質とす
る。According to the present invention, there is provided an a'Li 3 P
O 4 .b'Li 2 S.c'X (where a '+ b' + c 'is 1 and X is at least one sulfide selected from the group consisting of SiS 2 , GeS 2 and B 2 S 3 ) ) Is mixed with LiBr, and the mixture is heated and melted, and then quenched to obtain a new amorphous lithium ion conductive solid electrolyte aLi 3 PO 4 .bLi 2 S.cX.dLiBr ( Here, a + b + c + d is 1 and X is SiS 2 , Ge
At least one sulfide selected from the group consisting of S 2 and B 2 S 3 ) is synthesized to obtain an amorphous lithium ion conductive solid electrolyte.
【0012】尚、前記一般式aLi3PO4・bLi2S
・cX・dLiBr(但し、a+b+c+dが1であっ
て、XがSiS2、GeS2 、B 2S3の群より選択される
一種以上の硫化物)で表される非晶質リチウムイオン伝
導性固体電解質は組成比a、b、cの和が0.9≧a+
b+c≧0.6であり、かつdが0.1≦d≦0.4を
みたすものである場合に化学的安定性に特に優れたもの
となる。The formula aLi 3 PO 4 .bLi 2 S
An amorphous lithium ion conductive solid represented by cX.dLiBr (where a + b + c + d is 1 and X is at least one sulfide selected from the group consisting of SiS 2 , GeS 2 and B 2 S 3 ) In the electrolyte, the sum of the composition ratios a, b, and c is 0.9 ≧ a +
When b + c ≧ 0.6 and d satisfies 0.1 ≦ d ≦ 0.4, the chemical stability is particularly excellent.
【0013】[0013]
【作用】Li3 PO4 は、高温領域においてイオン伝導
性の高い結晶構造を示すが、室温付近では相転移によっ
て構造が変わり、イオン伝導性が低下する事が知られて
いる。[Function] Li 3 PO 4 has a crystal structure with high ion conductivity in a high temperature region, but it is known that the structure changes due to phase transition near room temperature, and the ion conductivity decreases.
【0014】しかし、Li3 PO4 を室温状態で非晶質
状態を示す材料に加え、これらを高温状態で一旦、非晶
質化させた後、室温状態に戻すことにより、Li3 PO
4 の状態を室温に於いても非晶質状態に保持させること
が可能となり、室温においても高いイオン伝導性をもた
せることが出来ると考えられる。However, Li 3 PO 4 is added to a material which shows an amorphous state at room temperature, and once these materials are made amorphous at a high temperature, and then returned to a room temperature, the Li 3 PO 4 is returned.
It is considered that the state 4 can be maintained in an amorphous state even at room temperature, and high ionic conductivity can be obtained even at room temperature.
【0015】これは、非晶質状態となることによって、
即ち、結晶構造の原子の配列がやや乱れた構造をとる
為、結晶性材料とは異なり、リチウムイオンが自由に動
き得るようになる結果、イオン伝導性が向上するものと
考えられる。特に、a’Li3PO4・b’Li2S・
c’X(但し、a’+b’+c’が1であって、XがS
iS2、GeS2 、B 2S3の群より選択される一種以上の
硫化物)で表される非晶質化合物にLiBrを混合し、
該混合物を加熱溶融し、その後急冷することにより、合
成した新しい非晶質リチウムイオン伝導性固体電解質a
Li3PO4・bLi2S・cX・dLiBr(但し、a
+b+c+dが1であって、XがSiS2、GeS2 、B
2S3の群より選択される一種以上の硫化物)は自由に動
き得るリチウムイオンが多くなる結果、a’Li3PO4
・b’Li2S・c’X(但し、a’+b’+c’が1
であって、XがSiS2、GeS2 、B 2S3の群より選択
される一種以上の硫化物)で表される非晶質化合物材料
よりもイオン伝導率の高いリチウムイオン伝導性固体電
解質となる。This is because the amorphous state is obtained.
In other words, unlike a crystalline material, lithium ions can move freely, which results in an improvement in ionic conductivity, because the arrangement of atoms in the crystal structure is slightly disordered. In particular, a'Li 3 PO 4 .b'Li 2 S.
c′X (where a ′ + b ′ + c ′ is 1 and X is S
mixing LiBr with an amorphous compound represented by one or more sulfides selected from the group consisting of iS 2 , GeS 2 , and B 2 S 3 ,
The mixture was heated and melted, and then rapidly cooled to obtain a synthesized new amorphous lithium ion conductive solid electrolyte a.
Li 3 PO 4 .bLi 2 S.cX.dLiBr (where a
+ B + c + d is 1 and X is SiS 2 , GeS 2 , B
One or more sulfides selected from the group of 2 S 3 ) has a large amount of freely movable lithium ions, resulting in a′Li 3 PO 4
B′Li 2 S · c′X (where a ′ + b ′ + c ′ is 1)
Wherein X is at least one sulfide selected from the group consisting of SiS 2 , GeS 2 , and B 2 S 3 ), which has a higher ion conductivity than an amorphous compound material. Becomes
【0016】[0016]
【実施例】本発明のリチウムイオン伝導性固体電解質
は、a’Li3PO4・b’Li2S・c’X(但し、
a’+b’+c’が1であって、XがSiS2、Ge
S2 、B 2S3の群より選択される一種以上の硫化物)で
表される非晶質化合物を母材として用い、添加する化合
物として臭化リチウム(LiBr)を用いるが、母材と
なる非晶質化合物と、その原料および合成した固体電解
質が大気中の酸素や水分によって容易に分解するため、
取扱はすべて乾燥アルゴン雰囲気下のドライボックス中
で行った。DESCRIPTION OF THE PREFERRED EMBODIMENTS The lithium ion conductive solid electrolyte of the present invention comprises a'Li 3 PO 4 .b'Li 2 S'c'X (provided that
a ′ + b ′ + c ′ is 1 and X is SiS 2 , Ge
An amorphous compound represented by one or more sulfides selected from the group consisting of S 2 and B 2 S 3 ) is used as a base material, and lithium bromide (LiBr) is used as a compound to be added. Amorphous compound, its raw material and the synthesized solid electrolyte are easily decomposed by oxygen and moisture in the atmosphere,
All handling was performed in a dry box under a dry argon atmosphere.
【0017】ここではLiBrを始め、用いた試薬は全
て特級を使用し、特にLiBrは減圧下、300°Cで
6時間乾燥した後使用した。In this case, all the reagents used, including LiBr, were of a special grade. Particularly, LiBr was used after drying under reduced pressure at 300 ° C. for 6 hours.
【0018】以下、本発明を具体的実施例を用い、より
詳細に説明する。 (実施例1)本発明による非晶質リチウムイオン伝導性
固体電解質の内、aLi3 PO4 ・bLi2 S・cSi
S2 系非晶質材料を用いた非晶質リチウムイオン伝導性
固体電解質aLi3 PO4 ・bLi2 S・cSiS2 ・
dLiBrについての実施例を説明する。Hereinafter, the present invention will be described in more detail with reference to specific examples. (Example 1) Among the amorphous lithium ion conductive solid electrolytes according to the present invention, aLi 3 PO 4 .bLi 2 S.cSi
Amorphous lithium ion conductive solid electrolyte aLi 3 PO 4 · bLi 2 S · cSiS 2 · using S 2 -based amorphous material
An example of dLiBr will be described.
【0019】先ず、b”Li2 S・c”SiS2 (b”
+c”=1)を合成した。この合成は硫化リチウム(L
i2 S)と硫化珪素(SiS2 )をb”=0.3〜0.
8となるように混合し、該混合粉末をガラス状カーボン
坩堝中にいれ、これを、アルゴン気流中950°Cで
1.5時間溶融し反応させた後、液体窒素中に投入して
急冷し、b”Li2 S・c”SiS2 (b”+c”=
1)を得た。First, b "Li 2 S.c" SiS 2 (b "
+ C "= 1). This synthesis is based on lithium sulfide (L
i 2 S) and silicon sulfide (SiS 2 ) with b ″ = 0.3 to 0.
8, and the mixed powder was placed in a glassy carbon crucible. The mixture was melted at 950 ° C. for 1.5 hours in an argon gas stream and allowed to react. , B ”Li 2 S · c” SiS 2 (b ″ + c ″ =
1) was obtained.
【0020】次に、これを粉砕し、リン酸リチウム(L
i3 PO4 )をa’Li3 PO4 ・b’Li2 S・c’
SiS2 において、a’=0.01〜0.3となるよう
に加えて混合し、該粉末をガラス状カーボン坩堝中にい
れ、これを、アルゴン気流中950°Cで1.5時間溶
融し反応させた後、液体窒素中に投入して急冷し、a’
Li3 PO4 ・b’Li2 S・c’SiS2 (a’+
b’+c’=1)を合成した。Next, this is crushed, and lithium phosphate (L
i 3 PO 4 ) is converted to a′Li 3 PO 4 .b′Li 2 S.c ′
In SiS 2 , a ′ = 0.01 to 0.3 was added and mixed, and the powder was placed in a glassy carbon crucible, which was melted at 950 ° C. for 1.5 hours in a stream of argon. After the reaction, put in liquid nitrogen and quench, a '
Li 3 PO 4 · b'Li 2 S · c'SiS 2 (a '+
b ′ + c ′ = 1) was synthesized.
【0021】得られたa’Li3 PO4 ・b’Li2 S
・c’SiS2 材料y量に対し、臭化リチウム(LiB
r)d量をy+dが1となるように混合し、該混合粉末
をガラス状カーボン坩堝中にいれ、これを、アルゴン気
流中950°Cで1.5時間溶融し反応させた後、液体
窒素中に投入して急冷しaLi3 PO4 ・bLi2 S・
cSiS2 ・dLiBr(a+b+c+d=1)を得
た。The obtained a'Li 3 PO 4 .b'Li 2 S
· C'SiS 2 material y amount of contrast, lithium bromide (LiB
r) The amount of d is mixed so that y + d becomes 1, the mixed powder is placed in a glassy carbon crucible, which is melted and reacted at 950 ° C. for 1.5 hours in a stream of argon. ALi 3 PO 4・ bLi 2 S ・
cSiS 2 .dLiBr (a + b + c + d = 1) was obtained.
【0022】合成した固体電解質の特性を調べるため、
交流インピーダンス法によるイオン伝導率の測定を行っ
た。In order to examine the characteristics of the synthesized solid electrolyte,
The ionic conductivity was measured by the AC impedance method.
【0023】得られた結果を図1に示した。縦軸はイオ
ン伝導率を示し、横軸は(0.03Li3 PO4 ・0.
58Li2 S・0.39SiS2 )に対するLiBrの
添加量(モル%)を示したものである。図1よりイオン
伝導率は臭化リチウムの添加と共に増大した後、極大を
経て、減少している事が示されており、イオン伝導率が
最も大きくなるのは、0.80(0.03Li3 PO4
・0.58Li2 S・0.39SiS2 )・0.20
(LiBr)であり、そのイオン伝導率の値は1.7×
10-3S/cmであった。FIG. 1 shows the obtained results. The vertical axis indicates ionic conductivity, and the horizontal axis indicates (0.03Li 3 PO 4 .0.
58Li illustrates amount of LiBr (molar%) of 2 S · 0.39SiS 2). FIG. 1 shows that the ionic conductivity increased with the addition of lithium bromide, then decreased through a local maximum, and the ionic conductivity was maximized at 0.80 (0.03Li 3 PO 4
・ 0.58Li 2 S ・ 0.39SiS 2 ) ・ 0.20
(LiBr), whose ionic conductivity value is 1.7 ×
It was 10 -3 S / cm.
【0024】これに対し、臭化リチウムを添加していな
い0.03Li3 PO4 ・0.58Li2 S・0.39
SiS2 のイオン伝導率の値は7×10-4S/cmであ
った。On the other hand, 0.03Li 3 PO 4 .0.58Li 2 S.0.39 to which lithium bromide was not added.
The value of the ionic conductivity of SiS 2 was 7 × 10 −4 S / cm.
【0025】次に、リチウム金属に対する電解質の化学
的安定性を調べるため、合成した各種組成の電解質を厚
さ0.5mm、直径10mmのディスク1にプレス成形
し、更に、ディスク1の両面にリチウム金属ディスク
2,2’を圧着し、図2に示したような密封セル3を作
成した。化学的安定性は、これら密封セル3を60°C
の恒温槽に500時間保存し、それぞれの密封セル3の
内部インピーダンスの経時変化を測定した。Next, in order to examine the chemical stability of the electrolyte with respect to lithium metal, the synthesized electrolytes having various compositions were pressed into a disk 1 having a thickness of 0.5 mm and a diameter of 10 mm. The metal disks 2 and 2 'were crimped to form a sealed cell 3 as shown in FIG. The chemical stability is that these sealed cells 3 are kept at 60 ° C.
For 500 hours, and the change over time in the internal impedance of each sealed cell 3 was measured.
【0026】図3は得られた結果を示したもので、縦軸
はインピーダンス変化を保存前の内部インピーダンスで
規格化して示した。本結果から明白なように、臭化リチ
ウムが0.6以上では内部インピーダンスの経時変化が
著しく大きくなり、それ未満では内部インピーダンスの
増加が少ない事が分かった。 (実施例2)次に、aLi3 PO4 ・bLi2 S・cG
eS2 系非晶質材料を用いた非晶質リチウムイオン伝導
性固体電解質aLi3 PO4 ・bLi2 S・cGeS2
・dLiBrについての実施例を説明する。FIG. 3 shows the obtained results. The vertical axis represents the impedance change normalized by the internal impedance before storage. As is evident from the results, it is found that when lithium bromide is 0.6 or more, the change with time of the internal impedance is remarkably large, and when it is less than 0.6, the increase in the internal impedance is small. (Example 2) Next, aLi 3 PO 4 .bLi 2 S.cG
Amorphous lithium ion conductive solid electrolyte aLi 3 PO 4 · bLi 2 S · cGeS 2 using eS 2 -based amorphous material
Example of dLiBr will be described.
【0027】先ず、最初に0.6Li2 S・0.4Ge
S2 ガラスを実施例1と同様に合成した。即ち、硫化リ
チウム(Li2 S)と硫化ゲルマニウム(GeS2 )を
モル比で3:2に混合し、該材料粉末をガラス状カーボ
ン坩堝中にいれ、これをアルゴン気流中950°Cで
1.5時間反応させた後、液体窒素中に投入して急冷し
0.6Li2 S・0.4GeS2 組成の材料を合成し
た。続いて、こうして得た材料0.6Li2 S・0.4
GeS2 を粉砕し、リン酸リチウム(Li3 PO4)を
モル比で97:3に混合し、該粉末をガラス状カーボン
坩堝中にいれ、アルゴン気流中950°Cで1.5時間
反応させた。然る後、液体窒素中に投入して急冷し0.
03Li3 PO4 ・0.58Li2 S・0.39GeS
2 で示される非晶質材料を合成した。First, 0.6Li 2 S.0.4Ge
S 2 glass was synthesized as in Example 1. That is, lithium sulfide (Li 2 S) and germanium sulfide (GeS 2 ) were mixed at a molar ratio of 3: 2, and the material powder was placed in a glassy carbon crucible. after 5 hours of reaction was quenched put into liquid nitrogen to synthesize a material 0.6Li 2 S · 0.4GeS 2 composition. Subsequently, the thus obtained material 0.6Li 2 S.0.4
GeS 2 was pulverized, lithium phosphate (Li 3 PO 4 ) was mixed at a molar ratio of 97: 3, and the powder was placed in a glassy carbon crucible and reacted at 950 ° C. for 1.5 hours in a stream of argon. Was. After that, it was poured into liquid nitrogen and rapidly cooled.
03Li 3 PO 4・ 0.58Li 2 S ・ 0.39GeS
An amorphous material represented by 2 was synthesized.
【0028】得られた0.03Li3 PO4 ・0.58
Li2 S・0.39GeS2 材料y量に対し、臭化リチ
ウム(LiBr)d量をy+dが1となるように混合
し、該混合粉末をガラス状カーボン坩堝中にいれ、これ
をアルゴン気流中950°Cで1.5時間溶融し反応さ
せた後、液体窒素中に投入して急冷しaLi3 PO4 ・
bLi2 S・cGeS2 ・dLiBr(a+b+c+d
=1)を得た。The obtained 0.03Li 3 PO 4 .0.58
To Li 2 S · 0.39GeS 2 material y weight, mixed lithium bromide (LiBr) d weight as y + d is 1, put the mixed powder in glassy carbon crucible, which stream of argon After melting and reacting at 950 ° C. for 1.5 hours, the mixture was poured into liquid nitrogen and quenched to aLi 3 PO 4.
bLi 2 S.cGeS 2 .dLiBr (a + b + c + d
= 1).
【0029】合成した各種組成の固体電解質の特性を調
べるため、交流インピーダンス法によるイオン伝導率の
測定を行った。In order to examine the characteristics of the synthesized solid electrolytes of various compositions, the ionic conductivity was measured by an AC impedance method.
【0030】得られた結果を図4に示した。縦軸はイオ
ン伝導率を示し、横軸は(0.03Li3 PO4 ・0.
58Li2 S・0.39GeS2 )に対するLiBrの
添加量(モル%)を示したものである。図4より伝導率
は臭化リチウムの添加と共に増大した後、極大を経て、
減少している事が示されており、イオン伝導率が最も大
きくなるのは、0.85(0.03Li3 PO4 ・0.
58Li2 S・0.39GeS2 )・0.15(LiB
r)であり、そのイオン伝導率の値は1.2×10-3S
/cmであった。FIG. 4 shows the obtained results. The vertical axis indicates ionic conductivity, and the horizontal axis indicates (0.03Li 3 PO 4 .0.
58Li illustrates amount of LiBr (molar%) of 2 S · 0.39GeS 2). From FIG. 4, the conductivity increases with the addition of lithium bromide, and after a maximum,
It is shown that the ionic conductivity is the largest, and the ionic conductivity becomes the largest at 0.85 (0.03Li 3 PO 4 .0.
58Li 2 S · 0.39GeS 2 ) · 0.15 (LiB
r), whose ionic conductivity value is 1.2 × 10 −3 S
/ Cm.
【0031】これに対し、臭化リチウムを添加していな
い0.03Li3 PO4 ・0.58Li2 S・0.39
GeS2 のイオン伝導率の値は2×10-4S/cmであ
った。On the other hand, 0.03Li 3 PO 4 .0.58 Li 2 S.0.39 to which lithium bromide was not added.
The value of the ion conductivity of GeS 2 was 2 × 10 −4 S / cm.
【0032】次に、リチウム金属に対する電解質の化学
的安定性を実施例1と同様にして調べた。Next, the chemical stability of the electrolyte against lithium metal was examined in the same manner as in Example 1.
【0033】得られた結果は実施例1と同様、臭化リチ
ウムが0.5以上では内部インピーダンスの経時変化が
著しく大きくなり、それ未満では内部インピーダンスの
増加が少ない事が分かった。 (実施例3)次に、aLi3 PO4 ・bLi2 S・cP
2 S5 系非晶質材料を用いた非晶質リチウムイオン導電
性固体電解質aLi3 PO4 ・bLi2 S・cP2 S5
・dLiBrについての実施例を説明する。The obtained results show that, as in Example 1, when the amount of lithium bromide is 0.5 or more, the change with time of the internal impedance is remarkably large, and when it is less than 0.5, the increase in the internal impedance is small. Example 3 Next, aLi 3 PO 4 .bLi 2 S.cP
Amorphous lithium ion conductive solid electrolyte aLi 3 PO 4 .bLi 2 S.cP 2 S 5 using 2 S 5 -based amorphous material
Example of dLiBr will be described.
【0034】先ず、最初に0.67Li2 S・0.33
P2 S5 ガラスを実施例1と同様に合成した。即ち、硫
化リチウム(Li2 S)と硫化燐(P2 S5 )をモル比
で2:1に混合し、該材料粉末をガラス状カーボン坩堝
中にいれ、これを、アルゴン気流中500°Cで12時
間、続いて800°Cで2時間反応させた後、液体窒素
中に投入して急冷し、0.67Li2 S・0.33P2
S5 組成の材料を合成した。続いて、こうして得た材料
0.67Li2 S・0.33P2 S5 を粉砕し、リン酸
リチウム(Li3 PO4 )をモル比で97:3に混合
し、該粉末をガラス状カーボン坩堝中にいれ、アルゴン
気流中950°Cで1.5時間反応させた。然る後、液
体窒素中に投入して急冷し、0.03Li3 PO4 ・
0.65Li 2 S・0.32P2 S5 で示される非晶質
材料を合成した。First, 0.67 LiTwoS ・ 0.33
PTwoSFiveGlass was synthesized as in Example 1. That is,
Lithium chloride (LiTwoS) and phosphorus sulfide (PTwoSFive) The molar ratio
And mix the material powder in a glassy carbon crucible.
And put it in an argon stream at 500 ° C for 12:00
And then reacted at 800 ° C. for 2 hours, followed by liquid nitrogen
Put in and quench, 0.67LiTwoS ・ 0.33PTwo
SFiveThe material of the composition was synthesized. Then, the material thus obtained
0.67LiTwoS ・ 0.33PTwoSFiveCrush the phosphoric acid
Lithium (LiThreePOFour) In a molar ratio of 97: 3
And put the powder in a glassy carbon crucible
The reaction was performed at 950 ° C. for 1.5 hours in an air stream. After that, liquid
Put into body nitrogen, quench, 0.03LiThreePOFour・
0.65Li TwoS ・ 0.32PTwoSFiveAmorphous
The material was synthesized.
【0035】得られた0.03Li3 PO4 ・0.65
Li2 S・0.32P2 S5 材料y量に対し、臭化リチ
ウム(LiBr)d量をy+dが1となるように混合
し、該混合粉末をガラス状カーボン坩堝中にいれ、これ
を、アルゴン気流中950°Cで1.5時間溶融し反応
させた後、液体窒素中に投入して急冷しaLi3 PO4
・bLi2 S・cP2 S5 ・dLiBr(a+b+c+
d=1)を得た。The obtained 0.03Li 3 PO 4 .0.65
To Li 2 S · 0.32P 2 S 5 material y weight, mixed lithium bromide (LiBr) d weight as y + d is 1, put the mixed powder in glassy carbon crucible, this, After melting and reacting at 950 ° C. for 1.5 hours in an argon stream, the mixture was poured into liquid nitrogen and rapidly cooled to aLi 3 PO 4
BLi 2 S cP 2 S 5 dLiBr (a + b + c +
d = 1).
【0036】合成した各種組成の固体電解質の特性を調
べるため、交流インピーダンス法によるイオン伝導率の
測定および本固体電解質のリチウム金属に対する化学的
安定性を調べた。In order to examine the characteristics of the synthesized solid electrolytes of various compositions, the ionic conductivity was measured by an AC impedance method, and the chemical stability of the solid electrolyte to lithium metal was examined.
【0037】得られた結果を図5に示した。縦軸はイオ
ン伝導率を示し、横軸は(0.03Li3 PO4 ・0.
65Li2 S・0.32P2 S5 )に対するLiBrの
添加量を示したものである。イオン伝導率が最も大きな
値を示した組成は、0.80(0.03Li3 PO4 ・
0.65Li2 S・0.32P2 S5 )・0.20(L
iBr)であり、そのイオン伝導率の値は8.0×10
-4S/cmであった。FIG. 5 shows the obtained results. The vertical axis indicates ionic conductivity, and the horizontal axis indicates (0.03Li 3 PO 4 .0.
Shows the amount of LiBr for 65Li 2 S · 0.32P 2 S 5 ). The composition having the highest ionic conductivity is 0.80 (0.03Li 3 PO 4.
0.65Li 2 S ・ 0.32P 2 S 5 ) ・ 0.20 (L
iBr), and the value of the ionic conductivity is 8.0 × 10
-4 S / cm.
【0038】これに対し、臭化リチウムを添加していな
い0.03Li3 PO4 ・0.65Li2 S・0.32
P2 S5 のイオン伝導率の値は4.2×10-4S/cm
であった。On the other hand, 0.03Li 3 PO 4 .0.65Li 2 S.0.32 to which lithium bromide was not added.
The value of the ionic conductivity of P 2 S 5 is 4.2 × 10 −4 S / cm.
Met.
【0039】次に、リチウム金属に対する電解質の化学
的安定性を実施例1と同様にして調べた。Next, the chemical stability of the electrolyte against lithium metal was examined in the same manner as in Example 1.
【0040】得られた結果は実施例1と同様、臭化リチ
ウムが0.5以上では内部インピーダンスの経時変化が
著しく大きくなり、それ未満では内部インピーダンスの
増加が少ない事が分かった。The obtained results show that, as in Example 1, when lithium bromide is 0.5 or more, the change with time in the internal impedance is remarkably large, and when it is less than 0.5, the increase in the internal impedance is small.
【0041】(実施例4)次に、aLi3 PO4 ・bL
i2 S・cB2 S3 系非晶質材料を用いた非晶質リチウ
ムイオン伝導性固体電解質aLi3 PO4 ・bLi2 S
・cB2 S3 ・dLiBrについての実施例を説明す
る。Example 4 Next, aLi 3 PO 4 .bL
Amorphous lithium ion conductive solid electrolyte aLi 3 PO 4 .bLi 2 S using i 2 S.cB 2 S 3 amorphous material
Examples of cB 2 S 3 .dLiBr will be described.
【0042】先ず、最初に0.5Li2 S・0.5B2
S3 ガラスを実施例1と同様に合成した。即ち、硫化リ
チウム(Li2 S)と硫化ホウ素(B2 S3 )をモル比
で1:1に混合し、該材料粉末をガラス状カーボン坩堝
中にいれ、これを、アルゴン気流中500°Cで12時
間、続いて800°Cで3時間反応させた後、液体窒素
中に投入して急冷し0.5Li2 S・0.5B2 S3 組
成の材料を合成した。続いて、こうして得た材料0.5
Li2 S・0.5B2 S3 を粉砕し、リン酸リチウム
(Li3 PO4 )をモル比で96:4に混合し、該粉末
をガラス状カーボン坩堝中にいれ、アルゴン気流中80
0°Cで3時間反応させた。然る後、液体窒素中に投入
して急冷し、0.04Li3 PO4 ・0.48Li2 S
・0.48B2 S3 で示される非晶質材料を合成した。First, 0.5Li 2 S.0.5B 2
S 3 glass was synthesized as in Example 1. That is, lithium sulfide (Li 2 S) and boron sulfide (B 2 S 3 ) are mixed at a molar ratio of 1: 1 and the material powder is placed in a glassy carbon crucible, which is placed in an argon stream at 500 ° C. in 12 hours, followed by after reacting for 3 hours at 800 ° C, was synthesized material was quenched put in liquid nitrogen 0.5Li 2 S · 0.5B 2 S 3 composition. Subsequently, the thus obtained material 0.5
Li 2 S.0.5B 2 S 3 is pulverized, lithium phosphate (Li 3 PO 4 ) is mixed at a molar ratio of 96: 4, and the powder is placed in a glassy carbon crucible and placed in a stream of argon gas.
The reaction was performed at 0 ° C. for 3 hours. After that, it is poured into liquid nitrogen and quenched, and then 0.04Li 3 PO 4 .0.48Li 2 S
· 0.48B 2 was synthesized amorphous material represented by S 3.
【0043】得られた0.04Li3 PO4 ・0.48
Li2 S・0.48B2 S3 材料y量に対し、臭化リチ
ウム(LiBr)d量をy+dが1となるように混合
し、該混合粉末をガラス状カーボン坩堝中にいれ、これ
を、アルゴン気流中800°Cで1.5時間溶融し反応
させた後、液体窒素中に投入して急冷しaLi3 PO4
・bLi2 S・cB2 S3 ・dLiBr(a+b+c+
d=1)を得た。The obtained 0.04Li 3 PO 4 .0.48
To Li 2 S · 0.48B 2 S 3 material y weight, mixed lithium bromide (LiBr) d weight as y + d is 1, put the mixed powder in glassy carbon crucible, this, After melting and reacting at 800 ° C. for 1.5 hours in an argon gas stream, the mixture was poured into liquid nitrogen and rapidly cooled to aLi 3 PO 4
· BLi 2 S · cB 2 S 3 · dLiBr (a + b + c +
d = 1).
【0044】合成した各種組成の固体電解質の特性を調
べるため、交流インピーダンス法によるイオン伝導率の
測定および本固体電解質のリチウム金属に対する化学的
安定性を調べた。In order to examine the characteristics of the synthesized solid electrolytes of various compositions, the ionic conductivity was measured by an AC impedance method, and the chemical stability of the solid electrolyte to lithium metal was examined.
【0045】得られた結果を図6に示した。縦軸はイオ
ン伝導率を示し、横軸は(0.04Li3PO4・0.4
8Li2S・0.48B2S3)に対するLiBrの添加
量を示したものである。イオン伝導率が最も大きな値を
示した組成は、0.75(0.04Li3PO4・0.4
8Li2S・0.48B2S3)・0.25(LiBr)
であり、そのイオン伝導率の値は7.5×10-4S/c
mであった。FIG. 6 shows the obtained results. The vertical axis indicates the ionic conductivity, and the horizontal axis indicates (0.04Li 3 PO 4 .0.4
8Li 2 S · 0.48 B 2 S 3 ) in which the amount of LiBr added is shown. The composition ionic conductivity showed the highest value, 0.75 (0.0 4 Li 3 PO 4 · 0.4
8Li 2 S.0.48B 2 S 3 ) .0.25 (LiBr)
And the value of the ionic conductivity is 7.5 × 10 −4 S / c.
m.
【0046】これに対し、臭化リチウムを添加していな
い0.04Li3PO4・0.48Li2S・0.48B2
S3のイオン伝導率の値は1.8×10-4S/cmであ
った。On the other hand, 0.04 Li 3 PO 4 .0.48 Li 2 S.0.48 B 2 to which lithium bromide was not added.
The value of the ionic conductivity of S 3 was 1.8 × 10 −4 S / cm.
【0047】次に、リチウム金属に対する電解質の化学
的安定性を実施例1と同様にして調べた。Next, the chemical stability of the electrolyte against lithium metal was examined in the same manner as in Example 1.
【0048】結果は実施例1と同様、臭化リチウムが
0.6以上では内部インピーダンスの経時変化が著しく
大きくなり、それ未満では内部インピーダンスの増加が
少なくなる事が分かった。The results showed that, as in Example 1, when lithium bromide was 0.6 or more, the change with time of the internal impedance was extremely large, and when it was less than 0.6, the increase in the internal impedance was small.
【0049】[0049]
【発明の効果】本発明のリチウムイオン伝導性固体電解
質は、Li3 PO4 ・Li2 S・X(XがSiS2 、G
eS2 、P2 S5 、B2 S3 の群より選択される一種以
上の硫化物)系硫化物非晶質材料に臭化リチウムを添加
することによって得られるものであり、母材のLi2 S
・X(XがSiS2 、GeS2 、P2 S5 、B2 S3 の
群より選択される一種以上の硫化物)系非晶質材料に比
べ、より高いリチウムイオン伝導性を示し、リチウム金
属との接触に依っても化学的変化の少ない固体電解質を
提供する事が出来る。Lithium ion conductive solid electrolyte of the present invention exhibits, Li 3 PO 4 · Li 2 S · X (X is SiS 2, G
It is obtained by adding lithium bromide to one or more sulfide-based sulfide amorphous materials selected from the group consisting of eS 2 , P 2 S 5 , and B 2 S 3. 2 S
A higher lithium ion conductivity than that of an amorphous material based on X (X is one or more sulfides selected from the group consisting of SiS 2 , GeS 2 , P 2 S 5 , and B 2 S 3 ); A solid electrolyte with little chemical change can be provided even by contact with a metal.
【0050】その結果、このリチウムイオン伝導性固体
電解質を、電池、コンデンサ、エレクトロクロミック表
示素子等の電気化学素子の電解質に用いても、極めて実
用性の高い電気化学素子を製造することができる事が期
待される。As a result, even when this lithium ion conductive solid electrolyte is used as an electrolyte for an electrochemical device such as a battery, a capacitor, and an electrochromic display device, an extremely practical electrochemical device can be manufactured. There is expected.
【0051】尚、本発明の実施例に於ける固体電解質の
合成に際しては、逐次非晶質材料を合成し、目的とする
本発明のリチウムイオン伝導性固体電解質を得たが、こ
れはそれぞれに於いて最高の条件を求めるために試行し
たものであって、電解質組成と合成温度、昇温条件等の
諸条件を選択することにより、簡略化させる事が出来る
事は自明の事であり、本発明の範疇に属するものであ
る。In the synthesis of the solid electrolyte according to the embodiment of the present invention, an amorphous material was sequentially synthesized to obtain the intended lithium ion conductive solid electrolyte of the present invention. It was obvious that the simplification could be achieved by selecting various conditions such as the electrolyte composition, the synthesis temperature, and the heating condition. It belongs to the category of the invention.
【図1】a’Li3 PO4 ・b’Li2 S・c’SiS
2 ヘの臭化リチウム(LiBr)添加による伝導率変化
を示す特性線図FIG. 1 a'Li 3 PO 4 .b'Li 2 S.c'SiS
Characteristic diagram showing the conductivity changes by 2 f lithium bromide (LiBr) added
【図2】内部インピーダンスの測定に用いる密封セルの
断面図FIG. 2 is a cross-sectional view of a sealed cell used for measuring internal impedance.
【図3】リチウム金属に対する化学的安定性を示す特性
線図FIG. 3 is a characteristic diagram showing chemical stability for lithium metal.
【図4】a’Li3 PO4 ・b’Li2 S・c’GeS
2 ヘの臭化リチウム(LiBr)添加による伝導率変化
を示す特性線図FIG. 4 a'Li 3 PO 4 .b'Li 2 S.c'GeS
Characteristic diagram showing the conductivity changes by 2 f lithium bromide (LiBr) added
【図5】a’Li3 PO4 ・b’Li2 S・c’P2 S
5 ヘの臭化リチウム(LiBr)添加による伝導率変化
を示す特性線図FIG. 5: a'Li 3 PO 4 .b'Li 2 S.c'P 2 S
Characteristic diagram showing conductivity change due to addition of lithium bromide (LiBr) to 5
【図6】a’Li3 PO4 ・b’Li2 S・c’B2 S
3 ヘの臭化リチウム(LiBr)添加による伝導率変化
を示す特性線図FIG. 6: a'Li 3 PO 4 .b'Li 2 S.c'B 2 S
Characteristic diagram showing conductivity change due to addition of lithium bromide (LiBr) to 3
1 電解質ディスク 2 リチウム金属ディスク 2’リチウム金属ディスク 3 密封セル DESCRIPTION OF SYMBOLS 1 Electrolyte disk 2 Lithium metal disk 2 'Lithium metal disk 3 Sealed cell
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01M 6/18 H01M 6/18 Z 10/36 10/36 A (56)参考文献 特開 平4−231346(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01D 15/00 C01B 25/30 C01B 17/22 C03C 3/32 C03C 4/14 H01B 1/06 H01M 6/18 H01M 10/36 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI H01M 6/18 H01M 6/18 Z 10/36 10/36 A (56) References JP-A-4-231346 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) C01D 15/00 C01B 25/30 C01B 17/22 C03C 3/32 C03C 4/14 H01B 1/06 H01M 6/18 H01M 10/36
Claims (3)
・dLiBr(但し、a+b+c+dが1であって、X
がSiS2、GeS2 、B 2S3の群より選択される一種以
上の硫化物)で表される非晶質リチウムイオン伝導性固
体電解質。1. The formula aLi 3 PO 4 .bLi 2 S.cX
DLiBr (where a + b + c + d is 1 and X
Is an at least one sulfide selected from the group consisting of SiS 2 , GeS 2 and B 2 S 3 ).
+c≧0.6であり、かつdが0.1≦d≦0.4をみ
たすことを特徴とする請求項1記載の非晶質リチウムイ
オン伝導性固体電解質。2. The sum of the composition ratios a, b, and c is 0.9 ≧ a + b.
2. The amorphous lithium ion conductive solid electrolyte according to claim 1, wherein + c ≧ 0.6 and d satisfies 0.1 ≦ d ≦ 0.4.
チウムイオン伝導性固体電解質の合成法であって、ま
ず、a’Li3PO4・b’Li2S・c’X(但し、
a’+b’+c’が1であって、XがSiS2、Ge
S2 、B 2S3の群より選択される一種以上の硫化物)で
表される非晶質化合物を合成した後、該非晶質化合物に
LiBrを混合し、該混合物を加熱溶融し、その後急冷
することにより合成することを特徴とする非晶質リチウ
ムイオン伝導性固体電解質の合成法。3. The method for synthesizing an amorphous lithium ion conductive solid electrolyte according to claim 1 or 2, wherein a'Li 3 PO 4 .b'Li 2 S.c'X (provided that ,
a ′ + b ′ + c ′ is 1 and X is SiS 2 , Ge
After synthesizing an amorphous compound represented by one or more sulfides selected from the group consisting of S 2 and B 2 S 3 ), LiBr is mixed with the amorphous compound, and the mixture is heated and melted. A method for synthesizing an amorphous lithium ion conductive solid electrolyte, characterized by being synthesized by quenching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11452292A JP3343934B2 (en) | 1992-05-07 | 1992-05-07 | Amorphous lithium ion conductive solid electrolyte and its synthesis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11452292A JP3343934B2 (en) | 1992-05-07 | 1992-05-07 | Amorphous lithium ion conductive solid electrolyte and its synthesis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05306119A JPH05306119A (en) | 1993-11-19 |
JP3343934B2 true JP3343934B2 (en) | 2002-11-11 |
Family
ID=14639864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11452292A Expired - Lifetime JP3343934B2 (en) | 1992-05-07 | 1992-05-07 | Amorphous lithium ion conductive solid electrolyte and its synthesis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3343934B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015030052A1 (en) | 2013-09-02 | 2015-03-05 | 三菱瓦斯化学株式会社 | Solid-state battery |
WO2015030053A1 (en) | 2013-09-02 | 2015-03-05 | 三菱瓦斯化学株式会社 | Solid-state battery and method for manufacturing electrode active material |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5755940A (en) * | 1994-06-13 | 1998-05-26 | Mitsui Petrochemical Industries, Ltd. | Lithium ionic conducting glass thin film and carbon dioxide sensor comprising the glass thin film |
JP4165536B2 (en) * | 2005-06-28 | 2008-10-15 | 住友電気工業株式会社 | Lithium secondary battery negative electrode member and manufacturing method thereof |
US8349498B2 (en) * | 2010-01-12 | 2013-01-08 | Sisom Thin Films, Llc | Method of forming solid state electrolyte having high lithium ion conduction and battery incorporating same |
JP5287739B2 (en) | 2009-05-01 | 2013-09-11 | トヨタ自動車株式会社 | Solid electrolyte material |
JP5349427B2 (en) | 2010-08-26 | 2013-11-20 | トヨタ自動車株式会社 | Sulfide solid electrolyte material, positive electrode body and lithium solid state battery |
JP6518745B2 (en) * | 2011-11-07 | 2019-05-22 | 出光興産株式会社 | Crystallized solid electrolyte |
JP6234665B2 (en) * | 2011-11-07 | 2017-11-22 | 出光興産株式会社 | Solid electrolyte |
US9991554B2 (en) | 2012-07-10 | 2018-06-05 | Idemitsu Kosan Co., Ltd. | Sulfide glass, and method for producing sulfide glass ceramic |
JP6236220B2 (en) * | 2013-05-02 | 2017-11-22 | 出光興産株式会社 | Method for producing sulfide solid electrolyte |
JP6077403B2 (en) | 2013-06-28 | 2017-02-08 | トヨタ自動車株式会社 | Method for producing sulfide solid electrolyte material |
JP6003831B2 (en) * | 2013-06-28 | 2016-10-05 | トヨタ自動車株式会社 | Sulfide solid electrolyte material, sulfide glass, lithium solid battery, and method for producing sulfide solid electrolyte material |
JP6067511B2 (en) * | 2013-08-16 | 2017-01-25 | トヨタ自動車株式会社 | Sulfide solid electrolyte material, positive electrode body and lithium solid state battery |
JP5975071B2 (en) * | 2014-07-22 | 2016-08-23 | トヨタ自動車株式会社 | Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material |
US11011796B2 (en) | 2016-10-21 | 2021-05-18 | Quantumscape Battery, Inc. | Electrolyte separators including lithium borohydride and composite electrolyte separators of lithium-stuffed garnet and lithium borohydride |
CN108832172B (en) * | 2018-06-22 | 2021-01-15 | 中国科学院宁波材料技术与工程研究所 | All-solid-state electrolyte material, preparation method thereof and all-solid-state lithium secondary battery |
-
1992
- 1992-05-07 JP JP11452292A patent/JP3343934B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015030052A1 (en) | 2013-09-02 | 2015-03-05 | 三菱瓦斯化学株式会社 | Solid-state battery |
WO2015030053A1 (en) | 2013-09-02 | 2015-03-05 | 三菱瓦斯化学株式会社 | Solid-state battery and method for manufacturing electrode active material |
KR20160048892A (en) | 2013-09-02 | 2016-05-04 | 미츠비시 가스 가가쿠 가부시키가이샤 | Solid-state battery |
KR20160048894A (en) | 2013-09-02 | 2016-05-04 | 미츠비시 가스 가가쿠 가부시키가이샤 | Solid-state battery and method for manufacturing electrode active material |
US10038192B2 (en) | 2013-09-02 | 2018-07-31 | Mitsubishi Gas Chemical Company, Inc. | Solid-state battery |
US10147937B2 (en) | 2013-09-02 | 2018-12-04 | Mitsubishi Gas Chemical Company, Inc. | Solid-state battery and method for manufacturing electrode active material |
Also Published As
Publication number | Publication date |
---|---|
JPH05306119A (en) | 1993-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3151925B2 (en) | Amorphous lithium ion conductive solid electrolyte and its synthesis method | |
JP3343934B2 (en) | Amorphous lithium ion conductive solid electrolyte and its synthesis method | |
JP3163741B2 (en) | Amorphous lithium ion conductive solid electrolyte and method for producing the same | |
JP3433173B2 (en) | Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery | |
Minami et al. | Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries | |
EP0994071B1 (en) | Lithium ion-conductive solid electrolyte and method for producing the same | |
EP2156503B1 (en) | Plastic crystal electrolyte with a broad potential window | |
US6835500B2 (en) | Hydrated iron phosphate electrode materials for rechargeable lithium battery cell systems | |
Spong et al. | A solution–precursor synthesis of carbon-coated LiFePO4 for Li-ion cells | |
JP3184517B2 (en) | Lithium ion conductive solid electrolyte | |
JP5197008B2 (en) | Cathode composite material and manufacturing method thereof, cathode and lithium ion battery | |
CN115036477A (en) | Transition metal phosphate type sodium ion battery positive electrode material and preparation method and application thereof | |
JP3343936B2 (en) | Amorphous lithium ion conductive solid electrolyte and its synthesis method | |
JP3149524B2 (en) | Amorphous lithium ion conductive solid electrolyte and method for producing the same | |
Tang et al. | A dual-halogen electrolyte for protective-layer-free all-solid-state lithium batteries | |
JP3284215B2 (en) | Method for producing sulfide-based lithium ion conductive solid electrolyte | |
Croce et al. | Ruthenium oxide-added quartz iron phosphate as a new intercalation electrode in rechargeable lithium cells | |
US7351502B2 (en) | Solid inorganic glassy electrolyte and method of production thereof | |
Telli et al. | Elaboration of a new anode material for all-solid state Zn/MnO2 protonic cells | |
EP0618632A1 (en) | Lithium ion conductive solid electrolyte and process for synthesizing the same | |
JPS6084772A (en) | Solid electrolyte battery | |
JPH01128355A (en) | Nonaqueous solvent cell | |
WO2021234913A1 (en) | Lithium-ion secondary cell and method for manufacturing same | |
WO2024085045A1 (en) | Sulfide solid electrolyte and method for producing same, electrode mixture, solid electrolyte layer, and all-solid-state lithium ion secondary battery | |
JP5652132B2 (en) | Inorganic solid electrolyte and lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070830 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20080830 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20080830 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20090830 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090830 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100830 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20110830 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20110830 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20120830 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120830 Year of fee payment: 10 |