JP3528866B2 - Method for producing lithium sulfide - Google Patents

Method for producing lithium sulfide

Info

Publication number
JP3528866B2
JP3528866B2 JP14533994A JP14533994A JP3528866B2 JP 3528866 B2 JP3528866 B2 JP 3528866B2 JP 14533994 A JP14533994 A JP 14533994A JP 14533994 A JP14533994 A JP 14533994A JP 3528866 B2 JP3528866 B2 JP 3528866B2
Authority
JP
Japan
Prior art keywords
lithium
sulfide
reaction
hydrogen sulfide
lithium sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14533994A
Other languages
Japanese (ja)
Other versions
JPH07330312A (en
Inventor
義成 小山
日出夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP14533994A priority Critical patent/JP3528866B2/en
Publication of JPH07330312A publication Critical patent/JPH07330312A/en
Application granted granted Critical
Publication of JP3528866B2 publication Critical patent/JP3528866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は硫化リチウムの製造方法
に関する。さらに詳しくは電気、電子分野、高剛性材料
分野で好適に用いられるポリアリーレンスルフィドの、
合成原料として特に有用な硫化リチウムの製造方法に関
する。
FIELD OF THE INVENTION The present invention relates to a method for producing lithium sulfide. More specifically, polyarylene sulfide, which is preferably used in the fields of electricity, electronics, and high rigidity materials,
The present invention relates to a method for producing lithium sulfide which is particularly useful as a synthetic raw material.

【0002】[0002]

【従来の技術】従来、硫化リチウムは、単体リチウムと
硫黄とを融点以上に加熱して反応させて形成し(Troost
L. Ann. Chim. Phys., 1875, v.51(3), p.103 )、ま
た、硫酸リチウムを加熱しながら炭素、水素、またはア
ンモニアで還元して形成していた(ケ・ヴェ・サムソノ
フ,エス・ヴェ・ドロズドワ著 硫化物便覧−物性と状
態図−)。
2. Description of the Related Art Conventionally, lithium sulfide has been formed by heating elemental lithium and sulfur to a temperature higher than the melting point and reacting them (Troost
L. Ann. Chim. Phys., 1875, v.51 (3), p.103), and also formed by reducing lithium sulfate with carbon, hydrogen, or ammonia while heating. Samsonov, S. V. Drozdova Sulfide handbook-physical properties and state diagram-).

【0003】[0003]

【発明が解決しようとする課題】しかし、このような従
来の方法における条件は非常に過酷なものであり、従っ
て、そのプロセスは複雑かつ過酷な条件に耐えられるよ
うな強固なものでなければならなかった。本発明は上述
の問題に鑑みなされたものであり、簡易な手段によって
高純度の硫化リチウムを得ることができる硫化リチウム
の製造方法を提供することを目的とする。
However, the conditions in such conventional methods are very harsh, and therefore the process must be robust enough to withstand complex and harsh conditions. There wasn't. The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing lithium sulfide that can obtain high-purity lithium sulfide by a simple means.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば非プロトン性有機溶媒中で水酸化リ
チウムと硫化水素とを反応させて水硫化リチウムを生成
し、次いでこの反応液を脱硫化水素化して硫化リチウム
を生成することを特徴とする硫化リチウムの製造方法が
提供される。
In order to achieve the above object, according to the present invention, lithium hydroxide and hydrogen sulfide are reacted in an aprotic organic solvent to produce lithium hydrosulfide, and then this reaction solution is used. There is provided a method for producing lithium sulfide, which comprises dehydrosulfurizing hydrogen peroxide to produce lithium sulfide.

【0005】また、その好ましい態様として、前記水硫
化リチウムの生成時の反応温度が、0〜150℃であ
り、かつ前記脱硫化水素化時の反応温度が、150〜2
00℃であることを特徴とする硫化リチウムの製造方法
が提供される。
In a preferred embodiment, the reaction temperature during the formation of lithium hydrosulfide is 0 to 150 ° C., and the reaction temperature during the desulfurization hydrogenation is 150 to 2 ° C.
A method for producing lithium sulfide, which is characterized in that the temperature is 00 ° C, is provided.

【0006】また、前記水硫化リチウムの生成時に、副
生する水を留去することを特徴とする硫化リチウムの製
造方法が提供される。
Further, there is provided a method for producing lithium sulfide, which comprises distilling off water produced as a by-product when the lithium hydrosulfide is produced.

【0007】また、非プロトン性有機溶媒中で水酸化リ
チウムと硫化水素とを反応させ、直接硫化リチウムを生
成することを特徴とする硫化リチウムの製造方法が提供
される。
Also provided is a method for producing lithium sulfide, which comprises reacting lithium hydroxide with hydrogen sulfide in an aprotic organic solvent to directly produce lithium sulfide.

【0008】さらに、その好ましい態様として、前記硫
化リチウムの生成時の反応温度が、150〜200℃で
あることを特徴とする硫化リチウムの製造方法が提供さ
れる。
Furthermore, as a preferred embodiment, there is provided a method for producing lithium sulfide, characterized in that the reaction temperature during the production of lithium sulfide is 150 to 200 ° C.

【0009】以下、本発明を下記図1を参照しつつ具体
的に説明する。 1.第一の発明 (1)水硫化リチウム(LiSH)の生成 本願の第一の発明においては、前述のように、非プロト
ン性有機溶媒中で水酸化リチウムと硫化水素とを反応さ
せて、まず、水硫化リチウム(LiSH)を生成する。 非プロトン性有機溶媒 本発明に用いられる非プロトン性有機溶媒としては、一
般に、非プロトン性の極性有機化合物(たとえば、アミ
ド化合物,ラクタム化合物,尿素化合物,有機イオウ化
合物,環式有機リン化合物等)を、単独溶媒として、ま
たは、混合溶媒として、好適に使用することができる。
The present invention will be described in detail below with reference to FIG. 1. First Invention (1) Generation of Lithium Hydrosulfide (LiSH) In the first invention of the present application, as described above, lithium hydroxide and hydrogen sulfide are reacted in an aprotic organic solvent, and first, Generates lithium hydrosulfide (LiSH). Aprotic organic solvent The aprotic organic solvent used in the present invention is generally an aprotic polar organic compound (eg, amide compound, lactam compound, urea compound, organic sulfur compound, cyclic organic phosphorus compound, etc.). Can be suitably used as a single solvent or as a mixed solvent.

【0010】これらの非プロトン性の極性有機化合物の
うち、前記アミド化合物としては、たとえば、N,N−
ジメチルホルムアミド,N,N−ジエチルホルムアミ
ド,N,N−ジメチルアセトアミド,N,N−ジエチル
アセトアミド,N,N−ジプロピルアセトアミド,N,
N−ジメチル安息香酸アミドなとを挙げることができ
る。
Of these aprotic polar organic compounds, examples of the amide compound include N, N-
Dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dipropylacetamide, N,
Examples thereof include N-dimethylbenzoic acid amide.

【0011】また、前記ラクタム化合物としては、たと
えば、カプロラクタム,N−メチルカプロラクタム,N
−エチルカプロラクタム,N−イソプロピルカプロラク
タム,N−イソブチルカプロラクタム,N−ノルマルプ
ロピルカプロラクタム,N−ノルマルブチルカプロラク
タム,N−シクロヘキシルカプロラクタム等のN−アル
キルカプロラクタム類,N−メチル−2−ピロリドン
(NMP),N−エチル−2−ピロリドン,N−イソプ
ロピル−2−ピロリドン,N−イソブチル−2−ピロリ
ドン,N−ノルマルプロピル−2−ピロリドン,N−ノ
ルマルブチル−2−ピロリドン,N−シクロヘキシル−
2−ピロリドン,N−メチル−3−メチル2−ピロリド
ン,N−エチル−3−メチル−2−ピロリドン,N−メ
チル−34,5−トリメチル−2−ピロリドン,N−メ
チル−2−ピペリドン,N−エチル−2−ピペリドン,
N−イソプロピル−2−ピペリドン,N−メチル−6−
メチル−2−ピペリドン,N−メチル−3−エチル−2
−ピペリドンなどを挙げることができる。
Examples of the lactam compound include caprolactam, N-methylcaprolactam, N
-N-alkylcaprolactams such as -ethylcaprolactam, N-isopropylcaprolactam, N-isobutylcaprolactam, N-normalpropylcaprolactam, N-normalbutylcaprolactam, N-cyclohexylcaprolactam, N-methyl-2-pyrrolidone (NMP), N -Ethyl-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-isobutyl-2-pyrrolidone, N-normal propyl-2-pyrrolidone, N-normal butyl-2-pyrrolidone, N-cyclohexyl-
2-pyrrolidone, N-methyl-3-methyl-2-pyrrolidone, N-ethyl-3-methyl-2-pyrrolidone, N-methyl-34,5-trimethyl-2-pyrrolidone, N-methyl-2-piperidone, N -Ethyl-2-piperidone,
N-isopropyl-2-piperidone, N-methyl-6-
Methyl-2-piperidone, N-methyl-3-ethyl-2
-Piperidone etc. may be mentioned.

【0012】また、前記尿素化合物としては、たとえ
ば、テトラメチル尿素,N,N’−ジメチルエチレン尿
素,N,N’−ジメチルプロピレン尿素などを挙げるこ
とができる。
Examples of the urea compound include tetramethylurea, N, N'-dimethylethyleneurea, N, N'-dimethylpropyleneurea and the like.

【0013】さらに、前記有機イオウ化合物としては、
たとえば、ジメチルスルホキシド,ジエチルスルホキシ
ド,ジフェニルスルホン,1−メチル−1−オキソスル
ホラン,1−エチル−1−オキソスルホラン,1−フェ
ニル−1−オキソスルホランなどを、また、前記環式有
機リン化合物としては、たとえば、1−メチル−1−オ
キソホスホラン,1−ノルマルプロピル−1−オキソホ
スホラン,1−フェニル−1−オキソホスホランなどを
挙げることができる。
Further, as the organic sulfur compound,
For example, dimethyl sulfoxide, diethyl sulfoxide, diphenyl sulfone, 1-methyl-1-oxosulfolane, 1-ethyl-1-oxosulfolane, 1-phenyl-1-oxosulfolane, and the like as the cyclic organic phosphorus compound. Examples thereof include 1-methyl-1-oxophosphorane, 1-normalpropyl-1-oxophosphorane, 1-phenyl-1-oxophosphorane and the like.

【0014】これら各種の非プロトン性極性有機化合物
は、それぞれ一種単独で、または二種以上を混合して、
さらには、本発明の目的に支障のない他の溶媒成分と混
合して、前記非プロトン性有機溶媒として使用すること
ができる。
These various aprotic polar organic compounds may be used alone or in combination of two or more,
Furthermore, it can be used as the aprotic organic solvent by mixing with other solvent components which do not hinder the purpose of the present invention.

【0015】前記各種の非プロトン性有機溶媒の中で
も、好ましいのはN−アルキルカプロラクタム及びN−
アルキルピロリドンであり、特に好ましいのはN−メチ
ル−2−ピロリドンである。
Of the above various aprotic organic solvents, N-alkylcaprolactam and N- are preferred.
Alkylpyrrolidone, particularly preferred is N-methyl-2-pyrrolidone.

【0016】水酸化リチウム 本発明に用いられる水酸化リチウムとしては、特に制限
はなく、高純度である限り市販の製品を使用することが
できる。
Lithium Hydroxide The lithium hydroxide used in the present invention is not particularly limited, and commercially available products can be used as long as they have high purity.

【0017】硫化水素 本発明に用いられる硫化水素としては特に制限はない。Hydrogen sulfide The hydrogen sulfide used in the present invention is not particularly limited.

【0018】使用割合 硫化水素に対する、水酸化リチウムの使用割合(モル
比:水酸化リチウム/硫化水素)は、通常1.80〜
3.00、特に1.95〜3.00である。硫化水素に
対する水酸化リチウムの使用割合が前記範囲内にある
と、反応が一層円滑に進行する。
Usage ratio The usage ratio of lithium hydroxide to hydrogen sulfide (molar ratio: lithium hydroxide / hydrogen sulfide) is usually 1.80 to.
3.00, especially 1.95 to 3.00. When the usage ratio of lithium hydroxide to hydrogen sulfide is within the above range, the reaction proceeds more smoothly.

【0019】水酸化リチウムと硫化水素との反応 本発明においては、反応容器中に前記非プロトン性有機
溶媒と水酸化リチウムとを投入し、次に得られた仕込み
液に硫化水素を吹き込み反応させる。この場合、非プロ
トン性有機溶媒中にあらかじめ硫化水素を吹き込み溶解
させた非プロトン溶媒溶液に水酸化リチウムを混合して
反応させてもよい。
Reaction of Lithium Hydroxide with Hydrogen Sulfide In the present invention, the aprotic organic solvent and lithium hydroxide are charged into a reaction vessel, and then hydrogen sulfide is blown into the obtained charging liquid to cause a reaction. . In this case, lithium hydroxide may be mixed with the aprotic solvent solution prepared by blowing hydrogen sulfide into the aprotic organic solvent to dissolve the aprotic solvent.

【0020】硫化水素を吹き込む際の圧力は、常圧でも
加圧してもよい。吹き込み時間としては、特に制限はな
く、通常は10〜180分程度とすることが好ましい。
吹き込み速度も特に制限はなく、通常は10〜1000
cc/分程度とすることが好ましい。また、硫化水素の
吹き込み方法も特に制限はなく、たとえばN−メチル−
2−ピロリドン中に水酸化リチウムを攪拌、たとえば、
500mlガラス製セパラブルフラスコ中で、攪拌翼と
してディスクタービン翼を用い、300〜700rpm
にて攪拌しながら、その中へ気体状の硫化水素をバブリ
ングする等の通常用いられる方法を用いることができ
る。この場合、水が存在していてもよい。
The pressure at which hydrogen sulfide is blown may be atmospheric pressure or increased pressure. The blowing time is not particularly limited and is usually preferably about 10 to 180 minutes.
The blowing speed is not particularly limited, and usually 10 to 1000
It is preferably about cc / min. The method of blowing hydrogen sulfide is not particularly limited, and for example, N-methyl-
Stir lithium hydroxide in 2-pyrrolidone, eg
In a 500 ml glass separable flask, using a disk turbine blade as a stirring blade, 300 to 700 rpm
A commonly used method can be used, such as bubbling gaseous hydrogen sulfide into the solution while stirring. In this case, water may be present.

【0021】この場合の反応温度は、0〜150℃が好
ましく、120〜140℃がさらに好ましい。0℃未満
であると反応速度が著しく遅くなるため、合成にかかる
時間が長くなりプロセス上不経済となり、150℃を超
えると硫化水素が溶液中に溶け込みにくくなり、その結
果硫化水素の吹き抜け量が増し、吸収効率が悪くなる。
またそれを防止しようと、硫化水素の供給量を絞っても
よいが、そうすると反応時間が長くなりプロセス上不経
済である。
In this case, the reaction temperature is preferably 0 to 150 ° C, more preferably 120 to 140 ° C. If the temperature is lower than 0 ° C, the reaction rate becomes remarkably slow, and the time required for the synthesis becomes long and the process becomes uneconomical. If the temperature exceeds 150 ° C, hydrogen sulfide hardly dissolves in the solution, and as a result, the amount of hydrogen sulfide blown through is reduced. And the absorption efficiency becomes poor.
Further, in order to prevent this, the supply amount of hydrogen sulfide may be reduced, but if this is done, the reaction time becomes long and it is uneconomical in the process.

【0022】反応時間は、前記硫化水素の使用割合から
算出される必要硫化水素量を、供給する硫化水素が吹き
抜けない速度で割って得られる値以上とすることが好ま
しい。それ未満であると水酸化リチウムに対して硫化水
素が化学量論的に不足し、得られる硫化リチウムの純度
が低下する(原料の水酸化リチウムが硫化リチウム中に
混在する)。
The reaction time is preferably equal to or longer than a value obtained by dividing the required amount of hydrogen sulfide calculated from the use ratio of hydrogen sulfide by the rate at which the hydrogen sulfide supplied does not blow through. If it is less than that, hydrogen sulfide is stoichiometrically deficient with respect to lithium hydroxide, and the purity of the obtained lithium sulfide decreases (lithium hydroxide as a raw material is mixed in lithium sulfide).

【0023】このように硫化水素を投入することによ
り、系内に固体状で存在していた水酸化リチウムは系内
の液体部分に溶解する。
By adding hydrogen sulfide in this manner, the lithium hydroxide that was present in the system in a solid state is dissolved in the liquid portion of the system.

【0024】(2)硫化リチウム(Li2S)の生成 本発明においては、前述のように水硫化リチウムを生成
したのち、その反応液中の水硫化リチウム(LiSH)
を脱硫化水素化し、高純度の硫化リチウム(Li2S)
を生成する。
(2) Production of Lithium Sulfide (Li 2 S) In the present invention, after producing lithium hydrosulfide as described above, lithium hydrosulfide (LiSH) in the reaction solution is produced.
Of high purity lithium sulfide (Li 2 S)
To generate.

【0025】この脱硫化水素化を行う際の反応温度は、
150〜200℃が好ましく、170〜190℃がさら
に好ましい。150℃未満であると反応速度が著しく遅
く、脱硫化水素時間が長くなりプロセス上不経済であ
り、200℃を超えると溶媒の沸点を超える場合があ
り、合成に圧力容器の使用が必要となり不経済である。
The reaction temperature for carrying out this desulfurization hydrogenation is
150-200 degreeC is preferable and 170-190 degreeC is more preferable. If the temperature is lower than 150 ° C, the reaction rate is remarkably slow and the desulfurization time becomes long, which is uneconomical in the process. If the temperature is higher than 200 ° C, the boiling point of the solvent may be exceeded. It is an economy.

【0026】また、反応時間については、0.3〜6時
間が好ましく、0.5〜2時間がさらに好ましい。0.
3時間未満であると反応時間が不足し、製品中に水硫化
リチウムが混在し、硫化リチウムの純度の低下をきた
し、6時間を超えると反応時間が長くなり、反応槽の大
型化につながりプロセス上不経済である。
The reaction time is preferably 0.3 to 6 hours, more preferably 0.5 to 2 hours. 0.
If it is less than 3 hours, the reaction time will be insufficient, and lithium hydrosulfide will be mixed in the product, resulting in a decrease in the purity of lithium sulfide. If it exceeds 6 hours, the reaction time will be long, leading to an increase in the size of the reaction tank. It is uneconomical.

【0027】なお、水硫化リチウムの生成時に副生する
水を留去する目的で、反応容器上部にコンデンサを配置
することが好ましい。水が存在すると反応の進行を妨げ
るとともに得られる硫化リチウムの加水分解反応が起こ
るからである。
A condenser is preferably arranged above the reaction vessel for the purpose of distilling off water produced as a by-product during the production of lithium hydrosulfide. This is because the presence of water hinders the progress of the reaction and causes a hydrolysis reaction of the obtained lithium sulfide.

【0028】2.第二の発明 本願の第二の発明においては、前述のように前記非プロ
トン性有機溶媒中で前記水酸化リチウム(Li2S)を
生成する。従って、この第2の発明においては中間に水
硫化リチウム(LiSH)を生成するという工程を必要
とせず、一工程でLi2Sを生成することができる。
2. Second Invention In the second invention of the present application, the lithium hydroxide (Li 2 S) is produced in the aprotic organic solvent as described above. Therefore, in the second invention, the step of producing lithium hydrosulfide (LiSH) in the middle is not required, and Li 2 S can be produced in one step.

【0029】この場合の反応温度は、150〜200℃
が好ましく170〜190℃がさらに好ましい。150
℃未満であると得られる物質は、水流化リチウムの割合
が増し、硫化リチウムの純度が低下する。200℃を超
えると溶媒によっては沸点を超える場合があり、合成に
圧力容器の使用が必要となり不経済である。
The reaction temperature in this case is 150 to 200 ° C.
Is preferable and 170-190 degreeC is more preferable. 150
In the substance obtained when the temperature is lower than ° C, the proportion of lithium hydrofluoride increases and the purity of lithium sulfide decreases. If the temperature exceeds 200 ° C, the boiling point may be exceeded depending on the solvent, and it is uneconomical to use a pressure vessel for synthesis.

【0030】また、反応時間は、第一の発明における硫
化リチウムの生成の場合と同様で、必要硫化水素量を、
供給する硫化水素が吹き抜けない速度で割って得られる
値以上とすることが好ましい。
The reaction time is the same as in the case of producing lithium sulfide in the first invention, and the required amount of hydrogen sulfide is
It is preferable that the value is equal to or more than the value obtained by dividing by the speed at which the hydrogen sulfide supplied does not blow through.

【0031】なお、用いる原料、反応容器等は、第一の
発明における場合と同様のものを用いることができる。
The same raw materials, reaction vessels and the like as those used in the first invention can be used.

【0032】[0032]

【作用】本願の第一の発明と第二の発明との主な相違
は、第一の発明の脱硫化水素化工程では硫化水素を吹き
込んでいない点にある。換言すれば、下記化1に示す化
学量論式で表わす工程を二工程で行なうか一工程で行な
うかの点にある。
The main difference between the first invention and the second invention of the present application is that hydrogen sulfide is not blown in in the desulfurization and hydrogenation step of the first invention. In other words, there is a point that the step represented by the stoichiometric formula shown in the following chemical formula 1 is performed in two steps or in one step.

【0033】[0033]

【化1】 [Chemical 1]

【0034】本発明によって高純度の硫化リチウムが得
られるのは、第一の発明の場合、前記(1),(2)式
とも平衡反応であり、副生成物,H2OおよびH2Sを系
外に除去することにより、効率よく反応を進めることが
できるからである。第二の発明の場合、第一の発明では
構成が二工程必要であったが、反応温度を制御すること
により、上記(2)式の反応を選択的に行なわせ、一工
程化が可能となり、効率よくLi2Sを得ることができ
るからである。
In the case of the first invention, lithium sulfide of high purity can be obtained by the present invention in the equilibrium reactions of the above formulas (1) and (2), and the by-products, H 2 O and H 2 S. This is because the reaction can be efficiently proceeded by removing the compound out of the system. In the case of the second invention, the constitution requires two steps in the first invention, but by controlling the reaction temperature, the reaction of the above formula (2) can be selectively carried out, and one step can be realized. This is because Li 2 S can be efficiently obtained.

【0035】[0035]

【実施例】以下、本発明を実施例によってさらに具体的
に説明する。 [実施例1]攪拌翼のついた10リットルオートクレー
ブにN−メチル−2−ピロリドン(NMP)3326.
4g(33.6モル)及び水酸化リチウム287.4g
(12モル)を仕込み、300rpm、130℃に昇温
した。昇温後、液中に硫化水素を3リットル/min.
の供給速度で2時間吹き込んだ。この反応液の一部をサ
ンプリングし、硫黄及びLi濃度を定量した。硫黄濃度
はヨードメトリー(サンプル液に希塩酸を加えた後、過
剰のI2 溶液を加え、過剰分のI2 溶液をチオ硫酸ナト
リウム標準溶液で逆滴定する)により分析し、またLi
濃度はイオンクロマトグラムにより分析した。その結
果、硫黄/Li=0.996(モル比)であった。この
結果、LiSHが高純度で得られたことがわかる。続い
て、この反応液を窒素気流下(200cc/min.)
昇温し、反応した硫化水素の一部を脱硫化水素化した。
昇温するにつれ、上記硫化水素と水酸化リチウムの反応
により副生した水が蒸発を始めたが、この水はコンデン
サにより凝縮し系外に抜き出した。水を系外に留去する
とともに反応液の温度は上昇するが、180℃に達した
時点で昇温を停止し、一定温度に保持した。この間の反
応液内の温度と硫黄濃度の関係を下記表1に示した。こ
の結果、約50〜80分間で、脱硫化水素反応が終了
し、Li2Sが高純度で得られたことがわかる。また、
得られたLi2Sは溶媒中180℃下で安定に(約3時
間)存在していることも明らかとなった。
EXAMPLES The present invention will be described in more detail below with reference to examples. [Example 1] N-methyl-2-pyrrolidone (NMP) 3326.N was added to a 10-liter autoclave equipped with a stirring blade.
4 g (33.6 mol) and lithium hydroxide 287.4 g
(12 mol) was charged and the temperature was raised to 130 ° C. at 300 rpm. After the temperature was raised, hydrogen sulfide was added to the liquid at 3 liter / min.
For 2 hours at a feeding rate of A part of this reaction solution was sampled to quantify the sulfur and Li concentrations. The sulfur concentration was analyzed by iodometry (after adding dilute hydrochloric acid to the sample solution, an excess I 2 solution was added, and the excess I 2 solution was back-titrated with a sodium thiosulfate standard solution), and Li
The concentration was analyzed by an ion chromatogram. As a result, it was sulfur / Li = 0.996 (molar ratio). As a result, it can be seen that LiSH was obtained with high purity. Then, this reaction liquid was supplied under a nitrogen stream (200 cc / min.).
The temperature was raised, and a part of the reacted hydrogen sulfide was desulfurized.
As the temperature increased, the water by-produced by the reaction between hydrogen sulfide and lithium hydroxide started to evaporate, but this water was condensed by the condenser and discharged out of the system. Although the temperature of the reaction solution rises as water is distilled out of the system, the temperature rise was stopped at 180 ° C. and the temperature was kept constant. The relationship between the temperature in the reaction solution and the sulfur concentration during this period is shown in Table 1 below. As a result, it can be seen that the desulfurization reaction was completed in about 50 to 80 minutes and Li 2 S was obtained in high purity. Also,
It was also clarified that the obtained Li 2 S existed stably (about 3 hours) at 180 ° C. in the solvent.

【0036】 [表1] ━━━━━━━━━━━━━━━━━━ 反応条件(脱硫黄反応) 分析結果 時間 反応溶液温度 S/Li min. ℃ mol ratio ━━━━━━━━━━━━━━━━━━ 0 130 0.996 25 177 0.776 50 183 0.565 80 181 0.498 110 182 0.499 175 180 0.498 ━━━━━━━━━━━━━━━━━━[0036] [Table 1]                   ━━━━━━━━━━━━━━━━━━                   Reaction conditions (desulfurization reaction) analysis results                     Time Reaction solution temperature S / Li                     min. ℃ mol ratio                   ━━━━━━━━━━━━━━━━━━                       0 130 0.996                     25 177 0.776                     50 183 0.565                     80 181 0.498                   110 182 0.499                   175 180 0.498                   ━━━━━━━━━━━━━━━━━━

【0037】上記反応後は、硫化リチウムが固体として
溶媒中に析出した。冷却後、ガラス製フィルター(G
4)に内容物をあけ減圧濾過した。その後、固形物をN
MPにて3回洗浄し、さらにアセトンで2回洗浄し、乾
燥した後収量を測定した。その結果、仕込みの水酸化リ
チウムが全て硫化リチウムに変換するとした場合の92
%の収量であった。また得られた白色粉末をX線回折し
たところ、試薬(純度:99.8%以上)の硫化リチウ
ムとその回折ピークが全く一致した。
After the above reaction, lithium sulfide was precipitated as a solid in the solvent. After cooling, glass filter (G
The contents were opened in 4) and filtered under reduced pressure. Then, the solid matter is N
It was washed with MP three times, further washed twice with acetone, dried, and then the yield was measured. As a result, 92% of the case where all the charged lithium hydroxide was converted to lithium sulfide
% Yield. When the obtained white powder was subjected to X-ray diffraction, the diffraction peak thereof coincided with that of the reagent (purity: 99.8% or more) of lithium sulfide.

【0038】[実施例2]実施例1と全く同一の反応装
置を用い、NMP3336g(33.7モル)及び水酸
化リチウム479g(20モル)仕込み、300rpm
にて昇温し、内温を190±5℃で保持した。そして硫
化水素を1リットル/min.にて6時間吹き込んだ。
この間、副生する水は実施例1と同様にして留去した。
反応後は、硫化リチウムが固体として溶媒中に析出し
た。冷却後、ガラス製フィルター(G4)に内容物をあ
け減圧濾過した。その後、固形物をNMPにて3回洗浄
し、さらにアセトンで2回洗浄し、乾燥した後収量を測
定した。その結果、仕込みの水酸化リチウムが全て硫化
リチウムに変換するとした場合の90%の収量であっ
た。また得られた白色粉末をX線回折したところ、前記
試薬の硫化リチウムとその回折ピークが全く一致し、さ
らに硫黄/Li=0.505(モル比)であった。この
結果、硫化リチウムが高純度で得られた。
[Example 2] Using exactly the same reactor as in Example 1, charged with 3336 g (33.7 mol) of NMP and 479 g (20 mol) of lithium hydroxide at 300 rpm.
And the internal temperature was maintained at 190 ± 5 ° C. Then, hydrogen sulfide was added at 1 liter / min. I blew it in for 6 hours.
During this period, water produced as a by-product was distilled off in the same manner as in Example 1.
After the reaction, lithium sulfide was precipitated as a solid in the solvent. After cooling, the contents were opened in a glass filter (G4) and filtered under reduced pressure. Then, the solid matter was washed with NMP three times, further washed with acetone twice, and dried to measure the yield. As a result, the yield was 90% when all the charged lithium hydroxide was converted to lithium sulfide. Further, when the obtained white powder was subjected to X-ray diffraction, the diffraction peak thereof coincided completely with that of lithium sulfide of the above-mentioned reagent, and further, sulfur / Li = 0.505 (molar ratio). As a result, lithium sulfide was obtained with high purity.

【0039】[0039]

【発明の効果】以上説明したように本発明によって、簡
易な手段によって高純度の硫化リチウム(Li2S)を
得ることができる。また、第一の発明においては短時間
の反応時間にて効率よく硫化リチウムを得ることがで
き、第二の発明においては一つの工程のみで効率よく硫
化リチウムを得ることができるという効果を併せて発揮
する。
As described above, according to the present invention, high purity lithium sulfide (Li 2 S) can be obtained by a simple means. In addition, in the first invention, lithium sulfide can be efficiently obtained in a short reaction time, and in the second invention, lithium sulfide can be efficiently obtained in only one step. Demonstrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造工程の流れを模式的に示す工程図
である。
FIG. 1 is a process chart schematically showing a flow of manufacturing process of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01B 17/28 C08G 75/00 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) C01B 17/28 C08G 75/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 0〜150℃において、非プロトン性有
機溶媒中に硫化水素を吹き込みながら水酸化リチウムと
硫化水素とを反応させて水硫化リチウムを生成し、 次いで、150〜200℃において、硫化水素を吹き込
まないでこの反応液を脱硫化水素化して硫化リチウムを
生成することを特徴とする硫化リチウムの製造方法。
1. Lithium hydroxide and hydrogen sulfide are reacted with each other by blowing hydrogen sulfide into an aprotic organic solvent at 0 to 150 ° C. to produce lithium hydrosulfide, and then at 150 to 200 ° C. A method for producing lithium sulfide, which comprises dehydrosulfurizing this reaction liquid without blowing hydrogen to produce lithium sulfide.
【請求項2】 前記水硫化リチウムの生成時に、副生す
る水を留去することを特徴とする請求項1記載の硫化リ
チウムの製造方法。
2. The method for producing lithium sulfide according to claim 1, wherein by-product water is distilled off when the lithium hydrosulfide is produced.
【請求項3】 150〜200℃において、非プロトン
性有機溶媒中で水酸化リチウムと硫化水素とを反応さ
せ、直接硫化リチウムを生成することを特徴とする硫化
リチウムの製造方法
3. A method for producing lithium sulfide, which comprises reacting lithium hydroxide with hydrogen sulfide in an aprotic organic solvent at 150 to 200 ° C. to directly produce lithium sulfide .
JP14533994A 1994-06-03 1994-06-03 Method for producing lithium sulfide Expired - Lifetime JP3528866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14533994A JP3528866B2 (en) 1994-06-03 1994-06-03 Method for producing lithium sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14533994A JP3528866B2 (en) 1994-06-03 1994-06-03 Method for producing lithium sulfide

Publications (2)

Publication Number Publication Date
JPH07330312A JPH07330312A (en) 1995-12-19
JP3528866B2 true JP3528866B2 (en) 2004-05-24

Family

ID=15382892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14533994A Expired - Lifetime JP3528866B2 (en) 1994-06-03 1994-06-03 Method for producing lithium sulfide

Country Status (1)

Country Link
JP (1) JP3528866B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047977A1 (en) 2007-10-11 2009-04-16 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte
WO2013042371A1 (en) 2011-09-22 2013-03-28 出光興産株式会社 Glass particles

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3510420B2 (en) * 1996-04-16 2004-03-29 松下電器産業株式会社 Lithium ion conductive solid electrolyte and method for producing the same
JP3816141B2 (en) * 1996-04-16 2006-08-30 古河機械金属株式会社 Method for producing lithium sulfide
JP3872846B2 (en) * 1996-10-28 2007-01-24 出光興産株式会社 Method for producing lithium sulfide and method for producing polyarylene sulfide
DE10008161A1 (en) * 1999-02-25 2000-08-31 Idemitsu Petrochemical Co Anhydrous alkali metal sulfide production, useful e.g. in synthesis of poly(arylene sulfide) or pharmaceuticals, by reacting hydroxide with hydrogen sulfide in aprotic solvent
JP4252657B2 (en) * 1999-02-25 2009-04-08 出光興産株式会社 Method for producing anhydrous alkali metal sulfide
JP2000319009A (en) * 1999-03-08 2000-11-21 Idemitsu Petrochem Co Ltd Separation of non-lithium hydroxide solid material
JP2002265602A (en) * 2001-03-12 2002-09-18 Idemitsu Petrochem Co Ltd Method for producing polyaryrene sulfide having stable quality
JP2002293515A (en) * 2001-03-30 2002-10-09 Idemitsu Petrochem Co Ltd Production method of lithium hydrosulfide
JP5495472B2 (en) * 2003-05-30 2014-05-21 日本化学工業株式会社 Lithium sulfide powder and inorganic solid electrolyte
CN1871177B (en) * 2003-10-23 2010-12-22 出光兴产株式会社 Method for purifying lithium sulfide
JP4813767B2 (en) * 2004-02-12 2011-11-09 出光興産株式会社 Lithium ion conductive sulfide crystallized glass and method for producing the same
JP4833539B2 (en) * 2004-11-26 2011-12-07 日本化学工業株式会社 Lithium sulfide particle powder, method for producing the same, and inorganic solid electrolyte
JPWO2007066539A1 (en) 2005-12-09 2009-05-14 出光興産株式会社 Lithium ion conductive sulfide-based solid electrolyte and all-solid-state lithium battery using the same
JP5448038B2 (en) 2009-02-27 2014-03-19 公立大学法人大阪府立大学 Sulfide solid electrolyte material
JP5599573B2 (en) 2009-04-10 2014-10-01 出光興産株式会社 Glass and lithium battery comprising solid electrolyte particles
JP5287739B2 (en) 2009-05-01 2013-09-11 トヨタ自動車株式会社 Solid electrolyte material
JP5590836B2 (en) 2009-09-09 2014-09-17 公立大学法人大阪府立大学 Sulfide solid electrolyte
JP5168269B2 (en) 2009-11-25 2013-03-21 トヨタ自動車株式会社 Li ion conductive material and lithium battery
JP5141675B2 (en) 2009-12-16 2013-02-13 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery
CN103052995B (en) 2010-08-05 2016-07-13 丰田自动车株式会社 The manufacture method of sulfide solid electrolyte glass, lithium solid state battery and sulfide solid electrolyte glass
JP5729940B2 (en) * 2010-08-13 2015-06-03 出光興産株式会社 Solid electrolyte glass and method for producing the same
JP5349427B2 (en) 2010-08-26 2013-11-20 トヨタ自動車株式会社 Sulfide solid electrolyte material, positive electrode body and lithium solid state battery
JP5521899B2 (en) 2010-08-26 2014-06-18 トヨタ自動車株式会社 Sulfide solid electrolyte material and lithium solid state battery
KR20140003514A (en) 2011-01-27 2014-01-09 이데미쓰 고산 가부시키가이샤 Composite material of alkali metal sulfide and conducting agent
JP5708467B2 (en) 2011-03-18 2015-04-30 トヨタ自動車株式会社 Slurry, solid electrolyte layer manufacturing method, electrode active material layer manufacturing method, and all solid state battery manufacturing method
JP5708233B2 (en) 2011-05-18 2015-04-30 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte material and sulfide solid electrolyte material
JP5443445B2 (en) 2011-07-06 2014-03-19 トヨタ自動車株式会社 Sulfide solid electrolyte material, lithium solid battery, and method for producing sulfide solid electrolyte material
JP5445527B2 (en) 2011-07-13 2014-03-19 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte material
JP6234665B2 (en) 2011-11-07 2017-11-22 出光興産株式会社 Solid electrolyte
JP6203474B2 (en) 2011-11-24 2017-09-27 出光興産株式会社 Electrode material, electrode and lithium ion battery using the same
JP5847024B2 (en) * 2012-06-15 2016-01-20 出光興産株式会社 Method for producing alkali metal sulfide
JP6243103B2 (en) 2012-06-29 2017-12-06 出光興産株式会社 Positive electrode composite
WO2014073197A1 (en) 2012-11-06 2014-05-15 出光興産株式会社 Solid electrolyte
JP5757284B2 (en) 2012-12-27 2015-07-29 トヨタ自動車株式会社 Sulfide solid electrolyte material, lithium solid battery, and method for producing sulfide solid electrolyte material
CN105122519B (en) * 2013-01-18 2019-04-09 株式会社村田制作所 Electrode composite material, the method and secondary cell for being used to prepare composite material
JP2014169196A (en) * 2013-03-01 2014-09-18 Nippon Chem Ind Co Ltd Method of producing lithium sulfide and method of producing inorganic solid electrolyte
EP2983231A4 (en) 2013-04-02 2017-04-12 Idemitsu Kosan Co., Ltd. Composite material
JP6259617B2 (en) 2013-04-24 2018-01-10 出光興産株式会社 Method for producing solid electrolyte
WO2014192309A1 (en) 2013-05-31 2014-12-04 出光興産株式会社 Production method of solid electrolyte
JP5673760B1 (en) 2013-09-13 2015-02-18 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte
JP6415448B2 (en) * 2013-11-22 2018-10-31 出光興産株式会社 Method for producing modified metal sulfide
JP6265079B2 (en) * 2014-08-01 2018-01-24 トヨタ自動車株式会社 Method for recovering positive electrode active material of sulfide solid state battery
EP3214054A4 (en) 2014-10-31 2018-07-18 Idemitsu Kosan Co., Ltd Sulfide glass and crystalline solid electrolyte production method, crystalline solid electrolyte, sulfide glass and solid-state battery
KR101684130B1 (en) 2015-06-16 2016-12-07 현대자동차주식회사 Preparing method of lithium ion conductive sulfide, lithium ion conductive sulfide made by the same, and solid electrolyte, all solid battery comprising the same
JP6320983B2 (en) 2015-12-01 2018-05-09 出光興産株式会社 Method for producing sulfide glass ceramics
EP3432320B1 (en) 2016-03-14 2023-05-31 Idemitsu Kosan Co.,Ltd. Solid electrolyte and method for producing solid electrolyte
KR101886036B1 (en) 2016-08-22 2018-08-07 한국과학기술연구원 Preparation method of sulfide-based solid electrolyte having excellent air-stable proprety
JP6945382B2 (en) 2016-09-08 2021-10-06 出光興産株式会社 Sulfide solid electrolyte
CN112652810A (en) 2016-09-12 2021-04-13 出光兴产株式会社 Sulfide solid electrolyte
CN115458802A (en) 2016-11-16 2022-12-09 出光兴产株式会社 Sulfide solid electrolyte
CN110073536B (en) 2016-12-14 2022-10-28 出光兴产株式会社 Method for producing sulfide solid electrolyte
CN110870125A (en) * 2017-01-31 2020-03-06 塞斯欧化学制品有限公司 Method for producing hygroscopic alkali metal salt electrolyte solution
EP3637442A4 (en) 2017-06-09 2021-03-17 Idemitsu Kosan Co.,Ltd. Method for producing sulfide solid electrolyte
EP3667800A4 (en) 2017-08-10 2021-05-12 Idemitsu Kosan Co.,Ltd. Sulfide solid electrolyte
CN112744843B (en) * 2020-12-31 2021-09-10 北京化学试剂研究所有限责任公司 Synthesis method of battery-grade lithium sulfide and battery-grade lithium sulfide
CN113929061A (en) * 2021-10-12 2022-01-14 深圳高能时代科技有限公司 Method for recovering lithium nitride waste
CN114394608A (en) * 2022-01-17 2022-04-26 深圳先进技术研究院 Preparation method of lithium sulfide
KR102495178B1 (en) * 2022-05-25 2023-02-06 주식회사 정석케미칼 Manufacturing method of high-purity lithium sulfide through wet and dry processes
KR102562588B1 (en) * 2023-01-19 2023-08-02 주식회사 정석케미칼 Manufacturing method of high purity lithium sulfide using mixed organic solvent
KR102562589B1 (en) * 2023-01-20 2023-08-02 주식회사 정석케미칼 Manufacturing method of high-purity lithium sulfide through wet and dry circulation processes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047977A1 (en) 2007-10-11 2009-04-16 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte
WO2013042371A1 (en) 2011-09-22 2013-03-28 出光興産株式会社 Glass particles

Also Published As

Publication number Publication date
JPH07330312A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
JP3528866B2 (en) Method for producing lithium sulfide
EP0658587B1 (en) Process for manufacturing polyarylene sulfide
US6538102B1 (en) Method for producing sulfur-containing polymers
JP4252657B2 (en) Method for producing anhydrous alkali metal sulfide
US6337062B1 (en) Method for the production of anhydrous alkali metal sulfide and alkali metal sulfide solution
JP3490195B2 (en) Method for producing polyarylene sulfide
CN115215306B (en) Preparation method and preparation equipment of high-purity dichloro sulfonyl imide
JPH05279003A (en) Production of lithium hexafluorophosphate
US8454929B2 (en) Continuous process for preparation of calcium thiosulfate liquid solution
CA1229218A (en) Process for producing silane
JP5847024B2 (en) Method for producing alkali metal sulfide
JP3872846B2 (en) Method for producing lithium sulfide and method for producing polyarylene sulfide
JPH05501396A (en) Method for continuous production of chemical fertilizer salts with strontium derivatives and gypsum derivatives
JP3177755B2 (en) Method for producing lithium N-methylaminobutyrate
CN110759362B (en) Composition containing lithium hexafluorophosphate crystal and water
JP3528865B2 (en) Method for producing polyarylene sulfide
CN101993100B (en) Silicon tetrafluoride byproduct separation process
JP2002293515A (en) Production method of lithium hydrosulfide
US6503473B1 (en) Process for separating solid compound other than lithium hydroxide
JPH07207027A (en) Production of polyarylene sulfide
JP3490137B2 (en) Method for producing polyarylene sulfide
JP2000319009A (en) Separation of non-lithium hydroxide solid material
CN1119625A (en) Method for preparation of potassium sulfate by sodium sulfate method
CN1084299C (en) Potassium sulfate producing process of mixing and directly heating potassium chloride and ammonium sulfate
CN1044604C (en) Preparation of n-(2-sulfatoethyl) piperazin with high purity

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

EXPY Cancellation because of completion of term