JPH05279003A - Production of lithium hexafluorophosphate - Google Patents

Production of lithium hexafluorophosphate

Info

Publication number
JPH05279003A
JPH05279003A JP10889092A JP10889092A JPH05279003A JP H05279003 A JPH05279003 A JP H05279003A JP 10889092 A JP10889092 A JP 10889092A JP 10889092 A JP10889092 A JP 10889092A JP H05279003 A JPH05279003 A JP H05279003A
Authority
JP
Japan
Prior art keywords
lithium
phosphorus
hydrogen fluoride
fluoride
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10889092A
Other languages
Japanese (ja)
Inventor
Yoshiharu Mochida
好晴 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morita Kagaku Kogyo Co Ltd
Original Assignee
Morita Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morita Kagaku Kogyo Co Ltd filed Critical Morita Kagaku Kogyo Co Ltd
Priority to JP10889092A priority Critical patent/JPH05279003A/en
Publication of JPH05279003A publication Critical patent/JPH05279003A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/005Lithium hexafluorophosphate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To inexpensively produce high-purity lithium hexafluorophosphate to be used as an electrolyte for a lithium cell without forming lithium oxyfluoride as the source of an acidic substance, without using phosphorus pentafluoride and with a simple process. CONSTITUTION:Phosphorus pentachloride is allowed to react with hydrogen fluoride, the generated gaseous mixture of phosphorus pentafluoride and hydrogen chloride is passed through a trap cooled by dry ice-acetone and cooled to -40 to -84 deg.C, and phosphorus oxyfluoride is separated and removed. The gas is then introduced into hydrogen fluoride dissolving lithium fluoride to produce lithium hexafluorophosphate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高純度の6フッ化リン
酸リチウムを製造する方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing high-purity lithium hexafluorophosphate.

【0002】[0002]

【従来の技術、発明が解決しようとする課題】6フッ化
リン酸リチウムは、リチウム電池の電解質として重要な
物質である。現在、リチウム電池に大量に使用されてい
る過塩素酸リチウムは、危険性が指摘され、より安全な
電解質の開発が急がれている。6フッ化リン酸リチウム
は、極めて安全性が高く、優れた物性を有しており、特
にリチウム2次電池には不可欠の物質と目されている。
2. Description of the Related Art Lithium hexafluorophosphate is an important substance as an electrolyte for lithium batteries. At present, lithium perchlorate, which is used in large amounts in lithium batteries, has been pointed out to be dangerous, and the development of safer electrolytes has been urgently needed. Lithium hexafluorophosphate has extremely high safety and excellent physical properties, and is regarded as an indispensable substance especially for lithium secondary batteries.

【0003】この6フッ化リン酸リチウムは従来、フッ
化水素中に塩化リチウムを溶解し、これに5塩化リンを
加えて製造されている[Fluorine Chemistry Vol.1(195
0)]。この方法は、吸湿性の強い5塩化リンを、直接フ
ッ化水素中に投入するため、5塩化リンに含まれている
水分と、投入時に空気中から吸取った水分とが入り、製
品中に加水分解しやすいLiPOF4のようなリチウムオキシ
フルオライドが生じて混入し、リチウム電池の電解質と
して使用しようとしても、電解液中の微量の水分で加水
分解し酸性物質を生じ、電解液を損ねるため、リチウム
電池の電解質として使用できない。
This lithium hexafluorophosphate is conventionally produced by dissolving lithium chloride in hydrogen fluoride and adding phosphorus pentachloride to it [Fluorine Chemistry Vol. 1 (195
0)]. In this method, phosphorus pentachloride having a strong hygroscopic property is directly charged into hydrogen fluoride, so that the water contained in phosphorus pentachloride and the water absorbed from the air at the time of charging enter the product. Lithium oxyfluoride such as LiPOF 4 , which is easily hydrolyzed, is mixed and mixed, and even if it is used as an electrolyte of a lithium battery, it is hydrolyzed by a trace amount of water in the electrolytic solution to generate an acidic substance, which damages the electrolytic solution , Cannot be used as an electrolyte in lithium batteries.

【0004】また、フッ化リチウムと5フッ化リンとの
反応によっても製造されている(例えば米国特許第3,60
7,020 号明細書、特開昭64-72901号) 。この方法は、上
記のような水分の混入による悪影響は少ないが、5フッ
化リンは気体であり、取扱にボンベが必要である。加え
て、5フッ化リンは製法が複雑である。例えば特公昭49
-33277号によれば、フッ化カルシウムとリン酸, 無水硫
酸を高温で反応させ、生成物から分離精製して5フッ化
リンを製造している。更に、特公昭50-13760号によれ
ば、6フッ化リン酸溶液に無水硫酸を作用させ、精製し
て5フッ化リンを製造している。このため、5フッ化リ
ンは高価となり、高価な5フッ化リンを用いなければな
らないことが6フッ化リン酸リチウムを高価なものにし
ている。
It is also produced by the reaction of lithium fluoride with phosphorus pentafluoride (eg US Pat. No. 3,60).
7,020, JP 64-72901). Although this method has little adverse effect due to the mixing of water as described above, phosphorus pentafluoride is a gas and requires a cylinder for handling. In addition, the manufacturing method of phosphorus pentafluoride is complicated. For example, Japanese Patent Publication Sho 49
According to No. 33277, calcium fluoride is reacted with phosphoric acid and sulfuric anhydride at a high temperature, and the product is separated and purified to produce phosphorus pentafluoride. Further, according to Japanese Examined Patent Publication No. 50-13760, phosphoric acid pentafluoride is produced by reacting a solution of phosphoric acid hexafluoride with sulfuric anhydride. Therefore, phosphorus pentafluoride becomes expensive, and the fact that expensive phosphorus pentafluoride must be used makes lithium hexafluorophosphate expensive.

【0005】本発明は、従来法における反応系内に水分
が混入し、酸性物質を生じる原因となる、リチウム電池
の電解質として好ましくないリチウムオキシフルオライ
ドが生成するという問題点を解決し、しかも高価で取扱
の困難な5フッ化リンを使用することのない簡単な工程
で、高純度の6フッ化リン酸リチウムを安価に製造する
方法を提供することを目的とするものである。
The present invention solves the problem in the prior art of producing lithium oxyfluoride, which is unfavorable as the electrolyte of a lithium battery, which causes the generation of acidic substances by mixing water into the reaction system and is expensive. It is an object of the present invention to provide a method for inexpensively producing high-purity lithium hexafluorophosphate by a simple process that does not use phosphorus pentafluoride, which is difficult to handle.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、5塩化リンとフッ化水素との反応によ
り生じたガスを、−40〜−84℃に冷却しオキシフッ
化リンを除去した後、フッ化リチウムを溶解したフッ化
水素中に導入する。
In order to achieve the above object, in the present invention, the gas generated by the reaction of phosphorus pentachloride and hydrogen fluoride is cooled to -40 to -84 ° C to remove phosphorus oxyfluoride. After that, lithium fluoride is introduced into dissolved hydrogen fluoride.

【0007】本発明の方法を更に具体的に説明すると、
5塩化リンとフッ化水素とを反応させ、生じた5フッ化
リンと塩化水素の混合ガスを、例えばドライアイス−ア
セトン、または液体窒素で冷却したトラップを通して−
40〜−84℃に冷却し、オキシフッ化リンを除去した
後、あらかじめフッ化リチウムを溶解したフッ化水素中
に導入することにより、6フッ化リン酸リチウムを製造
しようとするものである。
The method of the present invention will be described more specifically as follows.
Phosphorus pentachloride and hydrogen fluoride are reacted, and the resulting mixed gas of phosphorus pentafluoride and hydrogen chloride is passed through, for example, dry ice-acetone or a trap cooled with liquid nitrogen.
After cooling to 40 to −84 ° C. to remove phosphorus oxyfluoride, lithium hexafluorophosphate is produced by introducing it into hydrogen fluoride in which lithium fluoride is dissolved in advance.

【0008】[0008]

【作用】5塩化リンとフッ化水素とは室温でほぼ定量的
に反応し、少量の不純成分を含む5フッ化リンと塩化水
素の混合ガスを生じる。そして、この際、5フッ化リン
の一部が5塩化リン中に含まれる水分により、POF3のよ
うなオキシフッ化リンとなる。このオキシフッ化リンな
る物質は沸点が−39.4℃、融点が−39.8℃であり、5フ
ッ化リンの沸点の−84.8℃との差が大きく、冷却により
簡単に分離できるから、5 塩化リンとフッ化水素とを反
応させることにより生じた5フッ化リンと塩化水素の混
合ガスを−40〜−84℃に冷却し、オキシフッ化リン
を除去する。そして、フッ化リチウムを溶解したフッ化
水素中にこのガスを導入することにより、高純度の6フ
ッ化リン酸リチウムを製造することができる。
Function: Phosphorus pentachloride and hydrogen fluoride react almost quantitatively at room temperature to produce a mixed gas of phosphorus pentafluoride and hydrogen chloride containing a small amount of impure components. Then, at this time, a part of phosphorus pentafluoride becomes phosphorus oxyfluoride such as POF 3 due to the water content contained in phosphorus pentachloride. This substance, which is phosphorus oxyfluoride, has a boiling point of -39.4 ° C and a melting point of -39.8 ° C, a large difference from the boiling point of phosphorus pentafluoride of -84.8 ° C, and can be easily separated by cooling. A mixed gas of phosphorus pentafluoride and hydrogen chloride produced by reacting with hydrogen fluoride is cooled to -40 to -84 ° C to remove phosphorus oxyfluoride. Then, by introducing this gas into hydrogen fluoride in which lithium fluoride is dissolved, high-purity lithium hexafluorophosphate can be manufactured.

【0009】本発明は、上述したように5塩化リンとフ
ッ化水素が室温でほぼ定量的に反応し、5フッ化リンと
塩化水素の混合ガスを発生することを見出したこと、及
び、この際、5フッ化リンの一部が5塩化リン中に含ま
れる水分により、POF3のようなオキシフッ化リンとなる
が、この物質は沸点が−39.4℃、融点が−39.8℃であ
り、5フッ化リンの沸点の−84.8℃との差が大きく、冷
却により簡単に分離できることに基づくものであり、新
たに見出したこの事実を6フッ化リン酸リチウムを製造
する場合に活用し、酸性物質を生じる原因となるリチウ
ムオキシフルオライドを生成させることなく、しかも、
5フッ化リンを使用することのない簡単な工程で、高純
度の6フッ化リン酸リチウムを安価に製造しようとする
ものである。
As described above, the present invention has found that phosphorus pentachloride and hydrogen fluoride react substantially quantitatively at room temperature to generate a mixed gas of phosphorus pentafluoride and hydrogen chloride, and At this time, a part of phosphorus pentafluoride becomes phosphorus oxyfluoride such as POF 3 due to the water contained in phosphorus pentachloride, but this substance has a boiling point of -39.4 ° C and a melting point of -39.8 ° C. This is based on the fact that the difference in boiling point of phosphorus fluoride from -84.8 ° C is large and that it can be easily separated by cooling, and this newly found fact is utilized in the production of lithium hexafluorophosphate to produce acidic substances. Without producing lithium oxyfluoride, which causes
It is intended to inexpensively produce high-purity lithium hexafluorophosphate by a simple process that does not use phosphorus pentafluoride.

【0010】本発明において、5塩化リンとフッ化水素
との反応により生じたガスの冷却温度を−40〜−84
℃とした理由は、次の通りである。すなわち、このガス
の冷却温度を−40℃より高くすると、POF3のような不
純物を分離し切れず、例えば反応容器にまで達してしま
い、得られる6フッ化リン酸リチウムの純度が低くなり
過ぎ、逆に、上記ガスの冷却温度を−84℃より低くす
ると、このガスの主な組成である5フッ化リンと塩化水
素とが例えばトラップのようなものに凝縮し、いずれも
好ましくない結果を生じるからである。上記ガスを−8
4℃より低くした場合に5フッ化リンと塩化水素とがい
ずれも凝縮するのは、5フッ化リンの沸点が−84.8℃、
塩化水素の沸点が−84.9℃であるからである。従って、
5塩化リンとフッ化水素との反応により生じたガスの冷
却温度は、−40〜−84℃とすべきである。
In the present invention, the cooling temperature of the gas produced by the reaction between phosphorus pentachloride and hydrogen fluoride is -40 to -84.
The reason why the temperature is set to ° C is as follows. That is, when the cooling temperature of this gas is higher than −40 ° C., impurities such as POF 3 cannot be completely separated and reach the reaction vessel, for example, and the purity of lithium hexafluorophosphate obtained is too low. On the contrary, when the cooling temperature of the gas is lower than −84 ° C., phosphorus pentafluoride and hydrogen chloride, which are the main compositions of this gas, are condensed into something like a trap, which is not preferable. Because it will occur. -8 above gas
When the temperature is lower than 4 ° C, both phosphorus pentafluoride and hydrogen chloride are condensed because the boiling point of phosphorus pentafluoride is -84.8 ° C.
This is because the boiling point of hydrogen chloride is -84.9 ° C. Therefore,
The cooling temperature of the gas generated by the reaction of phosphorus pentachloride and hydrogen fluoride should be -40 to -84 ° C.

【0011】本発明の目的、構成、作用は以上の通りで
あるが、以下に本発明の好適な例をその作用等とともに
詳しく説明する。
The object, structure and operation of the present invention are as described above, and preferred examples of the present invention will be described in detail below together with their operation and the like.

【0012】6フッ化リン酸リチウムの製造は、水分の
混入を避けるため、完全密閉の容器で行う必要がある。
フッ化リチウムを溶解したフッ化水素を入れた容器(以
下反応容器という)の中へ、直接固体の5塩化リンを投
入するのは、前述のように反応系内に水分が入るほか
に、5塩化リンが、空気中の水分を吸収し投入口で固化
したり、反応容器内にあるフッ化水素ガスと投入口で反
応し、毒性の強い5フッ化リンと塩化水素ガスが発生
し、投入口から噴出する等好ましからざる現象が起こ
る。
The production of lithium hexafluorophosphate must be carried out in a completely sealed container in order to avoid mixing of water.
Solid phosphorus pentachloride is directly charged into a container (hereinafter referred to as a reaction container) containing hydrogen fluoride in which lithium fluoride is dissolved, in addition to water entering the reaction system as described above. Phosphorus chloride absorbs water in the air and solidifies at the input port, or reacts with hydrogen fluoride gas in the reaction vessel at the input port, generating highly toxic phosphorus pentafluoride and hydrogen chloride gas and inputting. Undesirable phenomena such as gushing from the mouth occur.

【0013】本発明の方法による場合は、5塩化リンの
吸湿に特に留意する必要はないが、5塩化リンとフッ化
水素とを反応させる容器(以下ガス化容器という)は、
フッ化水素を導入するまでは単なる空容器であり、5塩
化リンを乾燥した状態でこの容器に入れることは簡単で
ある。ガス化容器に導入するフッ化水素は、液体または
気体のいずれでもよく、ガス化容器から反応容器へも気
体が流れるのみで、ともに密閉は簡単である。5塩化リ
ンをステンレス,ハステロイなどの耐食性材料で作られ
た容器(ガス化容器)に入れ、密閉する。
In the case of the method of the present invention, it is not necessary to pay particular attention to the absorption of phosphorus pentachloride, but the container for reacting phosphorus pentachloride and hydrogen fluoride (hereinafter referred to as gasification container) is
It is a mere empty container until hydrogen fluoride is introduced, and it is easy to put phosphorus pentachloride in this container in a dry state. The hydrogen fluoride introduced into the gasification container may be either liquid or gas, and only gas flows from the gasification container to the reaction container, and both are easily sealed. Phosphorus pentachloride is placed in a container (gasification container) made of a corrosion-resistant material such as stainless steel and Hastelloy, and then sealed.

【0014】この容器に取り付けられた導管を通してフ
ッ化水素を導入する。この場合、フッ化水素は液状でも
ガス状でもよいが、フッ化水素中の水分を減らす意味
で、気化して吹き込むのが好ましい。反応は、常温から
始めるが、反応熱により徐々に温度が上昇する。特に温
度を調節する必要はないが、生成ガスの冷却を効率よく
行うため、冷却するかフッ化水素の量を加減して50℃
程度迄に押さえる。フッ化水素の導入と殆ど同時にガス
が発生する。このガスは、少量の不純成分と未反応のフ
ッ化水素を含む5フッ化リンと塩化水素の混合ガスであ
る。
Hydrogen fluoride is introduced through a conduit attached to this vessel. In this case, hydrogen fluoride may be liquid or gaseous, but it is preferable to vaporize and blow it in order to reduce the water content in the hydrogen fluoride. The reaction starts at room temperature, but the temperature gradually rises due to the heat of reaction. There is no particular need to adjust the temperature, but in order to cool the produced gas efficiently, cool it or adjust the amount of hydrogen fluoride to 50 ° C.
Hold down to a certain degree. Gas is generated almost simultaneously with the introduction of hydrogen fluoride. This gas is a mixed gas of phosphorus pentafluoride and hydrogen chloride containing a small amount of impurities and unreacted hydrogen fluoride.

【0015】不純成分の内、特にオキシフッ化リンを除
くために、ガス化容器と反応容器をつなぐ導管の間にコ
ールドトラップを設け、この混合ガスを冷却する。コー
ルドトラップは、POF3の融点である−39.8℃以下に冷却
するために、例えばドライアイス−アセトンの混合溶液
につける。冷却温度は、−40〜−84℃で充分であ
る。冷却により固化する成分とガスの分離をよくするた
め、トラップ内に充填物を入れてもよい。上記混合ガス
を−40〜−84℃に冷却したとき、このトラップ内に
白色の粉体がたまる。この粉体をフッ化水素中でフッ化
リチウムと反応させると、水溶液中で強い酸性を示すLi
POF4を生成する。このことから、上記混合ガスを−40
〜−84℃に冷却することにより、オキシフッ化リンが
簡単に分離されたことが分る。
A cold trap is provided between the gasification vessel and the reaction vessel to cool the mixed gas in order to remove phosphorus oxyfluoride among the impure components. The cold trap is attached to, for example, a mixed solution of dry ice-acetone in order to cool it to a melting point of POF 3 of −39.8 ° C. or lower. A cooling temperature of -40 to -84 ° C is sufficient. A filling material may be placed in the trap in order to improve the separation of the gas and the component solidified by cooling. When the mixed gas is cooled to −40 to −84 ° C., white powder accumulates in this trap. When this powder is reacted with lithium fluoride in hydrogen fluoride, Li which shows strong acidity in aqueous solution
Generate POF 4 . From this, the mixed gas is -40
It can be seen that the phosphorus oxyfluoride was easily separated by cooling to ~ -84 ° C.

【0016】このようにして不純成分を除いた5フッ化
リンと塩化水素の混合ガスを、フッ化リチウムを溶解し
たフッ化水素の入った反応容器に導入する。電池の電解
質としての6フッ化リン酸リチウムには、鉄などの微量
の不純物は好ましくない。従って、反応容器は耐食性に
優れたフッ素樹脂製とするのがよい。反応容器は、混合
ガスの導入口と反応にあずからない塩化水素の排出口以
外は密閉されていて、外部から水分が入ることはない。
Thus, the mixed gas of phosphorus pentafluoride and hydrogen chloride from which the impure components have been removed is introduced into a reaction vessel containing hydrogen fluoride in which lithium fluoride is dissolved. Trace amounts of impurities such as iron are not preferable for lithium hexafluorophosphate as a battery electrolyte. Therefore, the reaction vessel is preferably made of a fluororesin having excellent corrosion resistance. The reaction container is closed except for the inlet for introducing the mixed gas and the outlet for hydrogen chloride which does not participate in the reaction, and moisture does not enter from the outside.

【0017】フッ化水素は、フッ化リチウム1部に対し
5〜50部を使用する。フッ化リチウムは、必ずしもフ
ッ化水素に完全に溶解している必要はなく、懸濁状態で
もよいが、容器の底に沈澱するのは好ましくない。沈澱
を避けるには、溶解度の範囲内がよい。また、あまり希
薄過ぎると6フッ化リン酸リチウムの結晶を析出させる
のに、多量のフッ化水素を留去せねばならず不経済であ
る。それにはフッ化水素を10〜30部用いるのが好ま
しい。フッ化水素は、通常10ppm 程度の水分を含む
が、そのまま使用できる。もし、必要ならば、精留して
更に水分を除くことも可能である。
Hydrogen fluoride is used in an amount of 5 to 50 parts with respect to 1 part of lithium fluoride. Lithium fluoride does not necessarily have to be completely dissolved in hydrogen fluoride and may be in a suspended state, but it is not preferable to settle at the bottom of the container. In order to avoid precipitation, the solubility should be within the range. On the other hand, if it is too dilute, a large amount of hydrogen fluoride must be distilled off in order to precipitate lithium hexafluorophosphate crystals, which is uneconomical. For that purpose, it is preferable to use 10 to 30 parts of hydrogen fluoride. Hydrogen fluoride usually contains about 10 ppm of water, but can be used as it is. If necessary, rectification can be carried out to further remove water.

【0018】反応容器の温度は、フッ化水素の沸点であ
る19.5℃以下に保つ必要があるが、0〜−10℃が好ま
しい。−20℃以下ではフッ化水素の使用量如何によ
り、反応途中で6フッ化リン酸リチウムが晶出し、未反
応のフッ化リチウムを包含し製品の純度を下げる恐れが
ある。
The temperature of the reaction vessel must be kept below 19.5 ° C, which is the boiling point of hydrogen fluoride, but is preferably 0 to -10 ° C. At −20 ° C. or less, depending on the amount of hydrogen fluoride used, lithium hexafluorophosphate may crystallize during the reaction, and unreacted lithium fluoride may be contained, resulting in a reduction in the purity of the product.

【0019】5塩化リンは、フッ化リチウム1モルに対
し、1.05〜1.5 モル好ましくは1.1〜1.2 モルがよい。
これは、5塩化リンに含まれる水分を配慮し、未反応の
フッ化リチウムが残存するのを防ぐためである。
Phosphorus pentachloride is 1.05 to 1.5 mol, preferably 1.1 to 1.2 mol, per mol of lithium fluoride.
This is because the water contained in phosphorus pentachloride is taken into consideration and unreacted lithium fluoride is prevented from remaining.

【0020】反応終了後、溶液の温度を0〜20℃に保
ちながら窒素ガスを通し、フッ化水素を留去し、1/2 〜
1/5 に濃縮した後、0〜−20℃に冷却する。生成した
結晶を濾過し、40〜80℃の窒素を通し完全にフッ化
水素を除去すると、加水分解により生成する酸性物質が
きわめて少ない高純度の6フッ化リン酸リチウムが得ら
れる。
After completion of the reaction, nitrogen gas was passed through while keeping the temperature of the solution at 0 to 20 ° C. to distill off hydrogen fluoride,
After concentrating to 1/5, cool to 0-20 ° C. The formed crystals are filtered, and hydrogen fluoride is completely removed by passing nitrogen at 40 to 80 ° C. to obtain high-purity lithium hexafluorophosphate containing very few acidic substances produced by hydrolysis.

【0021】[0021]

【実施例】以下、本発明の実施例を比較例とともに説明
する。
EXAMPLES Examples of the present invention will be described below together with comparative examples.

【0022】実施例1 ガス吹き込み口、ガス出口および攪拌機を備えた10L の
フッ素樹脂製反応容器に、フッ化リチウム250gを溶解し
たフッ化水素5kgを入れ−5℃に冷却し、フッ化リチウ
ムの1.2 倍モルに相当する、2.4kg の5塩化リンを入れ
たガス化容器に、別に用意した容器のフッ化水素を気化
させて通した。そして、生じた5フッ化リンと塩化水素
の混合ガスを、ドライアイス−アセトン浴に浸したコー
ルドトラップで−50℃に冷却したのち、ガス吹き込み
口から導入した。トラップには少量の白色の粉末がたま
った。5塩化リンが完全に消費されたのち、反応液を1
0℃に保ちながら窒素を通し、液料を1/3 に濃縮した。
1夜−20℃で保ち生じた結晶を濾過して、50℃の窒
素気流中で乾燥したところ962gの結晶を得た。このもの
は99.8% の6フッ化リン酸リチウムで、その10gを所
定量の水に溶解し、フェノールフタレインを指示薬とし
て0.1N-NaOH で滴定したところ、消費量は1.1ml であっ
た。
Example 1 Into a 10 L fluororesin reaction vessel equipped with a gas inlet, a gas outlet and a stirrer was placed 5 kg of hydrogen fluoride having 250 g of lithium fluoride dissolved therein, and the mixture was cooled to -5 ° C. Hydrogen fluoride in a separately prepared container was vaporized and passed through a gasification container containing 2.4 kg of phosphorus pentachloride corresponding to 1.2 times mol. Then, the generated mixed gas of phosphorus pentafluoride and hydrogen chloride was cooled to −50 ° C. by a cold trap immersed in a dry ice-acetone bath, and then introduced through a gas blowing port. A small amount of white powder accumulated in the trap. After the phosphorus pentachloride has been completely consumed,
Nitrogen was passed through while maintaining the temperature at 0 ° C., and the liquid material was concentrated to 1/3.
The crystals that were kept overnight at -20 ° C were filtered and dried in a nitrogen stream at 50 ° C to give 962 g of crystals. This was 99.8% lithium hexafluorophosphate, 10 g of which was dissolved in a predetermined amount of water and titrated with 0.1N-NaOH using phenolphthalein as an indicator, the consumption was 1.1 ml.

【0023】実施例2 ガス吹き込み口、ガス出口および攪拌機を備えた10L の
フッ素樹脂製反応容器に、フッ化リチウム400gを溶解し
たフッ化水素5kgを入れ−5℃に冷却し、フッ化リチウ
ムの1.1 倍モルに相当する、3.6kg の5塩化リンを入れ
たガス化容器に、別に用意した容器のフッ化水素を気化
させて通した。そして、生じた5フッ化リンと塩化水素
の混含ガスを、ドライアイス−アセトン浴に浸したコー
ルドトラップで−40℃に冷却したのち、ガス吹き込み
口から導入した。トラップには少量の白色の粉末がたま
った。5塩化リンが完全に消費されたのち、反応液を1
0℃に保ちながら窒素を通し、液量を1/4 に濃縮した。
1夜−20℃で保ち生じた結晶を濾過して、50℃の窒
素気流中で乾燥したところ962gの結晶を得た。このもの
は99.5% の6フッ化リン酸リチウムで、その10gを用
いて実施例1と同条件で摘定実験を行ったところ、消費
量は1.2ml であった。
EXAMPLE 2 5 kg of hydrogen fluoride in which 400 g of lithium fluoride was dissolved was placed in a 10 L fluororesin reaction vessel equipped with a gas inlet, a gas outlet and a stirrer and cooled to -5 ° C. The hydrogen fluoride in a separately prepared container was vaporized and passed through a gasification container containing 3.6 kg of phosphorus pentachloride, which corresponds to 1.1 times the molar amount. Then, the generated mixed gas of phosphorus pentafluoride and hydrogen chloride was cooled to -40 ° C by a cold trap immersed in a dry ice-acetone bath, and then introduced from a gas blowing port. A small amount of white powder accumulated in the trap. After the phosphorus pentachloride is completely consumed,
Nitrogen was passed through while maintaining the temperature at 0 ° C. to concentrate the liquid volume to 1/4.
The crystals that were kept overnight at -20 ° C were filtered and dried in a nitrogen stream at 50 ° C to give 962 g of crystals. This was 99.5% lithium hexafluorophosphate, and 10 g of it was subjected to a pruning experiment under the same conditions as in Example 1. As a result, the consumption was 1.2 ml.

【0024】実施例3 液体窒素を使用する冷却コントロール装置を用いてコー
ルドトラップを−84℃に冷却した以外は、実施例1と
全く同じ操作を行った。その結果、952gの結晶を得た。
このものは99.8% の6フッ化リン酸リチウムで、その1
0gを用いて実施例1と同条件で摘定実験を行ったとこ
ろ、消費量は1.2ml であった。
Example 3 The same operation as in Example 1 was carried out except that the cold trap was cooled to −84 ° C. by using a cooling controller using liquid nitrogen. As a result, 952 g of crystals were obtained.
This is 99.8% lithium hexafluorophosphate, part 1
When 0 g was used to perform a trimming experiment under the same conditions as in Example 1, the consumption was 1.2 ml.

【0025】比較例1 ガス化容器で発生させた5フッ化リンと塩化水素の混合
ガスを、ドライアイス−アセトン浴に浸したコールドト
ラップを通さずに、直接反応容器に導入したほかは実施
例1と全く同じ操作を行い、957gの結晶を得た。このも
のは98.9% の6フッ化リン酸リチウムで、その10gを
用いて実施例1と同条件で摘定実験を行ったところ、消
費量は18.5mlで、加水分解により生成した酸性物質は、
実施例1の15倍以上であった。
Comparative Example 1 Example except that a mixed gas of phosphorus pentafluoride and hydrogen chloride generated in a gasification vessel was directly introduced into a reaction vessel without passing through a cold trap immersed in a dry ice-acetone bath. The same operation as in 1 was performed to obtain 957 g of crystals. This was 98.9% lithium hexafluorophosphate, and when 10 g of it was subjected to a pruning experiment under the same conditions as in Example 1, the consumption was 18.5 ml, and the acidic substance produced by hydrolysis was
It was 15 times or more that of Example 1.

【0026】比較例2 ガス吹き込み口、ガス出口および攪拌機を備えた10L の
フッ素樹脂製反応容器に、フッ化リチウム250gを溶解し
たフッ化水素5kgを入れ、−5℃に冷却し、フッ化リチ
ウムの1.2 倍モルに相当する、2.4kg の5塩化リンを直
接少量づつ投入した。反応後、実施例1と同じ処理を行
った結果、灰色の細かい水に不溶の不純物が混入した96
5gの結晶を得た。このものは純度98.3% の6フッ化リン
酸リチウムで、その10gを用いて実施例1と同条件で
摘定実験を行ったところ、消費量は28.5mlで、加水分解
により生成した酸性物質は、実施例1の24倍以上であ
った。
Comparative Example 2 5 kg of hydrogen fluoride having 250 g of lithium fluoride dissolved therein was placed in a 10 L fluororesin reaction vessel equipped with a gas blowing port, a gas outlet and a stirrer, and cooled to -5 ° C to obtain lithium fluoride. 2.4 kg of phosphorus pentachloride, which corresponds to 1.2 times the molar amount of, was directly added little by little. After the reaction, the same treatment as in Example 1 was performed, and as a result, insoluble impurities were mixed in fine gray water.
5 g of crystals were obtained. This was lithium hexafluorophosphate having a purity of 98.3%, and 10 g of lithium hexafluorophosphate was subjected to a pruning experiment under the same conditions as in Example 1. As a result, the consumption amount was 28.5 ml, and the acidic substance produced by hydrolysis was Was 24 times or more that of Example 1.

【0027】比較例3 液体窒素を使用する冷却コントロール装置を用いてコー
ルドトラップを−90℃に冷却し、実施例1に準じて合
成を試みたが、ガス化装置で発生した大部分の5フッ化
リンと塩化水素が、コールドトラップに凝縮されたた
め、6フッ化リン酸リチウムの合成ができなかった。
Comparative Example 3 The cold trap was cooled to −90 ° C. using a cooling control device using liquid nitrogen, and synthesis was attempted according to Example 1. However, most of the 5 fluorine generated in the gasifier was used. Since phosphorus oxide and hydrogen chloride were condensed in the cold trap, lithium hexafluorophosphate could not be synthesized.

【0028】[0028]

【発明の効果】以上から明らかなように、本発明によれ
ば、酸性物質を生じる原因となるリチウムオキシフルオ
ライドを生成させることなく、しかも、5フッ化リンを
使用することのない簡単な工程で、高純度の6フッ化リ
ン酸リチウムを安価に製造することができる。
As is apparent from the above, according to the present invention, a simple process without producing lithium oxyfluoride, which causes an acidic substance, and without using phosphorus pentafluoride Thus, high-purity lithium hexafluorophosphate can be manufactured at low cost.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フッ化リチウムを溶解したフッ化水素中
に、5塩化リンとフッ化水素との反応により生じたガス
を、−40〜−84℃に冷却しオキシフッ化リンを除去
した後、導入することを特徴とする6フッ化リン酸リチ
ウムの製造法。
1. A gas produced by the reaction of phosphorus pentachloride and hydrogen fluoride in hydrogen fluoride in which lithium fluoride is dissolved is cooled to -40 to -84 ° C. to remove phosphorus oxyfluoride, A method for producing lithium hexafluorophosphate, which comprises introducing.
JP10889092A 1992-03-31 1992-03-31 Production of lithium hexafluorophosphate Pending JPH05279003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10889092A JPH05279003A (en) 1992-03-31 1992-03-31 Production of lithium hexafluorophosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10889092A JPH05279003A (en) 1992-03-31 1992-03-31 Production of lithium hexafluorophosphate

Publications (1)

Publication Number Publication Date
JPH05279003A true JPH05279003A (en) 1993-10-26

Family

ID=14496204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10889092A Pending JPH05279003A (en) 1992-03-31 1992-03-31 Production of lithium hexafluorophosphate

Country Status (1)

Country Link
JP (1) JPH05279003A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816289A1 (en) * 1996-06-26 1998-01-07 Solvay Fluor und Derivate GmbH Process for preparing lithium hexafluorophosphate
WO1998006666A1 (en) * 1996-08-13 1998-02-19 Metallgesellschaft Aktiengesellschaft LiPF6 PRODUCTION PROCESS
US5935541A (en) * 1997-06-06 1999-08-10 Elf Atochem, S.A. Process for manufacture of lithium hexafluorophosphate
FR2782517A1 (en) * 1998-08-21 2000-02-25 Atochem Elf Sa Method for the preparation of lithium hexafluorophosphate, used as an electrolyte,by the reaction of lithium fluoride with phosphorus pentafluoride in liquid sulfur dioxide
CN1108985C (en) * 1998-12-31 2003-05-21 蔚山化学株式会社 Preparation method of lithium hexafluorophosphate
WO2008096724A1 (en) 2007-02-08 2008-08-14 Stella Chemifa Corporation Processes for producing phosphorus pentafluoride and hexafluorophosphate
JP2009062259A (en) * 2007-08-16 2009-03-26 Stella Chemifa Corp Process for producing phosphorus pentafluoride and hexafluorophosphate
WO2010016471A1 (en) 2008-08-08 2010-02-11 ステラケミファ株式会社 Processes for production of phosphorus pentafluoride and hexafluorophosphates
WO2010016472A1 (en) 2008-08-08 2010-02-11 ステラケミファ株式会社 Process for production of hexafluorophosphates
CN102502566A (en) * 2011-11-01 2012-06-20 江苏九九久科技股份有限公司 Technology for synthesizing lithium hexafluorophosphate
CN102515132A (en) * 2011-12-19 2012-06-27 中国海洋石油总公司 Method for producing high-purity lithium hexafluorophosphate
US8383075B2 (en) 2007-02-08 2013-02-26 Stella Chemifa Corporation Manufacturing method of hexafluorophosphate
JP2014001136A (en) * 2013-08-21 2014-01-09 Stella Chemifa Corp Method for producing phosphorus pentafluoride and hexafluorophosphate
WO2018168752A1 (en) * 2017-03-13 2018-09-20 関東電化工業株式会社 Method for producing phosphorus pentafluoride
CN114538406A (en) * 2021-12-28 2022-05-27 上海绿麟达新材料科技有限公司 Preparation method of high-purity lithium hexafluorophosphate
JP2023505705A (en) * 2019-12-10 2023-02-10 中化藍天集団有限公司 LiPF6 production process, production system, mixed crystal containing LiPF6, composition, electrolyte, lithium battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0816289A1 (en) * 1996-06-26 1998-01-07 Solvay Fluor und Derivate GmbH Process for preparing lithium hexafluorophosphate
WO1998006666A1 (en) * 1996-08-13 1998-02-19 Metallgesellschaft Aktiengesellschaft LiPF6 PRODUCTION PROCESS
US5935541A (en) * 1997-06-06 1999-08-10 Elf Atochem, S.A. Process for manufacture of lithium hexafluorophosphate
FR2782517A1 (en) * 1998-08-21 2000-02-25 Atochem Elf Sa Method for the preparation of lithium hexafluorophosphate, used as an electrolyte,by the reaction of lithium fluoride with phosphorus pentafluoride in liquid sulfur dioxide
WO2000010917A1 (en) * 1998-08-21 2000-03-02 Atofina Method for making lithium hexafluorophosphate
US6500399B1 (en) 1998-08-21 2002-12-31 Atofina Method for making lithium hexafluorophosphate
CN1108985C (en) * 1998-12-31 2003-05-21 蔚山化学株式会社 Preparation method of lithium hexafluorophosphate
WO2008096724A1 (en) 2007-02-08 2008-08-14 Stella Chemifa Corporation Processes for producing phosphorus pentafluoride and hexafluorophosphate
US8383075B2 (en) 2007-02-08 2013-02-26 Stella Chemifa Corporation Manufacturing method of hexafluorophosphate
JP2009062259A (en) * 2007-08-16 2009-03-26 Stella Chemifa Corp Process for producing phosphorus pentafluoride and hexafluorophosphate
EP2189418A1 (en) * 2007-08-16 2010-05-26 Stella Chemifa Corporation Process for producing phosphorus pentafluoride and hexafluorophosphate
EP2189418A4 (en) * 2007-08-16 2012-10-31 Stella Chemifa Corp Process for producing phosphorus pentafluoride and hexafluorophosphate
US9034290B2 (en) 2007-08-16 2015-05-19 Stella Chemifa Corporation Processes for producing phosphorus pentafluoride and phosphate hexafluoride
WO2010016472A1 (en) 2008-08-08 2010-02-11 ステラケミファ株式会社 Process for production of hexafluorophosphates
KR20110040986A (en) 2008-08-08 2011-04-20 스텔라 케미파 가부시키가이샤 Processes for production of phosphorus pentafluoride and hexafluorophosphates
WO2010016471A1 (en) 2008-08-08 2010-02-11 ステラケミファ株式会社 Processes for production of phosphorus pentafluoride and hexafluorophosphates
US8470278B2 (en) 2008-08-08 2013-06-25 Stella Chemifa Corporation Processes for production of phosphorus pentafluoride and hexafluorophosphates
US9059480B2 (en) 2008-08-08 2015-06-16 Stella Chemifa Corporation Process for production hexafluorophosphates
CN102502566A (en) * 2011-11-01 2012-06-20 江苏九九久科技股份有限公司 Technology for synthesizing lithium hexafluorophosphate
CN102515132A (en) * 2011-12-19 2012-06-27 中国海洋石油总公司 Method for producing high-purity lithium hexafluorophosphate
JP2014001136A (en) * 2013-08-21 2014-01-09 Stella Chemifa Corp Method for producing phosphorus pentafluoride and hexafluorophosphate
WO2018168752A1 (en) * 2017-03-13 2018-09-20 関東電化工業株式会社 Method for producing phosphorus pentafluoride
CN110072807A (en) * 2017-03-13 2019-07-30 关东电化工业株式会社 The manufacturing method of phosphorus pentafluoride
JPWO2018168752A1 (en) * 2017-03-13 2020-01-23 関東電化工業株式会社 Method for producing phosphorus pentafluoride
US11511993B2 (en) 2017-03-13 2022-11-29 Kanto Denka Kogyo Co., Ltd. Method for producing phosphorus pentafluoride
CN110072807B (en) * 2017-03-13 2023-05-23 关东电化工业株式会社 Process for producing phosphorus pentafluoride
JP2023505705A (en) * 2019-12-10 2023-02-10 中化藍天集団有限公司 LiPF6 production process, production system, mixed crystal containing LiPF6, composition, electrolyte, lithium battery
CN114538406A (en) * 2021-12-28 2022-05-27 上海绿麟达新材料科技有限公司 Preparation method of high-purity lithium hexafluorophosphate

Similar Documents

Publication Publication Date Title
JPH05279003A (en) Production of lithium hexafluorophosphate
JP3528866B2 (en) Method for producing lithium sulfide
CA2677304C (en) Method of manufacturing phosphorous pentafluoride and hexafluorophosphate
JP2987713B2 (en) Method for producing high-purity hexafluorophosphoric acid compound
US8784763B2 (en) Methods and reactor designs for producing phosphorus pentafluoride
AU2014293663A1 (en) Synthesis of hydrogen bis(fluorosulfonyl)imide
CN104364197A (en) High-purity lithium hexafluorophosphate
CN104364198A (en) Production of high-purity lithium fluoride
JP6292996B2 (en) Method for producing lithium fluorosulfate and a solution containing the same
JP3204415B2 (en) Method for producing hexafluorophosphate
JP5341425B2 (en) Method for producing fluoride gas
JP2008195547A (en) Method for producing hexafluorophosphate salt
US20130004402A1 (en) Methods and apparatuses for purifying phosphorus pentafluoride
JP2001122605A (en) Method for production of high purity lithium hexafluorophosphate
JPH1081505A (en) Production of lithium hexafluorophosphate or lithium hexafluoroarsenate
KR100867582B1 (en) Process for preparing nitrogen trifluoride
US8828346B2 (en) Method of making fluorosulfonylamine
JP2002539059A (en) Method for producing lithium hexafluorophosphate
US20140079619A1 (en) Manufacture of pf5
JP2004075413A (en) Method for manufacturing hexafluoro phosphate complex, synthesized product, hexafluoro phosphate and its manufacturing method
JP4104090B2 (en) Lithium borofluoride monohydrofluoride and process for producing the same, and process for producing anhydrous lithium borofluoride using the same
JPS60251109A (en) Manufacture of lithium hexafluorophosphate
JP3483120B2 (en) Method for producing electrolyte for lithium battery
US4034069A (en) Method of preparing arsenic trifluoride
RU2308415C1 (en) Method of production of the electrolyte component on the basis of lithium hexafluorophosphate