JP4996120B2 - Solid electrolyte, method for producing the same, and all-solid-state secondary battery - Google Patents

Solid electrolyte, method for producing the same, and all-solid-state secondary battery Download PDF

Info

Publication number
JP4996120B2
JP4996120B2 JP2006096451A JP2006096451A JP4996120B2 JP 4996120 B2 JP4996120 B2 JP 4996120B2 JP 2006096451 A JP2006096451 A JP 2006096451A JP 2006096451 A JP2006096451 A JP 2006096451A JP 4996120 B2 JP4996120 B2 JP 4996120B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
ray diffraction
component
powder
same manner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006096451A
Other languages
Japanese (ja)
Other versions
JP2007273214A (en
Inventor
実 千賀
美勝 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2006096451A priority Critical patent/JP4996120B2/en
Publication of JP2007273214A publication Critical patent/JP2007273214A/en
Application granted granted Critical
Publication of JP4996120B2 publication Critical patent/JP4996120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、固体電解質及びその製造方法、及びこれを原料として用いるリチウム二次電池等の全固体二次電池に関する。   The present invention relates to a solid electrolyte, a manufacturing method thereof, and an all-solid secondary battery such as a lithium secondary battery using the solid electrolyte as a raw material.

現行のリチウムイオン二次電池には、電解質として有機系電解液が用いられている。有機系電解液は高いイオン伝導度を示すものの、電解質が液体でかつ可燃性であるため、電池として用いた場合、漏洩、発火等の本質的安全性が懸念されている。次世代リチウム電池用の電解質として、より安全性の高い固体電解質の開発が望まれている。   In the current lithium ion secondary battery, an organic electrolyte is used as an electrolyte. Although organic electrolytes exhibit high ionic conductivity, since the electrolyte is liquid and flammable, there are concerns about intrinsic safety such as leakage and ignition when used as a battery. As an electrolyte for the next generation lithium battery, development of a safer solid electrolyte is desired.

特許文献1には、LiS:68〜74モル%及びP:26〜32モル%の組成からなる硫化物系ガラスを、150〜360℃で焼成処理することで高イオン伝導度を有するリチウムイオン電導性硫化物系結晶化ガラスが得られることが開示されている。 Patent Document 1 discloses that high ion conductivity is obtained by firing a sulfide-based glass having a composition of Li 2 S: 68 to 74 mol% and P 2 S 5 : 26 to 32 mol% at 150 to 360 ° C. It is disclosed that a lithium ion conductive sulfide-based crystallized glass having the following can be obtained.

特許文献1に記載の硫化物系結晶化ガラスは高いイオン伝導度を有するものの、その製造にメカニカルミリング法を採用する場合には長時間を必要とし、高イオン伝導度を有する固体電解質の製造方法としての効率化が十分ではない。この先行文献には、高いイオン伝導度を有する固体電解質の製造方法として、溶融急冷法も開示されているが、この方法は量産性に優れるものではない。さらに、特許文献1には、LiS、及びPに第三成分を添加することが記載されているが、得られる固体電解質についての具体的な開示がない。
特開2005−228570号公報(段落0017)
Although the sulfide-based crystallized glass described in Patent Document 1 has high ionic conductivity, a long time is required when the mechanical milling method is adopted for its production, and a method for producing a solid electrolyte having high ionic conductivity is required. Efficiency is not enough. This prior document also discloses a melt quench method as a method for producing a solid electrolyte having high ionic conductivity, but this method is not excellent in mass productivity. Furthermore, Patent Document 1 describes that a third component is added to Li 2 S and P 2 S 5 , but there is no specific disclosure about the obtained solid electrolyte.
JP 2005-228570 A (paragraph 0017)

本発明は上述の問題に鑑みなされたものであり、高いリチウムイオン伝導性を有し、短時間で原料を製造することにより量産性に優れ、かつ経済性に優れた固体電解質を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a solid electrolyte having high lithium ion conductivity, excellent in mass productivity by producing raw materials in a short time, and excellent in economic efficiency. Objective.

本発明によれば、以下の固体電解質、その製造方法及びこれを用いた全固体二次電池が提供される。
1.下記式(1)で表される組成を有し、X線回折(CuKα:λ=1.5418Å)において無定形を示す固体電解質。
Li・・・(1)
(式中、Aは、P、S以外の周期律表13,14,15,16族のいずれかに属する元素である。
x=9.0〜14.0、y=14.0〜21.0、z=57.0〜71.0、o=0.5〜15.0である(重量%)。)
2.下記式(1)で表される組成を有し、X線回折(CuKα:λ=1.5418Å)において2θ=17.8±0.3deg,18.2±0.3deg,19.8±0.3deg,21.8±0.3deg,23.8±0.3deg,25.9±0.3deg,29.5±0.3deg,30.0±0.3degに回折ピークを有する固体電解質。
Li・・・(1)
(式中、Aは、P、S以外の周期律表13,14,15,16族のいずれかに属する元素である。
x=9.0〜14.0、y=14.0〜21.0、z=57.0〜71.0、o=0.5〜15.0である(重量%)。)
3.Aが、Si,Ge,B,Al,Oから選択される1種又は2種以上である1又は2記載の固体電解質。
4.以下の成分(a)〜(c)を、以下の配合比で混合する1記載の固体電解質の製造方法。
[成分]
(a)Li
(b)P、又は単体リン及び単体硫黄
(c)周期律表13,14,15,16族に属する元素のいずれかを含有する、上記成分(a),(b)以外の1種又は2種以上の第三成分
[配合比]
成分(a):成分(b)(モル比)=65〜75:35〜25
成分(a)と成分(b)の合計を100モル部としたとき、成分(c)が1〜20モル部
5.前記第三成分が、LiSiO、LiPO、LiGeO、LiBO、LiAlOから選択される1種又は2種以上である4記載の固体電解質の製造方法。
6.メカニカルミリング法により製造する、4又は5記載の固体電解質の製造方法。
7.4〜6いずれか記載の製造方法で得られる固体電解質を150〜360℃で熱処理する、2記載の固体電解質の製造方法。
8.リチウム二次電池用である1〜3いずれか記載の固体電解質。
9.1〜3及び8いずれか記載の固体電解質を用いて得られる全固体二次電池。
According to this invention, the following solid electrolyte, its manufacturing method, and the all-solid-state secondary battery using the same are provided.
1. A solid electrolyte having a composition represented by the following formula (1) and showing amorphous in X-ray diffraction (CuKα: λ = 1.54181.5).
Li x P y S z A o (1)
(In the formula, A is an element belonging to any one of groups 13, 14, 15, 16 other than P and S.
x = 9.0 to 14.0, y = 14.0 to 21.0, z = 57.0 to 71.0, and o = 0.5 to 15.0 (% by weight). )
2. It has a composition represented by the following formula (1), and in X-ray diffraction (CuKα: λ = 1.54184), 2θ = 17.8 ± 0.3 deg, 18.2 ± 0.3 deg, 19.8 ± 0 Solid electrolyte having diffraction peaks at .3 deg, 21.8 ± 0.3 deg, 23.8 ± 0.3 deg, 25.9 ± 0.3 deg, 29.5 ± 0.3 deg, 30.0 ± 0.3 deg.
Li x P y S z A o (1)
(In the formula, A is an element belonging to any one of groups 13, 14, 15, 16 other than P and S.
x = 9.0 to 14.0, y = 14.0 to 21.0, z = 57.0 to 71.0, and o = 0.5 to 15.0 (% by weight). )
3. 3. The solid electrolyte according to 1 or 2, wherein A is one or more selected from Si, Ge, B, Al, and O.
4). The manufacturing method of the solid electrolyte of 1 which mixes the following components (a)-(c) with the following compounding ratios.
[component]
(A) Li 2 S
(B) P 2 S 5 , or elemental phosphorus and elemental sulfur (c) 1 other than the above components (a) and (b), which contains any element belonging to Groups 13, 14, 15, and 16 of the periodic table Species or two or more third components [compounding ratio]
Component (a): Component (b) (molar ratio) = 65 to 75:35 to 25
4. When component (a) and component (b) are 100 mol parts in total, component (c) is 1 to 20 mol parts. 5. The method for producing a solid electrolyte according to 4 , wherein the third component is one or more selected from Li 4 SiO 4 , Li 3 PO 4 , Li 4 GeO 4 , LiBO 2 , and LiAlO 3 .
6). The manufacturing method of the solid electrolyte of 4 or 5 manufactured by the mechanical milling method.
The manufacturing method of the solid electrolyte of 2 which heat-processes the solid electrolyte obtained by the manufacturing method in any one of 7.4-6 in 150-360 degreeC.
8). The solid electrolyte according to any one of 1 to 3, which is for a lithium secondary battery.
9. An all-solid secondary battery obtained using the solid electrolyte according to any one of 9.1 to 3 and 8.

本発明によれば、高いリチウムイオン伝導性を有し、短時間で原料を製造することにより量産性に優れ、かつ経済性に優れた固体電解質を提供することができる。   According to the present invention, it is possible to provide a solid electrolyte having high lithium ion conductivity, excellent in mass productivity and excellent in economic efficiency by producing a raw material in a short time.

本発明の第一の固体電解質は、下記式(1)で表される組成を有し、X線回折において無定形を示す。
Li・・・(1)
The first solid electrolyte of the present invention has a composition represented by the following formula (1) and exhibits an amorphous shape in X-ray diffraction.
Li x P y S z A o (1)

式(1)中、Aは、周期律表13,14,15,16族のいずれかに属する元素であって、P、S以外の元素である。好ましくはSi、Ge、B、Al、Oから選択される1種又は2種以上の元素である。   In Formula (1), A is an element belonging to any one of Groups 13, 14, 15, and 16 of the periodic table, and is an element other than P and S. Preferably, it is one or more elements selected from Si, Ge, B, Al and O.

式(1)中、x,y,z,oは重量百分率で、x=9.0〜14.0、y=14.0〜21.0、z=57.0〜71.0、o=0.5〜15.0であり、好ましくはx=9.0〜13.0、y=15.0〜20.0、z=63.0〜71.0、o=0.5〜9.0である。
組成比が上記からはずれる場合、反応が十分進まずX線回折において無定形の固体電解質とならなかったり、熱処理等により結晶化させても高いイオン伝導度とならない材料となる恐れがある。
In the formula (1), x, y, z, and o are weight percentages, and x = 9.0 to 14.0, y = 14.0 to 21.0, z = 57.0 to 71.0, o = 0.5-15.0, preferably x = 9.0-13.0, y = 15.0-20.0, z = 63.0-71.0, o = 0.5-9. 0.
When the composition ratio deviates from the above, the reaction does not proceed sufficiently, so that an amorphous solid electrolyte may not be obtained by X-ray diffraction, or a material that does not have high ionic conductivity even when crystallized by heat treatment or the like may be obtained.

X線回折で無定形とは、X線回折測定において、LiSに由来する鋭いピークが存在しないものをいう。上記X線回折測定として、後述する実施例1,2,3のチャートを示すことができる。実施例2では、LiSに由来するピークがわずかに残存するが、本発明においては、このような固体電解質もX線回折で無定形の固体電解質とする。X線回折で無定形の固体電解質を熱処理することにより、リチウムイオン伝道度の高い固体電解質が得られる。
さらに、定量的には、X線回折(CuKα:λ=1.5418Å)において2θ=27.04±0.1degの回折強度が500cps以下であるものを、X線回折で無定形であるとした。
Amorphous in X-ray diffraction means that there is no sharp peak derived from Li 2 S in X-ray diffraction measurement. As the X-ray diffraction measurement, charts of Examples 1, 2, and 3 described later can be shown. In Example 2, a slight peak derived from Li 2 S remains, but in the present invention, such a solid electrolyte is also an amorphous solid electrolyte by X-ray diffraction. By heat-treating an amorphous solid electrolyte by X-ray diffraction, a solid electrolyte having a high lithium ion conductivity can be obtained.
Further, quantitatively, X-ray diffraction (CuKα: λ = 1.54184) with 2θ = 27.04 ± 0.1 deg diffraction intensity of 500 cps or less is regarded as amorphous by X-ray diffraction. .

第一の固体電解質は、例えば、以下の成分(a)〜(c)を、以下の配合比で混合することにより作製できる。
[成分]
(a)Li
(b)P、又は単体リン及び単体硫黄
(c)周期律表13,14,15,16族に属する元素のいずれかを含有する、上記成分(a),(b)以外の1種又は2種以上の第三成分
[配合比]
成分(a):成分(b)(モル比)=65〜75:35〜25
成分(a)と成分(b)の合計を100モル部としたとき、成分(c)が1〜20モル部
The first solid electrolyte can be produced, for example, by mixing the following components (a) to (c) at the following blending ratio.
[component]
(A) Li 2 S
(B) P 2 S 5 , or elemental phosphorus and elemental sulfur (c) 1 other than the above components (a) and (b), which contains any element belonging to Groups 13, 14, 15, and 16 of the periodic table Species or two or more third components [compounding ratio]
Component (a): Component (b) (molar ratio) = 65 to 75:35 to 25
When the total of component (a) and component (b) is 100 mol parts, component (c) is 1 to 20 mol parts

成分(a)と成分(b)の配合比が上記範囲を外れると、本発明特有の結晶構造が発現せず、イオン伝導度が小さくなり、固体電解質として十分な性能を発揮しない。特に成分(a)の配合量を、68〜73モル%とし、成分(b)の配合量を、32〜27モル%とすることが好ましい。   When the compounding ratio of the component (a) and the component (b) is out of the above range, the crystal structure peculiar to the present invention is not expressed, the ionic conductivity is decreased, and sufficient performance as a solid electrolyte is not exhibited. In particular, the amount of component (a) is preferably 68 to 73 mol%, and the amount of component (b) is preferably 32 to 27 mol%.

成分(c)の添加量が、上記範囲を外れて、1モル部未満の場合、後述するメカニカルミリング処理において、エネルギー投入量及び反応時間に対する固体電解質が得られる効率が十分でなく、20モル部を超える場合、得られた固体電解質を熱処理して結晶化させても、高いリチウムイオン伝導度は得られない。特に、成分(c)の添加量を1〜10モル部とすることが好ましい。   When the addition amount of the component (c) is out of the above range and less than 1 mol part, in the mechanical milling process described later, the efficiency of obtaining a solid electrolyte with respect to the energy input amount and the reaction time is not sufficient, and 20 mol parts In the case of exceeding, high lithium ion conductivity cannot be obtained even if the obtained solid electrolyte is heat-treated and crystallized. In particular, the amount of component (c) added is preferably 1 to 10 mole parts.

LiSは、特に制限なく工業的に入手可能なものが使用できるが、高純度のものが好ましい。例えば、非プロトン性有機溶媒中で水酸化リチウムと硫化水素とを反応させて得たLiSを、有機溶媒を用い、100℃以上の温度で洗浄して精製したものが好ましく使用できる。
具体的には、特開平7−330312号公報に開示された製造方法で、LiSを製造することが好ましく、このLiSを国際公開WO2005/40039号の記載の方法で精製したものが好ましい。
As Li 2 S, those commercially available without particular limitation can be used, but those having high purity are preferred. For example, the Li 2 S obtained by reacting lithium hydroxide with hydrogen sulfide in an aprotic organic solvent, an organic solvent, those purified by washing with 100 ° C. or higher temperature can be preferably used.
Specifically, in the manufacturing method disclosed in Japanese Patent Laid-Open No. 7-330312, it is preferable to produce Li 2 S, it is obtained by purification of the Li 2 S by the method described in International Publication WO2005 / No. 40039 preferable.

このLiSの製造方法は、簡易な手段によって高純度の硫化リチウムを得ることができるため、原料コストを削減できる。また、上記の精製方法は、簡便な処理により、LiSに含まれる不純物である硫黄酸化物やN−メチルアミノ酪酸リチウム(以下、LMABという)等を除去できるため、経済的に有利であるとともに、得られた高純度の硫化リチウムを用いたリチウム二次電池用固体電解質は、純度に起因する性能低下が抑えられ、その結果、優れたリチウム二次電池(固体電池)を得ることができる。
尚、LiSに含まれる硫黄酸化物の総量は、0.15質量%以下であることが好ましく、LMABは、0.1質量%以下であることが好ましい。
Since this Li 2 S manufacturing method can obtain high-purity lithium sulfide by a simple means, raw material costs can be reduced. In addition, the above purification method is economically advantageous because it can remove sulfur oxide, lithium N-methylaminobutyrate (hereinafter referred to as LMAB), and the like, which are impurities contained in Li 2 S, by a simple treatment. At the same time, the obtained solid electrolyte for a lithium secondary battery using high-purity lithium sulfide can suppress a decrease in performance due to purity, and as a result, an excellent lithium secondary battery (solid battery) can be obtained. .
Incidentally, the total amount of sulfur oxides contained in the Li 2 S, preferably 0.15 mass% or less, LMAB is preferably not more than 0.1 mass%.

は、工業的に製造され、販売されているものであれば、特に限定なく使用することができる。
また、Pに代えて、相当するモル比の単体リン(P)及び単体硫黄(S)を用いることもできる。これにより、入手が容易で、かつ安価な材料から本発明の固体電解質を製造することができる。単体リン(P)及び単体硫黄(S)は、工業的に生産され、販売されているものであれば、特に限定なく使用することができる。
P 2 S 5 can be used without particular limitation as long as it is industrially manufactured and sold.
Further, instead of P 2 S 5 , simple phosphorus (P) and simple sulfur (S) in a corresponding molar ratio can be used. As a result, the solid electrolyte of the present invention can be produced from an easily available and inexpensive material. Simple phosphorus (P) and simple sulfur (S) can be used without particular limitation as long as they are industrially produced and sold.

第三成分は、熱処理により高いリチウムイオン伝導度の固体電解質が得られる点で、好ましくは酸素を含有する無機化合物、より好ましくは酸素と共に、ホウ素、アルミニウム、ケイ素、リン、ゲルマニウムから選択される1種又は2種以上の元素を含有する化合物、特に好ましくはこれらの元素と共にリチウムを含有する化合物であるオルトオキソ酸リチウムである。第三成分として、好ましくはLiSiO、LiPO、LiGeO、LiBO、LiAlOから選択される1種又は2種以上の化合物である。かかるオルトオキソ酸リチウムを含ませると、結晶化ガラス中、例えば、後述する第二の固体電解質中のガラス(非晶性成分)を安定化させることができる。 The third component is preferably an inorganic compound containing oxygen, more preferably selected from boron, aluminum, silicon, phosphorus, and germanium together with oxygen, in that a solid electrolyte having high lithium ion conductivity can be obtained by heat treatment. A compound containing a seed or two or more elements, particularly preferably lithium orthooxo acid which is a compound containing lithium together with these elements. The third component is preferably one or more compounds selected from Li 4 SiO 4 , Li 3 PO 4 , Li 4 GeO 4 , LiBO 2 , and LiAlO 3 . When such lithium orthooxo acid is included, for example, glass (amorphous component) in the second solid electrolyte described later can be stabilized in the crystallized glass.

本発明の第一の固体電解質の製造方法としては、例えば、メカニカルミリング法(以下、MM処理と示すことがある)がある。
MM処理を用いて第一の固体電解質を製造すると、室温で行えるので、製造工程の簡略化も可能となるため好ましい。さらに、量産性に優れるという利点もある。
As a first method for producing a solid electrolyte of the present invention, for example, there is a mechanical milling method (hereinafter sometimes referred to as MM treatment).
It is preferable to manufacture the first solid electrolyte using the MM treatment because it can be performed at room temperature and the manufacturing process can be simplified. Furthermore, there is an advantage that it is excellent in mass productivity.

MM処理により第一の固体電解質を製造する際、窒素等の不活性ガスの雰囲気を用いるのが好ましい。水蒸気や酸素等は、出発物質と反応し易いからである。
MM処理では、ボールミルを使用するのが好ましい。大きな機械的エネルギーが得られるからである。
ボールミルとしては、遊星型ボールミル機を使用するのが好ましい。遊星型ボールミルでは、ポットが自転回転しながら、台盤が公転回転するので、非常に高い衝撃エネルギーを効率良く発生させることができる。
When producing the first solid electrolyte by MM treatment, it is preferable to use an atmosphere of an inert gas such as nitrogen. This is because water vapor, oxygen and the like easily react with the starting material.
In the MM treatment, it is preferable to use a ball mill. This is because large mechanical energy can be obtained.
As the ball mill, it is preferable to use a planetary ball mill. In the planetary ball mill, since the base plate revolves while the pot rotates, very high impact energy can be generated efficiently.

MM処理の条件は、使用する機器等により適宜調整すればよいが、回転速度が速いほど、第一の固体電解質の生成速度は速くなり、回転時間が長いほど第一の固体電解質ヘの原料の転化率は高くなる。例えば、一般的な遊星型ボールミル機を使用した場合は、回転速度を数十〜数百回転/分とし、0.1時間〜10時間処理すればよい。力学的エネルギー投入量としては、原料混合物1kg当り、1〜100kWh、好ましくは6〜50kWhである。これ以下では、LiSに由来する鋭いピークが残存する可能性があり、リチウムイオン伝導度の高い熱処理物が得られない可能性がある。一方、これ以上の反応時間や力学的エネルギーを投入しても、リチウムイオン伝導度向上への寄与は認められない。 The conditions for the MM treatment may be appropriately adjusted depending on the equipment to be used. However, the faster the rotation speed, the faster the production rate of the first solid electrolyte, and the longer the rotation time, the more the raw material for the first solid electrolyte. Conversion is high. For example, when a general planetary ball mill is used, the rotational speed may be several tens to several hundreds of revolutions / minute, and the treatment may be performed for 0.1 hour to 10 hours. The amount of mechanical energy input is 1 to 100 kWh, preferably 6 to 50 kWh, per 1 kg of the raw material mixture. Below this, a sharp peak derived from Li 2 S may remain, and a heat-treated product having high lithium ion conductivity may not be obtained. On the other hand, even if a longer reaction time or mechanical energy is used, no contribution to improving lithium ion conductivity is observed.

本発明の第二の固体電解質は、下記式(1)で表される組成を有し、X線回折(CuKα:λ=1.5418Å)において2θ=17.8±0.3deg,18.2±0.3deg,19.8±0.3deg,21.8±0.3deg,23.8±0.3deg,25.9±0.3deg,29.5±0.3deg,30.0±0.3degに回折ピークを有する
Li・・・(1)
The second solid electrolyte of the present invention has a composition represented by the following formula (1), and in X-ray diffraction (CuKα: λ = 1.5418 線), 2θ = 17.8 ± 0.3 deg, 18.2 ± 0.3 deg, 19.8 ± 0.3 deg, 21.8 ± 0.3 deg, 23.8 ± 0.3 deg, 25.9 ± 0.3 deg, 29.5 ± 0.3 deg, 30.0 ± 0 Li x P y S z A o with a diffraction peak at 3 deg (1)

上記の8領域において、回折ピークを有する結晶構造は、極めて高いリチウムイオン伝導性を有する。   In the above eight regions, the crystal structure having a diffraction peak has extremely high lithium ion conductivity.

また、式(1)中、A及びx、y、z、oは上記と同じである。   Moreover, in Formula (1), A and x, y, z, and o are the same as the above.

本発明の第二の固体電解質の製造方法は、例えば、第一の固体電解質を150〜360℃で熱処理することにより製造できる。
第二の固体電解質を生成させる熱処理温度は、好ましくは150〜360℃である。特に好ましくは200℃〜350℃である。
150℃未満では、第二の固体電解質のガラス転移点以下の温度であるため結晶化が進行しない。一方、360℃を超えると、イオン伝導性の低い結晶が生じる恐れがある。熱処理時間は、結晶が生成する条件であれば特に限定はなく、瞬時であっても長時間であっても構わない。また、焼成温度までの昇温パターンについても特に限定はない。
The manufacturing method of the 2nd solid electrolyte of this invention can be manufactured by heat-processing the 1st solid electrolyte at 150-360 degreeC, for example.
The heat treatment temperature for generating the second solid electrolyte is preferably 150 to 360 ° C. Especially preferably, it is 200 to 350 degreeC.
Below 150 ° C., crystallization does not proceed because the temperature is equal to or lower than the glass transition point of the second solid electrolyte. On the other hand, when it exceeds 360 ° C., a crystal having low ion conductivity may be generated. The heat treatment time is not particularly limited as long as the crystal is generated, and may be instantaneous or long. Moreover, there is no limitation in particular also about the temperature rising pattern to baking temperature.

上記熱処理の反応時間は、好ましくは0.1〜480時間、より好ましくは0.1〜100時間である。   The reaction time of the heat treatment is preferably 0.1 to 480 hours, more preferably 0.1 to 100 hours.

本発明の第二の固体電解質は、好ましくは少なくとも5V以上の分解電圧を持ち、不燃性の無機固体である。また、リチウムイオン輸率が1であるという特性を保持しつつ、室温において10−3S/cm台という極めて高いリチウムイオン伝導性を示し得る。従って、リチウム二次電池の固体電解質用の材料として極めて適している。また、耐熱性の優れた固体電解質である。 The second solid electrolyte of the present invention is preferably an incombustible inorganic solid having a decomposition voltage of at least 5 V or more. Further, while maintaining the property that the lithium ion transport number is 1, it can exhibit extremely high lithium ion conductivity of 10 −3 S / cm level at room temperature. Therefore, it is extremely suitable as a material for a solid electrolyte of a lithium secondary battery. Moreover, it is a solid electrolyte excellent in heat resistance.

本発明の第二の固体電解質は、正極活物質及び負極活物質と組み合わせてリチウム二次電池として、特に全固体二次電池として好適に使用できる。
全固体二次電池の正極活物質として、硫化物系では、硫化チタン(TiS)、硫化モリブデン(MoS)、硫化鉄(FeS、FeS)、硫化銅(CuS)及び硫化ニッケル(Ni)等が使用できる。好ましくは、TiSが使用できる。
また、酸化物系では、酸化ビスマス(Bi)、鉛酸ビスマス(BiPb)、酸化銅(CuO)、酸化バナジウム(V13)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)等が使用できる。好ましくは、コバルト酸リチウムが使用できる。
尚、上記の他にはセレン化ニオブ(NbSe)が使用できる。
The second solid electrolyte of the present invention can be suitably used as a lithium secondary battery, particularly as an all-solid secondary battery, in combination with a positive electrode active material and a negative electrode active material.
As a positive electrode active material of an all-solid-state secondary battery, in the sulfide system, titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 ), copper sulfide (CuS), and nickel sulfide (Ni 3) S 2 ) and the like can be used. Preferably, TiS 2 can be used.
In the oxide system, bismuth oxide (Bi 2 O 3 ), bismuth lead acid (Bi 2 Pb 2 O 5 ), copper oxide (CuO), vanadium oxide (V 6 O 13 ), lithium cobalt oxide (LiCoO 2 ) Lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and the like can be used. Preferably, lithium cobaltate can be used.
In addition to the above, niobium selenide (NbSe 3 ) can be used.

全固体二次電池の負極活物質としては、炭素材料が使用できる。具体的には、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素が挙げられる。好ましくは、人造黒鉛である。   A carbon material can be used as the negative electrode active material of the all-solid-state secondary battery. Specifically, artificial graphite, graphite carbon fiber, resin-fired carbon, pyrolysis vapor-grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin-fired carbon, polyacene, pitch-based carbon fiber, vapor-phase growth Examples include carbon fiber, natural graphite, and non-graphitizable carbon. Preferably, it is artificial graphite.

本発明の全固体二次電池は、上記電解質と電極剤を接触又は混合させ高温下にさらしても副反応を起こさず、電池として作動する。また、エネルギー密度が高く、安全性及び充放電サイクル特性、長期安定性が優れている。   The all-solid-state secondary battery of the present invention operates as a battery without causing side reactions even when the electrolyte and the electrode agent are contacted or mixed and exposed to high temperatures. In addition, the energy density is high, and safety, charge / discharge cycle characteristics, and long-term stability are excellent.

以下、本発明を実施例によってさらに具体的に説明する。
製造例
(1)硫化リチウム(LiS)の製造
硫化リチウムは、特開平7−330312号公報の第1の態様(2工程法)の方法に従って製造した。具体的には、撹拌翼のついた10リットルオートクレーブにN−メチル−2−ピロリドン(NMP)3326.4g(33.6モル)及び水酸化リチウム287.4g(12モル)を仕込み、300rpm、130℃に昇温した。昇温後、液中に硫化水素を3リットル/分の供給速度で2時間吹き込んだ。続いてこの反応液を窒素気流下(200cc/分)昇温し、反応した硫化水素の一部を脱硫化水素化した。昇温するにつれ、上記硫化水素と水酸化リチウムの反応により副生した水が蒸発を始めたが、この水はコンデンサにより凝縮し系外に抜き出した。水を系外に留去すると共に反応液の温度は上昇するが、180℃に達した時点で昇温を停止し、一定温度に保持した。脱硫化水素反応が終了後(約80分)反応を終了し、硫化リチウムを得た。
Hereinafter, the present invention will be described more specifically with reference to examples.
Production Example (1) Production of Lithium Sulfide (Li 2 S) Lithium sulfide was produced according to the method of the first aspect (two-step method) of JP-A-7-330312. Specifically, N-methyl-2-pyrrolidone (NMP) 3326.4 g (33.6 mol) and lithium hydroxide 287.4 g (12 mol) were charged into a 10 liter autoclave equipped with a stirring blade, and 300 rpm, 130 The temperature was raised to ° C. After the temperature rise, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters / minute for 2 hours. Subsequently, this reaction solution was heated in a nitrogen stream (200 cc / min) to dehydrosulfide a part of the reacted hydrogen sulfide. As the temperature increased, water produced as a by-product due to the reaction between hydrogen sulfide and lithium hydroxide started to evaporate, but this water was condensed by the condenser and extracted out of the system. While water was distilled out of the system, the temperature of the reaction solution rose, but when the temperature reached 180 ° C., the temperature increase was stopped and the temperature was kept constant. After the dehydrosulfurization reaction was completed (about 80 minutes), the reaction was completed to obtain lithium sulfide.

(2)硫化リチウムの精製
上記(1)で得られた500mLのスラリー反応溶液(NMP−硫化リチウムスラリー)中のNMPをデカンテーションした後、脱水したNMP 100mLを加え、105℃で約1時間撹拌した。その温度のままNMPをデカンテーションした。さらにNMP 100mLを加え、105℃で約1時間撹拌し、その温度のままNMPをデカンテーションし、同様の操作を合計4回繰り返した。デカンテーション終了後、窒素気流下230℃(NMPの沸点以上の温度)で硫化リチウムを常圧下で3時間乾燥した。得られた硫化リチウム中の不純物含有量を測定した。
(2) Purification of lithium sulfide After decanting NMP in the 500 mL slurry reaction solution (NMP-lithium sulfide slurry) obtained in (1) above, 100 mL of dehydrated NMP was added and stirred at 105 ° C. for about 1 hour. did. NMP was decanted at that temperature. Further, 100 mL of NMP was added, stirred at 105 ° C. for about 1 hour, NMP was decanted at that temperature, and the same operation was repeated a total of 4 times. After completion of the decantation, lithium sulfide was dried at 230 ° C. (temperature higher than the boiling point of NMP) under a nitrogen stream for 3 hours under normal pressure. The impurity content in the obtained lithium sulfide was measured.

尚、亜硫酸リチウム(LiSO)、硫酸リチウム(LiSO)並びにチオ硫酸リチウム(Li)の各硫黄酸化物、及びN−メチルアミノ酪酸リチウム(LMAB)の含有量は、イオンクロマトグラフ法により定量した。その結果、硫黄酸化物の総含有量は0.13質量%であり、LMABは0.07質量%であった。
このようにして精製したLiSを、以下の実施例及び比較例で使用した。
Incidentally, lithium sulfite (Li 2 SO 3), the content of each sulfur oxide lithium sulfate (Li 2 SO 4) and lithium thiosulfate (Li 2 S 2 O 3) , and N- methylamino acid lithium (LMAB) Was quantified by ion chromatography. As a result, the total content of sulfur oxides was 0.13% by mass, and LMAB was 0.07% by mass.
Li 2 S thus purified was used in the following examples and comparative examples.

実施例1
上記製造例にて精製したLiS、P(アルドリッチ製)、LiSiO(アルドリッチ製)を出発原料に用いた。LiS 68モル部、P 32モル部、LiSiO 1モル部を添加してなる混合物を約10gと粒径10mmΦのアルミナ製ボール100個を500mLのアルミナ製容器に入れ、遊星型ボールミル(フリッチュ社製:型番P−5)にて、窒素雰囲気下、室温(25℃)にて、回転速度を290rpmとし、5時間メカニカルミリング処理(エネルギーとしては、18.2kWh/kg電解質)することで、白黄色の粉末を得た。
Example 1
Li 2 S, P 2 S 5 (manufactured by Aldrich) and Li 2 SiO 4 (manufactured by Aldrich) purified in the above production examples were used as starting materials. About 10 g of a mixture obtained by adding 68 mol parts of Li 2 S, 32 mol parts of P 2 S 5, and 1 mol part of Li 4 SiO 4 and 100 alumina balls having a particle diameter of 10 mmΦ are put in a 500 mL alumina container. In a planetary ball mill (Fritsch: Model No. P-5), under a nitrogen atmosphere, at room temperature (25 ° C.), with a rotational speed of 290 rpm, mechanical milling treatment (energy: 18.2 kWh / kg electrolyte) ) To obtain a white-yellow powder.

得られた粉末について、粉末X線回折測定を行った(CuKα:λ=1.5418Å)。このX線回折スペクトルチャートを図1に示す。スペクトルチャートより、LiSの結晶ピークは、完全に消失しガラス化している、即ち無定形となっていることが確認できた。
尚、図1では、実施例1−3及び比較例2の各チャートの重なりをなくすため、縦軸方向に平行移動させており、縦軸は強度を示す。
Powder X-ray diffraction measurement was performed on the obtained powder (CuKα: λ = 1.5418Å). This X-ray diffraction spectrum chart is shown in FIG. From the spectrum chart, it was confirmed that the crystal peak of Li 2 S was completely disappeared and vitrified, that is, amorphous.
In FIG. 1, the charts of Example 1-3 and Comparative Example 2 are translated in the direction of the vertical axis in order to eliminate the overlapping of the charts, and the vertical axis indicates the strength.

この粉末の元素分析の結果、Li、P、Sの重量百分率はLi:9.4、P:19.1、S:70.6、他(Aと記載):0.9であった。Aの重量分率は100からLi、P及びSの重量分率の合計を引いた値を用いた。
尚、上記元素分析は以下のICP分析及びLC分析より行った。
ICP分析:所定量の試料を精秤し、白金皿に入れた。これに1Nの硝酸水溶液を加え、ホットプレート上で加熱し完全に溶解した。この溶液のICP分析によりLi及びP、Siを定量した。
LC分析:石英ボードに所定量の試料をいれ、これを空気中にて燃焼した。燃焼ガスを弱アルカリ水溶液に吸収させた後、過酸化水素水を加えて硫黄酸化物を酸化し、硫酸イオンとした。液中に含まれる硫酸イオンを液クロ分析により定量し、硫黄分を定量した。
As a result of elemental analysis of this powder, the weight percentages of Li, P, and S were Li: 9.4, P: 19.1, S: 70.6, and others (denoted as A): 0.9. As the weight fraction of A, a value obtained by subtracting the sum of the weight fractions of Li, P and S from 100 was used.
The elemental analysis was performed from the following ICP analysis and LC analysis.
ICP analysis: A predetermined amount of sample was precisely weighed and placed in a platinum dish. A 1N aqueous nitric acid solution was added thereto, and the mixture was heated on a hot plate and completely dissolved. Li, P and Si were quantified by ICP analysis of this solution.
LC analysis: A predetermined amount of sample was placed on a quartz board and burned in air. After the combustion gas was absorbed in the weak alkaline aqueous solution, hydrogen peroxide solution was added to oxidize the sulfur oxide to obtain sulfate ions. The sulfate ion contained in the liquid was quantified by liquid chromatography analysis, and the sulfur content was quantified.

この粉末を密閉容器にいれ、300℃、2時間熱処理を行った。得られた固体電解質についてX線回折測定を行った(CuKα:λ=1.5418Å)ところ、図5に示すように、2θ=17.8±0.3deg,18.2±0.3deg,19.8±0.3deg,21.8±0.3deg,23.8±0.3deg,25.9±0.3deg,29.5±0.3deg,30.0±0.3degに回折ピークを有することが確認できた。また、イオン伝導度を交流インピーダンス法(測定周波数100Hz〜15MHz)により測定したところ、室温(25℃)で2×10−3S/cmと高いものであった。ここで、前記の熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。 This powder was put in a sealed container and heat-treated at 300 ° C. for 2 hours. The obtained solid electrolyte was subjected to X-ray diffraction measurement (CuKα: λ = 1.5418 mm). As shown in FIG. 5, 2θ = 17.8 ± 0.3 deg, 18.2 ± 0.3 deg, 19 Diffraction peaks at .8 ± 0.3 deg, 21.8 ± 0.3 deg, 23.8 ± 0.3 deg, 25.9 ± 0.3 deg, 29.5 ± 0.3 deg, 30.0 ± 0.3 deg. It was confirmed that it had. Moreover, when the ionic conductivity was measured by the alternating current impedance method (measurement frequency: 100 Hz to 15 MHz), it was as high as 2 × 10 −3 S / cm at room temperature (25 ° C.). Here, since generation of gas was not recognized during the heat treatment, the elemental analysis result of the heat-treated product was determined to be the same as that before the heat treatment.

実施例2
LiSiOの添加量を10モル部とした以外は、実施例1と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行った。このX線回折スペクトルチャートを図1に示す。スペクトルチャートより、LiSの結晶ピークは、殆ど完全に消失しガラス化している、即ち無定形となっていることが確認できた。また、図2から、2θ=27.04±0.1degの回折強度が500cps以下であることが確認できた。また、元素分析の結果から求めた重量百分率は、Li:10.7、P:17.3、S:63.9、他(Aと記載):8.1であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には実施例1の場合と同様の位置に鋭いX線回折ピークが認められた。また、イオン伝導度は、2×10−3S/cmと高いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Example 2
Mechanical milling treatment was performed in the same manner as in Example 1 except that the amount of Li 2 SiO 4 added was 10 mol parts. The obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1. This X-ray diffraction spectrum chart is shown in FIG. From the spectrum chart, it was confirmed that the crystal peak of Li 2 S almost completely disappeared and was vitrified, that is, amorphous. Further, from FIG. 2, it was confirmed that the diffraction intensity at 2θ = 27.04 ± 0.1 deg was 500 cps or less. Moreover, the weight percentage calculated | required from the result of the elemental analysis was Li: 10.7, P: 17.3, S: 63.9, others (denoted as A): 8.1. In the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, a sharp X-ray diffraction peak was observed at the same position as in Example 1. Moreover, the ionic conductivity was as high as 2 × 10 −3 S / cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

実施例3
LiSiOの添加量を18モル部とした以外は、実施例1と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行った。このX線回折スペクトルチャートを図1に示す。スペクトルチャートより、LiSの結晶ピークは、完全に消失しガラス化している、即ち無定形となっていることが確認できた。また、図3から、2θ=27.04±0.1degの回折強度が500cps以下であることが確認できた。また、元素分析の結果から求めた重量百分率は、Li:11.6、P:16.0、S:59.0、他(Aと記載):13.4であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には実施例1の場合と同様の位置に鋭いX線回折ピークが認められた。また、イオン伝導度は、1×10−3S/cmと高いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Example 3
Mechanical milling treatment was performed in the same manner as in Example 1 except that the amount of Li 2 SiO 4 added was 18 mol parts. The obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1. This X-ray diffraction spectrum chart is shown in FIG. From the spectrum chart, it was confirmed that the crystal peak of Li 2 S was completely disappeared and vitrified, that is, amorphous. Further, from FIG. 3, it was confirmed that the diffraction intensity at 2θ = 27.04 ± 0.1 deg was 500 cps or less. Moreover, the weight percentage calculated | required from the result of the elemental analysis was Li: 11.6, P: 16.0, S: 59.0, others (denoted as A): 13.4. In the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, a sharp X-ray diffraction peak was observed at the same position as in Example 1. Moreover, the ionic conductivity was as high as 1 × 10 −3 S / cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

比較例1
実施例1においてLiSiOを添加しなかった以外は実施例1と同様にしてメカニカルミリング処理した。その結果、X線回折スペクトルにおいてLiSのピークが認められ、完全に反応しておらず、無定形となっていないことが確認された。また、熱処理後の固体電解質のイオン伝導度も低い結果であった。
Comparative Example 1
Mechanical milling was performed in the same manner as in Example 1 except that Li 4 SiO 4 was not added in Example 1. As a result, a peak of Li 2 S was observed in the X-ray diffraction spectrum, and it was confirmed that the reaction was not complete and the film was not amorphous. In addition, the ionic conductivity of the solid electrolyte after the heat treatment was also low.

比較例2
LiSiOの添加量を25モル部とした以外は、実施例1と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行った。このX線回折スペクトルチャートを図1に示す。スペクトルチャートより、LiSの結晶ピークは、完全に消失しガラス化している、即ち無定形となっていることが確認できた。また、図4からも確認できた。一方、元素分析の結果から求めた重量百分率は、Li:12.4、P:15.0、S:55.2、他(Aと記載):17.4であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には鋭いX線回折ピークが認められたが、イオン伝導度は、3×10−5S/cmと低いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Comparative Example 2
Mechanical milling was performed in the same manner as in Example 1 except that the amount of Li 2 SiO 4 added was 25 mol parts. The obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1. This X-ray diffraction spectrum chart is shown in FIG. From the spectrum chart, it was confirmed that the crystal peak of Li 2 S was completely disappeared and vitrified, that is, amorphous. Moreover, it has also confirmed from FIG. On the other hand, the weight percentage calculated | required from the result of the elemental analysis was Li: 12.4, P: 15.0, S: 55.2, others (denoted as A): 17.4. Although a sharp X-ray diffraction peak was observed in the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, the ionic conductivity was as low as 3 × 10 −5 S / cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

実施例4
LiSとPの仕込み比を変えた以外は、実施例1と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行ったところ、LiSのピークは認められず、無定形となっていることが確認された。一方、元素分析の結果から求めた重量百分率は、Li:10.0、P:18.6、S:70.5、他(Aと記載):0.9であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には実施例1の場合と同様の位置に鋭いX線回折ピークが認められ、イオン伝導度は、3×10−3S/cmと高いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Example 4
A mechanical milling treatment was performed in the same manner as in Example 1 except that the charging ratio of Li 2 S and P 2 O 5 was changed. When the obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1, no peak of Li 2 S was observed, and it was confirmed that the powder was amorphous. On the other hand, the weight percentage calculated | required from the result of the elemental analysis was Li: 10.0, P: 18.6, S: 70.5, and others (denoted as A): 0.9. In the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, a sharp X-ray diffraction peak was observed at the same position as in Example 1, and the ionic conductivity was 3 × 10 −3 S / It was as high as cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

実施例5
LiSiOの添加量を10モル部とした以外は、実施例4と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行った。このX線回折の結果、LiSのピークは認められず、無定形となっていることが確認できた。また、元素分析の結果から求めた重量百分率は、Li:11.2、P:16.8、S:63.6、他(Aと記載):8.3であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には実施例1の場合と同様の位置に鋭いX線回折ピークが認められた。また、イオン伝導度は、2×10−3S/cmと高いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Example 5
Mechanical milling treatment was performed in the same manner as in Example 4 except that the amount of Li 2 SiO 4 added was 10 mol parts. The obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1. As a result of this X-ray diffraction, no Li 2 S peak was observed, and it was confirmed that the film was amorphous. Moreover, the weight percentage calculated | required from the result of the elemental analysis was Li: 11.2, P: 16.8, S: 63.6, others (denoted as A): 8.3. In the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, a sharp X-ray diffraction peak was observed at the same position as in Example 1. Moreover, the ionic conductivity was as high as 2 × 10 −3 S / cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

実施例6
LiSiOの添加量を18モル部とした以外は、実施例4と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行った。このX線回折の結果、LiSのピークは認められず、無定形となっていることが確認された。また、元素分析の結果から求めた重量百分率は、Li:12.2、P:15.4、S:58.6、他(Aと記載):13.8であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には実施例1の場合と同様の位置に鋭いX線回折ピークが認められた。また、イオン伝導度は、1×10−3S/cmと高いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Example 6
Mechanical milling treatment was performed in the same manner as in Example 4 except that the amount of Li 2 SiO 4 added was 18 mol parts. The obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1. As a result of this X-ray diffraction, no Li 2 S peak was observed, and it was confirmed that the film was amorphous. Moreover, the weight percentage calculated | required from the result of the elemental analysis was Li: 12.2, P: 15.4, S: 58.6, others (denoted as A): 13.8. In the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, a sharp X-ray diffraction peak was observed at the same position as in Example 1. Moreover, the ionic conductivity was as high as 1 × 10 −3 S / cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

比較例3
実施例4においてLiSiOを添加しなかった以外は実施例1と同様にしてメカニカルミリング処理した。その結果、X線回折スペクトルにおいてLiSのピークが認められ、完全に反応しておらず、無定形となっていないことが確認された。また、熱処理後の固体電解質のイオン伝導度も低い結果であった。
Comparative Example 3
Mechanical milling was performed in the same manner as in Example 1 except that Li 4 SiO 4 was not added in Example 4. As a result, a peak of Li 2 S was observed in the X-ray diffraction spectrum, and it was confirmed that the reaction was not complete and the film was not amorphous. In addition, the ionic conductivity of the solid electrolyte after the heat treatment was also low.

比較例4
LiSiOの添加量を25モル部とした以外は、実施例4と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行った。このX線回折の結果、LiSのピークは認められず、無定形となっていることが確認された。一方、元素分析の結果から求めた重量百分率は、Li:12.9、P:14.4、S:54.8、他(Aと記載):17.8であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には鋭いX線回折ピークが認められたが、イオン伝導度は、8×10−5S/cmと低いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Comparative Example 4
A mechanical milling treatment was performed in the same manner as in Example 4 except that the addition amount of Li 2 SiO 4 was 25 mol parts. The obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1. As a result of this X-ray diffraction, no Li 2 S peak was observed, and it was confirmed that the film was amorphous. On the other hand, the weight percentage calculated | required from the result of the elemental analysis was Li: 12.9, P: 14.4, S: 54.8, others (denoted as A): 17.8. Although a sharp X-ray diffraction peak was observed in the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, the ionic conductivity was as low as 8 × 10 −5 S / cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

実施例7
LiSとPの仕込み比を変えた以外は、実施例1と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行ったところ、LiSのピークは認められず、無定形となっていることが確認された。一方、元素分析の結果から求めた重量百分率は、Li:10.0、P:17.7、S:70.4、他(Aと記載):1.0であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には実施例1の場合と同様の位置に鋭いX線回折ピークが認められ、イオン伝導度は、2×10−3S/cmと高いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Example 7
A mechanical milling treatment was performed in the same manner as in Example 1 except that the charging ratio of Li 2 S and P 2 O 5 was changed. When the obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1, no peak of Li 2 S was observed, and it was confirmed that the powder was amorphous. On the other hand, the weight percentage calculated | required from the result of the elemental analysis was Li: 10.0, P: 17.7, S: 70.4, and others (denoted as A): 1.0. In the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, a sharp X-ray diffraction peak was observed at the same position as in Example 1, and the ionic conductivity was 2 × 10 −3 S / It was as high as cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

実施例8
LiSiOの添加量を10モル部とした以外は、実施例7と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行った。このX線回折の結果、LiSのピークは認められず、無定形となっていることが確認できた。また、元素分析の結果から求めた重量百分率は、Li:12.2、P:15.8、S:63.2、他(Aと記載):8.7であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には実施例1の場合と同様の位置に鋭いX線回折ピークが認められた。また、イオン伝導度は、2×10−3S/cmと高いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Example 8
Mechanical milling treatment was performed in the same manner as in Example 7 except that the amount of Li 2 SiO 4 added was 10 mol parts. The obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1. As a result of this X-ray diffraction, no Li 2 S peak was observed, and it was confirmed that the film was amorphous. Moreover, the weight percentage calculated | required from the result of the elemental analysis was Li: 12.2, P: 15.8, S: 63.2, others (denoted as A): 8.7. In the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, a sharp X-ray diffraction peak was observed at the same position as in Example 1. Moreover, the ionic conductivity was as high as 2 × 10 −3 S / cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

実施例9
LiSiOの添加量を18モル部とした以外は、実施例7と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行った。このX線回折の結果、LiSのピークは認められず、無定形となっていることが確認された。また、元素分析の結果から求めた重量百分率は、Li:13.1、P:14.5、S:57.9、他(Aと記載):14.4であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には実施例1の場合と同様の位置に鋭いX線回折ピークが認められた。また、イオン伝導度は、1×10−3S/cmと高いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Example 9
A mechanical milling treatment was performed in the same manner as in Example 7 except that the amount of Li 2 SiO 4 added was 18 mol parts. The obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1. As a result of this X-ray diffraction, no Li 2 S peak was observed, and it was confirmed that the film was amorphous. Moreover, the weight percentage calculated | required from the result of the elemental analysis was Li: 13.1, P: 14.5, S: 57.9, others (denoted as A): 14.4. In the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, a sharp X-ray diffraction peak was observed at the same position as in Example 1. Moreover, the ionic conductivity was as high as 1 × 10 −3 S / cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

比較例5
実施例7においてLiSiOを添加しなかった以外は実施例1と同様にしてメカニカルミリング処理した。その結果、X線回折スペクトルにおいてLiSのピークが認められ、完全に反応しておらず、無定形となっていないことが確認された。また、熱処理後の固体電解質のイオン伝導度も低い結果であった。
Comparative Example 5
A mechanical milling treatment was performed in the same manner as in Example 1 except that Li 4 SiO 4 was not added in Example 7. As a result, a peak of Li 2 S was observed in the X-ray diffraction spectrum, and it was confirmed that the reaction was not complete and the film was not amorphous. In addition, the ionic conductivity of the solid electrolyte after the heat treatment was also low.

比較例6
LiSiOの添加量を25モル部とした以外は、実施例7と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行った。このX線回折の結果、LiSのピークは認められず、無定形となっていることが確認された。一方、元素分析の結果から求めた重量百分率は、Li:13.8、P:13.5、S:54.0、他(Aと記載):18.6であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には鋭いX線回折ピークが認められたが、イオン伝導度は、3×10−5S/cmと低いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Comparative Example 6
A mechanical milling treatment was performed in the same manner as in Example 7 except that the amount of Li 2 SiO 4 added was 25 mol parts. The obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1. As a result of this X-ray diffraction, no Li 2 S peak was observed, and it was confirmed that the film was amorphous. On the other hand, the weight percentage calculated | required from the result of the elemental analysis was Li: 13.8, P: 13.5, S: 54.0, others (denoted as A): 18.6. Although a sharp X-ray diffraction peak was observed in the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, the ionic conductivity was as low as 3 × 10 −5 S / cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

実施例10
LiSiO変えてLiPOを使用した以外は、実施例4と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行ったところ、LiSのピークは認められず、無定形となっていることが確認された。一方、元素分析の結果から求めた重量百分率は、Li:9.9、P:18.9、S:70.5、他(Aと記載):0.6であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には実施例1の場合と同様の位置に鋭いX線回折ピークが認められ、イオン伝導度は、1×10−3S/cmと高いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Example 10
Mechanical milling was performed in the same manner as in Example 4 except that Li 3 PO 4 was used instead of Li 2 SiO 3 . When the obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1, no peak of Li 2 S was observed, and it was confirmed that the powder was amorphous. On the other hand, the weight percentage calculated | required from the result of the elemental analysis was Li: 9.9, P: 18.9, S: 70.5, and others (denoted as A): 0.6. In the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, a sharp X-ray diffraction peak was observed at the same position as in Example 1, and the ionic conductivity was 1 × 10 −3 S / It was as high as cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

実施例11
LiPOの添加量を10モル部とした以外は、実施例10と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行った。このX線回折の結果、LiSのピークは認められず、無定形となっていることが確認できた。また、元素分析の結果から求めた重量百分率は、Li:10.7、P:19.6、S:63.9、他(Aと記載):5.8であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には実施例1の場合と同様の位置に鋭いX線回折ピークが認められた。また、イオン伝導度は、2×10−3S/cmと高いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Example 11
A mechanical milling treatment was performed in the same manner as in Example 10 except that the amount of Li 3 PO 4 added was 10 mol parts. The obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1. As a result of this X-ray diffraction, no Li 2 S peak was observed, and it was confirmed that the film was amorphous. Moreover, the weight percentage calculated | required from the result of the elemental analysis was Li: 10.7, P: 19.6, S: 63.9, others (denoted as A): 5.8. In the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, a sharp X-ray diffraction peak was observed at the same position as in Example 1. Moreover, the ionic conductivity was as high as 2 × 10 −3 S / cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

実施例12
LiPOの添加量を18モル部とした以外は、実施例10と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行った。このX線回折の結果、LiSのピークは認められず、無定形となっていることが確認された。また、元素分析の結果から求めた重量百分率は、Li:11.3、P:20.2、S:58.9、他(Aと記載):9.6であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には実施例1の場合と同様の位置に鋭いX線回折ピークが認められた。また、イオン伝導度は、1×10−3S/cmと高いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Example 12
A mechanical milling treatment was performed in the same manner as in Example 10 except that the amount of Li 3 PO 4 added was 18 mol parts. The obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1. As a result of this X-ray diffraction, no Li 2 S peak was observed, and it was confirmed that the film was amorphous. Moreover, the weight percentage calculated | required from the result of the elemental analysis was Li: 11.3, P: 20.2, S: 58.9, others (denoted as A): 9.6. In the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, a sharp X-ray diffraction peak was observed at the same position as in Example 1. Moreover, the ionic conductivity was as high as 1 × 10 −3 S / cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

比較例7
LiPOの添加量を25モル部とした以外は、実施例10と同様にメカニカルミリング処理した。得られた粉末について、実施例1と同様に粉末X線回折測定を行った。このX線回折の結果、LiSのピークは認められず、無定形となっていることが確認された。一方、元素分析の結果から求めた重量百分率は、Li:11.7、P:20.6、S:55.2、他(Aと記載):12.5であった。この粉末を実施例1と同様に熱処理して得られた固体電解質には鋭いX線回折ピークが認められたが、イオン伝導度は、5×10−5S/cmと低いものであった。ここで、熱処理中に気体の発生が認められなかったことから、熱処理物の元素分析結果は、熱処理前のものと同一であると判断した。
Comparative Example 7
A mechanical milling treatment was performed in the same manner as in Example 10 except that the amount of Li 3 PO 4 added was 25 mol parts. The obtained powder was subjected to powder X-ray diffraction measurement in the same manner as in Example 1. As a result of this X-ray diffraction, no Li 2 S peak was observed, and it was confirmed that the film was amorphous. On the other hand, the weight percentage calculated | required from the result of the elemental analysis was Li: 11.7, P: 20.6, S: 55.2, others (it describes as A): 12.5. Although a sharp X-ray diffraction peak was observed in the solid electrolyte obtained by heat-treating this powder in the same manner as in Example 1, the ionic conductivity was as low as 5 × 10 −5 S / cm. Here, since generation | occurrence | production of gas was not recognized during the heat processing, it was judged that the elemental analysis result of the heat processing thing was the same as the thing before heat processing.

Figure 0004996120
Figure 0004996120

本発明の固体電解質は、高いリチウムイオン伝導性を示し、リチウム二次電池の固体電解質用の材料として適している。
また、本発明の製造方法は、焼成温度が150℃〜360℃と低温領域であり、短時間で原料を製造できることから量産性に優れかつ、経済性にも優れている。
さらに、上記の特性を有する本発明の固体電解質を使用した全固体二次電池は、エネルギー密度が高く、安全性及び充放電サイクル特性が優れている。
The solid electrolyte of the present invention exhibits high lithium ion conductivity and is suitable as a material for a solid electrolyte of a lithium secondary battery.
Moreover, the manufacturing method of this invention is a low temperature area | region with a calcination temperature of 150 to 360 degreeC, and since it can manufacture a raw material in a short time, it is excellent in mass-productivity and economical efficiency.
Furthermore, the all-solid-state secondary battery using the solid electrolyte of the present invention having the above characteristics has high energy density, and is excellent in safety and charge / discharge cycle characteristics.

実施例1−3及び比較例2で作製した無定形固体電解質のX線回折スペクトルチャートである。It is an X-ray diffraction spectrum chart of the amorphous solid electrolyte produced in Example 1-3 and Comparative Example 2. 実施例2で作製した固体電解質のX線回折スペクトルチャートである。3 is an X-ray diffraction spectrum chart of the solid electrolyte produced in Example 2. FIG. 実施例3で作製した無定形の固体電解質のX線回折スペクトルチャートである。4 is an X-ray diffraction spectrum chart of an amorphous solid electrolyte produced in Example 3. FIG. 比較例2で作製した無定形の固体電解質のX線回折スペクトルチャートである。4 is an X-ray diffraction spectrum chart of an amorphous solid electrolyte produced in Comparative Example 2. FIG. 実施例1で作製した熱処理後の固体電解質のX線回折スペクトルチャートである。2 is an X-ray diffraction spectrum chart of the solid electrolyte after heat treatment prepared in Example 1. FIG.

Claims (7)

下記式(1)で表される組成を有し、X線回折(CuKα:λ=1.5418Å)において2θ=17.8±0.3deg,18.2±0.3deg,19.8±0.3deg,21.8±0.3deg,23.8±0.3deg,25.9±0.3deg,29.5±0.3deg,30.0±0.3degに回折ピークを有する固体電解質。
Li・・・(1)
(式中、Aは、Si,Ge,B,Al,Oから選択される1種又は2種以上であり、かつ、AはOを含む
x=9.0〜14.0、y=14.0〜21.0、z=57.0〜71.0、o=0.5〜15.0である(重量%)。)
It has a composition represented by the following formula (1), and in X-ray diffraction (CuKα: λ = 1.54184), 2θ = 17.8 ± 0.3 deg, 18.2 ± 0.3 deg, 19.8 ± 0 Solid electrolyte having diffraction peaks at .3 deg, 21.8 ± 0.3 deg, 23.8 ± 0.3 deg, 25.9 ± 0.3 deg, 29.5 ± 0.3 deg, 30.0 ± 0.3 deg.
Li x P y S z A o (1)
(In the formula, A is one or more selected from Si, Ge, B, Al, and O, and A includes O.
x = 9.0 to 14.0, y = 14.0 to 21.0, z = 57.0 to 71.0, o = 0.5 to 15.0 (% by weight). )
AがOである請求項1記載の固体電解質。 The solid electrolyte according to claim 1 , wherein A is O. 以下の成分(a)〜(c)を、以下の配合比で反応させ、下記式(1)で表わされる組成を有し、X線回折(CuKα:λ=1.5418Å)において無定形を示す固体電解質を製造する工程、及び
前記無定形を示す固体電解質を150〜360℃で熱処理する工程を含む固体電解質の製造方法。
Li・・・(1)
(式中、Aは、Si,Ge,B,Al,Oから選択される1種又は2種以上であり、かつ、AはOを含む。
x=9.0〜14.0、y=14.0〜21.0、z=57.0〜71.0、o=0.5〜15.0である(重量%)。)
[成分]
(a)Li
(b)P、又は単体リン及び単体硫黄
(c)Si,Ge,B,Al,Oから選択される1種又は2種以上の元素を含有し、かつ、酸素元素を含有する無機化合物
[配合比]
成分(a):成分(b)(モル比)=65〜75:35〜25
成分(a)と成分(b)の合計を100モル部としたとき、成分(c)が1〜20モル部
The following components (a) to (c) are reacted at the following blending ratios, have a composition represented by the following formula (1), and exhibit amorphous in X-ray diffraction (CuKα: λ = 1.5418Å). The manufacturing method of a solid electrolyte including the process of manufacturing a solid electrolyte, and the process of heat-processing the solid electrolyte which shows the said amorphous at 150-360 degreeC.
Li x P y S z A o (1)
(In the formula, A is one or more selected from Si, Ge, B, Al, and O, and A includes O.
x = 9.0 to 14.0, y = 14.0 to 21.0, z = 57.0 to 71.0, o = 0.5 to 15.0 (% by weight). )
[component]
(A) Li 2 S
(B) P 2 S 5 , or elemental phosphorus and elemental sulfur (c) an inorganic element containing one or more elements selected from Si, Ge, B, Al, O and an oxygen element Compound [Combination ratio]
Component (a): Component (b) (molar ratio) = 65 to 75:35 to 25
When the total of component (a) and component (b) is 100 mol parts, component (c) is 1 to 20 mol parts
前記第三成分が、LiSiO、LiPO、LiGeO、LiBO、LiAlOから選択される1種又は2種以上である請求項に記載の固体電解質の製造方法。 The method for producing a solid electrolyte according to claim 3 , wherein the third component is one or more selected from Li 4 SiO 4 , Li 3 PO 4 , Li 4 GeO 4 , LiBO 2 , and LiAlO 3 . 前記無定形を示す固体電解質をメカニカルミリング法により製造する、請求項3又は4記載の固体電解質の製造方法。 The manufacturing method of the solid electrolyte of Claim 3 or 4 which manufactures the solid electrolyte which shows the said amorphous by the mechanical milling method. リチウム二次電池用である請求項1又は2記載の固体電解質。 The solid electrolyte according to claim 1 or 2, which is used for a lithium secondary battery. 請求項1、2及び6のいずれか一項記載の固体電解質を用いて得られる全固体二次電池。
The all-solid-state secondary battery obtained using the solid electrolyte as described in any one of Claims 1, 2, and 6 .
JP2006096451A 2006-03-31 2006-03-31 Solid electrolyte, method for producing the same, and all-solid-state secondary battery Expired - Fee Related JP4996120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006096451A JP4996120B2 (en) 2006-03-31 2006-03-31 Solid electrolyte, method for producing the same, and all-solid-state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096451A JP4996120B2 (en) 2006-03-31 2006-03-31 Solid electrolyte, method for producing the same, and all-solid-state secondary battery

Publications (2)

Publication Number Publication Date
JP2007273214A JP2007273214A (en) 2007-10-18
JP4996120B2 true JP4996120B2 (en) 2012-08-08

Family

ID=38675814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096451A Expired - Fee Related JP4996120B2 (en) 2006-03-31 2006-03-31 Solid electrolyte, method for producing the same, and all-solid-state secondary battery

Country Status (1)

Country Link
JP (1) JP4996120B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104995691A (en) * 2013-02-15 2015-10-21 富士通株式会社 Lithium ion conductor, method for producing same, and all-solid-state lithium secondary battery

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286516B2 (en) * 2006-06-05 2013-09-11 国立大学法人三重大学 Positive electrode material for all-solid-state lithium batteries
DE102007048289A1 (en) * 2007-10-08 2009-04-09 Universität Siegen Lithium argyrodites
JP5278437B2 (en) * 2008-10-03 2013-09-04 トヨタ自動車株式会社 Manufacturing method of all solid-state lithium battery
JP5376158B2 (en) * 2009-10-16 2013-12-25 住友電気工業株式会社 Method for producing sulfide solid electrolyte and composite
JP5685814B2 (en) * 2010-01-19 2015-03-18 トヨタ自動車株式会社 Method for producing sulfide solid electrolyte material
US8993176B2 (en) 2010-07-22 2015-03-31 Toyota Jidosha Kabushiki Kaisha Sulfide solid electrolyte glass, method for producing sulfide solid electrolyte glass, and lithium solid state battery
JP5737627B2 (en) * 2010-11-17 2015-06-17 公立大学法人大阪府立大学 ION CONDUCTIVE GLASS CERAMIC, PROCESS FOR PRODUCING THE SAME, AND ALL-SOLID REPAIR
WO2013006392A1 (en) * 2011-07-01 2013-01-10 Corning Incorporated Chalcogenide glass
JP5772961B2 (en) * 2011-08-17 2015-09-02 富士通株式会社 Lithium ion conductor and method for producing the same, all-solid lithium secondary battery
JP5888610B2 (en) 2011-12-22 2016-03-22 国立大学法人東京工業大学 Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material
WO2014054165A1 (en) 2012-10-05 2014-04-10 富士通株式会社 Lithium-ion conductor and all-solid lithium-ion secondary cell
JP6107192B2 (en) * 2013-02-08 2017-04-05 Tdk株式会社 Sulfide solid electrolyte material and electrochemical element
JP6062308B2 (en) * 2013-04-09 2017-01-18 古河機械金属株式会社 Solid electrolyte material for lithium ion battery, solid electrolyte for lithium ion battery, lithium ion battery, and method for producing solid electrolyte material for lithium ion battery
KR20220129669A (en) * 2013-05-15 2022-09-23 퀀텀스케이프 배터리, 인코포레이티드 Solid state catholyte or electrolyte for battery
JP6956641B2 (en) 2015-06-24 2021-11-02 クアンタムスケイプ バテリー, インク. Composite electrolyte
EP3173378A1 (en) * 2015-11-24 2017-05-31 Basf Se Ionically conductive compounds and articles comprising them
WO2017091341A1 (en) 2015-11-24 2017-06-01 Sion Power Corporation Ionically conductive compounds and related uses
WO2017096088A1 (en) 2015-12-04 2017-06-08 Quantumscape Corporation Lithium, phosphorus, sulfur, and iodine including electrolyte and catholyte compositions, electrolyte membranes for electrochemical devices, and annealing methods of making these electrolytes and catholytes
EP3504749A4 (en) 2016-08-29 2020-05-06 QuantumScape Corporation Catholytes for solid state rechargeable batteries, battery architectures suitable for use with these catholytes, and methods of making and using the same
US11251501B2 (en) 2017-05-24 2022-02-15 Sion Power Corporation Lithium metal sulfide and lithium metal sulfide argyrodite ionically conductive compounds and related uses
KR20190001798A (en) * 2017-06-28 2019-01-07 한국전기연구원 Sulfide-based solid electrolyte material and manufacturing method thereof
CN112242556B (en) * 2019-07-16 2021-09-28 宁德时代新能源科技股份有限公司 Preparation method of solid electrolyte

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0495351A (en) * 1990-07-31 1992-03-27 Matsushita Electric Ind Co Ltd Lithium ion conductive solid electrolyte
JP3343936B2 (en) * 1992-05-12 2002-11-11 松下電器産業株式会社 Amorphous lithium ion conductive solid electrolyte and its synthesis method
JP3433173B2 (en) * 2000-10-02 2003-08-04 大阪府 Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery
JP4813767B2 (en) * 2004-02-12 2011-11-09 出光興産株式会社 Lithium ion conductive sulfide crystallized glass and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104995691A (en) * 2013-02-15 2015-10-21 富士通株式会社 Lithium ion conductor, method for producing same, and all-solid-state lithium secondary battery
CN104995691B (en) * 2013-02-15 2017-07-25 富士通株式会社 Lithium ion electroconductive body and its manufacture method, all-solid lithium secondary battery

Also Published As

Publication number Publication date
JP2007273214A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4996120B2 (en) Solid electrolyte, method for producing the same, and all-solid-state secondary battery
JP4834442B2 (en) Solid electrolyte, method for producing the same, and all-solid-state secondary battery
JP4813767B2 (en) Lithium ion conductive sulfide crystallized glass and method for producing the same
JP4873479B2 (en) High performance all solid lithium battery
JP5395346B2 (en) Sulfide-based solid electrolyte for lithium ion secondary battery
JP5311169B2 (en) Lithium ion conductive solid electrolyte, method for producing the same, solid electrolyte for lithium secondary battery using the solid electrolyte, and all solid lithium battery using the solid electrolyte for secondary battery
US20170222261A1 (en) Solid electrolyte
JP5848801B2 (en) Lithium ion conductive solid electrolyte sheet and method for producing the same
US7498098B2 (en) Method for producing positive cathode material for lithium battery, and lithium battery
JP5189304B2 (en) Glass ceramic and method for producing the same
JP2008103204A (en) Cathode active material and secondary battery using it
JP2008103146A (en) Solid electrolyte and secondary battery using it
JPWO2007066539A1 (en) Lithium ion conductive sulfide-based solid electrolyte and all-solid-state lithium battery using the same
JP2008103280A (en) Positive electrode plied timber and all-solid secondary battery using it
JP6073107B2 (en) Solid electrolyte
JP2008027581A (en) Electrode material, electrode, and all-solid secondary battery
JP2008103203A (en) Solid electrolyte and all-solid secondary battery using it
JP5001621B2 (en) Solid electrolyte and solid secondary battery using the same
JP2014093263A (en) Solid electrolyte and lithium battery
JP5270825B2 (en) Glass composition and method for producing glass ceramic
JP6373417B2 (en) Solid electrolyte
JP5596900B2 (en) Lithium ion conductive solid electrolyte sheet and method for producing the same
JP6309344B2 (en) Solid electrolyte and battery
JP2014013772A (en) Sulfide-based solid electrolyte for lithium ion secondary battery
JP2008103194A (en) Lithium-sulfide based solid electrolyte

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4996120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees