KR101171405B1 - 검색 결과에서 배치 내용 정렬의 맞춤화 - Google Patents
검색 결과에서 배치 내용 정렬의 맞춤화 Download PDFInfo
- Publication number
- KR101171405B1 KR101171405B1 KR1020077003372A KR20077003372A KR101171405B1 KR 101171405 B1 KR101171405 B1 KR 101171405B1 KR 1020077003372 A KR1020077003372 A KR 1020077003372A KR 20077003372 A KR20077003372 A KR 20077003372A KR 101171405 B1 KR101171405 B1 KR 101171405B1
- Authority
- KR
- South Korea
- Prior art keywords
- user
- content
- batch
- profile
- documents
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9538—Presentation of query results
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/2866—Architectures; Arrangements
- H04L67/30—Profiles
- H04L67/306—User profiles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9536—Search customisation based on social or collaborative filtering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
- H04L67/025—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP] for remote control or remote monitoring of applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/535—Tracking the activity of the user
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99931—Database or file accessing
- Y10S707/99933—Query processing, i.e. searching
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
검색 엔진에 의해 리턴된 검색 결과의 배치 내용을 정렬하기 위하여 사용자 프로파일을 이용하는 시스템 및 방법이 제공된다. 사용자 프로파일은 사용자에 의해 제출된 검색 문의와, 검색 엔진에 의해 확인된 문서에 대한 사용자의 구체적인 반응과, 사용자에 의해 제공된 개인 정보에 기초한다. 배치 내용은 구체적인 배치 내용의 사용자의 프로파일과의 유사성에 적어도 부분적으로 기초하는 점수에 의해 순위 정해진다. 사용자 프로파일은 클라이언트-서버 네트워크 환경의 클라이언트측 또는 서버측에 생성되고/되거나 저장될 수 있다.
Description
본 출원은 2003년 9월 30일 제출된 미국 특허출원 No. 10/676,711의 일부 계속 출원이며, 이 출원은 그 전체가 참조에 의해 본원에 합체된다.
본 발명은 일반적으로 컴퓨터 네트워크 시스템 내의 검색 엔진의 분야에 관한 것이고, 구체적으로는 사용자에 의해 제출된 검색 질의(search query)에 응답하여 배치 내용(placed content)의 정렬을 맞춤화(customize)하기 위하여 사용자 프로파일을 생성하고 이용하는 시스템 및 방법에 관한 것이다.
검색 엔진은, 사용자에 의해 제출된 검색 질의에 응답하여 빠르게 조사될 수 있는 인터넷(또는 인트라넷)으로부터 색인된 문서들의 강력한 소스를 제공한다. 이러한 질의는 일반적으로 매우 짧다(평균적으로 약 2-3 단어). 인터넷을 통해 액세스할 수 있는 문서의 수가 증가함에 따라, 질의와 매칭되는 문서의 수 또한 증가한다. 그러나, 질의와 매칭되는 모든 문서가 사용자의 관점으로부터 동일하게 중요한 것은 아니다. 결과적으로, 검색 엔진이 사용자의 질의에 대한 이들의 관련성에 기초하여 검색 결과를 정렬하지 않는다면, 사용자는 엔진에 의해 리턴된 방대한 양의 문서에 의해 틀림없이 압도될 것이다.
검색 질의에 대한 검색 결과의 관련성을 향상시키는 한 가지 접근법은 검색 결과의 순위에 영향을 미치도록 사용될 수 있는 일반적인 "중요성" 점수를 계산하기 위하여 상이한 웹페이지들의 링크 구조를 이용하는 것이다. 이를 때로는 페이지랭크(PageRank) 알고리즘이라고 한다. 페이지랭크 알고리즘의 보다 상세한 설명은 7회 호주 브리즈번의 국제 월드 와이드 웹 콘퍼런스, S. Brin 및 L. Page에 의한 "The Anatomy of a Large-Scale Hypertextual Search Engine"와, 미국특허 No. 6,285,999에 기재되어 있으며, 이들 모두는 배경 정보로써 본원에 참조에 의해 포함된다.
페이지랭크 알고리즘에 있어서의 중요한 가정은, 임의로 선발된(randonly picked) 웹 페이지에서 웹 서핑 여행(web surfing journey)을 시작하여 "뒤로(back)" 버튼을 누르지 않고, 웹 페이지에 내장된 링크들을 계속해서 클릭하는 "랜덤 서핑자(random surfer)"가 존재한다는 것이다. 결과적으로, 이러한 랜덤 서핑자가 여행에 싫증날 때, 다른 웹 페이지를 임의로 선발함으로써 새로운 여행을 재시작할 수 있다. 랜덤 서핑자가 어떤 웹 페이지를 방문할(즉, 보거나 다운로드할) 확률은 그 웹 페이지의 페이지 랭크에 의존한다.
최종 사용자(end user)의 관점에서, 페이지랭크 알고리즘을 사용하는 검색 엔진은 어느 누가 질의를 제출하더라도 동일한 방법으로 검색 질의를 처리하는데, 이는 검색 엔진이 사용자에게 사용자를 고유하게 식별할 수 있는 어떠한 정보도 제공할 것을 요구하지 않기 때문이다. 검색 결과에 영향을 주는 유일한 인자는 검색 질의 그 자체, 즉 얼마나 많은 용어가 질의 내에 어떠한 순서로 존재하는가이다. 검색 결과는 추상적인 사용자, 즉 "랜덤 서핑자"의 관심에 가장 적합하며, 이는 특정 사용자의 취향이나 관심에 적합하도록 조정되지 않는다.
실제로, 랜덤 서핑자와 유사한 사용자는 존재하지 않는다. 모든 사용자는, 검색 엔진에 질의를 제출할 때 그 자신의 취향을 가지고 있다. 엔진에 의해 리턴된 검색 결과의 품질은 그 사용자의 만족에 의해 평가되어야 한다. 사용자의 취향이 질의 자체에 의해 잘 정의될 수 있을 때 또는 사용자의 취향이 특정 질의에 관하여 랜덤 서핑자의 취향과 유사할 때, 사용자는 검색 결과에 보다 만족할 것 같다. 그러나, 사용자의 취향이 검색 질의 자체에 명료하게 반영되지 않는 몇몇 개인적인 인자들에 의해 현저하게 치우쳐지거나, 또는 사용자의 취향이 랜덤 사용자의 취향과 완전히 상이하다면, 동일한 검색 엔진으로부터의 검색 결과가 쓸모없지 않다면 사용자에게 덜 유용할 수 있다.
위에서 제시된 것처럼, 랜덤 서핑자의 여행은 특정 방향으로의 두드러진 치우침 없이 임의적이거나 중립적인 경향이 있다. 검색 엔진이 질의와 매칭되는 소량의 검색 결과들만을 리턴할 때, 리턴된 결과의 정렬은 덜 중요한데 이는 요청중인 사용자가 그 자신과 가장 적절한 항목을 발견하기 위하여 이들 각각을 탐색할 시간 여유가 있을 수 있기 때문이다. 그러나, 인터넷에 연결된 무수히 많은 웹 페이지들을 이용하여, 검색 엔진은 종종 검색 질의와 매칭되는 수백 혹은 심지어는 수천 개의 문서를 리턴한다. 이 경우, 검색 결과의 정렬은 매우 중요하다. 랜덤 서핑자의 취향과 다른 취향을 가진 사용자는 검색 결과에 열거된 첫 번째 5 내지 10개의 문서에서 그가 찾는 것을 발견하지 못할 수 있다. 이 경우, 사용자는 통상적으로 두 가지 옵션을 갖게 된다: (1) 많은 열거된 문서들을 검토하기 위해 요구 되는 시간을 소비하여 관련이 있는 문서들을 찾아내거나; (2) 질의와 매칭되는 문서들의 수를 줄이기 위하여 검색 질의를 정교화(refine)한다. 질의 정교화는 종종 쉽지 않은 작업이며, 때로는 주제에 대한 더 많은 지식을 요하거나 사용자가 갖고 있는 것 이상의 검색 엔진에 대한 전문 지식을 요하고, 때로는 사용자가 들이고자 하는 것 이상의 시간과 노력을 요한다.
예를 들어, 사용자가 하나의 용어 "blackberry"만으로 이루어진 검색 질의를 검색 엔진에 제출한다고 가정하자. 다른 사정이 없다면, 페이지랭크 기반의 검색 엔진에 의해 리턴된 문서들의 리스트 중 최상위에는 www.blackberry.net으로의 링크가 있을 것인데, 이는 이 웹 페이지가 가장 높은 페이지 랭크(page rank)를 가지기 때문이다. 그러나, 질의 요청자가 음식과 요리에 관심을 가진 사람이라면, 리턴된 결과의 최상위에 요리법이나 다른 음식 관련 문장, 사진 등을 갖는 웹 페이지를 포함하도록 검색 결과를 정렬하는 것이 보다 유용할 수 있다. 그 검색 결과를 재정렬하거나 검색 결과를 맞춤화하여, 그 검색 결과를 제출하고 있는 사람에게 가장 관심이 있을 법한 웹 페이지를 강조할 수 있는 검색 엔진을 구비하는 것이 바람직할 것이다. 또한, 이러한 시스템이 개별 사용자들로부터의 최소한의 입력을 요하며, 사용자의 취향이나 관심에 관하여 사용자로부터의 명백한 입력이 없이도 충분히 또는 완전히 동작하는 것이 바람직할 것이다. 마지막으로 이러한 시스템이 안전성 및 프라이버시에 관한 사용자의 요구조건을 만족시키는 것이 바람직할 것이다.
배치 내용을 맞춤화하는 방법에서, 사용자의 관심이 결정되고 사용자와 연관된 사용자 프로파일이 액세스된다. 사용자의 관심과 매칭되는 배치 내용의 세트가 식별되고, 배치 내용의 세트가 사용자 프로파일에 따라 정렬된다.
본 발명의 일 측면에서, 검색 엔진은 검색 결과를 맞춤화하기 위해 사용자 프로파일을 이용하며, 검색 결과들은 배치 내용 및 기타 또는 일반적인 내용을 포함할 수 있다. 사용자 프로파일은 사용자의 관심 또는 취향을 특징화하는 다중 항목을 포함한다. 이러한 항목들은 사용자에 의해 제출된 이전의 검색 질의, 이전의 질의에 의해 식별된 문서들로부터의 또는 문서들로의 링크, 식별된 문서들로부터의 샘플링된 내용, 사용자에 의해 암묵적이거나 명시적으로 제공된 개인 정보를 포함하는 다양한 정보원으로부터 추출된다.
검색 엔진이 사용자로부터 검색 질의를 수신할 때, 검색 질의와 매칭되는 배치 내용의 세트를 식별한다. 각각의 배치 내용은 적어도 부분적으로 사용자 프로파일에 대한 배치 내용의 유사성에 기반한 순위와 연관된다. 그 후, 배치 내용 항목들은 이들의 순위에 따라 정렬된다.
사용자 프로파일 구성과 검색 결과 재정렬 및/또는 점수 정하기(scoring)를 포함하는 본 발명은 클라이언트-서버 네트워크 환경의 클라이언트측 또는 서버측 중 어느 하나에서 구현될 수 있다.
본 발명의 전술한 특징 및 이점과 그 부가적인 특징 및 이점은 도면들과 결합하여 취해질 때 본 발명의 바람직한 실시예의 상세한 설명의 결과로써 이하에서 더욱 명료하게 이해될 것이다.
도 1은 클라이언트-서버 네트워크 환경을 도시한다.
도 2는 사용자 정보의 다중 소스 및 이들의 사용자 프로파일과의 관계를 도시한다.
도 3은 다수의 사용자들에 대한 용어 기반의 프로파일을 저장하는 데 사용될 수 있는 예시적인 데이터 구조를 도시한다.
도 4A는 사용자의 과거 검색 이력을 분류하는 데 사용될 수 있는 예시적인 카테고리 맵이다.
도 4B는 다수의 사용자들에 대한 카테고리 기반의 프로파일들을 저장하는 데 사용될 수 있는 예시적인 데이터 구조이다.
도 5는 다수의 사용자들에 대한 링크 기반의 프로파일을 저장하는 데 사용될 수 있는 예시적인 데이터 구조이다.
도 6은 단락 샘플링을 도시하는 흐름도이다.
도 7A는 문맥 분석(context analysis)을 도시하는 흐름도이다.
도 7B는 문맥 분석을 이용하여 중요한 용어를 식별하는 방법을 도시한다.
도 8은 용어 기반, 카테고리 기반, 및/또는 링크 기반 분석 이후에 문서들에 관한 정보를 저장하는 데 사용될 수 있는 다수의 예시적인 데이터 구조를 도시한다.
도 9A는 일 실시예에 따른 맞춤화된 웹 검색 방법을 도시하는 흐름도이다.
도 9B는 다른 실시예에 따른 맞춤화된 웹 검색 방법을 도시하는 흐름도이다.
도 10은 맞춤화된 검색 엔진의 블록도이다.
도 11은 본 발명의 일 실시예에 따른 맞춤화된 배치 내용 프로세스를 도시하는 흐름도이다.
동일한 도면 부호는 여러 도면들의 도시에 걸쳐 동일한 부분을 지칭한다.
이하에 개시되는 실시예들은 검색 엔진을 이용하여 사용자 프로파일 기반의 사용자의 과거 이력을 생성한 후 사용자에 의해 제공된 검색 질의들에 응답하여 검색 결과들을 순위 정하기(rank) 위하여 사용자 프로파일을 이용하는 시스템 및 방법을 포함한다.
도 1은 본 발명이 구현될 수 있는 일반적인 클라이언트-서버 네트워크 환경의 개관을 제공한다. 다수의 클라이언트들(102)이 인터넷과 같은 네트워크(105)를 통하여 검색 엔진 시스템(107)에 접속되어 있다. 검색 엔진 시스템(107)은 하나 이상의 검색 엔진(104)을 포함한다. 검색 엔진(104)은 클라이언트(102)에 의해 제출된 검색 질의를 처리하고, 검색 질의에 따라서 검색 결과를 생성하고, 클라이언트에 그 결과를 리턴하는 역할을 한다. 검색 엔진 시스템(107)은 또한, 하나 이상의 내용 서버(106), 하나 이상의 프로파일 서버(108), 및 하나 이상의 배치 내용 서버(111)를 포함할 수 있다. 내용 서버(106)는 서로 다른 웹사이트로부터 검색된 다수의 색인된 문서를 저장한다. 대안으로, 또는 이에 부가하여, 내용 서버(106)는 다양한 웹사이트에 저장된 문서들의 색인을 저장한다. 일 실시예에서, 각각의 색인된 문서는 그 문서의 링크 구조에 따라 페이지 랭크를 할당받는다. 페이지 랭크는 그 문서의 중요도에 관한 질의 독립 측정(query independent measure)으로써 작용한다. 검색 엔진(104)은 특정 검색 질의에 응답하여 다수의 문서들을 선택하기 위하여 하나 이상의 내용 서버들(106)과 통신한다. 검색 엔진은 문서의 페이지 랭크, 그 문서와 연관된 문장, 및 검색 질의에 기초하여 각 문서에 점수를 할당한다. 검색 엔진(104)은 검색 결과와 결합하여 광고나, 다른 형태의 배치 내용을 제공하기 위하여 하나 이상의 배치 내용 서버(111)와 통신할 수 있다. 배치 내용 서버(111)는 하나 이상의 사용자 프로파일 서버들(108)과 통신할 수 있다. 배치 내용은 이하에 보다 상세히 기재된다.
사용자 프로파일 서버(108)는 다수의 사용자 프로파일을 저장한다. 각각의 프로파일은 사용자를 고유하게 식별하는 정보뿐만 아니라, 사용자의 이전의 검색 이력 및 개인 정보를 포함하며, 이들은 사용자에 의해 제출된 검색 질의에 응답하여 검색 결과들을 정교화하는 데 사용될 수 있다. 사용자 프로파일 구성을 위해 서로 다른 접근법이 가능하다. 예를 들어, 사용자 프로파일은 최초 사용자에게 폼을 채우거나 조사에 답하도록 함으로써 생성될 수 있다. 이 접근법은 은행 계정을 여는 것과 같은 특정 응용에서 유용할 수 있다. 그러나, 이 접근법은 검색 엔진의 상황에서는 바람직한 것이라 할 수 없다. 우선, 사용자의 검색 엔진과의 반응이 통상 동적 프로세스이다. 시간이 지남에 따라서, 사용자의 관심은 변할 수 있다. 이러한 변화는 사용자에 의해 제출된 검색 질의에 의해 또는 사용자의 검색 결과의 처리에 의해, 또는 이들 모두에 의해 영향받을 수 있다. 폼에서의 질문에 대한 사용자의 응답은, 사용자가 자신의 응답을 주기적으로 업데이트하도록 선택하지 않는다면 시간에 따라 덜 유용해지는 경향이 있다. 온라인 은행 계좌의 경우에 있어서의 전화번호의 가끔씩의 업데이트와는 달리, 검색 엔진의 경우에 있어서의 사용자 프로파일의 빈번한 업데이트는 검색엔진의 사용자 우호도에 현저하게 영향을 미치며, 이는 사용자가 현재 이용가능한 검색 엔진들 중에서 선택할 때 중요한 고려사항이다. 또한, 많은 사용자들은 이것이 너무 번거롭다는 것을 알게 됨에 따라, 명시적인 피드백을 제공하는 것을 달갑지 않아 한다는 것이 알려져 있다. 따라서, 일부 사용자들이 그들의 관심에 대해 명시적인 피드백을 제공할 수 있더라도, 사용자에 의한 임의의 명시적이거나 새로운 행위를 요하지 않고 사용자의 관심에 관한 정보를 은연중에 획득하는 방법을 갖는 것이 바람직하다.
검색 엔진 사용자의 과거의 검색 행동은 사용자의 개인적 검색 취향에 관한 유용한 힌트를 제공한다는 것이 관찰되었다. 도2는 사용자 프로파일 구성을 위해 유용한 사용자 정보의 소스들의 리스트를 제공한다. 예를 들어, 이전에 제출된 검색 질의(201)는 사용자의 관심을 프로파일링(profiling) 하는 데 크게 도움이 된다. 만약 사용자가 당뇨병에 관한 다수의 검색 질의를 제출했다면, 그렇지 않은 경우와 비교하여, 이것이 사용자에게 관심이 있는 주제일 개연성이 있다. 만약 사용자가 이후에 용어 "유기농 음식(organic food)"을 포함하는 질의를 제출한다면, 이 사용자가 당뇨병과 싸우는 데 유용한 그러한 유기농 음식에 보다 관심이 있음을 합리적으로 추론할 수 있다. 유사하게, 이전의 검색 질의의 응답인 검색 결과들과 연관된 URL(universal resource locators)(203)과 이들의 대응 앵커 텍스트(205), 특히 사용자에 의해 선택되었거나 "방문"되었던(예를 들어, 사용자에 의해 다운로드되거나 관찰된) 검색 결과 항목은, 사용자의 취향을 결정하는 데 유용하다. 첫 번째 페이지가 두 번째 페이지로의 링크를 포함하고, 그 링크가 이와 연관된 텍스트(링크와 이웃하는 텍스트)를 가지고 있을 때, 링크와 연관된 텍스트는 두 번째 페이지에 관하여 "앵커 텍스트(anchor text)"라고 불린다. 앵커 텍스트는 문서 내의 URL 링크에 연관된 텍스트 및 그 URL 링크가 지시하는 다른 문서 사이의 관계를 설정한다. 앵커 텍스트의 이점은, 종종 앵커 텍스트는 URL 링크가 지시하는 문서의 정확한 설명을 제공하며, 이미지 또는 데이터베이스와 같은 텍스트 기반의 검색 엔진에 의해 색인될 수 없는 문서들을 색인하기 위해 사용될 수 있다는 이점을 포함한다.
검색 결과를 수신한 후에, 사용자는 URL 링크들의 일부를 클릭하고, 이에 의해 이들 링크에 의해 참조되는 문서들을 다운로드 하여, 이들 문서들에 관한 보다 상세한 내용을 알 수 있다. 어떤 형태의 일반 정보(207)는 사용자 선택된 또는 사용자 식별된 문서들의 집합과 연관될 수 있다. 사용자 프로파일을 형성할 목적으로, 사용자 프로파일에 포함시키기 위하여 정보가 이로부터 유도되는 식별된 문서들은 다음을 포함할 수 있다: 검색 엔진으로부터의 검색 결과에 의해 식별된 문서, 사용자에 의해 액세스된(가령, 브라우저 어플리케이션 등을 이용하여 관찰되거나 다운로드 된) 문서(이전의 검색 결과에서 식별되지 않은 문서 포함), 검색 엔진으로부터의 검색 결과에 의해 식별된 문서에 링크된 문서, 사용자에 의해 액세스된 문서에 링크된 문서, 또는 이러한 문서들의 임의의 부분집합.
식별된 문서에 대한 일반 정보(207)는, 문서의 포맷은 무엇인가? HTML(hypertext markup language), 단순 텍스트, PDF(portable document format), 또는 마이크로소프트 워드인가? 문서의 주제는 무엇인가? 과학, 건강, 또는 비즈니스에 관한 것인가? 와 같은 질문에 답할 수 있다. 이 정보는 사용자의 관심을 프로파일링하는 데 또한 유용하다. 또한, 사용자 선택된 문서(본원에서 때로는 식별된 문서라고 함)에 관한 사용자의 행동(209)에 관한 정보, 가령 사용자가 그 문서를 보는데 소모한 시간, 그 문서에 대한 스크롤 량, 및 사용자가 그 문서를 프린트, 저장 또는 즐겨찾기에 추가했는지 여부 등은 또한 사용자에 대한 그 문서의 중요도뿐만 아니라 사용자의 취향을 암시한다. 일부 실시예에서, 사용자 행동(209)에 대한 정보는 사용자 식별된 문서들로부터 추출 또는 유도된 정보의 중요성에 가중치를 부여할 때 사용된다. 일부 실시예에서, 사용자 행동(209)에 관한 정보는, 사용자 식별된 문서 중 어느 것을 사용자 프로파일을 유도하는 기초로써 사용할 지를 결정하는 데 사용된다. 예를 들어, 정보(209)는 사용자 프로파일을 발생시키기 위해 (미리 정의된 기준에 따른) 중요한 사용자 행동을 수신한 문서들만 선택하는 데 이용될 수 있거나, 정보(209)는 미리 정의된 시간의 임계량보다 적은 시간 동안 사용자가 본 문서들을 프로파일링 처리로부터 배제하는 데 사용될 수 있다.
이전의 검색 행동으로부터의 식별된 문서들의 내용은 사용자의 관심과 취향에 관한 풍부한 정보원이다. 식별된 문서들에서 보여지는 핵심 용어와 이들이 식별된 문서에서 보여지는 빈도는, 특히 이들이 전술한 다른 형태의 사용자 정보와 결합될 때, 문서를 색인하는 데 유용할 뿐만 아니라, 사용자의 개인적 관심의 강한 지표이다. 일 실시예에서, 전체 문서 대신에, 식별된 문서들로부터 샘플링된 내 용(211)이 사용자 프로파일 구성을 위한 목적으로 저장 공간 및 계산 비용을 절감하기 위하여 추출된다. 다른 실시예에서, 식별된 문서들에 관한 다양한 정보가 식별된 문서들에 관한 카테고리 정보(213)를 구성하도록 분류될 수 있다. 다양한 정보는, 이전에 그 페이지를 방문했던 개인의 유형 또는 그 문서를 기재할 수 있는 다른 메타 데이터를 포함한다. 내용 샘플링, 식별된 문서에서 핵심 내용을 식별하는 방법, 및 카테고리 정보의 사용에 관한 보다 상세한 논의가 아래에 제공된다.
사용자 프로필에 관한 또 다른 잠재적인 정보원은 사용자의 브라우징 패턴(217)이다. 사용자의 브라우징 패턴은, 이전 N일(가령, 60일)과 같은 일정기간 동안에 사용자에 의해 방문된 URL로 표현될 수 있다.
일부 실시예에서, 사용자 프로필 정보는 그 생성시기(age)에 따라 가중치가 부여되어 보다 최근의 정보는 높은 가중치를 부여받고 덜 최근의 정보는 낮은 가중치를 부여받는다. 이는 사용자 프로필이 사용자의 관심의 변화를 더욱 잘 추적하고, 사용자에 대한 일시적(pasing) 관심들 또는 점차 줄어들고 있는 관심 주제의 영향을 감소시키는데 도움이 된다. 다양한 데이터 구조가 시간 가중된 사용자 프로필을 지원하기 위하여 사용될 수 있고, 이는 일반적으로 일련의 기간과 연관된 사용자 정보를 보유하기 위한 수많은 저장소(bin) 또는 계층(tier)을 포함한다.
선택적으로, 사용자는 개인 정보(215)를 제공할 것을 결정할 수 있고, 이 정보는 사용자의 연령 또는 연령 범위, 교육 수준 또는 범위, 수입 수준 또는 범위, 언어 취향, 전쟁 상황, 지리적 위치(가령, 사용자가 거주하고 있는 도시, 주, 및 국가로서, 주소, 우편번호, 및 전화 지역 번호와 같은 부가적인 정보도 포함할 수 있다), 문화적 배경 또는 선호도, 또는 이들의 임의의 부분집합과 같은 사용자와 연관된 인구학적이고 지리적인 정보를 포함한다. 다른 형태의 개인 정보, 가령 시간에 따라 종종 변하는 사용자의 좋아하는 스포츠나 영화와 비교하여, 이러한 개인 정보는 보다 통계적이며 사용자의 검색 질의와 검색 결과로부터 추론하기가 더욱 힘들지만, 사용자에 의해 제출된 특정 질의를 정확히 해석하는데 결정적일 수 있다. 예를 들어, 만약 사용자가 "일본 레스토랑"을 포함하는 질의를 제출한다면, 사용자는 저녁 식사를 위하여 지역의 일본 레스토랑을 검색하고 있을 가능성이 매우 높다. 사용자의 지리학적 위치를 파악하지 않으면, 사용자의 진실된 의도와 가장 관련있는 항목들을 상단으로 가져오도록 검색 결과를 정렬하는 것은 어렵다. 그러나, 특정 경우에는 이러한 정보를 추측하는 것이 가능하다. 예를 들어, 사용자는 종종 그가 살고 있는 장소에 해당하는 특정 영역과 관련이 있는 결과를 선택한다.
다양한 사용자 정보원으로부터 다양한 사용자 프로파일(230)을 생성하는 것은 동적이고 복잡한 절차이다. 일부 실시예에서, 절차는 부분 절차로 분할된다. 각각의 부분 절차는 특정 관점으로부터 사용자의 관심이나 취향을 특징화하는 사용자 프로파일의 일 유형을 생성한다. 이들은:
● 용어 기반의 프로파일(231) - 이 프로파일은 다수의 용어로 사용자의 검색 취향을 나타내며, 여기서 각각의 용어는 사용자에 대한 용어의 중요도를 지시하는 가중치를 부여받는다;
● 카테고리 기반의 프로파일(233) - 이 프로파일은 사용자의 검색 취향을 카테고리들의 집합과 상관시키며, 카테고리는 계층 형식으로 구성될 수 있고, 각 카테고리는 사용자의 검색 취향과 카테고리 사이의 상관관계의 정도를 지시하는 가중치를 부여받는다;
● 링크 기반의 프로파일(235) - 이 프로파일은 사용자의 검색 취향과 직간접적으로 관련이 있는 다수의 링크들을 식별하며, 각각의 링크는 사용자의 검색 취향과 링크 사이의 관련성을 지시하는 가중치를 부여받는다.
일부 실시예에서, 사용자 프로파일(230)은 이러한 프로파일들(231, 233, 235)의 부분집합만을, 가령 이들 프로파일들의 하나 또는 둘만을 포함한다. 일 실시예에서, 사용자 프로파일(230)은 용어 기반의 프로파일(231)과 카테고리 기반의 프로파일(233)을 포함하지만, 링크 기반의 프로파일(235)을 포함하지 않는다.
카테고리 기반의 프로파일(233)은 예를 들어, (가령 각 개별 질의로부터의) 검색 용어들 또는 (특정 식별된 문서로부터의) 식별된 내용 용어들의 집합을 카테고리들로 맵핑함으로써 구성될 수 있고, 그 후 카테고리들의 결과 집합을 종합(aggregate)하고, 이들의 발생의 빈도와 검색 용어들 또는 식별된 내용 용어들의 카테고리들에 대한 관련성 양자의 관점에서 카테고리에 가중치를 부여한다. 대안으로, 일정 기간동안 축적된 모든 검색 용어들 또는 식별된 내용 용어들은 가중치 부여된 카테고리들로 맵핑하기 위하여 그룹으로 처리될 수 있다. 또한, 사용자 제공의 개인 정보(215)는 가중치 부여된 카테고리들로 맵핑될 수 있고, 이들 카테고리들은 전술한 기법들 중 임의의 것을 이용하여 생성된 가중치 부여된 카테고리들과 결합 또는 종합될 수 있다. 사용자 관련 정보를 카테고리들로 맵핑하는 다른 적절한 맵핑 방식들이 또한 사용될 수 있다.
일부 실시예에서, 사용자 프로파일(230)은 다수의 사용자와 연관된 정보에 기초한 종합된 프로파일이다. 프로파일 정보가 종합되는 사용자들은 여러 방법으로 선택되거나 식별될 수 있다. 예를 들어, 클럽이나 다른 조직의 구성원이거나, 특정 회사의 종업원인 모든 사용자들은 이들의 프로파일 정보를 수집당할 수 있다. 다른 예에서, 유사한 종합 전의 사용자 프로파일을 갖는 사용자는 이들의 프로파일 정보를 수집당할 수 있다. 대안으로, 조직 또는 웹 사이트는 그와 연관된 "사용자 프로파일"을 가질 수 있고, 이는 그 조직의 구성원들의 행동에 기초하여 자동적으로 생성되거나, 그 조직에 의해 또는 그 조직을 위해 맞춤화될 수 있다. 검색 질의를 실행할 때, 또는 요청자 또는 가입자가 관심이 있는 내용을 선택하는 데 도움을 주기 위하여 임의의 다른 적절한 정보 서비스와 함께 배치 내용 또는 다른 내용을 제공할 때, 검색 엔진 또는 다른 서비스는 그 조직의 사용자 프로파일을 이용할 수 있다.
일 실시예에서, 사용자 프로파일은 검색 엔진과 연관되어 있는 서버(가령, 사용자 프로파일 서버(108))상에서 생성되고 저장된다. 이러한 배치(deployment)의 이점은, 사용자 프로파일이 다수의 컴퓨터에 의해 쉽게 액세스될 수 있다는 점과, 프로파일이 검색 엔진(104) (또는 그 일부)와 연관된 서버상에 저장되므로 검색 결과를 맞춤화하기 위하여 검색 엔진(104)에 의해 쉽게 이용될 수 있다는 점이다. 다른 실시예에서, 사용자 프로파일은, 네트워크 환경에서 때로는 클라이언트라고 칭하는 사용자의 컴퓨터상에서 생성되고 저장될 수 있다. 사용자 프로파일을 사용자의 컴퓨터상에서(가령 쿠키에) 생성하고 저장하는 것은, 검색 엔진의 서버들에 대한 계산 및 저장 비용을 절감할 뿐 아니라, 일부 사용자들의 프라이버시 요건도 만족시킨다. 또 다른 실시예에서, 사용자 프로파일은 클라이언트에서 생성되고 업데이트되나 서버에 저장될 수 있다. 이러한 실시예는 다른 두 실시예에서 설명된 이점의 일부를 결합한다. 이러한 배치의 단점은, 클라이언트와 서버 사이의 네트워크 트래픽을 증가시킬 수 있다는 점이다. 본 발명의 사용자 프로파일들은 클라이언트 컴퓨터, 서버 컴퓨터, 또는 이들 모두를 이용하여 구현될 수 있음이 당해 기술분야에서 통상의 지식을 가진 자에게 이해될 것이다.
도3은 예시적인 데이터 구조인 용어 기반의 프로파일 테이블(300)을 도시하며, 이는 다수의 사용자에 대하여 용어 기반의 프로파일을 저장하는 데 사용될 수 있다. 테이블(300)은 다수의 레코드(310)를 포함하며, 각각의 레코드는 사용자의 용어 기반의 프로파일에 대응한다. 용어 기반의 프로파일 레코드(310)는 사용자_ID 칼럼(320)과 (용어, 가중치) 쌍(340)의 다중 칼럼을 포함하여, 다수의 칼럼을 포함한다. 사용자_ID 칼럼(320)은 (용어, 가중치) 쌍의 동일한 집합을 공유하는 사용자 또는 사용자들의 그룹을 고유하게 식별하는 값을 저장하며, 각 (용어, 가중치) 쌍(340)은 통상적으로 사용자 또는 사용자들의 그룹에 중요한 전형적으로 1-3 단어(word) 길이의 용어와 그 용어의 중요성을 정량화하는 용어와 연관된 가중치를 포함한다. 일 실시예에서, 용어는 1 이상의 n-그램으로 표현될 수 있다. n-그램은 n 토큰의 시퀀스로 정의되며, 토큰은 단어(word)일 수 있다. 예를 들어, 구(phase) "검색 엔진(search engine)"은 길이 2의 n-그램이며, 단어 "엔진(engine)"은 길이 1의 n-그램이다.
n-그램은 문장 객체를 벡터로 표시하기 위해 사용될 수 있다. 이는 벡터에 대하여 잘 정의되지만 일반적으로 객체에 대해서는 그렇지 않은 기하학적, 통계학적, 그리고 다른 수학적인 기법을 적용할 수 있게 해준다. 본 발명에서, n-그램은 수학적 함수를 용어의 벡터 표현에 적용하는 것에 기초한 두 용어 사이의 유사성 측정을 정의하기 위해 사용될 수 있다.
용어의 가중치는 반드시 양의 값이어야 하는 것은 아니다. 만약 용어가 음의 가중치를 갖는다면, 사용자는 사용자의 검색 결과가 이 용어를 포함하지 않을 것을 바란다는 것을 암시하며, 음의 가중치의 크기는 그 검색 결과에서 이 용어를 피하고자 하는 사용자의 선호의 강도를 나타낸다. 예로써, 캘리포니아 산타크루즈에서 서핑하는 팬들의 그룹에 대하여, 용어 기반의 프로파일은 양의 가중치를 갖는 "서핑 클럽", "서핑 이벤트" 및 "산타크루즈"와 같은 용어들을 포함할 수 있다. "인터넷 서핑" 또는 "웹 서핑"과 같은 용어들이 프로파일에 포함될 수도 있다. 그러나, 이러한 용어들은 음의 가중치를 받을 가능성이 큰데, 이는 이들이 이 용어 기반의 프로파일을 공유하는 사용자들의 진정한 취향과 관련이 없고 진정한 취향을 혼동시키기 때문이다.
용어 기반의 프로파일은 사용자의 취향을 특정 용어들을 이용하여 항목화하며, 각각의 항목은 특정 가중치를 갖는다. 만약 문서가 사용자의 용어 기반의 프로파일에 있는 하나의 용어와 매칭된다면, 즉, 그 내용이 정확히 이 용어를 포함한다면, 그 용어의 가중치가 문서에 할당될 것이나; 만약 문서가 용어와 정확히 매칭되지 않는다면, 이 용어와 연관된 어떠한 가중치도 받지 않을 것이다. 문서와 사용자 프로파일 간의 이러한 관련성의 요구는 때로는 사용자의 취향과 문서 사이의 혼란스러운 관련성이 존재하는 다양한 시나리오를 다룰 때 덜 유연할 수 있다. 예를 들어, 만약 사용자의 용어 기반의 프로파일이 "모질라(Mozilla)"와 "브라우저(browser)"같은 용어들을 포함한다면, 이러한 용어들을 포함하지 않지만 "갈레온(Galeon)" 또는 "오페라(Opera)"같은 다른 용어를 포함하는 문서는 어떠한 가중치도 받지 않을 것이며 이는 이들이 실제로 인터넷 브라우저일지라도, 프로파일 내에 존재하는 어떠한 용어와도 매칭되지 않기 때문이다. 정확한 용어 매칭 없이 사용자의 관심을 매칭시킬 필요성을 충족시키기 위하여, 사용자의 프로파일은 카테고리 기반의 프로파일을 포함할 수 있다.
도4A는 오픈 디렉토리 프로젝트(http://dmoz.org/)에 따른 계층 카테고리 맵(400)을 도시한다. 맵(400)의 루트 수준에서 시작하여, 문서들은 "예술", "뉴스", "스포츠" 등과 같은 여러 주된 주제하(major topic)에서 구성된다. 이러한 주된 주제들은 종종 너무 넓어서 사용자의 특정 관심을 서술할 수 없다. 따라서, 이들은 보다 구체적인 부주제(sub-topic)들로 추가적으로 분할된다. 예를 들어, 주제 "예술"은 "영화", "음악" 및 "문학"과 같은 부주제를 포함할 수 있고, 부주제 "음악"은 "서정시(lyric)", "뉴스" 및 "리뷰"와 같은 서브-서브-토픽(sub-sub-topic)을 추가로 포함할 수 있다. 각각의 주제는 "예술"에 대하여 1.1, "토크 쇼"에 대하여 1.4.2.3, "농구"에 대하여 1.6.1과 같은 유일한 카테고리_ID와 연관되어 있음에 주의하여야 한다.
비록 도4A가 오픈 디렉토리 프로젝트를 이용한 예시적인 카테고리를 도시하고 있지만, 다른 유형의 카테고리들도 사용될 수 있다. 예를 들어, 문서들의 다양한 내용 또는 다른 정보를 분석하여 개념 주위에서 구성된 관련 정보의 카테고리를 생성함으로써 카테고리들이 결정될 수 있다. 다시 말해서, 단어 또는 구(phrase)는 다양한 개념과 관련된 클러스터(cluster)들로 맵핑될 수 있다. 당해 기술분야에서 통상의 지식을 가진 자라면 정보를, 상이한 개념에 대한 문서의 관련성을 결정하는 데 도움을 줄 수 있는 클러스터로 카테고리화하는 많은 다양한 방법이 존재함을 인식하 것이다.
사용자의 특정 관심은 다양한 수준에서 다양한 카테고리들로 연관될 수 있고, 이들 각각은 카테고리와 사용자의 관심 사이의 관련 정도를 지시하는 가중치를 가질 수 있다. 카테고리와 가중치는 사용자와 관련하여 전술된 정보 중 하나 또는 모두를 분석함으로써 결정될 수 있다. 일부 실시예에서, 카테고리는 다음의 정보 집합 중 임의의 하나 이상을 분석함으로써 결정될 수 있다: 사용자(201)에 의해 제출된 이전의 검색 질의, 이전의 검색 질의(203)에 의해 식별된 URL, 식별된 문서들에 관한 일반 정보(207)(가령, 식별된 문서들에 삽입되어 있거나 연관되어 있는 메타-데이터), 식별된 문서들(209)에 관한 사용자의 행동(209)(가령, 일반적인 내용 및/또는 배치 내용에 대한 사용자 클릭), 식별된 문서들(211)로부터 샘플링된 내용(211), 식별된 문서들에 대한 카테고리 정보(213), 사용자의 개인 정보(215), 또는 이들의 임의의 조합. 일 실시예에서, 카테고리 기반의 프로파일은 도4B에 도시된 것처럼 해쉬(Hash) 테이블 데이터 구조를 이용하여 구현될 수 있다. 카테고리 기반의 프로파일 테이블(450)은 다수의 레코드를 포함하는 테이블(455)을 포함하며, 각 레코드는 사용자_ID와, 테이블 460-1과 같은 또 다른 데이터 구조를 포인팅하는 포인터를 포함한다. 테이블 460-1은 두 개의 칼럼, 카테고리_ID 칼럼(470) 및 가중치 칼럼(480)을 포함할 수 있다. 카테고리_ID 칼럼(470)은 이 카테고리가 사용자의 관심과 관련이 있음을 암시하는 도4A에 도시된 카테고리의 식별 번호를 포함하며, 가중치 칼럼(480)의 값은 카테고리와 사용자의 관심과의 관련의 정도를 지시한다.
카테고리 맵(400)에 기초한 사용자 프로파일은 주제 지향의(topic-oriented) 구현이다. 카테고리 기반의 프로파일에 있는 용어들은 또한 다른 방식으로 구성될 수도 있다. 일 실시예에서, 사용자의 취향은 사용자에 의해 식별된 문서들의 포맷, 가령 HTML, 일반 텍스트, PDF, 마이크로소프트 워드 등에 기초하여 카테고리화될 수 있다. 다른 포맷은 다른 가중치를 갖는다. 다른 실시예에서, 사용자의 취향은 식별된 문서들의 형태, 가령 조직의 홈페이지, 개인의 홈페이지, 연구 논문, 또는 뉴스 그룹 포스팅에 따라 카테고리화될 수 있고, 각 형태는 연관된 가중치를 갖는다. 사용자의 검색 취향을 특징지우기 위해 사용될 수 있는 다른 형태의 카테고리는 문서 출처(document origin), 가령 각 문서의 호스트와 연관된 국가이다. 또 다른 실시예에서, 상기 식별된 카테고리 기반의 프로파일들이 공동으로 존재(co-exist)할 수 있고, 각각의 프로파일은 사용자의 취향의 일 측면을 반영한다.
용어 기반 및 카테고리 기반의 프로파일 이외에, 다른 유형의 사용자 프로파일은 링크 기반의 프로파일이라고 한다. 전술한 것처럼, 페이지랭크 알고리즘은 다양한 문서들을 인터넷을 통해 연결하는 링크 구조에 기초한다. 포인팅하는 보다 많은 링크들을 갖는 문서가 종종 보다 높은 페이지 랭크로 할당되며 따라서 검색 엔진으로부터 더욱 많은 관심을 끈다. 사용자에 의해 식별된 문서에 관련된 링크 정보는 사용자의 취향을 추측하기 위해 사용될 수도 있다. 일 실시예에서, 선호하는 URL의 목록이 이러한 URL에 대한 사용자의 액세스 빈도를 분석함으로써 사용자에 대하여 식별된다. 각각의 선호되는 URL은, 그 URL에 있는 문서를 방문할 때 사용자에 의해 소비되는 시간과 사용자의 그 URL에서의 스크롤 행동 및/또는 다른 사용자 행동(209, 도2)에 따라 추가로 가중치 부여될 수 있다. 다른 실시예에서, 선호되는 호스트의 목록은 사용자가 서로 다른 호스트들의 웹 페이지들을 액세스하는 빈도를 분석함으로써 사용자에 대하여 식별될 수 있다. 두 개의 선호되는 URL이 동일한 호스트에 관련되어 있을 때, 두 개의 URL의 가중치가 그 호스트에 대한 가중치를 결정하기 위해 결합될 수 있다. 다른 실시예에서, 선호되는 도메인들의 목록은 사용자가 서로 다른 도메인들의 웹 페이지들을 액세스하는 빈도를 분석함으로써 사용자에 대하여 식별될 수 있다. 예를 들어, finance.yahoo.com에 대하여, 호스트는 "finance.yahoo.com"이지만 도메인은 "yahoo.com"이다.
도5는 해시(Hash) 테이블 데이터 구조를 이용하여 링크 기반의 프로파일을 도시한다. 링크 기반의 프로파일 테이블(500)은 다수의 레코드(520)를 포함하는 테이블(510)을 포함하며, 각 레코드는 사용자_ID와, 테이블(510-1)과 같은 다른 데이터 구조를 포인팅하는 포인터를 포함한다. 테이블(510-1)은 두 개의 칼럼, 링크_ID 칼럼(530)과 가중치 칼럼(540)을 포함한다. 링크_ID 칼럼(530)에 저장된 식별 번호는 선호되는 URL 또는 호스트와 연관되어 있을 수 있다. 실제 URL/호스트/도메인은 링크_ID 대신 테이블에 저장될 수 있으나, 저장 공간을 절약하기 위하여 링크_ID 칼럼에 저장하는 것이 바람직하다.
URL 및/또는 호스트의 선호되는 목록은 사용자에 의해 직접 식별되어 온 URL 및/또는 호스트를 포함한다. URL 및/또는 호스트의 선호되는 목록은, 당해 기술분야에서 통상의 지식을 가진 자에게 공지되어 있는 협업 필터링(collaborative filtering) 또는 계량서지학적 분석(bibliometric analysis)과 같은 방법을 이용하여 간접적으로 식별되는 URL 및/또는 호스트로 더 연장될 수 있다. 일 실시예에서, 간접적으로 식별된 URL 및/또는 호스트는 직접 식별된 URL 및/또는 호스트로의/로부터의 링크를 갖는 URL 및/또는 호스트를 포함한다. 이러한 간접적으로 식별된 URL 및/또는 호스트는 이들과 사용자에 의해 직접 식별되는 연관된 URL 또는 호스트 사이의 거리에 의해 가중치 부여된다. 예를 들어, 직접적으로 식별된 URL 또는 호스트가 1의 가중치를 가지면, 1 링크 떨어진 URL 또는 호스트는 0.5의 가중치를 가질 수 있고, 2 링크 떨어진 URL 또는 호스트는 0.25의 가중치를 가질 수 있다. 이러한 절차는 원래의 URL 또는 호스트의 주제와 관련이 없는 링크, 예를 들어, 사용자 선택된 URL 또는 호스트와 연관된 문서들을 보기 위해 사용될 수 있는 웹 브라우저 소프트웨어 또는 저작권 페이지에 대한 링크의 가중치를 감소시킴으로써 더욱 정제될 수 있다. 관련이 없는 링크들은 이들의 전후관계 또는 이들의 분배에 기초하여 식별될 수 있다. 예를 들어, 저작권 링크는 종종 특수한 용어(가령, copyright 또는 "All rights reserved"는 저작권 링크의 앵커 텍스트에서 통상 적으로 사용되는 용어들이다)를 사용하며; 많은 관련이 없는 웹사이트들로부터의 하나의 웹사이트로의 링크는 이 웹사이트가 주제에 있어서 관련이 없음을 암시할 수 있다(가령, 인터넷 익스플로어로의 링크는 종종 관련이 없는 웹사이트들에 포함되어 있다). 간접적인 링크들은 주제들의 집합에 따라 분류될 수도 있고 매우 상이한 주제들을 갖는 링크들은 배제되거나 낮은 가중치로 할당될 수 있다.
전술한 세 가지 유형의 사용자 프로파일은 일반적으로 서로에 대해 상호 보완적인데, 이는 서로 다른 프로파일들이 서로 다른 유리한 위치에서 사용자의 관심과 취향을 묘사하기 때문이다. 그러나, 이는 한 가지 유형의 사용자 프로파일, 가령 카테고리 기반의 프로파일이 다른 유형의 사용자 프로파일에 의해 일반적으로 수행되는 역할을 할 수 없다는 것을 의미하는 것은 아니다. 예시적으로, 링크 기반의 프로파일 내의 선호되는 URL 또는 호스트는 종종 특정 주제와 연관되어 있는데, 예를 들어 finance.yahoo.com은 재정 뉴스에 초점을 맞추고 있는 URL이다. 따라서 사용자의 취향을 특징지우기 위해 선호되는 URL 또는 호스트의 목록을 포함하는 링크 기반의 프로파일에 의해 얻을 수 있는 것은, 선호되는 URL 또는 호스트에 의해 커버되는 동일한 주제를 커버하는 카테고리의 집합을 갖는 카테고리 기반의 프로파일에 의해서도, 적어도 일부는 얻을 수 있다.
도2에 열거된 사용자 정보에 기초하여 도3-5에 도시된 데이터 구조에 저장될 수 있는 다양한 형태의 사용자 프로파일을 구성하는 것은 사소한 동작이 아니다. 주어진 문서가 사용자에 의해 식별(가령, 관찰)된다면, 그 문서에 있는 서로 다른 용어들이 그 문서의 주제를 드러내는 것에 있어 서로 다른 중요도를 가질 수 있다. 일부 용어들, 가령 그 문서의 주제는 극도로 중요할 수 있지만, 다른 용어들은 적은 중요도를 가질 수 있다. 예를 들어, 많은 문서들은 그 문서의 주제에 관련이 없을 수 있는 내비게이션 링크, 저작권 문구, 디스클레이머(disclaimer), 및 기타 텍스트를 포함한다. 적절한 문서를 효율적으로 선택하고, 이들 문서들로부터 내용을 선택하고, 내용 안에서 용어들을 선택하는 방법은 전산 언어학(computational linguistics)에서 도전중인 주제이다. 부가적으로, 처리되는 사용자 정보의 부피를 최소화하여 사용자 프로파일 구성의 절차를 전산적으로 효율적으로 만드는 것이 바람직하다. 문서에 있는 덜 중요한 용어들을 생략하는 것은 사용자의 관심이 있는 문서를 정확히 매칭시키는 데 도움이 된다.
단락 샘플링(도6을 참고하여 이하에 기재됨)은 사용자와 관련이 있는 문서로부터 내용을 자동적으로 추출하기 위한 절차이다. 이 절차의 이면에 있는 중요한 관측은, 문서에서 관련이 낮은 내용, 가령 내비게이션 링크, 저작권 문구, 디스클레이머 등은 비교적 짧은 텍스트인 경향이 있다는 것이다. 일 실시예에서, 단락 샘플링은 문서에서 가장 긴 단락을 찾고, 단락의 길이가 미리 정의된 임계 길이 이하로 될 때까지 그 단락들을 감소하는 길이의 순서로 처리한다. 단락 샘플링 절차는 옵션으로 각각의 처리된 단락으로부터 어떤 최대량의 내용까지 선택한다. 만약 문서에서 적합한 길이의 단락이 거의 발견되지 않으면, 절차는 문서의 다른 부분들, 가령 앵커 텍스트 및 ALT 태그로부터 텍스트를 추출하도록 되돌려진다.
도6은 단락 샘플링의 주된 단계들을 도시하는 흐름도이다. 단락 샘플링은 문서로부터 코멘트, 자바스크립트, 및 스타일 시트 등과 같은 미리 정의된 항목들 을 제거하는 단계(610)에서 시작한다. 이러한 항목들은 이들이 통상적으로 문서상에서 주어질 때 문서의 비쥬얼 측면에 관련이 있고 문서의 주제에는 관련이 있을 것 같지 않기 때문에 제거된다. 그 후에, 절차는 단계 620에서 임계값 MinParagraphLength보다 큰 길이를 갖는 각각의 단락으로부터 첫 번째 N 단어들(또는 M 문장들)을 샘플링된 내용으로써 선택한다. 일 실시예에서, N과 M의 값들은 각각 100과 5가 되도록 선택된다. 다른 실시예에서는 다른 값들이 사용될 수 있다.
단락 샘플링 절차와 연관된 계산 및 저장 부하를 줄이기 위하여, 각 문서로부터 샘플링된 내용에 대해 최대 제한 (가령 1000단어)을 둘 수 있다. 일 실시예에서, 단락 샘플링 절차는 먼저 길이 내림차순으로 문서에 있는 모든 단락들을 구성한 후, 최대 길이의 단락으로 샘플링 절차를 시작한다. 단락의 시작과 끝은 브라우저에 있는 단락의 외관에 의존하며, 단락의 HTML 표현에 있는 해석되지 않는 텍스트 스트링의 존재에는 의존하지 않는다는 점에 주의하여야 한다. 이러한 이유 때문에, 어떤 HTML 명령들, 가령 인-라인(inline) 링크와 굵은 텍스트에 대한 명령들은 단락 경계를 결정할 때 무시된다. 일부 실시예에서, 단락 샘플링 절차는 첫 번째 N 단어(또는 M 문장)를 죽 검색(screening)하여 "서비스 용어(Terms of Service)" 또는 "가장 많이 본 글(Best viewed)"와 같은 반복사용문구를 포함하는 문장들을 여과하는데, 이는 이러한 문장들은 일반적으로 문서의 주제와 관련이 없을 것 같기 때문이다.
길이가 임계값보다 큰 단락을 샘플링하기 전에, 만약 샘플링된 내용에 있는 단어의 수가 최대 단어 제한에 도달했다면 절차는 문서로부터 내용을 샘플링하는 것을 멈출 수 있다. 만약 임계 길이보다 큰 길이의 모든 단락들을 처리한 후에 최대 단어 제한에 도달되지 않았다면, 선택적인 단계들(630, 640, 650, 670)이 수행된다. 특히, 절차는 최대 단어 제한에 도달할 때까지 샘플링된 내용에 문서 제목(630), 비 인-라인(non-inline) HREF 링크(640), ALT 태그(650), 및 메타 태그(670)를 부가한다.
일단 사용자에 의해 식별된 문서들이 스캐닝되었다면, 샘플링된 내용은 문맥 분석을 통해 가장 중요한(또는 중요하지 않은) 용어들의 목록을 식별하기 위해 사용될 수 있다. 문맥 분석은 식별된 문서들의 집합에 있는 가장 중요한(또는 중요하지 않은) 용어들을 예측하는 문맥 용어들을 학습하려고 한다. 구체적으로, 접두사 패턴, 접미사 패턴, 및 이들의 조합을 찾는다. 예를 들어, 표현 "x의 홈페이지"는 사용자에게 중요한 용어로써 용어 "x"를 식별할 수 있고 따라서 후치사 패턴 "* 홈페이지"는 문서에서 중요한 용어의 위치를 예측하기 위해 사용될 수 있고, 여기서 별표 "*"는 이 접미사 패턴과 맞는 임의의 용어를 나타낸다. 일반적으로 문맥 분석에 의해 식별된 패턴들은 일반적으로 중요한(또는 중요하지 않은) 용어와 그 중요한(또는 중요하지 않은) 용어 이후의 n 용어들 이전의 m 용어들로 일반적으로 이루어지며, 여기서 m과 n은 0보다 크거나 같고 이들 중 적어도 하나는 0보다 크다. 전형적으로, m과 n은 5보다 작고, 0이 아닐 때 바람직하게는 1과 3 사이이다. 그 외관 빈도에 의존하여, 패턴은 그 패턴에 의해 인식된 용어의 예측되는 중요도를 나타내는 연관된 가중치를 가질 수 있다.
본 발명의 일 실시예(도7A)에 따라, 문맥 분석은 두 개의 구별되는 단계(phase), 훈련 단계(701)와 동작 단계(703)를 갖는다. 훈련 단계(701)는 미리정의된 중요한 용어들의 목록(712), 미리 정의된 중요하지 않은 용어들의 목록(714)(옵션), 및 훈련 문서(716)들의 집합을 받아 이용한다(단계710). 일부 실시예에서, 미리 정의된 중요하지 않은 용어들의 목록은 이용되지 않는다. 목록들(712, 714)의 소스는 중요하지 않다. 일부 실시예에서, 이러한 목록들(712, 714)은 규칙의 집합에 따라서 문서들의 집합(가령, 높은 페이지 랭크의 수천 개의 웹 페이지들의 집합)으로부터 단어 또는 용어를 추출한 후, 편집자의 견해상 목록에 속하지 않는 용어들을 제거하도록 이들을 편집함으로써 생성된다. 훈련 문서들의 소스도 중요하지 않다. 일부 실시예에서, 훈련 문서들은 랜덤 방식으로 또는 의사랜덤(pseudo-random) 방식으로 선택된 이미 검색 엔진에 알려져 있는 문서들의 집합을 포함한다. 다른 실시예에서, 훈련 문서들은 미리정의된 영역에 따라 검색 엔진에 있는 문서들의 데이터베이스로부터 선택된다.
훈련 단계(701) 동안, 훈련 문서들은 다수의 문맥 패턴(가령, 접두사 패턴, 접미사 패턴, 및 접두-접미사 패턴)을 식별하고 각각의 식별된 문맥 패턴들과 가중치를 연관시키도록 미리 정의된 중요한 용어들의 목록 및 중요하지 않은 용어들의 목록을 이용하여 처리된다(단계 720). 동작 단계(703) 동안, 문맥 패턴들은 사용자에 의해 식별된 문서들에 적용되어(단계 730), 사용자의 특정 관심 및 취향을 특징화하는 중요한 용어들의 집합을 식별한다(단계 740). 사용자의 관심과 취향을 학습하고 묘사하는 것은 일반적으로 진행하는 절차이다. 따라서, 동작 단계(730)는 이전에 캡처되었던 중요한 용어들의 집합을 업데이트하기 위하여 반복될 수 있다. 이는 사용자가 문서를 액세스할 때마다 행해지거나, 미리결정된 스케줄에 따라 행해지거나, 특정 영역에 따라 결정된 시간에 행해지거나, 그렇지 않다면 이따금씩, 행해질 수 있다. 유사하게, 훈련 단계(701)는 문맥 패턴의 새로운 집합을 발견하고 식별된 문맥 패턴과 연관된 가중치를 재조정하기 위해 반복될 수도 있다.
아래는 훈련 단계를 예시하는 의사 코드의 일부이다:
For each document in the set {
For each important term in the document {
For m = 0 to MaxPrefix {
For n = 0 to MaxPostfix {
Extract the m words before the important
term and the n words after the important
term as s;
Add 1 to ImportantContext(m,n,s);
}
}
}
For each unimportant term in the document {
For m = 0 to MaxPrefix {
For n = 0 to MaxPostfix {
Extract the m words before the
unimportant term and the n words after
the unimportant term as s;
Add 1 to UnimportantContext(m,n,s);
}
}
}
}
For m = 0 to MaxPrefix {
For n = 0 to MaxPostfix {
For each value of s {
Set the weight for s to a function of
ImportantContext(m,n,s), and
UnimportantContext(m,n,s);
}
}
}
위의 의사 코드에서, 상기 표현들은 접두사 패턴(n=0), 접미사 패턴(m=0) 또는 양자의 조합(m>0 & n>0)을 말한다. 특정 패턴의 각각의 발생은 두 개의 다차원 어레이, ImportantContext(m,n,s) 또는 UnimportantContext(m,n,s) 중 하나에 등록된다. 접두사, 접미사, 또는 조합 패턴의 가중치는, 만약 이 패턴이 더 중요한 용어 및 덜 중요하지 않은 용어들을 식별한다면 보다 높게 설정되고, 그 역도 또한 같다. 동일한 패턴이 중요한 용어 및 중요하지 않은 용어 모두에 연관될 수 있음에 주의하여야 한다. 예를 들어, 접미사 표현 "* 운영 시스템"은 미리 정의된 중요한 용어들의 목록(712)에 있는 용어들과 결합하여 훈련 문서들(716)에서 사용될 수 있고 미리 정의된 중요하지 않은 용어들의 목록(714)에 있는 용어들과 결합하여 사용될 수도 있다. 이러한 상황에서, 접미사 패턴 "* 운영 시스템"과 연관된 가중치(Weight(1, 0, "운영 시스템")로 표현됨)는 접미사 표현이 미리 정의된 중요한 용어들의 목록에 있는 용어들과 결합하여 사용되는 횟수뿐만 아니라 접미사 표현이 미리 정의된 중요하지 않은 용어들의 목록에 있는 용어들과 결합하여 사용되는 횟수도 고려할 것이다. 문맥 패턴의 가중치를 결정하는 한 가지 가능한 공식은 다음과 같다:
Weight(m, n, s) = Log(ImportantContext(m, n, s) + 1) - Log(UnimportantContext(m, n, s) + 1).
다른 실시예에서는 다른 가중치 결정 공식이 사용될 수 있다.
문맥 분석 절차의 두 번째 단계에서, 가중치 부여된 문맥 패턴들이 사용자에 의해 식별된 하나 이상의 문서들에서 중요한 용어들을 식별하기 위해 사용된다. 도 7B를 참조하면, 첫 번째 단계에서 컴퓨터 시스템은 훈련 데이터(750)를 수신하고 문맥 패턴(760)의 집합을 생성하는데, 각각의 문맥 패턴은 연관된 가중치를 갖는다. 컴퓨터 시스템은 그 후 문서(780)에 문맥 패턴(760)의 집합을 적용한다. 도 7B에서, 문서(780) 내에서 발견된 이전에 식별된 문맥 패턴들이 강조된다. 문맥 패턴들과 연관된 용어들(790)이 식별되고 각각의 이러한 용어는 문맥 패턴들과 연관된 가중치들에 기초하여 가중치를 수신한다. 예를 들어, 용어 "Foobar"는 두 개의 상이한 패턴인 접두사 패턴 "Welcome to *"와 접미사 패턴 "* builds"와 관련하여 문서에서 두 번 나타나고, "Foobar"에 할당된 가중치 1.2는 두 패턴들의 가중치 0.7 및 0.5의 합이다. 다른 식별된 용어"cars"는 0.8의 가중치를 갖는데, 이는 매칭되는 접두사 패턴 "world's best *"가 0.8의 가중치를 갖기 때문이다. 일부 실시예에서, 각 용어에 대한 가중치는 log 변환을 이용하여 계산되고, 여기서 최종 가중치는 log(최초 가중치 + 1)과 같다. 두 용어 "Foobar"와 "cars"는 훈련 데이터(750)에 존재하지 않을 수 있고 사용자가 전에 마주친 적이 없어도 좋다. 그렇지만, 상술한 문맥 분석 방법은 이러한 용어들을 식별하고 사용자의 용어 기반 프로파일에 이들을 부가한다. 따라서, 문맥 분석은 심지어는 이러한 용어들이 미리정의된 용어들의 데이터베이스에 포함되어 있지 않더라도 사용자의 관심과 취향과 연관된 용어를 발견하기 위해 사용될 수 있다.
전술한 것처럼, 문맥 분석의 출력은 사용자의 용어 기반 프로파일을 구성하는 데 직접 이용될 수 있다. 또한, 이는 사용자의 카테고리 기반 프로파일과 같은 다른 형태의 사용자 프로파일을 구성하는 데에도 유용하다. 예를 들어, 가중치 부여된 용어들의 집합은 분석되어 상이한 주제를 커버하는 다수의 카테고리들로 분류될 수 있고, 이러한 카테고리들은 사용자의 카테고리 기반 프로파일에 부가될 수 있다.
사용자에 의해 또는 사용자에 대해 식별된 문서들의 집합에 대한 문맥 분석을 실행한 후에, 용어 및 가중치의 결과 집합은 각 사용자의 용어 기반 프로파일에 대하여 할당되는 것보다 더 많은 양의 저장부를 점유할 수 있다. 또한, 용어 및 대응하는 가중치의 집합은 집합 내의 다른 용어들보다 훨씬 더 적은 가중치를 갖는 일부 용어들을 포함할 수 있다. 따라서, 일부 실시예에서, 문맥 분석의 결과로, 용어 및 가중치의 집합은 가장 낮은 가중치를 갖는 용어들을 제거함으로써 정리되어 (A) 용어 기반 프로파일에 의해 점유되는 저장부의 총량이 미리정의된 제한을 만족하고/하거나, (B) 가중치가 너무 작은 용어들, 또는 그 용어들이 사용자의 검색 취향 및 관심을 지시하지 않을 것 같은 미리 정의된 기준에 의해 정의된 오래된 항목들에 해당하는 용어들을 제거한다. 일부 실시예에서, 유사한 제거 기준 및 기법들이 카테고리 기반 프로파일 및/또는 링크 기반 프로파일에 적용될 수도 있다.
전술한 것처럼, 카테고리 기반 프로파일은 도2를 참조하여 기재된 정보에 기초하여 생성될 수 있다. 예를 들어, 이전에 제출된 질의 용어들은 정보의 특정 카테고리와 연관될 수 있다. 사용자 프로파일 엔진은 사용자가 관심이 있을지 모르는 정보의 특정 카테고리들과 이들 각각의 가중치를 결정하기 위하여 사용자에 의해 제출된 이전의 검색 질의들을 분석할 수 있다. 이러한 사용자 프로파일 엔진은 도2를 참조하여 기재된 정보의 소스들 중 임의의 것을 분석할 수 있다.
일부 실시예에서, 사용자의 프로파일은 사용자가 검색을 수행하고 다운로드하거나 보기 위하여 검색 결과들로부터 적어도 하나의 문서를 선택할 때마다 업데이트된다. 일부 실시예에서, 검색 엔진은 시간에 따라 (가령, 검색 결과로부터 문서들을 선택함으로써) 사용자에 의해 식별된 문서들의 목록을 만들고, 미리정의된 시간에(가령 목록이 미리정의된 길이에 도달하거나, 미리정의된 시간량이 만료되었을 때), 프로파일 업데이트를 수행한다. 업데이트를 수행할 때, 새로운 프로파일 데이터가 생성되고, 새로운 프로파일 데이터는 사용자에 대하여 이전에 생성된 프로파일 데이터와 합쳐진다. 일부 실시예에서, 새로운 프로파일 데이터는 이전에 생성된 프로파일 데이터보다 더 높은 중요도가 할당되며, 이에 의해 시스템으로 하여금 사용자의 검색 취향 및 관심의 변화에 따라 사용자의 프로파일을 빠르게 조정할 수 있게 해준다. 예를 들어, 이전에 생성된 프로파일 데이터에 있는 항목들의 가중치들은 새로운 프로파일 데이터와 합치기 전에 자동으로 작게 스케일링될 수 있다. 일부 실시예에서, 프로파일 내의 각각의 항목과 연관된 데이터가 존재하고, 프로파일 내의 정보는 그 수명에 기초하여 가중치가 부여되고, 오래된 항목들은 이들이 새로울 때보다 더 작은 가중치를 수신한다. 다른 실시예에서, 새로운 프로파일 데이터는 이전에 생성된 프로파일 데이터보다 높은 중요도로 할당되지 않는다.
단락 샘플링 및 문맥 분석 방법은 독립적으로 사용되거나 조합하여 사용될 수 있다. 조합하여 사용될 때, 단락 샘플링의 출력은 문맥 분석 방법에 대한 입력으로 사용될 수 있다.
사용자 프로파일을 생성하기 위해 사용된 전술한 방법들, 가령 단락 샘플링 및 문맥 분석은, 후보 문서의 사용자의 취향과의 관련성을 결정하기 위한 수단일 수도 있다. 사실, 검색 엔진의 주된 임무는 사용자에 의해 제출된 검색 질의 및 사용자의 사용자 프로파일에 기초하여 사용자의 취향에 가장 관련 있는 일련의 문 서들을 식별하는 것이다. 도8은 다수의 관점으로부터 사용자 프로파일에 대한 문서의 과의 관련성에 관한 정보를 저장하기 위해 사용될 수 있는 수 개의 예시적인 데이터 구조들을 도시한다. 각각의 DOC_ID에 의해 식별되는 각각의 후보 문서에 대하여, 용어 기반 문서 정보 테이블(810)은 다수 쌍의 용어들 및 이들의 가중치들을 포함하며, 카테고리 기반 문서 정보 테이블(830)은 다수의 카테고리들 및 연관된 가중치들을 포함하며, 링크 기반 문서 정보 테이블(850)은 링크들 및 대응하는 가중치들의 집합을 포함한다.
세 개의 테이블(810, 830, 850) 각각의 가장 오른쪽의 칼럼은 문서가 하나의 특정 형태의 사용자 프로파일을 이용하여 평가될 때 문서의 순위(즉, 계산된 점수)를 저장한다. 사용자 프로파일 순위는 문서와 연관된 항목들의 가중치들을 결합함으로써 결정될 수 있다. 예를 들어, 카테고리 기반 또는 주제 기반 프로파일 순위는 다음과 같이 계산될 수 있다. 사용자는 가중치 0.6을 갖는 과학에 관한 문서들을 선호할 수 있지만, 가중치 -0.2를 갖는 비즈니스에 관한 문서들을 싫어할 수 있다. 따라서, 과학문서가 검색 질의와 매칭될 때, 과학 문서는 비즈니스 문서보다 높게 가중치 부여될 것이다. 일반적으로 문서 주제 분류는 배타적이지 않을 수 있다. 후보 문서는 0.8의 확률을 갖는 과학 문서 및 0.4의 확률을 갖는 비즈니스 문서인 것으로 분류될 수 있다. 링크 기반의 프로파일 순위는 사용자의 URL, 호스트, 도메인 등, 링크 기반의 프로파일에서의 취향에 할당된 상대적인 가중치에 기초하여 계산될 수 있다. 일 실시예에서, 용어 기반 프로파일 순위는 공지된 기법, 가령 용어빈도-역문서빈도(term frequency-inverse document frequency; TF-IDF)를 이용하여 결정될 수 있다. 용어의 용어빈도는 그 용어가 문서에서 출현하는 횟수의 함수이다. 역문서빈도는 문서들의 집합 내에서 그 용어가 출현하는 문서들의 횟수의 역함수이다. 예를 들어, "the"와 같은 매우 일반적인 용어는 많은 문서에서 나타나며 따라서 상대적으로 낮은 역문서빈도로 할당된다.
검색 엔진이 검색 질의에 응답하여 검색 결과를 생성할 때, 질의를 만족하는 후보 문서(D)는 검색 질의에 따라 질의 점수(QueryScore)를 할당받는다. 이 질의 점수는 그 후 문서 D의 페이지 랭크(PageRank)에 의해 수정되어 다음으로 표현되는 일반 점수(GenericScore)를 생성한다.
GenericScore = QueryScore*PageRank
이 일반 점수는, 만약 사용자의 관심 또는 취향이 랜덤 서핑자의 것과 크게 상이하다면 문서 D의 중요성을 특정 사용자 U에게 적절히 반영하지 않을 수 있다. 문서 D의 사용자 U에 대한 관련성은, 본원에서 TermScore라 칭하는 문서 D의 내용과 사용자 U의 용어 기반 프로파일 사이의 상관관계와, 본원에서 CategoryScore라 칭하는 문서 D와 연관된 하나 이상의 카테고리와 사용자 U의 카테고리 기반 프로파일 사이의 상관관계와, 본원에서 LinkScore라 칭하는 문서 D의 URL 및/또는 호스트와 사용자 U의 링크 기반 프로파일 사이의 상관관계에 기초하여, 프로파일 순위의 집합에 의해 정확히 특징지워질 수 있다. 따라서, 문서 D는 문서의 일반 점수 및 사용자 프로파일 점수들 모두의 함수인 맞춤화된 순위로 할당될 수 있다. 일부 실시예에서, 이 맞춤화된 점수는 다음과 같이 표현될 수 있다:
맞춤화된 점수 = GenericScore*(TermScore+CategoryScore+LinkScore)
도9A 및 도9B는 도1에 도시된 네트워크 환경(100)과 같은 클라이언트-서버 네트워크 환경에서 구현되는 두 개의 실시예를 나타낸다. 도9A에 도시된 실시예에서, 검색 엔진(104)은 단계 910에서 특정 사용자에 의해 제출된 클라이언트(102)로부터의 검색 질의를 수신한다. 이에 대한 응답으로, 검색 엔진(104)은 선택적으로 단계 915에서 질의 방식을 생성한다(예를 들어, 추가의 처리를 위해 적절한 형태가 되도록 검색 질의가 정규화되고/되거나, 검색 질의의 범위를 자동으로 넓히거나 좁히도록 미리정의된 기준에 따라 검색 질의가 수정된다). 단계 920에서, 검색 엔진(104)은 내용 서버(106)에 검색 질의를(또는, 질의 방식이 생성된다면 질의 방식을) 제출한다. 내용 서버는 단계 920에서 검색 질의와 매칭되는 문서들의 목록을 식별하고, 각 문서는 문서의 페이지 랭크 및 검색 질의에 따른 일반 점수를 갖는다. 일반적으로, 세 동작(단계 910, 915, 920) 모두 네트워크 환경(100)의 서버측에 있는 검색 엔진 시스템(107)에 의해 수행된다. 이러한 첫 번째 세 단계 이후의 동작들을 수행하는 장소에 대해서는 두 가지 옵션이 있다.
서버측 구현을 채용하는 일부 실시예에서는, 사용자의 식별 번호는 검색 질의에 삽입된다. 사용자의 식별 번호에 기초하여, 사용자 프로파일 서버(108)는 단계 925에서 사용자의 사용자 프로파일을 식별한다. 단계 930에서 시작하여, 사용자 프로파일 서버(108) 또는 검색 엔진(104)은 단계 920에서 식별된 각 문서를 분석하여 사용자의 프로파일에 대한 관련성을 결정하고, 단계 935에서 식별된 문서에 대한 프로파일 점수를 생성한 후 단계 940에서 그 문서에 그 문서의 일반 점수 및 프로파일 점수의 함수인 맞춤화된 점수를 할당한다. 단계 942에서, 사용자 프로파일 서버(108) 또는 검색 엔진(104)은 이 최종의 것이 식별된 문서들의 목록에 존재하는지 여부를 체크한다. 그렇지 않다면, 시스템은 목록에 있는 다음 문서를 처리한다. 그렇지 않다면, 문서들의 목록은 이들의 맞춤화된 점수에 따라서 재정렬된 후 사용자가 검색 질의를 제출했던 대응 클라이언트에 보내진다.
클라이언트 측 구현을 이용하는 실시예들은, 단계 920 이후에 식별된 문서들이 사용자가 검색 질의를 제출했던 대응 클라이언트에 보내진다는 점을 제외하면 서버 측 구현과 유사하다. 이 클라이언트는 사용자의 사용자 프로파일을 저장하고 사용자 프로파일에 기초하여 문서들을 재정렬하는 책임을 맡게 된다. 따라서, 이 클라이언트 측 구현은 서버의 작업 부하를 감소시킬 수 있다. 또한, 클라이언트 측 구현에서는 프라이버시 염려가 없기 때문에 사용자는 검색 결과를 맞춤화하기 위하여 개인 정보를 보다 기꺼이 제공할 수 있다. 그러나, 클라이언트 측 구현에 대한 중요한 제한은 단지 제한된 수의 문서들, 가령 (일반 순위를 이용하여 결정된) 상위 50개의 문서들만이 제한된 네트워크 대역폭으로 인해 재정렬을 위해 클라이언트에 보내질 수 있다는 것이다. 이와는 달리, 서버 측 구현은 사용자의 프로파일을 검색 질의와 매칭되는 훨씬 큰 수의 문서들, 가령 1000개의 문서들에 적용할 수 있다. 따라서, 클라이언트 측 구현은, 현저하게 높은 맞춤화된 순위를 갖는 경우에는 그렇지 않지만, 비교적 낮은 일반 순위를 갖는 이러한 문서들에 대해서는 사용자 액세스를 박탈할 수 있다.
도9B는 다른 실시예를 도시한다. 검색 엔진(104)에 검색 질의가 제출되기 전에는 검색 질의가 맞춤화되지 않는 도9A에 도시된 실시예와는 달리, 맞춤화된 질의 방식을 생성하기 위하여 일반 질의 방식이 사용자의 사용자 프로파일에 따라서 조정된다(단계 965). 예를 들어, 사용자 프로파일로부터의 관련 용어들이 연관된 가중치로 검색 질의에 부가될 수 있다. 맞춤화된 질의 방식의 생성은 시스템의 클라이언트 측이나 서버 측 중 어느 하나에서 수행될 수 있다. 이 실시예는 이전의 실시예에서 겪는 네트워크 대역폭 제한을 회피한다. 마지막으로 검색 엔진(104)은 맞춤화된 질의 방식을 내용 서버(106)에 제출하고(단계 970), 따라서 내용 서버에 의해 리턴된 검색 결과는 문서의 맞춤화된 순위에 의해 이미 정렬되어 있다(단계 975).
관련이 있는 관심을 갖는 사용자들의 그룹의 프로파일은 그룹 프로파일을 형성하도록 서로 결합될 수 있거나, 하나의 프로파일이 그룹에 있는 사용자들에 의해 식별된 문서들에 기초하여 형성될 수 있다. 예를 들어, 여러 가족 구성원들은 검색 엔진에 검색 질의들을 제출하기 위하여 동일 컴퓨터를 사용할 수 있다. 만약 컴퓨터가 검색 엔진에 의해 단일 사용자 식별자로 태그되어 있다면, "사용자"는 사용자들의 전체 가족일 것이며, 사용자 프로파일은 여러 가족 구성원들의 검색 취향의 조합 또는 혼합을 나타낸다. 그룹 내의 개별 사용자는 옵션으로 다른 그룹 구성원들로부터 이 사용자를 구별하는 개별 사용자 프로파일을 가질 수 있다. 동작에 있어서, 그룹 내의 한 사용자에 대한 검색 결과는 그룹 프로파일에 따라서, 또는 사용자가 개별 사용자 프로파일도 갖는 경우에는 그룹 프로파일과 사용자의 사용자 프로파일에 따라서 순위 매겨진다.
사용자가 관심을 매우 극단적으로 바꾸어서 사용자의 새로운 관심과 취향이 이 사용자의 프로파일과 거의 닮아있지 않거나, 사용자가 일시적으로 새로운 주제에 관심이 있을 가능성이 있다. 이 경우에, 도 9A 및 도 9B에 도시된 실시예들에 따라 생성된 맞춤화된 검색 결과들은 검색 결과에서 문서들의 일반 순위에 따라 순위 메겨진 검색 결과보다 덜 바람직할 수 있다. 또한, 사용자에게 제공된 검색 결과는 상위 열거된 문서들 가운에 새로운 웹사이트들을 포함하지 않을 수 있는데, 이는 사용자의 프로파일이 사용자가 과거에 방문했던 오래된 웹사이트들(즉, 사용자가 웹페이지를 보거나 다운로드했던 오래된 웹사이트들)의 가중치를 증가시키는 경향이 있기 때문이다.
사용자의 취향이나 관심의 변화에 의해 일어나는 충격을 감소시키기 위하여, 맞춤화된 검색 결과가 일반 검색 결과와 병합될 수 있다. 일 실시예에서, 일반 검색 결과와 맞춤화된 검색 결과가 사이에 끼워져서, 검색 결과 목록의 홀수 위치(가령, 1, 3, 5 등)는 일반 검색 결과에 대해 유보되며 짝수 위치(가령, 2, 4, 6 등)는 맞춤화된 검색 결과들에 대해 유보되거나, 이와 반대로 유보된다. 바람직하게는, 일반 검색 결과에 있는 항목들은 맞춤화된 검색 결과에 열거된 항목과 중첩되지 않고 그 반대의 경우도 중첩되지 않을 것이다. 보다 일반적으로는, 일반 검색 결과들은 맞춤화된 검색 결과들과 섞이거나 사이에 끼워져서, 사용자에게 제공된 검색 결과에 있는 항목들은 일반 검색 결과와 맞춤화된 검색 결과 모두를 포함한다.
다른 실시예에서, 맞춤화된 순위 및 일반 순위는 사용자 프로파일의 신뢰 수준에 의해 추가로 가중치 부여될 것이다. 신뢰 수준은 사용자에 대하여 획득된 정보량, 현재의 검색 질의가 사용자의 프로필과 매칭되는 정도, 사용자의 프로필이 얼마나 오래됐는지 여부와 같은 인자들을 고려한다. 사용자의 매우 짧은 이력만이 이용가능하다면, 사용자의 프로필은 이와 대응하여 낮은 신뢰 값에 할당될 수 있다. 식별된 문서의 최종 점수는 다음과 같이 결정될 수 있다:
FinalScore= ProfileScore * ProfileConfidence + GenericScore * (1 - ProfileConfidence).
일반 결과와 맞춤화된 결과를 혼합할 때, 맞춤화된 결과의 일부는 프로파일 신뢰도에 기초하여, 가령 신뢰도가 낮을 때는 단지 하나의 맞춤화된 결과를 이용하여, 조정될 수 있다.
때때로, 다수의 사용자들이 가령, 공공 도서관에서 기계를 공유할 수 있다. 이러한 사용자들은 서로 다른 관심과 취향을 갖는다. 일 실시예에서, 사용자는 명시적으로 서비스에 로그인하여 시스템이 사용자의 정체를 알 수 있다. 대안으로, 서로 다른 사용자들은 이들이 액세스하는 항목들 또는 이들의 액세스 패턴의 다른 특징에 기초하여 자동 인식될 수 있다. 예를 들어, 서로 다른 사용자들은 서로 다른 방식으로 마우스를 이동할 수 있고, 서로 다르게 타이핑할 수 있고, 서로 다른 응용프로그램과 이들 응용프로그램의 특징들을 사용할 수 있다. 클라이언트 및/또는 서버에서의 이벤트의 집적에 기초하여, 사용자를 식별하고, 그 후 그 식별을 적절한 "사용자" 프로파일을 선택하는 데 이용하기 위한 모델을 생성할 수 있다. 이러한 상황에서, "사용자"는 실제로 다소 유사한 컴퓨터 사용 패턴, 관심 등을 갖는 사람들의 그룹일 수 있다.
도10을 참조하면, 맞춤화된 검색 엔진 시스템(1000)은 일반적으로 하나 이상의 처리장치(CPU)(1002), 하나 이상의 네트워크 또는 다른 통신 인터페이스(1010), 메모리(1012), 및 이들 요소들을 상호연결하기 위한 하나 이상의 통신 버스(1014)를 포함한다. 시스템(1000)은 선택적으로 사용자 인터페이스(1004), 가령 디스플레이(1006) 또는 키보드(1008)를 포함한다. 메모리(1012)는 고속 랜덤 액세스 메모리를 포함할 수 있고 또한 하나 이상의 자기 디스크 기록 장치와 같은 비휘발성 메모리를 포함할 수도 있다. 메모리(1012)는 중앙처리장치(들)(1002)로부터 원격 위치된 대용량 기록장치를 포함할 수 있다. 메모리(1012)는 다음을 저장하는 것이 바람직하다:
● 다양한 기초 시스템 서비스를 다루고 하드웨어 종속 태스크들을 수행하기 위한 절차들을 포함하는 동작 시스템(1016);
● 인터넷, 기타 광역 통신망, 근거리 통신망, 도시 지역 통신망(Metropolitan Area Network) 등과 같은 하나 이상의 (유무선) 통신 네트워크를 통해 다른 서버 또는 컴퓨터에 시스템(1000)을 접속하는 데 사용되는 네트워크 통신 모듈(1018);
● 시스템(1000)의 적절한 동작에 필요한 메모리(1012) 내에 저장되어 있는 기타 모듈 및 데이터 구조들을 초기화하는 시스템 초기화 모듈(1020);
● 검색 질의를 처리하고, 검색 질의와 사용자의 프로파일에 따라 검색 결과들을 식별하고 정렬하기 위한 검색 엔진(1022);
● 도2에 식별된 사용자 정보와 같은 사용자 정보를 수집 및 처리하고, 사용자의 검색 취향 및 관심을 특징화하는 사용자의 사용자 프로파일을 생성하고 업데이트하기 위한 사용자 프로파일 엔진(1030); 및
● 다수의 사용자 프로파일들을 저장하기 위한 데이터 구조(1040, 1060, 1080).
검색 엔진(1022)은 다음을 추가로 포함할 수 있다:
● 사용자에 의해 제출된 검색 질의를 처리하고, 그 질의와 매칭되는 문서들의 목록을 식별하고, 각 식별된 문서에 사용자 특정 정보를 참조하지 않고 일반 순위를 할당하기 위한 일반 순위 모듈(또는 명령)(1024);
● 일반 순위 모듈(1024)에 의해 식별된 다수의 문서들의 각각을 사용자의 사용자 프로파일과 상관시키고, 사용자의 검색 취향 및 관심과 문서와의 관련성을 지시하는 프로파일 순위를 그 문서에 할당하기 위한 사용자 프로파일 순위 모듈(또는 명령)(1026); 및
● 식별된 문서의 일반 순위와 프로파일 순위를 맞춤화된 순위로 결합하고 이들의 맞춤화된 순위에 따라서 문서들의 목록을 재정렬하기 위한 순위 혼합 모듈(또는 명령)(1028).
일부 실시예에서, 이러한 모듈(1024, 1026, 1028)은 하나의 절차로 구현되거나 하나의 소프트웨어 모듈 내에 상주하는 절차들의 집합으로 구현될 수 있다.
사용자 프로파일 엔진(1030)은 다음을 더 포함할 수 있다:
● 도2에 열거된 여러 사용자 정보를 수집 및 분류하기 위한 사용자 정보 수집 모듈(1032);
● (전술한) 단락 샘플링과 같은 기법들을 이용하여, 사용자의 관심과 관련 있는 내용을 식별하기 위하여 사용자에 의해 식별된 문서들로부터 내용을 선택 및 추출하기 위한 문서 내용 추출 모듈(1034); 및
● 사용자의 검색 취향을 특징화하는 용어들을 식별하도록 문서 내용 추출 모듈(1034)에 의해 추출된 내용을 분석하기 위한 내용 분석 모듈(1036).
사용자 프로파일을 호스팅하는 각 데이터 구조는 다음을 더 포함할 수 있다:
● 용어 기반 사용자 프로파일을 저장하기 위한 데이터 구조(1042, 1062 또는 1082);
● 카테고리 기반 사용자 프로파일을 저장하기 위한 데이터 구조(1044, 1064 또는 1084);
● 링크 기반 사용자 프로파일을 저장하기 위한 데이터 구조(1046, 1066 또는 1086).
사용자 프로파일에 따라 배치 내용(placed content)을 정렬하기
배치 내용은 인터넷이나 다른 광역 통신망을 통해 제공되는 검색 서비스, 이메일 서비스, 및 다양한 기타 서비스들의 사용자에게 디스플레이된다. 다음은 배치 내용을, (A) 사용자가 배치 내용을 보는 것에 관심을 가질 기회를 최대화하거나 적어도 향상시키거나, (B) 배치 내용의 제공자에게 수익 흐름(revenue stream)을 최대화하거나 적어도 향상시키거나, (C) 배치 내용의 전달 및 정렬과 연관된 메트릭을 최적화하거나 적어도 향상시키도록, (가령, 사용자가 보는 브라우저 윈도우 또는 다른 어플리케이션 윈도우 내에) 정렬하는 시스템 및 방법의 설명이다. 본 시스템 및 방법은 검색 엔진의 사용자에게 배치 내용을 전달하는 것에 관하여 우선 기재되고, 그 후 다른 인터넷 서비스에 대한 본 시스템 및 방법의 적용이 기재될 것이다.
검색 결과가 검색 질의에 응답하여 사용자에게 리턴될 때, 종종 특정 배치 내용이 함께 리턴된다. 배치 내용은 통상 광고의 형태지만, 사용자에게 보내지는 문서 또는 검색 질의에 관한 임의의 형태의 내용일 수 있다. 비록 다음의 기재는 설명을 위하여 광고 내용을 이용하지만, 내용 제공자가 배치를 위해 경쟁하거나 지불하는 임의의 형태의 내용이 본 발명의 일부 실시예들에 의해 고려될 수 있다. 사용자의 검색 질의는, 검색 질의가 문서 저장소(repository)에 대해 실행되고 있는 동시에 광고의 저장소에 대해 실행될 수 있다. 광고의 저장소에 대한 검색으로부터 리턴된 광고(가령, 광고의 키워드들이 검색 질의의 적어도 하나의 용어와 매칭되는 광고)는 각 광고에 대한 점수에 의해 일반적으로 정렬된다. 점수는 입찰(bid)(가령 입찰 가격)과 클릭율(click through rate: CTR)의 곱에 기초한다. 가장 높은 점수를 가진 광고가 사용자에게 제공된다. 일부 실시예에서, 내용 제공자는 동일 입찰과 연관된 다수의 유사한 광고들을 제공할 수 있다. 이 경우, 다양한 광고들이 랜덤 방식 또는 임의의 다른 순서로 사용자에게 제공될 수 있다. 예를 들어, 만약 내용 제공자가 용어 "모자(hat)"에 대한 단일 입찰이 적용되는 세 개의 광고들의 그룹을 제공한다면, 광고들의 그룹이 검색 결과의 그룹에 포함될 만큼 충분히 높은 점수를 가질 때마다, 그룹 내에 있는 세 개의 광고들 중 하나가 (예를 들어, 랜덤하게, 또는 순환 순서 방식으로) 선택되고 사용자에게 제공된다.
광고주는 가령, 특정 검색 용어 또는 구(phrase)에 대하여 입찰하는 경매를 통해 서로 다른 키워드 또는 개념에 대하여 입찰할 수 있다. 예를 들어 돛배용 돛의 제작자는 키워드 "스피나커(spinnaker)"에 대해 입찰할 수 있고, 이 용어가 검색 질의에 나타날 때, 광고주의 광고는 사용자에게 제공될 잠재적인 광고의 목록에 보여질 것이다. 광고는 그 광고의 점수가 충분히 높다면 사용자에게 제공될 것이다. 위에서 언급한 것처럼, 점수는 CTR과 입찰의 곱에 기초한다. 광고주는 그 후 특정 계정 기간동안 그 입찰에 기초하고 그 광고에 대한 클릭 수에 기초하여(가령 입찰과 클릭 수의 곱) 그 광고에 대하여 지불한다. 일부 실시예에서, 경매는 "역경매"의 특성을 가질 수 있고, 이 경우 특정 광고에 대해 광고주에 의해 지불된 양은 특정 계정 기간동안 수정되거나 감소된 입찰과 클릭 수의 곱일 수 있다.
광고의 CTR을 개선하는 것은 광고의 점수를 높이는 한 방법이다. CTR을 개선하는 것은, 예를 들어, 다른 광고보다 많은 사용자들에게 어필하는 광고를 제공함으로써 얻어질 수 있다. 대안으로, 광고주는 광고의 점수를 높이기 위하여 광고와 연관된 키워드나 구에 대한 자신의 입찰을 증가시키도록 결정할 수 있다. 그리고, 물론, 광고주는 광고의 CTR을 개선함과 더불어 그 광고와 연관된 키워드에 대한 자신의 입찰을 증가시킬 수 있다. 일부 실시예에서, 광고에 대한 CTR은 광고에 대한 클릭 수를 노출(impression)의 수, 즉, 광고가 사용자들에게 제공되는 횟수로 나눈 것과 같다. 새로운 광고는 일반적으로 유용한 CTR을 가지지 않는데, 이는 광고의 노출의 수가 너무 낮아서 CTR의 값이 사용자에 대한 광고의 매력의 신뢰할 수 있는지표가 될 수 없기 때문이다. 이러한 경우(가령, 광고가 천 개 미만의 노출을 갖는 경우), 최초의 CTR은 시스템에 의해 제공된다. 광고에 대한 최초의 CTR은 평균 CTR 값과 같은 디폴트값일 수 있다. 대안으로, 최초의 CTR은 동일 광고주에 의한 다른 광고의 CTR에 기초하여 선택되거나, 문제되는 광고에 대해 정의된 관계를 갖는 광고들의 일부 다른 집합의 CTR들에 기초할 수 있다.
사용자는 그 사용자가 관심을 갖고 있는 광고를 제공받을 가능성을 증가시키는 것이 바람직할 것이다. 따라서, 어떤 방식으로든 사용자의 프로파일과 관련이 있는 광고가 제공하기에 더 나은 후보이다. 이를 행하는 한 가지 방법은 사용자의 프로파일에 대한 광고의 유사성에 기초하여 광고의 점수를 수정하는 것이다. 더 넓은 용어 "배치 내용"을 다시 참조하여, 도11은 배치 내용에 검색 결과들을 제공하기 위한 일 실시예를 도시한다.
최초로 검색 질의가 예를 들어 검색 엔진에서 수신된다(1102). 검색 질의는 예를 들어 클라이언트 컴퓨터의 식별자를 포함함으로써 검색 질의를 제출하고 있는 사용자를 식별하거나 검색 질의를 제출하고 있는 클라이언트 프로세스를 식별한다. 대안으로, 사용자의 동일성은 서비스에 대한 이전의 로그인, 또는 쿠키나 다른 적절한 방법에 의해 인식될 수 있다. 사용자의 프로파일은 사용자 프로파일의 데이터베이스 또는 저장소로부터 얻어진다(1104). 일 실시예에서, 사용자의 프로파일은 카테고리 프로파일이다. 다음의 기재는 카테고리 프로파일을 사용하지만, 당해 기술분야에서 통상의 지식을 가진 자라면 본원에서의 개념이 다른 형태의 프로파일에 적용할 수 있다는 것을 용이하게 인식할 것이다. 검색 엔진이 검색 질의를 처리하여 검색 결과를 획득하는 한편(1106), 배치 내용 서버는 검색 질의와 매칭되거나 관련이 있는 하나 이상의 배치 내용 항목들(본원에서는 잠재적인 배치 내용이라 함)을 식별한다(1108). 다른 실시예에서, 배치 내용 서버는, 문서가 검색의 결과 또는 구체적으로 요청된 문서라면 어떤 문서가 사용자에게 제공되고 있는지에 기초하여 배치 내용을 제공할 수 있다. 이 실시예에서, 배치 내용 서버는 배치 내용 중 어느 것이 사용자에게 제공되고 있는 문서와 관련이 있는지를 결정한다. 다른 실시예에서, 배치 내용 서버는 검색 결과로써 제공되고 있는 하나 이상의 문서의 내용들에 기초하여 배치 내용을 제공할 수 있다.
각각의 잠재적인 배치 내용은 이와 연관된 프로파일을 가진다. 일 실시예에서, 프로파일은 카테고리와 가중치의 쌍을 포함하는 카테고리 프로파일의 형태이다. 프로파일은 예를 들어 배치 내용으로부터 핵심 용어를 추출하고 이들을 다양한 카테고리와 연관시키고 각각의 가중치를 연관시킴으로써 생성될 수 있을 것이다.
각각의 잠재적인 배치 내용에 대하여, 잠재적인 배치 내용의 프로파일이 사용자의 프로파일과 비교된다(1110). 사용자의 프로파일은 유사성 점수를 얻기 위하여 배치 내용 프로파일과 비교된다. 유사성 점수는 그 후 배치 내용의 순위를 수정하기 위해 사용된다. 만약 각각의 프로파일을 벡터로 생각한다면, 당해 기술분야에서 통상의 지식을 가진 자는 프로파일들을 비교하기 위하여 다양한 수학적 방법을 인식할 것이다. 예를 들어, 유사성 점수는, 사용자의 프로파일 내의 각각의 카테고리를 취하고 이와 배치 내용의 프로파일의 각각의 카테고리 사이의 수학적 거리를 결정한 후 각각의 가중치에 의해 곱함으로써 결정될 수 있을 것이다. 이러한 계산을 표현하는 한 방법은 다음의 공식에 의하는 것이다:
여기서, n은 사용자의 프로파일 내의 카테고리의 수를 나타내며, m은 배치 내용의 프로파일 내의 카테고리의 수를 나타내며; 거리(카테고리(i), 카테고리(j))는 카테고리(i)와 카테고리(j) 사이의 수학적 거리를 나타내며, 가중치(i)와 가중치(j)는 각각 카테고리(i) 및 카테고리(j)와 연관된 가중치를 나타낸다.
유사성 점수의 계산을 나타내는 또 다른 보다 일반적인 방법은 다음과 같다:
유사성 점수 = 함수(사용자 프로파일, 내용 프로파일)
여기서 "함수"는 특정 배치 내용 항목의 사용자 프로파일과 내용 프로파일의 임의의 적절한 함수이다. 사용자 프로파일과 내용 프로파일이 카테고리 프로파일일 때, 유사성 점수의 계산은 다음과 같이 나타낼 수 있다:
유사성 점수 = 함수(사용자 프로파일 카테고리, 사용자 프로파일 가중치, 내용 프로파일 카테고리, 내용 프로파일 가중치)
여기서 "함수"는 사용자 프로파일 카테고리와 사용자 프로파일 가중치의 벡터 및 내용 프로파일 카테고리와 내용 프로파일 가중치의 벡터의 임의의 적절한 함수이다. 위에서 보인 이중 시그마 계산과는 상이한 유사성 점수의 계산의 약간 더 구체적인 예는 다음과 같다:
여기서 Maxj는 j의 모든 유효한 값들에 대한 함수의 최대값을 나타내며, "함수"는 사용자 및 내용 프로파일 카테고리 및 가중치의 임의의 적절한 함수이다.
일부 실시예에서, 유사성 점수는 스케일링 인자를 생성하도록 특정 범위로 정규화된다. 예를 들어, 유사성 점수는 0 내지 1, 또는 0 내지 2의 포함 범위에 들도록 정규화될 수 있다. 높은 유사성 점수는 그 비교가 낮은 유사성 점수로 귀결하는 프로파일들보다 더 밀접하게 관련되어 있음을 지시한다. 일부 실시예에서, 정규화된 유사성 점수가 스케일링 인자로 사용된다. 다른 실시예에서, 스케일링 인자는 유사성 점수 또는 정규화된 유사성 점수 중 어느 하나를 스케일링 인자 맵핑 함수 또는 스케일링 인자 변환 테이블(lookup table) 중 어느 하나에 따라서 대응하는 스케일링 인자로 맵핑함으로써 결정된다.
일 실시예에서, N의 미리 정의된 스케일링 인자들의 집합(가끔 부인자라고 함)스케일링 인자 변환 테이블에 저장되고, 각각의 스케일링 인자는 유사성 점수값의 각각의 범위에 대응한다. 예시적인 실시예에서, N은 1보다 큰 정수이며, 바람직하게는 3보다 크다. 특정 배치내용에 대한 유사성 점수는 가령 유사성 점수를 미리정의된 수로 곱하거나 나누고, 그 결과를 저장소 번호(bin number)를 생성하는 데 가장 가까운 정수로 올림 또는 내림한 후, 저장소 번호를 스케일링 인자 변환 테이블로의 인덱스로 사용하여 결과의 저장소 번호를 스케일링 인자에 맵핑함으로써 "저장소(bin)"로 맵핑된다. 스케일링 인자의 범위는 각 실시예마다 변할 수 있다.
스케일링 인자 맵핑 함수 또는 스케일링 인자 변환 테이블 중 어느 하나의 사용은 유사성 점수를 스케일링 인자로 관련시키는 데 매우 큰 유연성을 가능하게 한다. 예를 들어, 혹자는 매우 낮은 유사성 점수를 갖는 배치 내용과 매우 높은 유사성 점수를 갖는 배치 내용의 CTR을 작게 조정하는 스케일링 인자 변환 테이블 또는 스케일링 인자 맵핑 함수를 생성할 수 있다. 일부 실시예에서, 최대 유사성 점수와 연관된 스케일링 인자는 중간점 유사성 점수와 연관된 스케일링 인자보다 작고, 중간점은 유사성 점수의 평균 또는 중간값 중 어느 하나일 수 있다. 대안으로, 중간점은 최소 및 최대 유사성 점수 사이의 임의의 식별된 점일 수 있다. 일부 실시예에서, 최대 유사성 점수와 연관된 스케일링 인자는 중간점 유사성 점수와 연관된 스케일링 인자보다 크지만, 스케일링 인자 맵핑 함수 또는 스케일링 인자 변환 테이블과 연관된 최대 스케일링 인자보다 작다. 최소 점수로부터 최대 점수로 가고 있는 유사성 점수의 값에 대한 스케일링 인자 맵핑 함수를 볼 때, 스케일링 인자는 일반적으로 처음에는 최대점수와 연관된 낮은 값으로부터 피크 스케일링 인자 값에 도달할 때까지 증가할 것이며, 이후 유사성 점수가 최대값에 도달할 때까지 감소할 것이다.
일부 실시예에서, 유사성 점수에 대응하는 스케일링 인자는 유사성 점수를 클릭율에 관련시키는 통계정보에 따라서 결정된다. 특히, 사용자에 의한 클릭율은 사용자 및 배치 내용 항목에 대하여 유사성 점수에 통계적으로 상관될 수 있다. 예를 들어, 개별 클릭율은 노출(impression), 클릭, 및 각각의 노출 및 클릭과 연관된 유사성 점수에 대한 데이터를 수집함으로써 유사성 점수의 N 범위의 집합에서 각각의 범위에 대해 결정될 수 있다. 이러한 클릭율에 기초하여 N 스케일링 인자들의 집합은 스케일링 인자 변환 테이블에 저장하기 위해 생성될 수 있다. 대안으로, 수집된 통계 정보는 가령 곡선 피팅(Curve Fitting) 기법을 이용함으로써 스케일링 인자 맵핑 함수를 생성하는 데 이용될 수 있다.
일부 실시예에서, 각각의 식별된 배치 내용에 대한 각각의 스케일링 인자는, 사용자가 배치 내용에서 관심을 가질 증가된 유사성을 반영하도록, 수정된 CTR을 제공하는 배치 내용의 CTR에 의해 곱해진다(도11의 1112). 보다 구체적으로, (가령, 검색 질의의 용어와 매칭되는 적어도 하나의 키워드를 가짐으로써) 검색 질의와 매칭되는 각각의 배치 내용에 대한 점수는 다음과 같이 계산된다:
점수 = 스케일링 인자 × CTR × 입찰
배치 내용 항목들은 그 후 이들 각각의 점수에 기초하여 순위 매겨지거나 정렬되고(1114) 가장 높은 점수를 갖는 배치 내용 항목들이 가령 사용자의 컴퓨터상의 브라우저 어플리케이션에 보내짐으로써 사용자에게 제공된다(1116). 일부 실시예에서, H의 가장 높은 점수(H는 1보다 큰 정수)를 갖는 배치 내용 항목들은 데이터베이스에 대한 검색 질의의 실행으로부터 얻어진 검색 결과(때로는 주 검색 결과라 함)와 합쳐질 수 있다(1118). 예를 들어, 배치 내용이 광고를 포함할 때, 가장 높은 점수를 갖는 하나 이상의 광고는 위에, 밑에, 및/또는 주 검색 결과의 측부에 디스플레이될 수 있다.
일부 실시예에서, 배치 내용 항목에 대한 점수는 사용자 프로파일과 입찰을 이용하여 생성된 유사성 점수에 기초하지만, 클릭율에 기초하지 않는다. 예를 들 어, 일부 실시예에서, 배치 내용 항목에 대한 클릭율은 이용가능하지 않을 수 있다. 결과로써, 이러한 실시예들에서 액션(1112)은 발생하지 않거나 서로 다른 점수 조정 또는 점수 계산 액션에 의해 대체된다.
일부 다른 실시예에서, 배치 내용 항목에 대한 점수는 사용자 프로파일 및 클릭율을 이용하여 생성된 유사성 점수에 기초하지만, 입찰에 기초하지 않는다. 그리고 또 다른 실시예에서, 배치 내용 항목에 대한 점수는 사용자 프로파일을 이용하여 생성된 유사성 점수에 기초하지만, 이러한 점수는 입찰 또는 클릭율 중 어느 하나에 기초하지 않는다. 배치 내용 점수가 사용자 프로파일을 고려하나 입찰을 고려하지 않을 때, 배치 내용 항목의 다른 정렬의 잠재적인 경제적 이익과 관련없이, 배치 내용의 정렬은 사용자에게 관심이 있을 것 같은 배치 내용에 관하여 최적화 또는 개선된다.
본원에서 기재된 시스템과 방법은 검색 엔진 시스템이 아닌 시스템에서도 사용될 수 있다. 예를 들어, 이메일 시스템 또는 사용자 또는 가입자에게 문서나 다른 내용을 디스플레이하는 인터넷이나 다른 광역통신망을 통해 서비스를 제공하는 가상적인 임의의 다른 시스템에서, 배치 내용은 사용자에게 선택되고 디스플레이될 수도 있다. 배치 내용은 디스플레이된 문서 또는 문서들의 집합의 내용과 매칭되는 배치 내용과 연관된 키워드에 기초하여 선택될 수 있거나, 기타의 선택 기준에 기초할 수 있다. 선택된 배치 내용 항목은 그 후 전술한 것처럼 사용자 프로파일과 선택된 배치 내용 항목의 프로파일의 유사성에 기초하여 정렬된다.
설명을 위한 전술한 기재는 구체적인 실시예들을 참조하여 기재되어 왔다. 그러나, 전술한 예시적인 논의는 본 발명을 개시된 정확한 형태로 소진시키거나 제한하려는 것이 아니다. 많은 수정과 변경이 상술한 기법의 관점에서 가능하다. 실시예들은 본 발명의 원리들과 그 실제 적용을 가장 잘 설명하기 위하여 선택되고 기재되었으므로, 이에 의해 당업자가 본 발명과 생각되는 특정 사용에 적합화되는 다양한 수정을 갖는 다양한 실시예를 가장 잘 이용하는 것을 가능하게 한다.
Claims (52)
- 검색 질의(search query)와 연관된 배치 내용(placed content)을 맞춤화(customize)하는 컴퓨터-구현 방법으로서,하나 이상의 프로세서들 및 상기 하나 이상의 프로세서들에 의해서 실행되는 프로그램들을 저장하는 메모리를 구비한 서버 시스템에서,사용자로부터 검색 질의를 수신하는 단계;상기 사용자와 연관된 사용자 프로파일을 액세스하는 단계 ? 상기 사용자 프로파일은 다수의 이전에 제출된 검색 질의들의 질의 용어들(query terms)에 적어도 부분적으로 기초함 ?;상기 검색 질의와 매칭되는 배치 내용의 세트(set of placed content)을 식별하는 단계;상기 사용자 프로파일, 상기 배치 내용에 대한 각각의 입찰가(bid value), 및 다수의 사용자 활동들(activities)에 기초하는 상기 배치 내용에 대한 각각의 클릭율(click through rate)에 따라서 상기 배치 내용의 세트 각각에 인기 점수(popularity score)를 할당하는 단계;상기 배치 내용의 세트의 각각의 인기 점수들에 따라 상기 배치 내용의 세트의 순위를 정하는(ranking) 단계; 및상기 배치 내용의 세트의 각각의 인기 점수들에 의해 결정되는 순서에 따라 상기 배치 내용의 세트의 적어도 서브세트를 상기 사용자에게 디스플레이하기 위해 준비하는 단계를 포함하고, 상기 인기 점수를 할당하는 단계는,상기 사용자 프로파일 및 상기 배치 내용에 연관된 배치 내용 프로파일 사이의 유사성 점수(similarity score)를 결정하는 단계 ? 상기 유사성 점수는 상기 사용자 프로파일과 상기 연관된 배치 내용 프로파일 사이의 유사성 레벨을 나타냄 ?, 및상기 배치 내용에 할당되는 상기 인기 점수를 결정하기 위해서 상기 유사성 점수를 상기 각각의 클릭율 및 상기 각각의 입찰가와 결합하는 단계를 포함하며, 상기 배치 내용은 검색 결과들 내의 배치를 위해 내용 제공자(content provider)가 비용을 지불하는 내용을 포함하는, 배치 내용을 맞춤화하는 컴퓨터-구현 방법.
- 제1항에 있어서,상기 사용자 프로파일은 문서들의 집합으로부터 유도되는 정보를 포함하는 상기 사용자에 대한 정보에 적어도 부분적으로 기초하고,상기 문서들의 집합은 검색 엔진으로부터의 검색 결과들에 의해 식별된 문서들, 상기 검색 엔진으로부터의 검색 결과들에 의해 식별된 문서들에 링크된 문서들, 상기 사용자에 의해 액세스된 문서들에 링크된 문서들, 및 상기 사용자에 의해 브라우징(browsed)된 문서들로 이루어진 집합으로부터 선택되는 다수의 문서들을 포함하는, 배치 내용을 맞춤화하는 컴퓨터-구현 방법.
- 제1항에 있어서,상기 유사성 점수를 결정하는 단계는 상기 사용자 프로파일의 사용자 프로파일 벡터와 상기 배치 내용의 배치 내용 프로파일 벡터 사이의 수학적 거리를 결정하는 단계를 포함하고,상기 사용자 프로파일 벡터는 카테고리들 및 각각의 가중치들로 이루어진 제1쌍들을 포함하며, 상기 배치 내용 프로파일 벡터는 카테고리들 및 각각의 가중치들로 이루어진 제2쌍들을 포함하는, 배치 내용을 맞춤화하는 컴퓨터-구현 방법.
- 제1항에 있어서, 상기 유사성 점수를 스케일링 인자(scaling factor)와 연관시키는 단계를 더 포함하는, 배치 내용을 맞춤화하는 컴퓨터-구현 방법.
- 제1항에 있어서, 스케일링 인자를 생성하기 위해서 상기 유사성 점수를 특정 범위로 정규화하는(nomalizing)하는 단계를 더 포함하는, 배치 내용을 맞춤화하는 컴퓨터-구현 방법.
- 제4항에 있어서, 상기 인기 점수를 배치 내용의 세트 각각에 할당하는 단계는 상기 스케일링 인자, 상기 각각의 클릭율 및 상기 각각의 입찰가를 곱하는 단계를 포함하는, 배치 내용을 맞춤화하는 컴퓨터-구현 방법.
- 제6항에 있어서, 최대 유사성 점수와 연관된 상기 스케일링 인자는 중간점(mid-point) 유사성 점수와 연관된 상기 스케일링 인자보다 작은, 배치 내용을 맞춤화하는 컴퓨터-구현 방법.
- 제4항에 있어서, 상기 스케일링 인자는 유사성 점수들을 클릭율들에 관련시키는 통계 정보에 따라 결정되는, 배치 내용을 맞춤화하는 컴퓨터-구현 방법.
- 제1항에 있어서, 상기 배치 내용을 광고로서 제공하는 단계를 더 포함하는, 배치 내용을 맞춤화하는 컴퓨터-구현 방법.
- 검색 질의와 연관된 배치 내용을 맞춤화하기 위한 컴퓨터 시스템으로서,다수의 이전에 제출된 검색 질의들의 질의 용어들에 적어도 부분적으로 기초하는 사용자 프로파일; 및다수의 배치 내용을 포함하고, 상기 검색 질의와 매칭되는 상기 다수의 배치 내용의 서브세트를 식별하고, 상기 사용자 프로파일, 상기 배치 내용에 대한 각각의 입찰가, 및 다수의 사용자 활동들에 기초하는 상기 배치 내용에 대한 각각의 클릭율에 따라서 상기 서브세트의 상기 다수의 배치 내용 각각에 인기 점수를 할당하고, 상기 배치 내용의 서브세트의 각각의 인기 점수들에 기초하여 상기 서브세트의 순위를 정하며, 상기 다수의 배치 내용의 서브세트의 각각의 인기 점수들에 의해 결정되는 순서에 따라 상기 다수의 배치 내용의 서브세트의 디스플레이를 준비하는 배치 내용 서버를 포함하고,각 피스(piece)의 배치 컨텐트의 인기 점수는 상기 사용자 프로파일 및 상기 배치 내용에 연관된 배치 내용 프로파일 사이의 유사성 점수에 기초하고,상기 유사성 점수는 상기 사용자 프로파일과 상기 연관된 배치 내용 프로파일 사이의 유사성 레벨을 나타내며,상기 유사성 점수는 상기 배치 내용에 할당되는 상기 인기 점수를 결정하기 위해서 상기 각각의 클릭율 및 상기 각각의 입찰가와 결합되며,상기 배치 내용은 검색 결과들 내의 배치를 위해 내용 제공자가 비용을 지불하는 내용을 포함하는, 배치 내용을 맞춤화하기 위한 컴퓨터 시스템.
- 제10항에 있어서,상기 사용자 프로파일은 문서들의 집합으로부터 유도되는 정보를 포함하는 상기 사용자에 대한 정보에 적어도 부분적으로 기초하고,상기 문서들의 집합은 검색 엔진으로부터의 검색 결과들에 의해 식별된 문서들, 상기 검색 엔진으로부터의 검색 결과들에 의해 식별된 문서들에 링크된 문서들, 상기 사용자에 의해 액세스된 문서들에 링크된 문서들, 및 상기 사용자에 의해 브라우징된 문서들로 이루어진 집합으로부터 선택되는 다수의 문서들을 포함하는, 배치 내용을 맞춤화하기 위한 컴퓨터 시스템.
- 제10항에 있어서,상기 유사성 점수는 상기 사용자 프로파일의 사용자 프로파일 벡터와 상기 배치 내용의 배치 내용 프로파일 벡터 사이의 수학적 거리에 기초하고,상기 사용자 프로파일 벡터는 카테고리들 및 각각의 가중치들로 이루어진 제1쌍들을 포함하며, 상기 배치 내용 프로파일 벡터는 카테고리들 및 각각의 가중치들로 이루어진 제2쌍들을 포함하는, 배치 내용을 맞춤화하기 위한 컴퓨터 시스템.
- 제10항에 있어서, 상기 유사성 점수와 연관된 스케일링 인자를 더 포함하는, 배치 내용을 맞춤화하기 위한 컴퓨터 시스템.
- 제13항에 있어서, 상기 스케일링 인자는 상기 유사성 점수를 특정 범위로 정규화함으로써 결정되는, 배치 내용을 맞춤화하기 위한 컴퓨터 시스템.
- 제13항에 있어서, 상기 배치 내용의 세트에 있는 각 피스의 배치 내용의 인기 점수는 각각의 스케일링 인자, 각각의 클릭율 및 상기 배치 내용에 대한 각각의 입찰가의 곱셈결과(multiplicative product)에 상응하는, 배치 내용을 맞춤화하기 위한 컴퓨터 시스템.
- 제15항에 있어서, 최대 유사성 점수와 연관된 상기 스케일링 인자는 중간점 유사성 점수와 연관된 상기 스케일링 인자보다 작은, 배치 내용을 맞춤화하기 위한 컴퓨터 시스템.
- 제13항에 있어서, 상기 스케일링 인자는 유사성 점수들을 클릭율들에 관련시키는 통계 정보에 기초하는,배치 내용을 맞춤화하기 위한 컴퓨터 시스템.
- 제10항에 있어서, 상기 배치 내용은 광고인, 배치 내용을 맞춤화하기 위한 컴퓨터 시스템.
- 하나 이상의 프로그램들을 포함하는 컴퓨터 판독가능 매체로서,상기 하나 이상의 프로그램들은 상기 컴퓨터 판독가능 매체에 저장되고 처리를 수행하도록 컴퓨터에 의해 실행가능하며, 상기 하나 이상의 컴퓨터 프로그램들은,사용자로부터 검색 질의를 수신하기 위한 명령들;상기 사용자와 연관된 사용자 프로파일을 액세스하기 위한 명령들 ? 상기 사용자 프로파일은 다수의 이전에 제출된 검색 질의들의 질의 용어들에 적어도 부분적으로 기초함 ? ;상기 검색 질의와 매칭되는 배치 내용의 세트를 식별하기 위한 명령들;상기 사용자 프로파일, 상기 배치 내용에 대한 각각의 입찰가, 및 다수의 사용자 활동들에 기초하는 상기 배치 내용에 대한 각각의 클릭율에 따라서 상기 배치 내용의 세트 각각에 인기 점수를 할당하기 위한 명령들 ? 상기 인기 점수를 할당하기 위한 명령들은,상기 사용자 프로파일 및 상기 배치 내용에 연관된 배치 내용 프로파일 사이의 유사성 점수를 결정하기 위한 명령들 ? 상기 유사성 점수는 상기 사용자 프로파일과 상기 연관된 배치 내용 프로파일 사이의 유사성 레벨을 나타냄 ?, 및상기 배치 내용에 할당되는 상기 인기 점수를 결정하기 위해서 상기 유사성 점수를 상기 각각의 클릭율 및 상기 각각의 입찰가와 결합하기 위한 명령들을 포함함 - ;상기 배치 내용의 세트를 그들의 각각의 인기 점수들에 따라 순위를 정하기 위한 명령들; 및상기 배치 내용의 세트의 각각의 인기 점수들에 의해 결정되는 순서에 따라 상기 배치 내용의 세트의 적어도 서브세트를 상기 사용자에게 디스플레이하기 위해 준비하기 위한 명령들을 포함하며, 상기 배치 내용은 검색 결과들 내의 배치를 위해 내용 제공자가 비용을 지불하는 내용을 포함하는, 컴퓨터 판독가능 매체.
- 제19항에 있어서,상기 사용자 프로파일은 문서들의 집합으로부터 유도되는 정보를 포함하는 상기 사용자에 대한 정보에 적어도 부분적으로 기초하고,상기 문서들의 집합은 검색 엔진으로부터의 검색 결과들에 의해 식별된 문서들, 상기 검색 엔진으로부터의 검색 결과들에 의해 식별된 문서들에 링크된 문서들, 상기 사용자에 의해 액세스된 문서들에 링크된 문서들, 및 상기 사용자에 의해 브라우징된 문서들로 이루어진 집합으로부터 선택되는 다수의 문서들을 포함하는, 컴퓨터 판독가능 매체.
- 제19항에 있어서,상기 유사성 점수를 결정하기 위한 명령들은 상기 사용자 프로파일의 사용자 프로파일 벡터와 상기 배치 내용의 배치 내용 프로파일 벡터 사이의 수학적 거리를 결정하기 위한 명령들을 포함하고,상기 사용자 프로파일 벡터는 카테고리들 및 각각의 가중치들로 이루어진 제1쌍들을 포함하며, 상기 배치 내용 프로파일 벡터는 카테고리들 및 각각의 가중치들로 이루어진 제2쌍들을 포함하는, 컴퓨터 판독가능 매체.
- 제19항에 있어서, 상기 유사성 점수를 스케일링 인자와 연관시키기 위한 명령들을 더 포함하는, 컴퓨터 판독가능 매체.
- 제21항에 있어서, 스케일링 인자를 생성하기 위해서 상기 유사성 점수를 특정 범위로 정규화하기 위한 명령들을 더 포함하는, 컴퓨터 판독가능 매체.
- 제22항에 있어서, 상기 인기 점수를 배치 내용의 세트 각각에 할당하기 위한 명령들은 상기 스케일링 인자, 상기 각각의 클릭율 및 상기 각각의 입찰가를 곱하기 위한 명령들을 포함하는, 컴퓨터 판독가능 매체.
- 제24항에 있어서, 최대 유사성 점수와 연관된 상기 스케일링 인자는 중간점 유사성 점수와 연관된 상기 스케일링 인자보다 작은, 컴퓨터 판독가능 매체.
- 제22항에 있어서, 상기 스케일링 인자는 유사성 점수들을 클릭율들에 관련시키는 통계 정보에 따라 결정되는, 컴퓨터 판독가능 매체.
- 제19항에 있어서, 상기 배치 내용은 광고인, 컴퓨터 판독가능 매체.
- 검색 질의와 연관된 배치 내용을 맞춤화하는 컴퓨터-구현 방법으로서,사용자로부터 검색 질의를 수신하는 단계;상기 사용자와 연관된 사용자 프로파일을 액세스하는 단계 ? 상기 사용자 프로파일은 다수의 이전에 제출된 검색 질의들의 질의 용어들에 적어도 부분적으로 기초함 ? ;상기 검색 질의에 대한 검색 결과들로서 제공되는 하나 이상의 문서들의 내용들에 기초하여 배치 내용의 세트를 식별하는 단계;상기 사용자 프로파일, 상기 배치 내용에 대한 각각의 입찰가, 및 다수의 사용자 활동들에 기초하는 상기 배치 내용에 대한 각각의 클릭율에 따라서 상기 배치 내용의 세트 각각에 인기 점수를 할당하는 단계;상기 배치 내용의 세트의 각각의 인기 점수들에 따라 상기 배치 내용의 세트의 순위를 정하는 단계; 및상기 배치 내용의 세트의 각각의 인기 점수들에 의해 결정되는 순서에 따라 상기 배치 내용의 세트의 적어도 서브세트를 상기 사용자에게 디스플레이하기 위해 준비하는 단계를 포함하고, 상기 인기 점수를 할당하는 단계는,상기 사용자 프로파일 및 상기 배치 내용에 연관된 배치 내용 프로파일 사이의 유사성 점수를 결정하는 단계 ? 상기 유사성 점수는 상기 사용자 프로파일과 상기 연관된 배치 내용 프로파일 사이의 유사성 레벨을 나타냄 ?, 및상기 배치 내용에 할당되는 상기 인기 점수를 결정하기 위해서 상기 유사성 점수를 상기 각각의 클릭율 및 상기 각각의 입찰가와 결합하는 단계를 포함하며, 상기 배치 내용은 검색 결과들 내의 배치를 위해 내용 제공자가 비용을 지불하는 내용을 포함하는, 배치 내용을 맞춤화하는 컴퓨터-구현 방법.
- 검색 질의와 연관된 배치 내용을 맞춤화하는 컴퓨터-구현 방법으로서,문서에 대한 사용자로부터의 요청을 수신하는 단계;상기 사용자와 연관된 사용자 프로파일을 액세스하는 단계 ? 상기 사용자 프로파일은 다수의 이전에 제출된 검색 질의들의 질의 용어들에 적어도 부분적으로 기초함 ? ;상기 사용자에 의해 요청되는 문서의 내용들에 기초하여 배치 내용의 세트를 식별하는 단계;상기 사용자 프로파일, 상기 배치 내용에 대한 각각의 입찰가, 및 다수의 사용자 활동들에 기초하는 상기 배치 내용에 대한 각각의 클릭율에 따라서 상기 배치 내용의 세트 각각에 인기 점수를 할당하는 단계;상기 배치 내용의 세트의 각각의 인기 점수들에 따라 상기 배치 내용의 세트의 순위를 정하는 단계; 및상기 배치 내용의 세트의 각각의 인기 점수들에 의해 결정되는 순서에 따라 상기 배치 내용의 세트의 적어도 서브세트를 상기 사용자에게 디스플레이하기 위해 준비하는 단계를 포함하고, 상기 인기 점수를 할당하는 단계는,상기 사용자 프로파일 및 상기 배치 내용에 연관된 배치 내용 프로파일 사이의 유사성 점수를 결정하는 단계 ? 상기 유사성 점수는 상기 사용자 프로파일과 상기 연관된 배치 내용 프로파일 사이의 유사성 레벨을 나타냄 ?, 및상기 배치 내용에 할당되는 상기 인기 점수를 결정하기 위해서 상기 유사성 점수를 상기 각각의 클릭율 및 상기 각각의 입찰가와 결합하는 단계를 포함하며, 상기 배치 내용은 검색 결과들 내의 배치를 위해 내용 제공자가 비용을 지불하는 내용을 포함하는, 배치 내용을 맞춤화하는 컴퓨터-구현 방법.
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/890,854 US7693827B2 (en) | 2003-09-30 | 2004-07-13 | Personalization of placed content ordering in search results |
US10/890,854 | 2004-07-13 | ||
PCT/US2005/025081 WO2006017364A1 (en) | 2004-07-13 | 2005-07-12 | Personalization of placed content ordering in search results |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20070038146A KR20070038146A (ko) | 2007-04-09 |
KR101171405B1 true KR101171405B1 (ko) | 2012-08-08 |
Family
ID=35169328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020077003372A KR101171405B1 (ko) | 2004-07-13 | 2005-07-12 | 검색 결과에서 배치 내용 정렬의 맞춤화 |
Country Status (7)
Country | Link |
---|---|
US (1) | US7693827B2 (ko) |
EP (1) | EP1782286A1 (ko) |
JP (2) | JP2008507041A (ko) |
KR (1) | KR101171405B1 (ko) |
CN (1) | CN100485677C (ko) |
CA (1) | CA2573672C (ko) |
WO (1) | WO2006017364A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11176218B2 (en) | 2019-07-30 | 2021-11-16 | Ebay Inc. | Presenting a customized landing page as a preview at a search engine |
WO2023177144A1 (ko) * | 2022-03-17 | 2023-09-21 | 삼성전자 주식회사 | 광고 대상 결정 장치 및 방법 |
Families Citing this family (534)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9195756B1 (en) * | 1999-08-16 | 2015-11-24 | Dise Technologies, Llc | Building a master topical index of information |
US8504554B2 (en) | 1999-08-16 | 2013-08-06 | Raichur Revocable Trust, Arvind A. and Becky D. Raichur | Dynamic index and search engine server |
US9977831B1 (en) | 1999-08-16 | 2018-05-22 | Dise Technologies, Llc | Targeting users' interests with a dynamic index and search engine server |
US6434747B1 (en) | 2000-01-19 | 2002-08-13 | Individual Network, Inc. | Method and system for providing a customized media list |
US8813123B2 (en) | 2000-01-19 | 2014-08-19 | Interad Technologies, Llc | Content with customized advertisement |
CA2415167C (en) * | 2000-07-05 | 2017-03-21 | Paid Search Engine Tools, L.L.C. | Paid search engine bid management |
US7716207B2 (en) * | 2002-02-26 | 2010-05-11 | Odom Paul S | Search engine methods and systems for displaying relevant topics |
US20060004732A1 (en) * | 2002-02-26 | 2006-01-05 | Odom Paul S | Search engine methods and systems for generating relevant search results and advertisements |
US7743045B2 (en) | 2005-08-10 | 2010-06-22 | Google Inc. | Detecting spam related and biased contexts for programmable search engines |
US20070038614A1 (en) * | 2005-08-10 | 2007-02-15 | Guha Ramanathan V | Generating and presenting advertisements based on context data for programmable search engines |
US20070038603A1 (en) * | 2005-08-10 | 2007-02-15 | Guha Ramanathan V | Sharing context data across programmable search engines |
US7693830B2 (en) | 2005-08-10 | 2010-04-06 | Google Inc. | Programmable search engine |
US7716199B2 (en) | 2005-08-10 | 2010-05-11 | Google Inc. | Aggregating context data for programmable search engines |
US20040122692A1 (en) | 2002-07-13 | 2004-06-24 | John Irving | Method and system for interactive, multi-user electronic data transmission in a multi-level monitored and filtered system |
US8838622B2 (en) | 2002-07-13 | 2014-09-16 | Cricket Media, Inc. | Method and system for monitoring and filtering data transmission |
US7779247B2 (en) | 2003-01-09 | 2010-08-17 | Jericho Systems Corporation | Method and system for dynamically implementing an enterprise resource policy |
US7792828B2 (en) * | 2003-06-25 | 2010-09-07 | Jericho Systems Corporation | Method and system for selecting content items to be presented to a viewer |
US7333997B2 (en) * | 2003-08-12 | 2008-02-19 | Viziant Corporation | Knowledge discovery method with utility functions and feedback loops |
US20050278362A1 (en) * | 2003-08-12 | 2005-12-15 | Maren Alianna J | Knowledge discovery system |
US7505964B2 (en) | 2003-09-12 | 2009-03-17 | Google Inc. | Methods and systems for improving a search ranking using related queries |
US7693827B2 (en) | 2003-09-30 | 2010-04-06 | Google Inc. | Personalization of placed content ordering in search results |
US7130819B2 (en) * | 2003-09-30 | 2006-10-31 | Yahoo! Inc. | Method and computer readable medium for search scoring |
US7844589B2 (en) * | 2003-11-18 | 2010-11-30 | Yahoo! Inc. | Method and apparatus for performing a search |
US20050246661A1 (en) * | 2004-04-30 | 2005-11-03 | Udo Klein | Associating physical items with recorded information |
US7260573B1 (en) * | 2004-05-17 | 2007-08-21 | Google Inc. | Personalizing anchor text scores in a search engine |
WO2007001247A2 (en) * | 2004-06-02 | 2007-01-04 | Yahoo! Inc. | Content-management system for user behavior targeting |
US8620915B1 (en) | 2007-03-13 | 2013-12-31 | Google Inc. | Systems and methods for promoting personalized search results based on personal information |
US8078607B2 (en) * | 2006-03-30 | 2011-12-13 | Google Inc. | Generating website profiles based on queries from webistes and user activities on the search results |
US8010460B2 (en) * | 2004-09-02 | 2011-08-30 | Linkedin Corporation | Method and system for reputation evaluation of online users in a social networking scheme |
US8666816B1 (en) | 2004-09-14 | 2014-03-04 | Google Inc. | Method and system for access point customization |
US20060059225A1 (en) * | 2004-09-14 | 2006-03-16 | A9.Com, Inc. | Methods and apparatus for automatic generation of recommended links |
US20060058019A1 (en) * | 2004-09-15 | 2006-03-16 | Chan Wesley T | Method and system for dynamically modifying the appearance of browser screens on a client device |
US7606793B2 (en) | 2004-09-27 | 2009-10-20 | Microsoft Corporation | System and method for scoping searches using index keys |
US7739277B2 (en) * | 2004-09-30 | 2010-06-15 | Microsoft Corporation | System and method for incorporating anchor text into ranking search results |
US7827181B2 (en) | 2004-09-30 | 2010-11-02 | Microsoft Corporation | Click distance determination |
US20060085392A1 (en) * | 2004-09-30 | 2006-04-20 | Microsoft Corporation | System and method for automatic generation of search results based on local intention |
US7761448B2 (en) | 2004-09-30 | 2010-07-20 | Microsoft Corporation | System and method for ranking search results using click distance |
US20060074883A1 (en) * | 2004-10-05 | 2006-04-06 | Microsoft Corporation | Systems, methods, and interfaces for providing personalized search and information access |
US8095408B2 (en) * | 2004-10-11 | 2012-01-10 | Sharethis, Inc. | System and method for facilitating network connectivity based on user characteristics |
US7904337B2 (en) | 2004-10-19 | 2011-03-08 | Steve Morsa | Match engine marketing |
US8250599B2 (en) * | 2004-10-26 | 2012-08-21 | Yahoo! Inc. | System and method for providing time-based content |
WO2006047790A2 (en) * | 2004-10-27 | 2006-05-04 | Client Dynamics, Inc. | Enhanced client relationship management systems and methods with a recommendation engine |
JP2006134236A (ja) * | 2004-11-09 | 2006-05-25 | Canon Inc | プロファイル取得方法、装置、プログラム、および、記憶媒体 |
US7895218B2 (en) | 2004-11-09 | 2011-02-22 | Veveo, Inc. | Method and system for performing searches for television content using reduced text input |
US7440968B1 (en) * | 2004-11-30 | 2008-10-21 | Google Inc. | Query boosting based on classification |
US8874570B1 (en) | 2004-11-30 | 2014-10-28 | Google Inc. | Search boost vector based on co-visitation information |
US7716198B2 (en) | 2004-12-21 | 2010-05-11 | Microsoft Corporation | Ranking search results using feature extraction |
US20060136391A1 (en) * | 2004-12-21 | 2006-06-22 | Morris Robert P | System and method for generating a search index and executing a context-sensitive search |
US7606799B2 (en) * | 2005-01-12 | 2009-10-20 | Fmr Llc | Context-adaptive content distribution to handheld devices |
US20060155687A1 (en) * | 2005-01-13 | 2006-07-13 | Bridgewell Inc. | Portable database search agent processing system |
US7890503B2 (en) * | 2005-02-07 | 2011-02-15 | Microsoft Corporation | Method and system for performing secondary search actions based on primary search result attributes |
US7792833B2 (en) | 2005-03-03 | 2010-09-07 | Microsoft Corporation | Ranking search results using language types |
US20060224583A1 (en) * | 2005-03-31 | 2006-10-05 | Google, Inc. | Systems and methods for analyzing a user's web history |
US20060224608A1 (en) * | 2005-03-31 | 2006-10-05 | Google, Inc. | Systems and methods for combining sets of favorites |
US9256685B2 (en) * | 2005-03-31 | 2016-02-09 | Google Inc. | Systems and methods for modifying search results based on a user's history |
EP1877968A2 (en) * | 2005-04-12 | 2008-01-16 | Alianna J. Maren | System and method for evidence accumulation and hypothesis generation |
US7631007B2 (en) * | 2005-04-12 | 2009-12-08 | Scenera Technologies, Llc | System and method for tracking user activity related to network resources using a browser |
US8631006B1 (en) | 2005-04-14 | 2014-01-14 | Google Inc. | System and method for personalized snippet generation |
US7647312B2 (en) * | 2005-05-12 | 2010-01-12 | Microsoft Corporation | System and method for automatic generation of suggested inline search terms |
US7822751B2 (en) * | 2005-05-27 | 2010-10-26 | Google Inc. | Scoring local search results based on location prominence |
US7962462B1 (en) | 2005-05-31 | 2011-06-14 | Google Inc. | Deriving and using document and site quality signals from search query streams |
US8103659B1 (en) * | 2005-06-06 | 2012-01-24 | A9.Com, Inc. | Perspective-based item navigation |
EP1732013A1 (en) * | 2005-06-06 | 2006-12-13 | Deutsche Thomson-Brandt Gmbh | Method and device for searching a data unit in a database |
JP4752623B2 (ja) * | 2005-06-16 | 2011-08-17 | ソニー株式会社 | 情報処理装置、情報処理方法、およびプログラム |
US7685191B1 (en) * | 2005-06-16 | 2010-03-23 | Enquisite, Inc. | Selection of advertisements to present on a web page or other destination based on search activities of users who selected the destination |
US20060294071A1 (en) * | 2005-06-28 | 2006-12-28 | Microsoft Corporation | Facet extraction and user feedback for ranking improvement and personalization |
US20070005587A1 (en) * | 2005-06-30 | 2007-01-04 | Microsoft Corporation | Relative search results based off of user interaction |
US8122034B2 (en) * | 2005-06-30 | 2012-02-21 | Veveo, Inc. | Method and system for incremental search with reduced text entry where the relevance of results is a dynamically computed function of user input search string character count |
US7779011B2 (en) | 2005-08-26 | 2010-08-17 | Veveo, Inc. | Method and system for dynamically processing ambiguous, reduced text search queries and highlighting results thereof |
US7788266B2 (en) | 2005-08-26 | 2010-08-31 | Veveo, Inc. | Method and system for processing ambiguous, multi-term search queries |
WO2007027967A2 (en) * | 2005-08-31 | 2007-03-08 | Eagleforce Associates | System for hypothesis generation |
US8311888B2 (en) | 2005-09-14 | 2012-11-13 | Jumptap, Inc. | Revenue models associated with syndication of a behavioral profile using a monetization platform |
US8229914B2 (en) | 2005-09-14 | 2012-07-24 | Jumptap, Inc. | Mobile content spidering and compatibility determination |
US7676394B2 (en) | 2005-09-14 | 2010-03-09 | Jumptap, Inc. | Dynamic bidding and expected value |
US9201979B2 (en) | 2005-09-14 | 2015-12-01 | Millennial Media, Inc. | Syndication of a behavioral profile associated with an availability condition using a monetization platform |
US8805339B2 (en) | 2005-09-14 | 2014-08-12 | Millennial Media, Inc. | Categorization of a mobile user profile based on browse and viewing behavior |
US8364521B2 (en) | 2005-09-14 | 2013-01-29 | Jumptap, Inc. | Rendering targeted advertisement on mobile communication facilities |
US8819659B2 (en) | 2005-09-14 | 2014-08-26 | Millennial Media, Inc. | Mobile search service instant activation |
US8131271B2 (en) | 2005-11-05 | 2012-03-06 | Jumptap, Inc. | Categorization of a mobile user profile based on browse behavior |
US8503995B2 (en) | 2005-09-14 | 2013-08-06 | Jumptap, Inc. | Mobile dynamic advertisement creation and placement |
US10038756B2 (en) | 2005-09-14 | 2018-07-31 | Millenial Media LLC | Managing sponsored content based on device characteristics |
US8156128B2 (en) | 2005-09-14 | 2012-04-10 | Jumptap, Inc. | Contextual mobile content placement on a mobile communication facility |
US7912458B2 (en) | 2005-09-14 | 2011-03-22 | Jumptap, Inc. | Interaction analysis and prioritization of mobile content |
US8103545B2 (en) | 2005-09-14 | 2012-01-24 | Jumptap, Inc. | Managing payment for sponsored content presented to mobile communication facilities |
US7769764B2 (en) | 2005-09-14 | 2010-08-03 | Jumptap, Inc. | Mobile advertisement syndication |
US8195133B2 (en) | 2005-09-14 | 2012-06-05 | Jumptap, Inc. | Mobile dynamic advertisement creation and placement |
US7660581B2 (en) | 2005-09-14 | 2010-02-09 | Jumptap, Inc. | Managing sponsored content based on usage history |
US8615719B2 (en) | 2005-09-14 | 2013-12-24 | Jumptap, Inc. | Managing sponsored content for delivery to mobile communication facilities |
US8463249B2 (en) | 2005-09-14 | 2013-06-11 | Jumptap, Inc. | System for targeting advertising content to a plurality of mobile communication facilities |
US9076175B2 (en) | 2005-09-14 | 2015-07-07 | Millennial Media, Inc. | Mobile comparison shopping |
US8989718B2 (en) | 2005-09-14 | 2015-03-24 | Millennial Media, Inc. | Idle screen advertising |
US8666376B2 (en) | 2005-09-14 | 2014-03-04 | Millennial Media | Location based mobile shopping affinity program |
US8302030B2 (en) | 2005-09-14 | 2012-10-30 | Jumptap, Inc. | Management of multiple advertising inventories using a monetization platform |
US8688671B2 (en) | 2005-09-14 | 2014-04-01 | Millennial Media | Managing sponsored content based on geographic region |
US8290810B2 (en) | 2005-09-14 | 2012-10-16 | Jumptap, Inc. | Realtime surveying within mobile sponsored content |
US10592930B2 (en) | 2005-09-14 | 2020-03-17 | Millenial Media, LLC | Syndication of a behavioral profile using a monetization platform |
US9058406B2 (en) | 2005-09-14 | 2015-06-16 | Millennial Media, Inc. | Management of multiple advertising inventories using a monetization platform |
US9703892B2 (en) | 2005-09-14 | 2017-07-11 | Millennial Media Llc | Predictive text completion for a mobile communication facility |
US8832100B2 (en) | 2005-09-14 | 2014-09-09 | Millennial Media, Inc. | User transaction history influenced search results |
US8812526B2 (en) | 2005-09-14 | 2014-08-19 | Millennial Media, Inc. | Mobile content cross-inventory yield optimization |
US10911894B2 (en) | 2005-09-14 | 2021-02-02 | Verizon Media Inc. | Use of dynamic content generation parameters based on previous performance of those parameters |
US8364540B2 (en) | 2005-09-14 | 2013-01-29 | Jumptap, Inc. | Contextual targeting of content using a monetization platform |
US8660891B2 (en) | 2005-11-01 | 2014-02-25 | Millennial Media | Interactive mobile advertisement banners |
US7702318B2 (en) | 2005-09-14 | 2010-04-20 | Jumptap, Inc. | Presentation of sponsored content based on mobile transaction event |
US9471925B2 (en) | 2005-09-14 | 2016-10-18 | Millennial Media Llc | Increasing mobile interactivity |
US8209344B2 (en) | 2005-09-14 | 2012-06-26 | Jumptap, Inc. | Embedding sponsored content in mobile applications |
US20110313853A1 (en) | 2005-09-14 | 2011-12-22 | Jorey Ramer | System for targeting advertising content to a plurality of mobile communication facilities |
US8238888B2 (en) | 2006-09-13 | 2012-08-07 | Jumptap, Inc. | Methods and systems for mobile coupon placement |
US7577665B2 (en) * | 2005-09-14 | 2009-08-18 | Jumptap, Inc. | User characteristic influenced search results |
US8027879B2 (en) | 2005-11-05 | 2011-09-27 | Jumptap, Inc. | Exclusivity bidding for mobile sponsored content |
US7752209B2 (en) | 2005-09-14 | 2010-07-06 | Jumptap, Inc. | Presenting sponsored content on a mobile communication facility |
US7983961B1 (en) | 2005-10-27 | 2011-07-19 | Alvin Chang | Methods and apparatus for marketing profiling while preserving user privacy |
US8266162B2 (en) * | 2005-10-31 | 2012-09-11 | Lycos, Inc. | Automatic identification of related search keywords |
US8175585B2 (en) | 2005-11-05 | 2012-05-08 | Jumptap, Inc. | System for targeting advertising content to a plurality of mobile communication facilities |
US7664746B2 (en) * | 2005-11-15 | 2010-02-16 | Microsoft Corporation | Personalized search and headlines |
US7644054B2 (en) | 2005-11-23 | 2010-01-05 | Veveo, Inc. | System and method for finding desired results by incremental search using an ambiguous keypad with the input containing orthographic and typographic errors |
US7603619B2 (en) * | 2005-11-29 | 2009-10-13 | Google Inc. | Formatting a user network site based on user preferences and format performance data |
WO2007064639A2 (en) * | 2005-11-29 | 2007-06-07 | Scientigo, Inc. | Methods and systems for providing personalized contextual search results |
US20070136248A1 (en) * | 2005-11-30 | 2007-06-14 | Ashantipic Limited | Keyword driven search for questions in search targets |
US20080027935A1 (en) * | 2005-11-30 | 2008-01-31 | Sahar Sarid | Anchored search engine results display |
US8095565B2 (en) * | 2005-12-05 | 2012-01-10 | Microsoft Corporation | Metadata driven user interface |
IL172551A0 (en) * | 2005-12-13 | 2006-04-10 | Grois Dan | Method for assigning one or more categorized scores to each document over a data network |
US20070150348A1 (en) * | 2005-12-22 | 2007-06-28 | Hussain Muhammad M | Providing and using a quality score in association with the serving of ADS to determine page layout |
US7813959B2 (en) * | 2005-12-22 | 2010-10-12 | Aol Inc. | Altering keyword-based requests for content |
US20070150342A1 (en) * | 2005-12-22 | 2007-06-28 | Law Justin M | Dynamic selection of blended content from multiple media sources |
US20070150341A1 (en) * | 2005-12-22 | 2007-06-28 | Aftab Zia | Advertising content timeout methods in multiple-source advertising systems |
US7809605B2 (en) * | 2005-12-22 | 2010-10-05 | Aol Inc. | Altering keyword-based requests for content |
US20070150343A1 (en) * | 2005-12-22 | 2007-06-28 | Kannapell John E Ii | Dynamically altering requests to increase user response to advertisements |
US20070150347A1 (en) * | 2005-12-22 | 2007-06-28 | Bhamidipati Venkata S J | Dynamic backfill of advertisement content using second advertisement source |
US20070150346A1 (en) * | 2005-12-22 | 2007-06-28 | Sobotka David C | Dynamic rotation of multiple keyphrases for advertising content supplier |
US9459622B2 (en) | 2007-01-12 | 2016-10-04 | Legalforce, Inc. | Driverless vehicle commerce network and community |
US20070218900A1 (en) | 2006-03-17 | 2007-09-20 | Raj Vasant Abhyanker | Map based neighborhood search and community contribution |
US8874489B2 (en) | 2006-03-17 | 2014-10-28 | Fatdoor, Inc. | Short-term residential spaces in a geo-spatial environment |
US20070156615A1 (en) * | 2005-12-29 | 2007-07-05 | Ali Davar | Method for training a classifier |
US7925649B2 (en) * | 2005-12-30 | 2011-04-12 | Google Inc. | Method, system, and graphical user interface for alerting a computer user to new results for a prior search |
US8122013B1 (en) * | 2006-01-27 | 2012-02-21 | Google Inc. | Title based local search ranking |
US7814099B2 (en) * | 2006-01-31 | 2010-10-12 | Louis S. Wang | Method for ranking and sorting electronic documents in a search result list based on relevance |
IL174107A0 (en) * | 2006-02-01 | 2006-08-01 | Grois Dan | Method and system for advertising by means of a search engine over a data network |
US9554093B2 (en) | 2006-02-27 | 2017-01-24 | Microsoft Technology Licensing, Llc | Automatically inserting advertisements into source video content playback streams |
US7904524B2 (en) * | 2006-03-06 | 2011-03-08 | Aggregate Knowledge | Client recommendation mechanism |
US7739280B2 (en) * | 2006-03-06 | 2010-06-15 | Veveo, Inc. | Methods and systems for selecting and presenting content based on user preference information extracted from an aggregate preference signature |
US7853630B2 (en) * | 2006-03-06 | 2010-12-14 | Aggregate Knowledge | System and method for the dynamic generation of correlation scores between arbitrary objects |
US8209724B2 (en) | 2007-04-25 | 2012-06-26 | Samsung Electronics Co., Ltd. | Method and system for providing access to information of potential interest to a user |
US8863221B2 (en) | 2006-03-07 | 2014-10-14 | Samsung Electronics Co., Ltd. | Method and system for integrating content and services among multiple networks |
US8200688B2 (en) * | 2006-03-07 | 2012-06-12 | Samsung Electronics Co., Ltd. | Method and system for facilitating information searching on electronic devices |
US8843467B2 (en) | 2007-05-15 | 2014-09-23 | Samsung Electronics Co., Ltd. | Method and system for providing relevant information to a user of a device in a local network |
US8510453B2 (en) * | 2007-03-21 | 2013-08-13 | Samsung Electronics Co., Ltd. | Framework for correlating content on a local network with information on an external network |
US8115869B2 (en) | 2007-02-28 | 2012-02-14 | Samsung Electronics Co., Ltd. | Method and system for extracting relevant information from content metadata |
JP2007272872A (ja) * | 2006-03-08 | 2007-10-18 | Ricoh Co Ltd | 情報検索方法、情報検索装置、情報検索システム、及び情報検索プログラム |
JP2012138109A (ja) * | 2006-03-08 | 2012-07-19 | Ricoh Co Ltd | 検索装置、検索システム、情報処理装置、検索結果受信方法、及び情報受信プログラム |
US7657523B2 (en) * | 2006-03-09 | 2010-02-02 | Customerforce.Com | Ranking search results presented to on-line users as a function of perspectives of relationships trusted by the users |
US7814116B2 (en) | 2006-03-16 | 2010-10-12 | Hauser Eduardo A | Method and system for creating customized news digests |
US9037516B2 (en) | 2006-03-17 | 2015-05-19 | Fatdoor, Inc. | Direct mailing in a geo-spatial environment |
US9098545B2 (en) | 2007-07-10 | 2015-08-04 | Raj Abhyanker | Hot news neighborhood banter in a geo-spatial social network |
US9373149B2 (en) | 2006-03-17 | 2016-06-21 | Fatdoor, Inc. | Autonomous neighborhood vehicle commerce network and community |
US9002754B2 (en) | 2006-03-17 | 2015-04-07 | Fatdoor, Inc. | Campaign in a geo-spatial environment |
US9071367B2 (en) | 2006-03-17 | 2015-06-30 | Fatdoor, Inc. | Emergency including crime broadcast in a neighborhood social network |
US9070101B2 (en) | 2007-01-12 | 2015-06-30 | Fatdoor, Inc. | Peer-to-peer neighborhood delivery multi-copter and method |
US8738545B2 (en) | 2006-11-22 | 2014-05-27 | Raj Abhyanker | Map based neighborhood search and community contribution |
US8732091B1 (en) | 2006-03-17 | 2014-05-20 | Raj Abhyanker | Security in a geo-spatial environment |
US9064288B2 (en) | 2006-03-17 | 2015-06-23 | Fatdoor, Inc. | Government structures and neighborhood leads in a geo-spatial environment |
US8965409B2 (en) | 2006-03-17 | 2015-02-24 | Fatdoor, Inc. | User-generated community publication in an online neighborhood social network |
US8073860B2 (en) | 2006-03-30 | 2011-12-06 | Veveo, Inc. | Method and system for incrementally selecting and providing relevant search engines in response to a user query |
US20070233672A1 (en) * | 2006-03-30 | 2007-10-04 | Coveo Inc. | Personalizing search results from search engines |
US8005715B2 (en) * | 2006-04-17 | 2011-08-23 | Innovation Interactive Inc. | Domains template management system |
CN100540047C (zh) * | 2006-04-17 | 2009-09-16 | 中国人民解放军军事医学科学院基础医学研究所 | Trap蛋白在制备治疗金黄色葡萄球菌感染的药品中的应用 |
EP4209927A1 (en) | 2006-04-20 | 2023-07-12 | Veveo, Inc. | User interface methods and systems for selecting and presenting content based on user navigation and selection actions associated with the content |
US8296181B1 (en) * | 2006-04-27 | 2012-10-23 | Hewlett-Packard Development Company, L.P. | Method and system for offsetting printing costs in a system for targeted data delivery |
CN100384134C (zh) * | 2006-05-18 | 2008-04-23 | 复旦大学 | 播存网格环境下客户端资源检索及自动下载方法 |
US8392594B2 (en) * | 2007-01-30 | 2013-03-05 | Sony Corporation | System and method for effectively providing content to client devices in an electronic network |
US7966324B2 (en) * | 2006-05-30 | 2011-06-21 | Microsoft Corporation | Personalizing a search results page based on search history |
US7822745B2 (en) * | 2006-05-31 | 2010-10-26 | Yahoo! Inc. | Keyword set and target audience profile generalization techniques |
US20070294240A1 (en) * | 2006-06-07 | 2007-12-20 | Microsoft Corporation | Intent based search |
US7523108B2 (en) * | 2006-06-07 | 2009-04-21 | Platformation, Inc. | Methods and apparatus for searching with awareness of geography and languages |
US8108204B2 (en) * | 2006-06-16 | 2012-01-31 | Evgeniy Gabrilovich | Text categorization using external knowledge |
US7657626B1 (en) | 2006-09-19 | 2010-02-02 | Enquisite, Inc. | Click fraud detection |
US20070294223A1 (en) * | 2006-06-16 | 2007-12-20 | Technion Research And Development Foundation Ltd. | Text Categorization Using External Knowledge |
US7761464B2 (en) * | 2006-06-19 | 2010-07-20 | Microsoft Corporation | Diversifying search results for improved search and personalization |
US8266131B2 (en) * | 2006-07-25 | 2012-09-11 | Pankaj Jain | Method and a system for searching information using information device |
US7849079B2 (en) * | 2006-07-31 | 2010-12-07 | Microsoft Corporation | Temporal ranking of search results |
US7577718B2 (en) * | 2006-07-31 | 2009-08-18 | Microsoft Corporation | Adaptive dissemination of personalized and contextually relevant information |
US7685199B2 (en) * | 2006-07-31 | 2010-03-23 | Microsoft Corporation | Presenting information related to topics extracted from event classes |
US20080033797A1 (en) * | 2006-08-01 | 2008-02-07 | Microsoft Corporation | Search query monetization-based ranking and filtering |
US7752195B1 (en) * | 2006-08-18 | 2010-07-06 | A9.Com, Inc. | Universal query search results |
WO2008028150A2 (en) * | 2006-08-31 | 2008-03-06 | Qualcomm Incorporated | Method and apparatus of obtaining or providing search results using user-based biases |
US20080071864A1 (en) * | 2006-09-14 | 2008-03-20 | International Business Machines Corporation | System and method for user interest based search index optimization |
CA2989780C (en) | 2006-09-14 | 2022-08-09 | Veveo, Inc. | Methods and systems for dynamically rearranging search results into hierarchically organized concept clusters |
US20100306318A1 (en) * | 2006-09-28 | 2010-12-02 | Sfgt Inc. | Apparatuses, methods, and systems for a graphical code-serving interface |
WO2008040004A2 (en) * | 2006-09-28 | 2008-04-03 | Sfgt Inc. | Apparatuses, methods, and systems for code triggered information querying and serving |
US7925986B2 (en) | 2006-10-06 | 2011-04-12 | Veveo, Inc. | Methods and systems for a linear character selection display interface for ambiguous text input |
US8863245B1 (en) | 2006-10-19 | 2014-10-14 | Fatdoor, Inc. | Nextdoor neighborhood social network method, apparatus, and system |
US20080104042A1 (en) * | 2006-10-25 | 2008-05-01 | Microsoft Corporation | Personalized Search Using Macros |
JP2010508592A (ja) * | 2006-10-27 | 2010-03-18 | ジャンプタップ,インコーポレイテッド | アルゴリズム上の再検討及び編集上の再検討の組み合わせによるモバイルコンテンツの検索結果 |
US9747349B2 (en) * | 2006-10-30 | 2017-08-29 | Execue, Inc. | System and method for distributing queries to a group of databases and expediting data access |
US7680786B2 (en) * | 2006-10-30 | 2010-03-16 | Yahoo! Inc. | Optimization of targeted advertisements based on user profile information |
US8087019B1 (en) | 2006-10-31 | 2011-12-27 | Aol Inc. | Systems and methods for performing machine-implemented tasks |
US8661029B1 (en) | 2006-11-02 | 2014-02-25 | Google Inc. | Modifying search result ranking based on implicit user feedback |
US9519715B2 (en) | 2006-11-02 | 2016-12-13 | Excalibur Ip, Llc | Personalized search |
US9110975B1 (en) | 2006-11-02 | 2015-08-18 | Google Inc. | Search result inputs using variant generalized queries |
US20080176194A1 (en) | 2006-11-08 | 2008-07-24 | Nina Zolt | System for developing literacy skills using loosely coupled tools in a self-directed learning process within a collaborative social network |
EP2095264A4 (en) | 2006-11-08 | 2013-03-27 | Epals Inc | DYNAMIC CHARACTERIZATION OF NODES IN A SEMANTIC NETWORK |
US8078884B2 (en) | 2006-11-13 | 2011-12-13 | Veveo, Inc. | Method of and system for selecting and presenting content based on user identification |
US8935269B2 (en) | 2006-12-04 | 2015-01-13 | Samsung Electronics Co., Ltd. | Method and apparatus for contextual search and query refinement on consumer electronics devices |
US20080133344A1 (en) * | 2006-12-05 | 2008-06-05 | Yahoo! Inc. | Systems and methods for providing cross-vertical advertisement |
US20080147710A1 (en) * | 2006-12-19 | 2008-06-19 | Microsoft Corporation | Generating web pages utilizing user-defined search parameters |
US7840538B2 (en) * | 2006-12-20 | 2010-11-23 | Yahoo! Inc. | Discovering query intent from search queries and concept networks |
US7788253B2 (en) * | 2006-12-28 | 2010-08-31 | International Business Machines Corporation | Global anchor text processing |
US20080168045A1 (en) * | 2007-01-10 | 2008-07-10 | Microsoft Corporation | Content rank |
US8005822B2 (en) | 2007-01-17 | 2011-08-23 | Google Inc. | Location in search queries |
US7966309B2 (en) * | 2007-01-17 | 2011-06-21 | Google Inc. | Providing relevance-ordered categories of information |
US7966321B2 (en) * | 2007-01-17 | 2011-06-21 | Google Inc. | Presentation of local results |
US7707226B1 (en) | 2007-01-29 | 2010-04-27 | Aol Inc. | Presentation of content items based on dynamic monitoring of real-time context |
US20080183691A1 (en) * | 2007-01-30 | 2008-07-31 | International Business Machines Corporation | Method for a networked knowledge based document retrieval and ranking utilizing extracted document metadata and content |
US10007895B2 (en) * | 2007-01-30 | 2018-06-26 | Jonathan Brian Vanasco | System and method for indexing, correlating, managing, referencing and syndicating identities and relationships across systems |
US7685084B2 (en) * | 2007-02-09 | 2010-03-23 | Yahoo! Inc. | Term expansion using associative matching of labeled term pairs |
WO2008098282A1 (en) * | 2007-02-16 | 2008-08-21 | Funnelback Pty Ltd | Search result sub-topic identification system and method |
US9405830B2 (en) | 2007-02-28 | 2016-08-02 | Aol Inc. | Personalization techniques using image clouds |
US20080222513A1 (en) * | 2007-03-07 | 2008-09-11 | Altep, Inc. | Method and System for Rules-Based Tag Management in a Document Review System |
US20080222132A1 (en) * | 2007-03-07 | 2008-09-11 | Jiangyi Pan | Personalized shopping recommendation based on search units |
US20080222168A1 (en) * | 2007-03-07 | 2008-09-11 | Altep, Inc. | Method and System for Hierarchical Document Management in a Document Review System |
US20080222105A1 (en) * | 2007-03-09 | 2008-09-11 | Joseph Matheny | Entity recommendation system using restricted information tagged to selected entities |
US8938463B1 (en) | 2007-03-12 | 2015-01-20 | Google Inc. | Modifying search result ranking based on implicit user feedback and a model of presentation bias |
US8694374B1 (en) | 2007-03-14 | 2014-04-08 | Google Inc. | Detecting click spam |
US20080243830A1 (en) * | 2007-03-30 | 2008-10-02 | Fatdoor, Inc. | User suggested ordering to influence search result ranking |
US20080244428A1 (en) * | 2007-03-30 | 2008-10-02 | Yahoo! Inc. | Visually Emphasizing Query Results Based on Relevance Feedback |
US20080250023A1 (en) * | 2007-04-03 | 2008-10-09 | Baker Peter N | System and method for bookmarking content with user feedback |
IL182518A0 (en) * | 2007-04-12 | 2007-09-20 | Grois Dan | Pay per relevance (ppr) advertising method and system |
US20080270228A1 (en) * | 2007-04-24 | 2008-10-30 | Yahoo! Inc. | System for displaying advertisements associated with search results |
US9396261B2 (en) | 2007-04-25 | 2016-07-19 | Yahoo! Inc. | System for serving data that matches content related to a search results page |
US9286385B2 (en) | 2007-04-25 | 2016-03-15 | Samsung Electronics Co., Ltd. | Method and system for providing access to information of potential interest to a user |
US8200663B2 (en) * | 2007-04-25 | 2012-06-12 | Chacha Search, Inc. | Method and system for improvement of relevance of search results |
US9092510B1 (en) | 2007-04-30 | 2015-07-28 | Google Inc. | Modifying search result ranking based on a temporal element of user feedback |
US20080275775A1 (en) * | 2007-05-04 | 2008-11-06 | Yahoo! Inc. | System and method for using sampling for scheduling advertisements in an online auction |
US8359309B1 (en) | 2007-05-23 | 2013-01-22 | Google Inc. | Modifying search result ranking based on corpus search statistics |
US7734641B2 (en) | 2007-05-25 | 2010-06-08 | Peerset, Inc. | Recommendation systems and methods using interest correlation |
WO2008153625A2 (en) * | 2007-05-25 | 2008-12-18 | Peerset Inc. | Recommendation systems and methods |
WO2008148009A1 (en) | 2007-05-25 | 2008-12-04 | Veveo, Inc. | Method and system for unified searching across and within multiple documents |
WO2008148012A1 (en) | 2007-05-25 | 2008-12-04 | Veveo, Inc. | System and method for text disambiguation and context designation in incremental search |
US20080301551A1 (en) * | 2007-05-29 | 2008-12-04 | Tasteindex.Com Llc | Taste network system and method |
US20080301582A1 (en) * | 2007-05-29 | 2008-12-04 | Tasteindex.Com Llc | Taste network widget system |
US20080300958A1 (en) * | 2007-05-29 | 2008-12-04 | Tasteindex.Com Llc | Taste network content targeting |
US7882111B2 (en) * | 2007-06-01 | 2011-02-01 | Yahoo! Inc. | User interactive precision targeting principle |
US20080319844A1 (en) * | 2007-06-22 | 2008-12-25 | Microsoft Corporation | Image Advertising System |
CN101079064B (zh) * | 2007-06-25 | 2011-11-30 | 腾讯科技(深圳)有限公司 | 一种网页排序方法及装置 |
US20090013051A1 (en) | 2007-07-07 | 2009-01-08 | Qualcomm Incorporated | Method for transfer of information related to targeted content messages through a proxy server |
US9392074B2 (en) | 2007-07-07 | 2016-07-12 | Qualcomm Incorporated | User profile generation architecture for mobile content-message targeting |
KR20090006464A (ko) | 2007-07-11 | 2009-01-15 | 성균관대학교산학협력단 | 사용자 맞춤형 컨텐츠 제공 장치, 그 방법 및 기록매체 |
US7920849B2 (en) * | 2007-07-13 | 2011-04-05 | Pop Adrian | Method and system for providing advertisements/messages based on wireless data communication technology |
US20090024700A1 (en) * | 2007-07-19 | 2009-01-22 | Google Inc. | Ad targeting using reference page information |
US20090037431A1 (en) | 2007-07-30 | 2009-02-05 | Paul Martino | System and method for maintaining metadata correctness |
US20090043649A1 (en) * | 2007-08-08 | 2009-02-12 | Google Inc. | Content Item Pricing |
KR100954624B1 (ko) * | 2007-08-10 | 2010-04-28 | 야후! 인크. | 개인 선호도에 따라서 콘텐츠를 제공하기 위한 방법 및시스템 |
US8694511B1 (en) * | 2007-08-20 | 2014-04-08 | Google Inc. | Modifying search result ranking based on populations |
US8954367B2 (en) | 2007-08-23 | 2015-02-10 | Dside Technologies, Llc | System, method and computer program product for interfacing software engines |
US9202243B2 (en) * | 2007-08-23 | 2015-12-01 | Dside Technologies, Llc | System, method, and computer program product for comparing decision options |
KR100910518B1 (ko) * | 2007-08-28 | 2009-07-31 | 엔에이치엔비즈니스플랫폼 주식회사 | 품질지수를 보정하고, 보정된 품질지수를 이용하여 광고를제공하는 방법 및 시스템 |
US7792813B2 (en) * | 2007-08-31 | 2010-09-07 | Microsoft Corporation | Presenting result items based upon user behavior |
US20090077056A1 (en) * | 2007-09-17 | 2009-03-19 | Yahoo! Inc. | Customization of search results |
US8005786B2 (en) * | 2007-09-20 | 2011-08-23 | Microsoft Corporation | Role-based user tracking in service usage |
US7958142B2 (en) * | 2007-09-20 | 2011-06-07 | Microsoft Corporation | User profile aggregation |
US8654255B2 (en) * | 2007-09-20 | 2014-02-18 | Microsoft Corporation | Advertisement insertion points detection for online video advertising |
US8032714B2 (en) | 2007-09-28 | 2011-10-04 | Aggregate Knowledge Inc. | Methods and systems for caching data using behavioral event correlations |
US8812710B2 (en) * | 2007-10-05 | 2014-08-19 | At&T Intellectual Property I, L.P. | Video content monitoring and display based on popularity |
US8909655B1 (en) | 2007-10-11 | 2014-12-09 | Google Inc. | Time based ranking |
US8103676B2 (en) | 2007-10-11 | 2012-01-24 | Google Inc. | Classifying search results to determine page elements |
WO2009049293A1 (en) * | 2007-10-12 | 2009-04-16 | Chacha Search, Inc. | Method and system for creation of user/guide profile in a human-aided search system |
US7840569B2 (en) | 2007-10-18 | 2010-11-23 | Microsoft Corporation | Enterprise relevancy ranking using a neural network |
US9348912B2 (en) | 2007-10-18 | 2016-05-24 | Microsoft Technology Licensing, Llc | Document length as a static relevance feature for ranking search results |
US8209304B2 (en) * | 2007-10-31 | 2012-06-26 | International Business Machines Corporation | Indicating staleness of elements in a document in a content management system |
US8176068B2 (en) | 2007-10-31 | 2012-05-08 | Samsung Electronics Co., Ltd. | Method and system for suggesting search queries on electronic devices |
US9203912B2 (en) | 2007-11-14 | 2015-12-01 | Qualcomm Incorporated | Method and system for message value calculation in a mobile environment |
US8943539B2 (en) | 2007-11-21 | 2015-01-27 | Rovi Guides, Inc. | Enabling a friend to remotely modify user data |
WO2009072095A2 (en) * | 2007-12-06 | 2009-06-11 | France Telecom | Page indexer |
JP5309543B2 (ja) * | 2007-12-06 | 2013-10-09 | 日本電気株式会社 | 情報検索サーバ、情報検索方法及びプログラム |
US9391789B2 (en) | 2007-12-14 | 2016-07-12 | Qualcomm Incorporated | Method and system for multi-level distribution information cache management in a mobile environment |
JP4371382B2 (ja) * | 2007-12-30 | 2009-11-25 | ユーウィングス株式会社 | アクセス対象情報検索装置 |
US20090171787A1 (en) * | 2007-12-31 | 2009-07-02 | Microsoft Corporation | Impressionative Multimedia Advertising |
JP5260969B2 (ja) * | 2008-01-10 | 2013-08-14 | 日本電信電話株式会社 | 集中度監視によるWebサイト推奨装置、集中度監視によるWebサイト推奨方法、集中度監視によるWebサイト推奨プログラムおよびそのプログラムを記録した記録媒体 |
US20090193007A1 (en) * | 2008-01-28 | 2009-07-30 | Andrea Filippo Mastalli | Systems and methods for ranking search engine results |
US7870132B2 (en) * | 2008-01-28 | 2011-01-11 | Microsoft Corporation | Constructing web query hierarchies from click-through data |
US8244721B2 (en) | 2008-02-13 | 2012-08-14 | Microsoft Corporation | Using related users data to enhance web search |
US20090210391A1 (en) * | 2008-02-14 | 2009-08-20 | Hall Stephen G | Method and system for automated search for, and retrieval and distribution of, information |
JP5259212B2 (ja) * | 2008-02-26 | 2013-08-07 | Kddi株式会社 | 音楽連動型広告配信方法、装置およびシステム |
US8412702B2 (en) * | 2008-03-12 | 2013-04-02 | Yahoo! Inc. | System, method, and/or apparatus for reordering search results |
US20090234876A1 (en) * | 2008-03-14 | 2009-09-17 | Timothy Schigel | Systems and methods for content sharing |
US8762364B2 (en) * | 2008-03-18 | 2014-06-24 | Yahoo! Inc. | Personalizing sponsored search advertising layout using user behavior history |
US8166189B1 (en) * | 2008-03-25 | 2012-04-24 | Sprint Communications Company L.P. | Click stream insertions |
US20090247193A1 (en) * | 2008-03-26 | 2009-10-01 | Umber Systems | System and Method for Creating Anonymous User Profiles from a Mobile Data Network |
EP2105846A1 (en) * | 2008-03-28 | 2009-09-30 | Sony Corporation | Method of recommending content items |
US8812493B2 (en) | 2008-04-11 | 2014-08-19 | Microsoft Corporation | Search results ranking using editing distance and document information |
US8135656B2 (en) * | 2008-04-22 | 2012-03-13 | Xerox Corporation | Online management service for identification documents which prompts a user for a category of an official document |
US9135328B2 (en) * | 2008-04-30 | 2015-09-15 | Yahoo! Inc. | Ranking documents through contextual shortcuts |
WO2009146238A1 (en) * | 2008-05-01 | 2009-12-03 | Chacha Search, Inc. | Method and system for improvement of request processing |
US7949672B2 (en) * | 2008-06-10 | 2011-05-24 | Yahoo! Inc. | Identifying regional sensitive queries in web search |
EP2139215A1 (en) * | 2008-06-26 | 2009-12-30 | Alcatel Lucent | Method to route, to address and to receive a communication in a contact center, caller endpoint, communication server, document server for these methods |
US8346749B2 (en) | 2008-06-27 | 2013-01-01 | Microsoft Corporation | Balancing the costs of sharing private data with the utility of enhanced personalization of online services |
US8214346B2 (en) * | 2008-06-27 | 2012-07-03 | Cbs Interactive Inc. | Personalization engine for classifying unstructured documents |
US9183535B2 (en) * | 2008-07-30 | 2015-11-10 | Aro, Inc. | Social network model for semantic processing |
US8938465B2 (en) | 2008-09-10 | 2015-01-20 | Samsung Electronics Co., Ltd. | Method and system for utilizing packaged content sources to identify and provide information based on contextual information |
JP5286007B2 (ja) * | 2008-09-18 | 2013-09-11 | 日本電信電話株式会社 | 文書検索装置、文書検索方法、および文書検索プログラム |
US20100088152A1 (en) * | 2008-10-02 | 2010-04-08 | Dominic Bennett | Predicting user response to advertisements |
US20100088177A1 (en) * | 2008-10-02 | 2010-04-08 | Turn Inc. | Segment optimization for targeted advertising |
US20100114937A1 (en) * | 2008-10-17 | 2010-05-06 | Louis Hawthorne | System and method for content customization based on user's psycho-spiritual map of profile |
US20100100827A1 (en) * | 2008-10-17 | 2010-04-22 | Louis Hawthorne | System and method for managing wisdom solicited from user community |
US20110113041A1 (en) * | 2008-10-17 | 2011-05-12 | Louis Hawthorne | System and method for content identification and customization based on weighted recommendation scores |
US20100100542A1 (en) * | 2008-10-17 | 2010-04-22 | Louis Hawthorne | System and method for rule-based content customization for user presentation |
US20100100826A1 (en) * | 2008-10-17 | 2010-04-22 | Louis Hawthorne | System and method for content customization based on user profile |
US20100107075A1 (en) * | 2008-10-17 | 2010-04-29 | Louis Hawthorne | System and method for content customization based on emotional state of the user |
US20100106668A1 (en) * | 2008-10-17 | 2010-04-29 | Louis Hawthorne | System and method for providing community wisdom based on user profile |
US20100099446A1 (en) * | 2008-10-22 | 2010-04-22 | Telefonaktiebolaget L M Ericsson (Publ) | Method and node for selecting content for use in a mobile user device |
US8244674B2 (en) * | 2008-12-10 | 2012-08-14 | Gartner, Inc. | Interactive peer directory |
US8396865B1 (en) | 2008-12-10 | 2013-03-12 | Google Inc. | Sharing search engine relevance data between corpora |
US8918391B2 (en) | 2009-12-02 | 2014-12-23 | Gartner, Inc. | Interactive peer directory with question router |
US9477672B2 (en) | 2009-12-02 | 2016-10-25 | Gartner, Inc. | Implicit profile for use with recommendation engine and/or question router |
US8207989B2 (en) * | 2008-12-12 | 2012-06-26 | Microsoft Corporation | Multi-video synthesis |
US8656266B2 (en) | 2008-12-18 | 2014-02-18 | Google Inc. | Identifying comments to show in connection with a document |
US20100169157A1 (en) * | 2008-12-30 | 2010-07-01 | Nokia Corporation | Methods, apparatuses, and computer program products for providing targeted advertising |
US20100174712A1 (en) * | 2009-01-07 | 2010-07-08 | Microsoft Corporation | Expertise ranking using social distance |
US8595228B1 (en) * | 2009-01-09 | 2013-11-26 | Google Inc. | Preferred sites |
US8458177B2 (en) | 2009-02-02 | 2013-06-04 | Yahoo! Inc. | Automated search |
US9170995B1 (en) | 2009-03-19 | 2015-10-27 | Google Inc. | Identifying context of content items |
US8600849B1 (en) | 2009-03-19 | 2013-12-03 | Google Inc. | Controlling content items |
US9760906B1 (en) | 2009-03-19 | 2017-09-12 | Google Inc. | Sharing revenue associated with a content item |
US9519716B2 (en) * | 2009-03-31 | 2016-12-13 | Excalibur Ip, Llc | System and method for conducting a profile based search |
US9009146B1 (en) | 2009-04-08 | 2015-04-14 | Google Inc. | Ranking search results based on similar queries |
US20100287129A1 (en) * | 2009-05-07 | 2010-11-11 | Yahoo!, Inc., a Delaware corporation | System, method, or apparatus relating to categorizing or selecting potential search results |
US20100306672A1 (en) * | 2009-06-01 | 2010-12-02 | Sony Computer Entertainment America Inc. | Method and apparatus for matching users in multi-user computer simulations |
US20100332531A1 (en) * | 2009-06-26 | 2010-12-30 | Microsoft Corporation | Batched Transfer of Arbitrarily Distributed Data |
US20100332550A1 (en) * | 2009-06-26 | 2010-12-30 | Microsoft Corporation | Platform For Configurable Logging Instrumentation |
US8150843B2 (en) | 2009-07-02 | 2012-04-03 | International Business Machines Corporation | Generating search results based on user feedback |
US20110010244A1 (en) * | 2009-07-10 | 2011-01-13 | Microsoft Corporation | Sponsored application launcher suggestions |
US20110010433A1 (en) * | 2009-07-10 | 2011-01-13 | Microsoft Corporation | Targeted presentation and delivery of themes |
JP5096619B2 (ja) | 2009-07-15 | 2012-12-12 | ネオパッド インコーポレーション | ホームページ統合サービス提供システム及び方法 |
US9047381B1 (en) * | 2009-07-17 | 2015-06-02 | Open Invention Network, Llc | Method and apparatus of obtaining and organizing relevant user defined information |
US20110016102A1 (en) * | 2009-07-20 | 2011-01-20 | Louis Hawthorne | System and method for identifying and providing user-specific psychoactive content |
US8447760B1 (en) | 2009-07-20 | 2013-05-21 | Google Inc. | Generating a related set of documents for an initial set of documents |
US8495062B2 (en) | 2009-07-24 | 2013-07-23 | Avaya Inc. | System and method for generating search terms |
US8392380B2 (en) * | 2009-07-30 | 2013-03-05 | Microsoft Corporation | Load-balancing and scaling for analytics data |
US8082247B2 (en) * | 2009-07-30 | 2011-12-20 | Microsoft Corporation | Best-bet recommendations |
US9069862B1 (en) | 2010-10-14 | 2015-06-30 | Aro, Inc. | Object-based relationship search using a plurality of sub-queries |
US20110029516A1 (en) * | 2009-07-30 | 2011-02-03 | Microsoft Corporation | Web-Used Pattern Insight Platform |
US8135753B2 (en) * | 2009-07-30 | 2012-03-13 | Microsoft Corporation | Dynamic information hierarchies |
US20110029515A1 (en) * | 2009-07-31 | 2011-02-03 | Scholz Martin B | Method and system for providing website content |
US20110040753A1 (en) * | 2009-08-11 | 2011-02-17 | Steve Knight | Personalized search engine |
US8150860B1 (en) * | 2009-08-12 | 2012-04-03 | Google Inc. | Ranking authors and their content in the same framework |
KR101140724B1 (ko) * | 2009-08-31 | 2012-05-04 | 서울시립대학교 산학협력단 | 개념 네트워크 기반 사용자 프로파일 구성 방법 및 시스템과 이를 이용한 개인화 질의 확장 시스템 |
US8498974B1 (en) | 2009-08-31 | 2013-07-30 | Google Inc. | Refining search results |
US9166714B2 (en) | 2009-09-11 | 2015-10-20 | Veveo, Inc. | Method of and system for presenting enriched video viewing analytics |
US8972391B1 (en) | 2009-10-02 | 2015-03-03 | Google Inc. | Recent interest based relevance scoring |
JP2011076565A (ja) * | 2009-10-02 | 2011-04-14 | Fujitsu Toshiba Mobile Communications Ltd | 情報処理装置 |
US8694514B2 (en) | 2009-10-12 | 2014-04-08 | Oracle International Corporation | Collaborative filtering engine |
US9659265B2 (en) * | 2009-10-12 | 2017-05-23 | Oracle International Corporation | Methods and systems for collecting and analyzing enterprise activities |
US9251157B2 (en) * | 2009-10-12 | 2016-02-02 | Oracle International Corporation | Enterprise node rank engine |
CN102648620B (zh) | 2009-10-13 | 2015-08-12 | 克里凯特媒体股份有限公司 | 社交网络环境中的动态协作 |
US8639688B2 (en) * | 2009-11-12 | 2014-01-28 | Palo Alto Research Center Incorporated | Method and apparatus for performing context-based entity association |
JP2011107557A (ja) * | 2009-11-20 | 2011-06-02 | Fuji Xerox Co Ltd | 画像形成装置 |
US8874555B1 (en) | 2009-11-20 | 2014-10-28 | Google Inc. | Modifying scoring data based on historical changes |
US8615442B1 (en) * | 2009-12-15 | 2013-12-24 | Project Rover, Inc. | Personalized content delivery system |
US20110154197A1 (en) * | 2009-12-18 | 2011-06-23 | Louis Hawthorne | System and method for algorithmic movie generation based on audio/video synchronization |
US8559731B2 (en) * | 2010-01-18 | 2013-10-15 | International Business Machines Corporation | Personalized tag ranking |
US20110191171A1 (en) * | 2010-02-03 | 2011-08-04 | Yahoo! Inc. | Search engine output-associated bidding in online advertising |
US10102278B2 (en) | 2010-02-03 | 2018-10-16 | Gartner, Inc. | Methods and systems for modifying a user profile for a recommendation algorithm and making recommendations based on user interactions with items |
US8661034B2 (en) | 2010-02-03 | 2014-02-25 | Gartner, Inc. | Bimodal recommendation engine for recommending items and peers |
US20110191311A1 (en) * | 2010-02-03 | 2011-08-04 | Gartner, Inc. | Bi-model recommendation engine for recommending items and peers |
US8615514B1 (en) | 2010-02-03 | 2013-12-24 | Google Inc. | Evaluating website properties by partitioning user feedback |
US20110191332A1 (en) | 2010-02-04 | 2011-08-04 | Veveo, Inc. | Method of and System for Updating Locally Cached Content Descriptor Information |
CN102169566A (zh) * | 2010-02-26 | 2011-08-31 | 国际商业机器公司 | 在陌生领域中生成推荐项目的方法和装置 |
US8924379B1 (en) | 2010-03-05 | 2014-12-30 | Google Inc. | Temporal-based score adjustments |
TWI423053B (zh) * | 2010-03-05 | 2014-01-11 | Univ Nat Chi Nan | Domain Interpretation Data Retrieval Method and Its System |
US20110225139A1 (en) * | 2010-03-11 | 2011-09-15 | Microsoft Corporation | User role based customizable semantic search |
US8959093B1 (en) | 2010-03-15 | 2015-02-17 | Google Inc. | Ranking search results based on anchors |
US20110238608A1 (en) * | 2010-03-25 | 2011-09-29 | Nokia Corporation | Method and apparatus for providing personalized information resource recommendation based on group behaviors |
US8244766B2 (en) * | 2010-04-13 | 2012-08-14 | Microsoft Corporation | Applying a model of a persona to search results |
BR112012026345A2 (pt) * | 2010-04-14 | 2020-08-25 | The Dun And Bradstreet Corporation | imputação de atributos acionáveis a dados que descrevem uma identidade pessoal |
US8838587B1 (en) | 2010-04-19 | 2014-09-16 | Google Inc. | Propagating query classifications |
US10216831B2 (en) * | 2010-05-19 | 2019-02-26 | Excalibur Ip, Llc | Search results summarized with tokens |
US20110288935A1 (en) * | 2010-05-24 | 2011-11-24 | Jon Elvekrog | Optimizing targeted advertisement distribution |
US20110288937A1 (en) * | 2010-05-24 | 2011-11-24 | Manoogian Iii John | Scaling persona targeted advertisements |
US8370330B2 (en) * | 2010-05-28 | 2013-02-05 | Apple Inc. | Predicting content and context performance based on performance history of users |
US8738635B2 (en) | 2010-06-01 | 2014-05-27 | Microsoft Corporation | Detection of junk in search result ranking |
US9002924B2 (en) | 2010-06-17 | 2015-04-07 | Microsoft Technology Licensing, Llc | Contextual based information aggregation system |
US9623119B1 (en) | 2010-06-29 | 2017-04-18 | Google Inc. | Accentuating search results |
US8825649B2 (en) | 2010-07-21 | 2014-09-02 | Microsoft Corporation | Smart defaults for data visualizations |
US8832083B1 (en) | 2010-07-23 | 2014-09-09 | Google Inc. | Combining user feedback |
US9020922B2 (en) * | 2010-08-10 | 2015-04-28 | Brightedge Technologies, Inc. | Search engine optimization at scale |
US20120041834A1 (en) * | 2010-08-13 | 2012-02-16 | Mcrae Ii James Duncan | System and Method for Utilizing Media Content to Initiate Conversations between Businesses and Consumers |
US20120059713A1 (en) * | 2010-08-27 | 2012-03-08 | Adchemy, Inc. | Matching Advertisers and Users Based on Their Respective Intents |
WO2012034069A1 (en) | 2010-09-10 | 2012-03-15 | Veveo, Inc. | Method of and system for conducting personalized federated search and presentation of results therefrom |
US10083249B2 (en) | 2010-09-23 | 2018-09-25 | Fisher-Rosemount Systems, Inc. | Systems, methods and articles of manufacture to provide a search service to a process control system |
US8429099B1 (en) * | 2010-10-14 | 2013-04-23 | Aro, Inc. | Dynamic gazetteers for entity recognition and fact association |
US20120116875A1 (en) * | 2010-11-05 | 2012-05-10 | Microsoft Corporation | Providing advertisements based on user grouping |
US8793706B2 (en) | 2010-12-16 | 2014-07-29 | Microsoft Corporation | Metadata-based eventing supporting operations on data |
US9002867B1 (en) | 2010-12-30 | 2015-04-07 | Google Inc. | Modifying ranking data based on document changes |
US8370365B1 (en) * | 2011-01-31 | 2013-02-05 | Go Daddy Operating Company, LLC | Tools for predicting improvement in website search engine rankings based upon website linking relationships |
US8972412B1 (en) | 2011-01-31 | 2015-03-03 | Go Daddy Operating Company, LLC | Predicting improvement in website search engine rankings based upon website linking relationships |
US20120205436A1 (en) * | 2011-02-16 | 2012-08-16 | Augme Technologies, Inc. | System for enhanced barcode decoding and image recognition and method therefor |
US8484098B2 (en) | 2011-03-03 | 2013-07-09 | Michael Bilotta | System for information delivery facilitating partner rating of users and user ratings of partners |
FR2973134B1 (fr) * | 2011-03-23 | 2015-09-11 | Xilopix | Procede pour affiner les resultats d'une recherche dans une base de donnees |
US9607105B1 (en) * | 2011-03-30 | 2017-03-28 | Amazon Technologies, Inc. | Content searching techniques |
US9098570B2 (en) | 2011-03-31 | 2015-08-04 | Lexisnexis, A Division Of Reed Elsevier Inc. | Systems and methods for paragraph-based document searching |
US20120271844A1 (en) * | 2011-04-20 | 2012-10-25 | Microsoft Corporation | Providng relevant information for a term in a user message |
US11841912B2 (en) | 2011-05-01 | 2023-12-12 | Twittle Search Limited Liability Company | System for applying natural language processing and inputs of a group of users to infer commonly desired search results |
US8326862B2 (en) | 2011-05-01 | 2012-12-04 | Alan Mark Reznik | Systems and methods for facilitating enhancements to search engine results |
US8561185B1 (en) * | 2011-05-17 | 2013-10-15 | Google Inc. | Personally identifiable information detection |
CA2741212C (en) * | 2011-05-27 | 2020-12-08 | Ibm Canada Limited - Ibm Canada Limitee | Automated self-service user support based on ontology analysis |
US20120317186A1 (en) * | 2011-06-13 | 2012-12-13 | Kevin Koidl | Web based system and method for cross-site personalisation |
WO2012172916A1 (ja) * | 2011-06-16 | 2012-12-20 | コニカミノルタビジネステクノロジーズ株式会社 | プロファイル生成装置、プロファイル生成方法、および、記録媒体 |
CN102841904B (zh) * | 2011-06-24 | 2016-05-04 | 阿里巴巴集团控股有限公司 | 一种搜索方法及设备 |
US9262513B2 (en) | 2011-06-24 | 2016-02-16 | Alibaba Group Holding Limited | Search method and apparatus |
US9785968B1 (en) | 2011-07-01 | 2017-10-10 | Google Inc. | Selecting content based on user actions and preferences associates with a same time period in a previous year |
US20130035944A1 (en) * | 2011-08-02 | 2013-02-07 | General Instrument Corporation | Personalizing communications based on an estimated sensitivity level of the recipient |
US9727893B2 (en) * | 2011-08-04 | 2017-08-08 | Krasimir Popov | Searching for and creating an adaptive content |
US9111289B2 (en) | 2011-08-25 | 2015-08-18 | Ebay Inc. | System and method for providing automatic high-value listing feeds for online computer users |
US9251295B2 (en) * | 2011-08-31 | 2016-02-02 | International Business Machines Corporation | Data filtering using filter icons |
EP2568395A1 (en) | 2011-09-08 | 2013-03-13 | Axel Springer Digital TV Guide GmbH | Method and apparatus for automatic generation of recommendations |
US20130073335A1 (en) * | 2011-09-20 | 2013-03-21 | Ebay Inc. | System and method for linking keywords with user profiling and item categories |
US8843477B1 (en) * | 2011-10-31 | 2014-09-23 | Google Inc. | Onsite and offsite search ranking results |
CN102487363B (zh) * | 2011-11-17 | 2013-09-18 | 腾讯科技(深圳)有限公司 | 一种匿名通信系统及其中信息传播单元的传播方法 |
US8868590B1 (en) * | 2011-11-17 | 2014-10-21 | Sri International | Method and system utilizing a personalized user model to develop a search request |
US9535995B2 (en) * | 2011-12-13 | 2017-01-03 | Microsoft Technology Licensing, Llc | Optimizing a ranker for a risk-oriented objective |
KR101369504B1 (ko) * | 2011-12-21 | 2014-03-04 | 주식회사 보고지티 | 콘텐츠 분할 제공 방법 및 장치 |
WO2013100888A2 (en) | 2011-12-26 | 2013-07-04 | Empire Technology Development Llc | Content providing techniques |
US20130166525A1 (en) * | 2011-12-27 | 2013-06-27 | Microsoft Corporation | Providing application results based on user intent |
US9495462B2 (en) | 2012-01-27 | 2016-11-15 | Microsoft Technology Licensing, Llc | Re-ranking search results |
CA2767676C (en) | 2012-02-08 | 2022-03-01 | Ibm Canada Limited - Ibm Canada Limitee | Attribution using semantic analysis |
CN102622417B (zh) * | 2012-02-20 | 2016-08-31 | 北京搜狗信息服务有限公司 | 对信息记录进行排序的方法和装置 |
US9201926B2 (en) * | 2012-02-24 | 2015-12-01 | GM Global Technology Operations LLC | Integrated travel services |
US8521735B1 (en) | 2012-02-27 | 2013-08-27 | Google Inc. | Anonymous personalized recommendation method |
US10130872B2 (en) | 2012-03-21 | 2018-11-20 | Sony Interactive Entertainment LLC | Apparatus and method for matching groups to users for online communities and computer simulations |
US10186002B2 (en) | 2012-03-21 | 2019-01-22 | Sony Interactive Entertainment LLC | Apparatus and method for matching users to groups for online communities and computer simulations |
CN103377200B (zh) * | 2012-04-17 | 2018-09-04 | 腾讯科技(深圳)有限公司 | 用户偏好信息采集方法和装置 |
US9292505B1 (en) | 2012-06-12 | 2016-03-22 | Firstrain, Inc. | Graphical user interface for recurring searches |
US9213769B2 (en) | 2012-06-13 | 2015-12-15 | Google Inc. | Providing a modified content item to a user |
US9158768B2 (en) | 2012-07-25 | 2015-10-13 | Paypal, Inc. | System and methods to configure a query language using an operator dictionary |
US9081821B2 (en) | 2012-07-25 | 2015-07-14 | Ebay Inc. | Spell check using column cursor |
US9516089B1 (en) * | 2012-09-06 | 2016-12-06 | Locu, Inc. | Identifying and processing a number of features identified in a document to determine a type of the document |
US9483740B1 (en) | 2012-09-06 | 2016-11-01 | Go Daddy Operating Company, LLC | Automated data classification |
US9189555B2 (en) * | 2012-09-07 | 2015-11-17 | Oracle International Corporation | Displaying customized list of links to content using client-side processing |
US10140372B2 (en) | 2012-09-12 | 2018-11-27 | Gracenote, Inc. | User profile based on clustering tiered descriptors |
JP5558539B2 (ja) * | 2012-09-24 | 2014-07-23 | ヤフー株式会社 | 検索システム、検索方法およびプログラム |
US9703837B1 (en) * | 2012-09-28 | 2017-07-11 | Google Inc. | Predicting interest of a user of a social networking service in a content item |
US8938438B2 (en) | 2012-10-11 | 2015-01-20 | Go Daddy Operating Company, LLC | Optimizing search engine ranking by recommending content including frequently searched questions |
US20140108968A1 (en) * | 2012-10-11 | 2014-04-17 | Yahoo! Inc. | Visual Presentation of Customized Content |
CN102930022B (zh) * | 2012-10-31 | 2015-11-25 | 中国运载火箭技术研究院 | 面向用户的信息搜索引擎系统及方法 |
CN103838754B (zh) * | 2012-11-23 | 2017-12-22 | 腾讯科技(深圳)有限公司 | 信息搜索装置及方法 |
US9208254B2 (en) * | 2012-12-10 | 2015-12-08 | Microsoft Technology Licensing, Llc | Query and index over documents |
JP2014153990A (ja) * | 2013-02-12 | 2014-08-25 | Sony Corp | 情報処理装置、情報処理方法およびプログラム |
US10600011B2 (en) | 2013-03-05 | 2020-03-24 | Gartner, Inc. | Methods and systems for improving engagement with a recommendation engine that recommends items, peers, and services |
US9311362B1 (en) * | 2013-03-15 | 2016-04-12 | Google Inc. | Personal knowledge panel interface |
US9588675B2 (en) | 2013-03-15 | 2017-03-07 | Google Inc. | Document scale and position optimization |
EP2973041B1 (en) | 2013-03-15 | 2018-08-01 | Factual Inc. | Apparatus, systems, and methods for batch and realtime data processing |
CA3107851A1 (en) * | 2013-03-15 | 2014-09-25 | Four Charm Technologies, Llc | System, method, and computer program product for comparing decision options |
JP5981386B2 (ja) * | 2013-04-18 | 2016-08-31 | 日本電信電話株式会社 | 代表ページ選択装置及び代表ページ選択プログラム |
US9183499B1 (en) | 2013-04-19 | 2015-11-10 | Google Inc. | Evaluating quality based on neighbor features |
JP5519824B1 (ja) * | 2013-04-24 | 2014-06-11 | 日本電信電話株式会社 | 興味分析方法、興味分析装置及び興味分析プログラム |
US11263221B2 (en) | 2013-05-29 | 2022-03-01 | Microsoft Technology Licensing, Llc | Search result contexts for application launch |
US10430418B2 (en) | 2013-05-29 | 2019-10-01 | Microsoft Technology Licensing, Llc | Context-based actions from a source application |
US20150006526A1 (en) * | 2013-06-28 | 2015-01-01 | Google Inc. | Determining Locations of Interest to a User |
US20150012840A1 (en) * | 2013-07-02 | 2015-01-08 | International Business Machines Corporation | Identification and Sharing of Selections within Streaming Content |
EP2827556B1 (en) * | 2013-07-16 | 2016-02-17 | Alcatel Lucent | Method and system for content curation in internet networks |
US20150074101A1 (en) * | 2013-09-10 | 2015-03-12 | Microsoft Corporation | Smart search refinement |
US9760608B2 (en) * | 2013-11-01 | 2017-09-12 | Microsoft Technology Licensing, Llc | Real-time search tuning |
US9864781B1 (en) | 2013-11-05 | 2018-01-09 | Western Digital Technologies, Inc. | Search of NAS data through association of errors |
US9542391B1 (en) | 2013-11-11 | 2017-01-10 | Amazon Technologies, Inc. | Processing service requests for non-transactional databases |
US10599753B1 (en) | 2013-11-11 | 2020-03-24 | Amazon Technologies, Inc. | Document version control in collaborative environment |
US11336648B2 (en) | 2013-11-11 | 2022-05-17 | Amazon Technologies, Inc. | Document management and collaboration system |
US10540404B1 (en) | 2014-02-07 | 2020-01-21 | Amazon Technologies, Inc. | Forming a document collection in a document management and collaboration system |
US20150169772A1 (en) * | 2013-12-12 | 2015-06-18 | Microsoft Corporation | Personalizing Search Results Based on User-Generated Content |
US9465878B2 (en) | 2014-01-17 | 2016-10-11 | Go Daddy Operating Company, LLC | System and method for depicting backlink metrics for a website |
US10691877B1 (en) | 2014-02-07 | 2020-06-23 | Amazon Technologies, Inc. | Homogenous insertion of interactions into documents |
US9439367B2 (en) | 2014-02-07 | 2016-09-13 | Arthi Abhyanker | Network enabled gardening with a remotely controllable positioning extension |
CN104850370B (zh) | 2014-02-17 | 2019-01-15 | 阿里巴巴集团控股有限公司 | 在背景显示区域显示订单信息的方法及装置 |
US9753989B2 (en) * | 2014-02-19 | 2017-09-05 | Telefonaktiebolaget Lm Ericsson (Publ) | Method, content ranking system, and computer program product for ranking content based on subscriber information |
US10929858B1 (en) * | 2014-03-14 | 2021-02-23 | Walmart Apollo, Llc | Systems and methods for managing customer data |
US9953060B2 (en) | 2014-03-31 | 2018-04-24 | Maruthi Siva P Cherukuri | Personalized activity data gathering based on multi-variable user input and multi-dimensional schema |
US9457901B2 (en) | 2014-04-22 | 2016-10-04 | Fatdoor, Inc. | Quadcopter with a printable payload extension system and method |
US9004396B1 (en) | 2014-04-24 | 2015-04-14 | Fatdoor, Inc. | Skyteboard quadcopter and method |
US9319522B1 (en) * | 2014-04-28 | 2016-04-19 | West Corporation | Applying user preferences, behavioral patterns and/or environmental factors to an automated customer support application |
US9022324B1 (en) | 2014-05-05 | 2015-05-05 | Fatdoor, Inc. | Coordination of aerial vehicles through a central server |
CN103984733A (zh) * | 2014-05-20 | 2014-08-13 | 国家电网公司 | 一种体现查询差异的直接优化性能指标排序方法 |
US9875242B2 (en) * | 2014-06-03 | 2018-01-23 | Google Llc | Dynamic current results for second device |
US9441981B2 (en) | 2014-06-20 | 2016-09-13 | Fatdoor, Inc. | Variable bus stops across a bus route in a regional transportation network |
US9971985B2 (en) | 2014-06-20 | 2018-05-15 | Raj Abhyanker | Train based community |
US9451020B2 (en) | 2014-07-18 | 2016-09-20 | Legalforce, Inc. | Distributed communication of independent autonomous vehicles to provide redundancy and performance |
US10503741B2 (en) | 2014-08-20 | 2019-12-10 | Samsung Electronics Co., Ltd. | Electronic system with search mechanism and method of operation thereof |
GB201415428D0 (en) * | 2014-09-01 | 2014-10-15 | Realeyes O | Method of targeting web-based advertisements |
US9807073B1 (en) * | 2014-09-29 | 2017-10-31 | Amazon Technologies, Inc. | Access to documents in a document management and collaboration system |
US10747897B2 (en) | 2014-12-09 | 2020-08-18 | Early Warning Services, Llc | Privacy policy rating system |
WO2016095135A1 (en) * | 2014-12-17 | 2016-06-23 | Yahoo! Inc. | Method and system for providing a search result |
US10489470B2 (en) * | 2015-03-03 | 2019-11-26 | Samsung Electronics Co., Ltd. | Method and system for filtering content in an electronic device |
US9665733B1 (en) | 2015-03-31 | 2017-05-30 | Google Inc. | Setting access controls for a content item |
US10346488B1 (en) * | 2015-06-10 | 2019-07-09 | SOCI, Inc. | Filtering and scoring of web content |
CN105095355B (zh) * | 2015-06-19 | 2018-10-19 | 小米科技有限责任公司 | 网站推荐方法及装置 |
WO2017003371A1 (en) * | 2015-06-30 | 2017-01-05 | Low Hoa Meng Kelvin | Method performed by at least one server for processing a request submitted by a user related to an item and associated apparatus |
JP6830752B2 (ja) * | 2015-08-13 | 2021-02-17 | カルチュア・コンビニエンス・クラブ株式会社 | 装置、方法、および、プログラム |
US10644965B2 (en) * | 2015-08-28 | 2020-05-05 | Vmware, Inc. | Placement of devices based on policies and benchmark data |
US11153319B2 (en) * | 2015-10-21 | 2021-10-19 | Okta, Inc. | Flexible implementation of user lifecycle events for applications of an enterprise |
CN105701141A (zh) * | 2015-11-26 | 2016-06-22 | 中国传媒大学 | 一种影像素材库的查询方式 |
EP3391242A4 (en) * | 2015-12-14 | 2019-05-22 | Microsoft Technology Licensing, LLC | TECHNIQUE FACILITATING THE DISCOVERY OF INFORMATION ELEMENTS USING A DYNAMIC KNOWLEDGE GRAPHIC |
US11113714B2 (en) * | 2015-12-30 | 2021-09-07 | Verizon Media Inc. | Filtering machine for sponsored content |
US10565627B2 (en) * | 2015-12-30 | 2020-02-18 | Google Llc | Systems and methods for automatically generating remarketing lists |
US20170228462A1 (en) * | 2016-02-04 | 2017-08-10 | Microsoft Technology Licensing, Llc | Adaptive seeded user labeling for identifying targeted content |
JP6866069B2 (ja) * | 2016-03-15 | 2021-04-28 | ヤフー株式会社 | 情報処理装置、情報処理方法および情報処理プログラム |
US20170286534A1 (en) * | 2016-03-29 | 2017-10-05 | Microsoft Technology Licensing, Llc | User location profile for personalized search experience |
US10346871B2 (en) * | 2016-04-22 | 2019-07-09 | Facebook, Inc. | Automatic targeting of content by clustering based on user feedback data |
US10810627B2 (en) * | 2016-08-10 | 2020-10-20 | Facebook, Inc. | Informative advertisements on hobby and strong interests feature space |
KR20220133335A (ko) * | 2016-10-17 | 2022-10-04 | 웨이브 스웰 에너지 리미티드 | 유체로부터 에너지를 추출하기 위한 장치 및 방법 |
CN108153792B (zh) * | 2016-12-02 | 2023-04-18 | 阿里巴巴集团控股有限公司 | 一种数据处理方法和相关装置 |
US10455362B1 (en) | 2016-12-30 | 2019-10-22 | Amazon Technologies, Inc. | Contextual presence |
US10846745B1 (en) * | 2016-12-30 | 2020-11-24 | Amazon Technologies, Inc. | Contextual presence |
US10311860B2 (en) | 2017-02-14 | 2019-06-04 | Google Llc | Language model biasing system |
US11009886B2 (en) | 2017-05-12 | 2021-05-18 | Autonomy Squared Llc | Robot pickup method |
US10592570B2 (en) * | 2017-07-10 | 2020-03-17 | Facebook, Inc. | Selecting content for presentation to a user of a social networking system based on a topic associated with a group of which the user is a member |
US10776758B1 (en) * | 2018-07-13 | 2020-09-15 | Wells Fargo Bank, N.A. | Systems and methods for processing and presentation of advisor-related data |
US11853107B2 (en) | 2018-07-24 | 2023-12-26 | MachEye, Inc. | Dynamic phase generation and resource load reduction for a query |
US11341126B2 (en) | 2018-07-24 | 2022-05-24 | MachEye, Inc. | Modifying a scope of a canonical query |
US11816436B2 (en) * | 2018-07-24 | 2023-11-14 | MachEye, Inc. | Automated summarization of extracted insight data |
US11841854B2 (en) | 2018-07-24 | 2023-12-12 | MachEye, Inc. | Differentiation of search results for accurate query output |
US11651043B2 (en) | 2018-07-24 | 2023-05-16 | MachEye, Inc. | Leveraging analytics across disparate computing devices |
US20200125680A1 (en) * | 2018-10-22 | 2020-04-23 | NEGENTROPICS Mesterséges Intelligencia Kutató és Fejlesztõ Kft. | Systems and methods for producing search results based on user preferences |
WO2020082272A1 (en) | 2018-10-24 | 2020-04-30 | Alibaba Group Holding Limited | Intelligent customer services based on a vector propagation on a click graph model |
US10867338B2 (en) | 2019-01-22 | 2020-12-15 | Capital One Services, Llc | Offering automobile recommendations from generic features learned from natural language inputs |
US10489474B1 (en) | 2019-04-30 | 2019-11-26 | Capital One Services, Llc | Techniques to leverage machine learning for search engine optimization |
US10565639B1 (en) | 2019-05-02 | 2020-02-18 | Capital One Services, Llc | Techniques to facilitate online commerce by leveraging user activity |
US11232110B2 (en) * | 2019-08-23 | 2022-01-25 | Capital One Services, Llc | Natural language keyword tag extraction |
US11914601B2 (en) | 2019-08-29 | 2024-02-27 | Ntt Docomo, Inc. | Re-ranking device |
US11176202B2 (en) | 2019-09-18 | 2021-11-16 | Salesforce.Com, Inc. | Ranking results of searches of databases |
US10796355B1 (en) | 2019-12-27 | 2020-10-06 | Capital One Services, Llc | Personalized car recommendations based on customer web traffic |
KR102425770B1 (ko) * | 2020-04-13 | 2022-07-28 | 네이버 주식회사 | 급상승 검색어 제공 방법 및 시스템 |
US11210596B1 (en) | 2020-11-06 | 2021-12-28 | issuerPixel Inc. a Nevada C. Corp | Self-building hierarchically indexed multimedia database |
US11308543B1 (en) | 2020-12-21 | 2022-04-19 | Walmart Apollo, Llc | Methods and apparatus for automatically providing personalized carousels |
US11727077B2 (en) * | 2021-02-05 | 2023-08-15 | Microsoft Technology Licensing, Llc | Inferring information about a webpage based upon a uniform resource locator of the webpage |
CN113127737B (zh) * | 2021-04-14 | 2021-09-14 | 江苏科技大学 | 融合注意力机制的个性化搜索方法和搜索系统 |
US20220382824A1 (en) * | 2021-05-27 | 2022-12-01 | International Business Machines Corporation | Browser search management |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6182068B1 (en) | 1997-08-01 | 2001-01-30 | Ask Jeeves, Inc. | Personalized search methods |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5724567A (en) * | 1994-04-25 | 1998-03-03 | Apple Computer, Inc. | System for directing relevance-ranked data objects to computer users |
US5758257A (en) * | 1994-11-29 | 1998-05-26 | Herz; Frederick | System and method for scheduling broadcast of and access to video programs and other data using customer profiles |
US6285999B1 (en) * | 1997-01-10 | 2001-09-04 | The Board Of Trustees Of The Leland Stanford Junior University | Method for node ranking in a linked database |
US6012051A (en) * | 1997-02-06 | 2000-01-04 | America Online, Inc. | Consumer profiling system with analytic decision processor |
US6421675B1 (en) * | 1998-03-16 | 2002-07-16 | S. L. I. Systems, Inc. | Search engine |
US6317722B1 (en) * | 1998-09-18 | 2001-11-13 | Amazon.Com, Inc. | Use of electronic shopping carts to generate personal recommendations |
US6385619B1 (en) * | 1999-01-08 | 2002-05-07 | International Business Machines Corporation | Automatic user interest profile generation from structured document access information |
US6907566B1 (en) * | 1999-04-02 | 2005-06-14 | Overture Services, Inc. | Method and system for optimum placement of advertisements on a webpage |
US6327590B1 (en) * | 1999-05-05 | 2001-12-04 | Xerox Corporation | System and method for collaborative ranking of search results employing user and group profiles derived from document collection content analysis |
US6493702B1 (en) * | 1999-05-05 | 2002-12-10 | Xerox Corporation | System and method for searching and recommending documents in a collection using share bookmarks |
US6489968B1 (en) * | 1999-11-18 | 2002-12-03 | Amazon.Com, Inc. | System and method for exposing popular categories of browse tree |
EP1107128A1 (en) | 1999-12-03 | 2001-06-13 | Hyundai Electronics Industries Co., Ltd. | Apparatus and method for checking the validity of links in a computer network |
US6868525B1 (en) * | 2000-02-01 | 2005-03-15 | Alberti Anemometer Llc | Computer graphic display visualization system and method |
US6535888B1 (en) * | 2000-07-19 | 2003-03-18 | Oxelis, Inc. | Method and system for providing a visual search directory |
US6895406B2 (en) * | 2000-08-25 | 2005-05-17 | Seaseer R&D, Llc | Dynamic personalization method of creating personalized user profiles for searching a database of information |
JP2002132822A (ja) * | 2000-10-23 | 2002-05-10 | Nippon Telegr & Teleph Corp <Ntt> | インターネット広告配信システム及びインターネット広告配信方法 |
JP3934325B2 (ja) * | 2000-10-31 | 2007-06-20 | 株式会社日立製作所 | 文書検索方法、文書検索装置及び文書検索プログラムの記憶媒体 |
US8001118B2 (en) * | 2001-03-02 | 2011-08-16 | Google Inc. | Methods and apparatus for employing usage statistics in document retrieval |
US20020198882A1 (en) * | 2001-03-29 | 2002-12-26 | Linden Gregory D. | Content personalization based on actions performed during a current browsing session |
JP4489994B2 (ja) * | 2001-05-11 | 2010-06-23 | 富士通株式会社 | 話題抽出装置、方法、プログラム及びそのプログラムを記録する記録媒体 |
JP2003150844A (ja) * | 2001-11-09 | 2003-05-23 | Matsushita Electric Ind Co Ltd | 情報提供システム、情報提供方法、及び情報提供サーバ |
US6892198B2 (en) * | 2002-06-14 | 2005-05-10 | Entopia, Inc. | System and method for personalized information retrieval based on user expertise |
US20040044571A1 (en) * | 2002-08-27 | 2004-03-04 | Bronnimann Eric Robert | Method and system for providing advertising listing variance in distribution feeds over the internet to maximize revenue to the advertising distributor |
JP4023273B2 (ja) * | 2002-09-27 | 2007-12-19 | 日本電信電話株式会社 | 個人化広告の提供情報及び個人化広告提供装置及びプログラム及びコンピュータ読取可能な記録媒体 |
US7836391B2 (en) | 2003-06-10 | 2010-11-16 | Google Inc. | Document search engine including highlighting of confident results |
US7363302B2 (en) * | 2003-06-30 | 2008-04-22 | Googole, Inc. | Promoting and/or demoting an advertisement from an advertising spot of one type to an advertising spot of another type |
US7797316B2 (en) * | 2003-09-30 | 2010-09-14 | Google Inc. | Systems and methods for determining document freshness |
US20050071328A1 (en) | 2003-09-30 | 2005-03-31 | Lawrence Stephen R. | Personalization of web search |
US7693827B2 (en) | 2003-09-30 | 2010-04-06 | Google Inc. | Personalization of placed content ordering in search results |
US7346839B2 (en) * | 2003-09-30 | 2008-03-18 | Google Inc. | Information retrieval based on historical data |
US7240049B2 (en) * | 2003-11-12 | 2007-07-03 | Yahoo! Inc. | Systems and methods for search query processing using trend analysis |
US7634472B2 (en) | 2003-12-01 | 2009-12-15 | Yahoo! Inc. | Click-through re-ranking of images and other data |
US7716219B2 (en) | 2004-07-08 | 2010-05-11 | Yahoo ! Inc. | Database search system and method of determining a value of a keyword in a search |
-
2004
- 2004-07-13 US US10/890,854 patent/US7693827B2/en active Active
-
2005
- 2005-07-12 KR KR1020077003372A patent/KR101171405B1/ko not_active IP Right Cessation
- 2005-07-12 JP JP2007521656A patent/JP2008507041A/ja active Pending
- 2005-07-12 CA CA2573672A patent/CA2573672C/en not_active Expired - Fee Related
- 2005-07-12 CN CNB2005800306406A patent/CN100485677C/zh not_active Expired - Fee Related
- 2005-07-12 EP EP05771572A patent/EP1782286A1/en not_active Ceased
- 2005-07-12 WO PCT/US2005/025081 patent/WO2006017364A1/en active Application Filing
-
2011
- 2011-06-30 JP JP2011145885A patent/JP5572596B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6182068B1 (en) | 1997-08-01 | 2001-01-30 | Ask Jeeves, Inc. | Personalized search methods |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11176218B2 (en) | 2019-07-30 | 2021-11-16 | Ebay Inc. | Presenting a customized landing page as a preview at a search engine |
WO2023177144A1 (ko) * | 2022-03-17 | 2023-09-21 | 삼성전자 주식회사 | 광고 대상 결정 장치 및 방법 |
US12067593B2 (en) | 2022-03-17 | 2024-08-20 | Samsung Electronics Co., Ltd. | Advertisement target determining device and advertisement target determining method |
Also Published As
Publication number | Publication date |
---|---|
US20050240580A1 (en) | 2005-10-27 |
CN100485677C (zh) | 2009-05-06 |
KR20070038146A (ko) | 2007-04-09 |
WO2006017364A1 (en) | 2006-02-16 |
JP2011227922A (ja) | 2011-11-10 |
EP1782286A1 (en) | 2007-05-09 |
US7693827B2 (en) | 2010-04-06 |
CA2573672A1 (en) | 2006-02-16 |
JP5572596B2 (ja) | 2014-08-13 |
CA2573672C (en) | 2014-02-04 |
CN101019118A (zh) | 2007-08-15 |
JP2008507041A (ja) | 2008-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101171405B1 (ko) | 검색 결과에서 배치 내용 정렬의 맞춤화 | |
US10839029B2 (en) | Personalization of web search results using term, category, and link-based user profiles | |
US8321278B2 (en) | Targeted advertisements based on user profiles and page profile | |
US9390144B2 (en) | Objective and subjective ranking of comments | |
US20050222989A1 (en) | Results based personalization of advertisements in a search engine | |
CN101454780B (zh) | 基于监视用户行为生成网站简档的方法 | |
US20050114324A1 (en) | System and method for improved searching on the internet or similar networks and especially improved MetaNews and/or improved automatically generated newspapers | |
AU2012202738B2 (en) | Results based personalization of advertisements in a search engine | |
JP6228425B2 (ja) | 広告生成装置および広告生成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |