KR101084825B1 - 산화구리계 촉매 압출물 및 카르보닐 화합물 수소화에있어서의 이들의 용도 - Google Patents

산화구리계 촉매 압출물 및 카르보닐 화합물 수소화에있어서의 이들의 용도 Download PDF

Info

Publication number
KR101084825B1
KR101084825B1 KR1020067013749A KR20067013749A KR101084825B1 KR 101084825 B1 KR101084825 B1 KR 101084825B1 KR 1020067013749 A KR1020067013749 A KR 1020067013749A KR 20067013749 A KR20067013749 A KR 20067013749A KR 101084825 B1 KR101084825 B1 KR 101084825B1
Authority
KR
South Korea
Prior art keywords
catalyst
oxide
acid
support material
hydrogenation
Prior art date
Application number
KR1020067013749A
Other languages
English (en)
Other versions
KR20060132861A (ko
Inventor
슈테판 슐리터
올가 슈베르트
미하엘 헤세
사비네 보르헤스
마르쿠스 뢰쉬
롤프 핀코스
알렉산더 벡
군터 빈데커
Original Assignee
바스프 에스이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34672549&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101084825(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 바스프 에스이 filed Critical 바스프 에스이
Publication of KR20060132861A publication Critical patent/KR20060132861A/ko
Application granted granted Critical
Publication of KR101084825B1 publication Critical patent/KR101084825B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D315/00Heterocyclic compounds containing rings having one oxygen atom as the only ring hetero atom according to more than one of groups C07D303/00 - C07D313/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • B01J35/30
    • B01J35/615
    • B01J35/633
    • B01J35/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/10Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using elemental hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

본 발명은 5 내지 85 중량%의 산화구리를 함유하고, 활성물질 중에 및 결합제로서, 동일한 산화물 지지체 물질을 포함하는, 압출물 형태로 제공되는 촉매에 관한 것이다. 본 발명은 또한, 카르보닐 화합물의 수소화에 있어서의, 본 촉매의 용도에 관한 것이다.
산화구리, 압출물, 촉매, 수소화

Description

산화구리계 촉매 압출물 및 카르보닐 화합물 수소화에 있어서의 이들의 용도 {CATALYST EXTRUDATES BASED ON COPPER OXIDE AND THEIR USE FOR HYDROGENATING CARBONYL COMPOUNDS}
본 발명은 산화구리 및 산화물 지지체 물질을 결합제와 함께 포함하는 활성 조성물을 기재로 하는, 바람직하게는 압출물 형태의 촉매 성형체 및 카르보닐 화합물의 수소화 공정에 있어서의 이들의 용도에 관한 것이다.
구리 촉매는 화학 산업에서 넓은 범위로 사용되고 있다. 지지된 구리 촉매는, 특히, 알데히드 또는 니트로 화합물의 카르복실산 에스테르 및 무수물과 같은 카르보닐 화합물의 수소화에 있어 적합하게 선택된다. 이 촉매들은 보통 성형체로서의 펠렛 형태로 제조되고 사용된다.
예를 들어, 후속 반응에 관한 이들의 선택성의 관점에서, 이 촉매들을 개선하는 한 가지 가능한 방법은, 특정 적용 분야에 있어서, 성형체의 기하구조 및 다공성을 최적화하는 것이다. 하지만, 작은 다공성 펠렛은 더 이상 만족스러운 기계적 강도를 갖지 않거나, 제조하기가 불균형스럽게 값비싸지기 때문에, 이러한 촉매 펠렛의 최적화에는 한계가 있다.
그러므로, 본 발명의 목적은, 상기에서 언급한, 선행 기술에 따른 촉매 펠렛의 문제점을 완화시키는 최적화된 촉매 시스템을 발견하는 것이다. 놀랍게도, 원 하는 특성을 갖는 촉매 성형체가, 적합한 압출 공정 및 적합한 결합제 및 결합제 양을 이용하여 저렴한 방식으로 제조될 수 있다는 것이 발견되었다.
압출된 구리 함유 물질을 기재로 하는 촉매 성형체는 원칙적으로, 문헌으로부터 공지되어 있다.
따라서, 문헌 [Mueller et al. in Journal of Catalysis, 218, 2003, pp. 419-426]은 완성된 촉매 중에 감마-산화알루미늄으로서 존재하는 결합제 물질로서, 산화알루미늄 히드레이트를 갖는 산화구리/산화아연 촉매 압출물의 제조를 기재하고 있다. 여기서 기재되는 적용 분야에 있어 유리한 무아연 촉매들은 거기에 기재되어 있지 않다. 이들 압출물들의 문제점은, 압출되지 않은 비교 시스템에 비해 매우 감소된 활성 표면적을 갖는다는 것이다. 뿐만 아니라, 기재된 압출물 유형 촉매의 활성 조성(CuO/ZnO)은, 활성을 추가적으로 감소시킬 수 있는 결합제(Al2O3)에 의해 희석된다.
WO 97/34694의 실시예 22에는, 임의의 추가적인 첨가제 없는, 공침전된 CuO/Al2O3 분말로부터의 촉매 압출물 제조가 기재되어 있다. 하지만, 얻어진 성형체의 기계적 안정성 및 다공성은 완전히 만족스럽지는 못하다. 그 실시예에서 얻어진 다공성은 정제화된 물질의 것에만 대응된다.
그러므로, 본 발명의 목적은 제조하기 간단하고, 높은 기계적 안정성 및, 특히 카르보닐 화합물의 수소화에 있어 우수한 촉매 활성을 갖는 촉매를 제공하는 것이다.
이제, 바람직하게는 압출물의 형태로, 활성 성분으로서, 산화구리 및 산화물 지지체 물질 뿐 아니라, 지지체 물질에 맞는 산화물 결합제를 포함하는 촉매 성형체가 산업상 제조하기 쉽고, 또한 높은 활성 및 선택성 및 높은 안정성을 나타낸다는 것이 발견되었다.
본 발명은, 5 내지 85 중량%의 산화구리 및 활성 조성물 중에 및 결합제로서 동일한 산화물 지지체 물질을 포함하는, 바람직하게는 압출물 형태의 촉매 성형체를 제공한다.
본 발명 촉매는, 활성 성분으로서, 적당하다면 환원 형태의 산화구리 및, 산화알루미늄, 산화티타늄, 산화지르코늄, 이산화규소, 산화망간 및 이들의 혼합물로 이루어진 군으로부터 선택되는 산화물 지지체 물질을 포함한다. 지지체 물질로서는, 특히 촉매 중 X선-무정형 산화물로서 존재하는 산화알루미늄을 사용하는 것이 바람직하다. 본 촉매는 임의적으로, 원소 주기율표의 1 내지 14족(구 IUPAC 명명법의 IA 내지 VIIIA 및 IB 내지 IVB)으로부터의, 하나 이상의 추가적인 금속 또는 이들의 화합물, 바람직하게는 산화물을, 20 중량%까지, 바람직하게는 10 중량%까지의 비율로 함유할 수 있다. 산화아연이 촉매 중 임의적인 추가 금속으로서 존재한다면, 산화아연의 비율은 바람직하게는 5 중량% 미만, 특히 바람직하게는 1 중량% 미만이고, 특히 500 ppm 미만이다.
활성 성분은 또한, 산화물 자체 대신에, 부분적으로 또는 전체적으로, 산화구리 및 산화물 지지체 물질의 적합한 전구체 화합물을 예를 들어, 산화물 히드레이트, 히드록시드 및(또는) 카르보네이트의 형태로 포함할 수 있다. 산화구리는 바람직하게는, 활성 성분 중 산화물 지지체 물질과의 균질 혼합물로서 존재한다.
활성 성분 중 산화구리 또는 산화구리의 전구체 화합물의 비율은 10 초과 내지 98 중량%, 바람직하게는 30 내지 95 중량%, 특히 바람직하게는 50 내지 95 중량%이고, 특히 80 내지 90 중량%이다(강열 상태에서 계산됨. 즉, 산화금속으로서 100% 정도까지 존재하는 활성 성분을 기준으로 함).
본 발명 촉매는 나아가, 하나 이상의 결합제를 포함한다. 본 결합제는, 활성 성분 중에 존재하기도 하는 동일한 산화물 지지체 물질, 또는 바람직하게는 이 지지체 물질의 전구체를 포함한다. 활성 성분이 산화구리를, 예를 들어 주로 산화알루미늄 또는 그 전구체와 함께 포함한다면, 결합제는 마찬가지로, 산화알루미늄 및(또는) 그 전구체, 특히 산화알루미늄 히드레이트, 특히 바람직하게는 뵘석 또는 유사뵘석을 포함한다. 활성 성분이 산화구리를, 예를 들어 주로 산화규소 또는 그 전구체와 함께 포함한다면, 결합제는 마찬가지로, 산화규소 및(또는) 그 전구체, 특히 규산, 규산 에스테르 또는 알킬화 규산의 에스테르를 포함한다. 산화알루미늄 및(또는) 산화알루미늄 전구체가 활성 성분 및 결합제 모두의 구성성분으로서 존재하는, 본 발명 촉매의 실시태양이 바람직하다.
본 촉매의 총질량을 기준으로, 산화구리의 비율은 5 내지 85 중량%, 바람직하게는 10 내지 70 중량%, 특히 바람직하게는 40 내지 65 중량%이다.
본 발명 촉매는 압출물 형태이다. 상기에서 언급한 성분들과 별도로, 추가적인 성분 및 보조제가 전형적으로, 압출될 혼합물에 부가된다. 물 및, 적당하다면 산 또는 염기가 보통 사용된다. 뿐만 아니라, 촉매 압출 동안의 개선된 처리 및(또는) 촉매 성형체의 기계적 강도 및(또는) 원하는 다공성의 추가적인 증가에 기여하는 유기 및 무기 물질들이 추가적으로, 보조제로서 사용될 수 있다. 그러한 보조제들은 당업자에게 공지되어 있으며, 예들은 흑연, 스테아르산, 실리카 겔, 실록산, 셀룰로스 화합물, 녹말, 폴리올레핀, 탄수화물(당), 왁스 및 알기네이트를 포함한다.
촉매 중에 임의적으로 존재할 수 있는, 주기율표의 1 내지 14족(구 IUPAC 명명법의 IA 내지 VIIIA 및 IB 내지 IVB)으로부터의, 추가적인 금속 또는 이들의 화합물, 바람직하게는 산화물이 활성 조성물 및(또는) 결합제 중에 존재할 수 있고(있거나) 압출될 혼합물에 추가적인 성분으로서 부가될 수 있다.
결합제로서 뵘석을 바람직하게 사용하는 경우에 있어, 수성 산, 특히 포름산 또는 질산 뿐 아니라, 적당하다면 카르복시메틸셀룰로스, 감자 녹말 또는 스테아르산이 압출되는 혼합물 내로 혼합된다.
촉매 압출물 중에 존재하는 산화물 지지체 물질, 즉 산화알루미늄, 산화티타늄, 산화지르코늄, 이산화규소, 산화망간 및 이들의 혼합물들로 이루어진 군으로부터 선택되는 물질 중, 10 내지 98 중량%, 바람직하게는 15 내지 95 중량% 및 특히 20 내지 50 중량%는 사용되는 결합제로부터 유래된다. 상응하게, 압출물 중 존재하는 지지체 물질 중 2 내지 90 중량%, 바람직하게는 5 내지 85 중량% 및 특히 바람직하게는 50 내지 80 중량%는 활성 성분으로부터 유래된다(각각의 경우, 산화물 지지체 물질로서 계산됨).
압출에 사용될 활성 조성물 및 결합제의 비율은 활성 조성물 및 결합제의 조 성, 촉매의 표적 조성물 또는 결합제로부터 야기될 지지체 물질의 원하는 비율에 의해 결정된다.
바람직하게는 높은 비율의 산화구리를 갖는 활성 성분의 선택 및, 활성 성분으로서 동일한 지지체 물질을 포함하는 결합제의 최소량 사용은, 동시에 매우 활성이고 극히 기계적으로 안정한 압출물을 얻을 수 있게 한다. 본 발명에 따른 제조 방법은 반응 중 불활성인 결합제 성분에 의한 촉매의 불리한 희석을 피하고, 또한 적합한 결합제 성분을 이용하여 높은 강도를 얻는다.
본 활성 조성물은 당업자에게 공지된 방법에 의해 제조될 수 있다. 산화구리가, 활성 조성물의 나머지 구성성분 및 산성 산화물과 함께 균질하게 혼합된 미세 분산 형태로 얻어지는 방법이 바람직하다. 수용액으로부터 적당한 금속 염 및(또는) 히드록시드를 침전시키고, 침전물을 세정하고, 그것을 건조 및 소성하는 것이 특히 바람직하다. 가능한 금속 염은, 예를 들어, 질산염, 황산염, 탄산염, 염화물, 아세트산염 또는 옥살산염이다. 이러한 출발물질은 이어서, 적당하다면 보조제를 부가하면서, 압출에 의해 성형체를 제조하는 공지된 방법에 의해 처리된다.
압출물은 예를 들어, 출발 화합물을 결합제, 예를 들어 뵘석 또는 p-뵘석(AlOOH)로 혼련 또는 팬-밀링시킴으로써 얻어지고, 이어서 소성된다. 결합제는 압출 전에, 예비처리될 수 있다. 이는 바람직하게는 산, 예를 들어 포름산 또는 질산을 이용하여 수행된다. 다른 보조제, 예를 들어 카르복시메틸셀룰로스, 감자 녹말 또는 스테아르산과 같은 기공 형성제가 압출 전 또는 압출 동안에 추가적으로 부가될 수 있다.
본 발명 촉매는 다양한 압출물 형상으로 제조될 수 있다. 언급될 수 있는 예들은 실린더형 압출물, 별 또는 계단형 압출물, 삼엽, 중공 압출물 및 벌집형이다. 이들 압출물들의 전형적인 지름은 0.5 내지 10 mm, 바람직하게는 1 내지 6 mm, 특히 바람직하게는 1.5 내지 3 mm이다. 길이 대 지름의 평균 비율은 0.2:1 내지 20:1, 바람직하게는 0.7:1 내지 10:1, 특히 바람직하게는 1:1 내지 5:1이다.
성형 후, 본 촉매들은 건조되고, 적당하다면 소성된다. 산화구리 및 산화알루미늄을 기재로 하는 바람직한 촉매의 경우, X선-무정형 형태로 주로 존재하는 산화알루미늄 및 미세 결정 테노라이트로서 존재하는 산화구리를 야기하는 소성 조건을 선택하는 것이 바람직하다. 산화알루미늄의 30 중량% 미만, 특히 바람직하게는 20 중량% 미만, 특히 10 중량% 미만만이 분말 회절 패턴 중에서 결정 상으로서 검출가능한 것이 바람직하다. 이들 바람직한 촉매들의 일반적인 소성 온도는 300 내지 800℃, 바람직하게는 500 내지 700℃이고, 특히 바람직하게는 550 내지 650℃이며, 소성 시간은 5분 내지 5시간, 바람직하게는 10분 내지 2시간이다.
산화물 상태 중 구리 촉매의 BET 표면적은 10 내지 400 m2/g, 바람직하게는 15 내지 200 m2/g, 특히 20 내지 150 m2/g이다. 설치된 상태에서의 환원된 촉매의 구리 표면적(N2O 분해)은 1 m2/g 초과, 바람직하게는 3 m2/g 초과, 특히 6 m2/g 초과이다(구리 기준).
본 발명 촉매는 거시적으로 균일한 구조를 갖는다. 그 성분, 즉 산화구리, 산화물 지지체 물질 및 결합제는 서로와의 균질 혼합물로서 존재하며, 그 결과 본 촉매는 예를 들어 코팅된 촉매의 경우와 같이, 상이한 구조를 갖는 구성성분 영역(mm 범위)이 크지 않다.
반면, 미시적인 수준에서, 지지체 물질은, 본 발명의 바람직한 실시태양에서, 활성 조성물 중의 미세 분산물로서 및 부가된 결합제로 인한 미립자 형태로 모두 존재한다. 이러한 특정 실시태양에서, 촉매 성형체 부피의 1 내지 95%, 바람직하게는 3 내지 80%, 특히 5 내지 50%가 지지체 입자, 즉 약 2 ㎛ 초과 지름 또는 약 4 ㎛3 초과 부피를 갖는 입자들에 의해 채워진다.
본 발명의 바람직한 변형법에서, 큰 메조포어 또는 작은 마크로포어 범위에서 정해지는 다공성을 갖는 촉매 성형체들이 사용된다. 이들 촉매들은 0.15 ml/g 초과, 바람직하게는 0.20 ml/g 초과, 특히 바람직하게는 0.30 ml/g 초과의 기공 부피, 10 nm 내지 100 nm 범위의 기공 지름을 갖는다.
본 발명의 특정 실시태양은 그러므로, 5 내지 85 중량%의 산화구리 및 산화물 지지체 물질을 포함하는 촉매 성형체를 제공하며, 여기서,
a) 성형체는 0.15 ml/g 초과의 기공 부피를 갖고, 기공 지름은 10 내지 100 nm 범위이며(이거나),
b) 성형체 중 산화물 지지체 물질은 미세 분산 형태로 및, 1 내지 95 부피%의 성형체 부피 비율까지 미립자 형태로 모두 존재한다.
본 발명 촉매는 바람직하게는, 상기 특징 a)에 따른 기공 부피 및 특징 b)에 따른 지지체 물질 구조 모두를 갖는다.
특정된 다공성은, DIN 66133에 따라, 수은 압입법에 의해 측정하였다. 4 nm 내지 300 nm의 기공 지름 범위 내 데이터가 평가되었다. 본 발명에 따른 다공성은, 당업자에게 공지된 방법에 의해, 예를 들어 성형 공정의 파라미터를 이용하고(하거나) 사용된 첨가제 및 보조제의 유형 및 양을 이용하여 활성 성분의 입자 크기 분포 및 특히, 결합제의 것을 선택함으로써 맞춰질 수 있다.
카르보닐 화합물에 대한 수소화 촉매로서 사용되는 경우, 본 촉매는 환원된 활성화 형태로 사용된다. 활성화는, 본 발명 방법이 수행되는 반응기 내에 설치되기 전 또는 그 후에, 환원성 기체, 바람직하게는 수소 또는 수소/불활성 기체 혼합물을 사용하여 수행된다. 촉매가 산화물 형태로 반응기 내에 설치된다면, 활성화는 그 설비가 본 발명에 따른 수소화를 위해 스타트업(start-up)되기 전에, 또는 스타트업 동안에, 즉 계내에서 수행될 수 있다. 설비 스타트업 전의 별도의 활성화가 일반적으로, 환원성 기체, 바람직하게는 수소 또는 수소/불활성 기체 혼합물을 사용하여, 승온에서, 바람직하게는 100 내지 350℃ 범위에서 수행된다. 계내 활성화의 경우, 활성화는 설비 러닝업(running-up) 동안에 승온에서 수소와의 접촉으로 인해 일어난다.
본 발명 촉매는 카르보닐 화합물, 예를 들어 알데히드 및 케톤의, 상응하는 알코올을 형성하는 수소화에 적합하며, 지방족 및 지환족의 포화 및 불포화 카르보닐 화합물이 바람직하다. 방향족 카르보닐 화합물의 경우, 원치 않는 부산물들의 형성이, 방향족 고리의 수소화로 인해 일어날 수 있다. 카르보닐 화합물은 히드록 시 또는 아미노기와 같은 추가적인 관능기를 가질 수 있다. 불포화 카르보닐 화합물은 일반적으로, 상응하는 포화 알코올로 수소화된다. 본 발명의 목적을 위해 사용되는 바와 같은 용어 "카르보닐 화합물"은, 카르복실산 및 그 유도체를 포함하는, C=O 기를 갖는 모든 화합물들을 포함한다. 물론, 둘 이상의 카르보닐 화합물들의 혼합물 또한 함께 수소화될 수 있다. 나아가, 수소화될 개개의 카르보닐 화합물은 둘 이상의 카르보닐기를 함유할 수 있다.
본 발명 촉매는 바람직하게는, 지방족 알데히드, 히드록시알데히드, 케톤, 산, 에스테르, 무수물, 락톤 및 당을 수소화하는데 사용된다.
바람직한 지방족 알데히드는, 예를 들어 내부 또는 말단 이중결합을 갖는 선형 또는 분지형 올레핀으로부터 옥소법에 의해 얻을 수 있는 바와 같은, 분지형 및 비분지형의 포화 및(또는) 불포화 지방족 C2-C30-알데히드이다. 나아가, 30개를 넘는 카르보닐기를 함유하는 올리고머 화합물 또한 수소화될 수 있다.
지방족 알데히드의 예는 하기와 같다:
포름알데히드, 프로피온알데히드, n-부티르알데히드, 이소부티르알데히드, 발레르알데히드, 2-메틸부티르알데히드 3-메틸부티르알데히드 (이소발레르알데히드), 2,2-디메틸프로피온알데히드 (피발알데히드), 카프로알데히드, 2-메틸발레르알데히드, 3-메틸발레르알데히드, 4-메틸발레르알데히드, 2-에틸부티르알데히드, 2,2-디메틸부티르알데히드, 3,3-디메틸부티르알데히드, 카프릴산 알데히드, 데실 알데히드, 글루타르알데히드.
상기 언급한 단쇄 알데히드와는 별도로, 추가적으로 적합한 알데히드는 또한, 특히, 예를 들어 선형 a-올레핀으로부터 옥소법에 의해 얻을 수 있는 바와 같은 장쇄 지방족 알데히드를 포함한다.
에날리제이션(enalization) 생성물, 예를 들어 2-에틸헥센알, 2-메틸펜텐알, 2,4-디에틸옥텐알 또는 2,4-디메틸헵텐알이 특히 바람직하다.
바람직한 히드록시알데히드는, 예를 들어 지방족 및 지환족 알데히드 및 케톤과 이들 자신 또는 포름알데히드와의 알돌 반응에 의해 얻어질 수 있는 바와 같은 C3-C12-히드록시알데히드이다. 예들은 3-히드록시프로판알, 디메틸올에탄알, 트리메틸올에탄알 (펜타에리트리탈), 3-히드록시부탄알 (아세트알돌), 3-히드록시-2-에틸헥산알 (부틸 알돌), 3-히드록시-2-메틸펜탄알 (프로필 알돌), 2-메틸올프로판알, 2,2-디메틸올프로판알, 3-히드록시-2-메틸부탄알, 3-히드록시펜탄알, 2-메틸올부탄알, 2,2-디메틸올부탄알, 히드록시피발알데히드이다. 히드록시피발알데히드(HPA) 및 디메틸올부탄알(DMB)이 특히 바람직하다.
바람직한 케톤은 아세톤, 부타논, 2-펜타논, 3-펜타논, 2-헥사논, 3-헥사논, 시클로헥사논, 이소포론, 메틸 이소부틸 케톤, 메시틸 옥시드, 아세토페논, 프로피오페논, 벤조페논, 벤잘아세톤, 디벤잘아세톤, 벤잘아세토페논; 2,3-부탄디온, 2,4-펜탄디온, 2,5-헥산디온 및 5-메틸 비닐 케톤이다.
나아가, 바람직하게는 1-20개의 탄소 원자들을 갖는 카르복실산 및 이들의 유도체가 반응될 수 있다. 이하의 것들이 특히 언급될 수 있다: 포름산, 아세트 산, 프로피온산, 부티르산, 이소부티르산, n-발레르산, 트리메틸아세트산 ("피발산"), 카프로산, 에난트산, 카프릴산, 카프르산, 라우르산, 미리스트산, 팔미트산, 스테아르산, 아크릴산, 메타크릴산, 올레산, 엘라이드산, 리놀레산, 리놀렌산, 시클로헥산카르복실산, 벤조산, 페닐아세트산, o-톨루산, m-톨루산, p-톨루산, o-클로로벤조산, p-클로로벤조산, o-니트로벤조산, p-니트로벤조산, 살리실산, p-히드록시벤조산, 안트라닐산, p-아미노벤조산, 옥살산, 말레산, 숙신산, 글루타르산, 아디프산, 피멜산, 수베르산, 아젤라산, 세바크산, 말레산, 푸마르산, 프탈산, 이소프탈산, 테레프탈산과 같은 카르복실산; 상기 언급한 카르복실산의 C1-C10-알킬 에스테르, 특히 메틸 포르메이트, 에틸 아세테이트, 부틸 부티레이트, 디메틸 테레프탈레이트, 디메틸 아디페이트, 디메틸 말레에이트, 메틸 (메트)아크릴레이트, 부티로락톤, 카프로락톤, 및 폴리카르복실산 에스테르, 예를 들면 폴리아크릴산 및 폴리메타크릴산 및 이들의 공중합체의 에스테르 및 폴리메틸 메타크릴레이트, 테레프탈산 에스테르 및 기타 공업용 플라스틱과 같은 폴리에스테르와 같은 카르복실산 에스테르;
지방;
상기 언급한 카르복실산의 무수물과 같은 카르복실산 무수물, 특히 아세트산 무수물, 프로피온산 무수물, 벤조산 무수물 및 말레산 무수물,
포름아미드, 아세트아미드, 프로피온아미드, 스테아르아미드, 테레프탈아미드와 같은 카르복사미드.
락트산, 말산, 타르타르산 또는 시트르산과 같은 히드로카르복실산, 또는 글리신, 알라닌, 프롤린 및 아르기닌과 같은 아미노산 및 펩티드를 반응시키는 것 또한 가능하다.
본 발명 방법은 특히 바람직하게는, 에스테르, 무수물, 알데히드 및 히드록시알데히드의 수소화에 사용된다.
수소화될 카르보닐 화합물은, 단독으로 또는 수소화 반응 생성물과의 혼합물로서 수소화 반응기 내에 공급될 수 있으며, 이는 희석되지 않은 형태로, 또는 추가적인 용매를 사용하여 일어날 수 있다. 적합한 추가적인 용매는, 특히, 물, 메탄올, 에탄올과 같은 알코올 및 반응 조건 하에서 형성되는 알코올이다. 바람직한 용매는 물, THF, NMP 및 디메틸 에테르, 디에틸 에테르, MTBE와 같은 에테르이며, 특히 물이 바람직하다.
반응 조건 하에서 액체인 출발물질의 수소화는 상향 방식 또는 하향 방식으로 수행될 수 있으며, 각각의 경우, 바람직하게는 순환되며, 일반적으로 50 내지 250℃, 바람직하게는 70 내지 200℃, 특히 바람직하게는 100 내지 140℃의 온도, 및 15 내지 250 바, 바람직하게는 20 내지 200 바, 특히 바람직하게는 25 내지 100 바의 압력에서 수행된다. 기체-상 수소화는 보통, 120 내지 350℃, 바람직하게는 180 내지 300℃의 온도, 및 1 내지 100 바, 바람직하게는 1 내지 60 바, 특히 2 내지 20 바의 압력에서 수행된다.
본 발명에 따라 사용되는 촉매는 일반적으로, 만족스러운 작동 수명을 갖는다. 촉매의 활성 및(또는) 선택성을 그 작동 기간 동안에 걸쳐 저하됨에도 불구하 고, 당업자에게 공지된 조치들을 사용하여 재생될 수 있다. 이들 중, 승온에서 수소 스트림 중에서 촉매를 환원 처리하는 것이 바람직하다. 적당하다면, 환원 처리는 산화 처리 후에 이루어질 수 있다. 이 경우, 분자 산소를 포함하는 기체 혼합물, 예를 들어 공기가 승온에서 촉매 층을 통과한다. 적합한 용매로 촉매를 헹구는 것이 추가로 가능하다.
본 발명에 따라 사용하는 수소화 공정은 높은 전환율 및 선택도를 달성하며, 본 촉매는 반응 혼합물의 존재 하에 높은 화학적 안정성을 보인다. 본 발명에 따라 제조되는 촉매는 산화물 상태 및 환원된 상태 모두에 있어 상당히 증가된 기계적 안정성을 가지며, 그 결과로서 본 발명 방법은 특히 경제적이다.
본 발명은 이하의 실시예들에 의해 예시된다.
BET 표면적 측정
DIN 66131에 따라, N2 흡착에 의해 BET 표면적 측정을 수행하였다.
절삭 경도 측정
이하와 같이, 절삭 경도 측정을 수행하였다:
랜덤하게 선택된 25개의 육안으로 균열 없는 압출물들을, 각각의 압출물 상에 0.3 mm 두께를 갖는 절단기를, 압출물이 절삭될 때까지 증가하는 힘으로 가압함으로써, 연달아 시험하였다. 여기에 필요한 힘이 N 단위의 절삭 경도이다.
실시예 1
본 발명에 따른 활성 조성물 제조
1.5 L의 물을 교반기가 장착된 가열가능한 침전 용기 내에 위치시키고, 80℃로 가열하였다. 2000 ml의 물 중의 Cu(NO3)2*2.5H2O(877 g) 및 Al(NO3)3*9H2O(551 g)을 포함하는 금속 염 용액 및 탄산나트륨 용액(20 중량% 농도)을, 교반하면서 한 시간에 걸쳐 이 침전 용기 내로 동시에 계량하였다. 탄산나트륨 용액을, pH 6이 침전 용기 내에 확립되는 양으로 계량하였다. 모든 금속 염 용액을 부가한 후, 추가적인 탄산나트륨 용액을, 침전 용기 내 pH가 8이 될 때까지 계량하고, 혼합물을 추가적인 15분 동안 이 pH에서 교반하였다. 탄산나트륨 용액의 총 소모량은 3.7 kg이었다. 형성된 현탁액을 여과하고, 세정물이 더 이상 질산염을 함유하지 않을 때까지(< 25 ppm) 고형물을 물로 세정하였다. 생성물을 약 120℃에서 건조시켰다. 이러한 방식으로 제조된 활성 조성물은 약 80 중량%의 CuO 및 20 중량%의 Al2O3를 포함하였다(산화물로서 계산됨).
압출물 제조
133 g의 뵘석(버살 250(Versal 250), 사솔(Sasol)사)을 믹스-뮬러(Mix-Muller) 내에서 포름산(30 중량% 농도)으로 처리하고, 건조된 활성 조성물과 혼합하고, 233 ml의 물을 부가한 후, 강력하게 혼합하였다. 배합된 덩어리를 이어서, 압출시켜, 2 mm의 지름 및 8 mm의 평균 길이를 가진 압출물을 형성하였다. 압출물을 이어서, 약 120℃에서 건조시키고, 600℃에서 소성하였다. 촉매 압출물은 약 65 중량%의 CuO 및 35 중량%의 Al2O3를 포함하였다(산화물로서 계산됨). 촉매 중 약 54%의 산화물 지지체 물질 Al2O3는 결합제로부터 유래한 것이다.
가장 중요한 촉매 특성들을 표 2에 요약하였다.
본 발명 촉매로, 말레산 무수물(MA)을 수소화시켜, 테트라히드로푸란(THF) 및 감마-부티로락톤(GBL)의 혼합물을 얻었다.
반응을 시작하기 전, 본 촉매를 수소로 처리시켰다. 이 목적을 위해, 반응기를 180℃로 가열하고, 대기압 하에서, 각각의 경우에 표시된 수소 및 질소 혼합물을 이용하여 표 1에 표시된 시간 동안, 촉매를 환원시켰다.
시간
(분)
수소
(표준 l/h)
질소
(표준 l/h)
120 50 950
30 100 900
30 500 500
본 촉매를 이어서, 1시간 동안 280℃에서, 200 표준 l/h의 수소로 처리하였다.
수소화를 수행하기 위해, 용해된 MA를, 245℃에서 작동하고, 수소가 흐르는 기화기 내로 역방향 펌핑하였다. 수소 및 MA의 기체 스트림을, 70 ml의 촉매 및 70 ml의 유리 고리 혼합물로 충진된 가열된 반응기(지름: 27 mm) 내로 공급하였다; 반응기로부터의 기체성 산물을 기체 크로마토그래피로 정량 분석하였다. 작동 파라미터 및 실험 결과들을 표 3에 나타내었다.
실시예 2
본 발명에 따른 활성 조성물 제조
1.5 L의 물을 교반기가 장착된 가열가능한 침전 용기 내에 위치시키고, 80℃로 가열하였다. 2000 ml의 물 중의 Cu(NO3)2*2.5H2O(877 g) 및 Al(NO3)3*9H2O(1410 g)을 포함하는 금속 염 용액 및 탄산나트륨 용액(20 중량% 농도)을, 교반하면서 한 시간에 걸쳐 이 침전 용기 내로 동시에 계량하였다. 탄산나트륨 용액을, pH 6이 침전 용기 내에 확립되는 양으로 계량하였다. 모든 금속 염 용액을 부가한 후, 추가적인 탄산나트륨 용액을, 침전 용기 내 pH가 8이 될 때까지 계량하고, 혼합물을 추가적인 15분 동안 이 pH에서 교반하였다. 탄산나트륨 용액의 총 소모량은 4.4 kg이었다. 형성된 현탁액을 여과하고, 세정물이 더 이상 질산염을 함유하지 않을 때까지(< 25 ppm) 고형물을 물로 세정하였다. 생성물을 약 120℃에서 건조시켰다. 이러한 방식으로 제조된 활성 조성물은 약 61 중량%의 CuO 및 39 중량%의 Al2O3를 포함하였다(산화물로서 계산됨).
압출물 제조
160 g의 뵘석(버살 250, 사솔사)을 믹스-뮬러 내에서 포름산(30 중량% 농도)으로 처리하고, 건조된 활성 조성물과 혼합하고, 327 ml의 물을 부가한 후, 강력하게 혼합하였다. 배합된 덩어리를 이어서, 압출시켜, 2 mm의 지름 및 8 mm의 평균 길이를 가진 압출물을 형성하였다. 압출물을 이어서, 약 120℃에서 건조시키고, 600℃에서 소성하였다. 촉매 압출물은 약 50 중량%의 CuO 및 50 중량%의 Al2O3를 포함하였다(산화물로서 계산됨). 촉매 중 약 36%의 산화물 지지체 물질 Al2O3는 결합제로부터 유래한 것이다.
가장 중요한 촉매 특성들을 표 2에 요약하였다. 실시예 1에 상응하는 수소화 실험의 결과들을 표 3에 나타내고, 환원 및 재산화 후의 촉매 압출물의 전자 현미경사진을 도 1에 나타내었다.
비교예 1
압출물 제조
88.7 g의 뵘석(버살 250, 사솔사)을 믹스-뮬러 내에서 포름산(30 중량% 농도)으로 처리하고, 83.4 g의 염기성 탄산구리(말라카이트; CuCO3*Cu(OH)2; 알드리치(Aldrich)사)와 혼합하고, 80 ml의 물을 부가한 후, 강력하게 혼합하였다. 배합된 덩어리를 이어서, 압출시켜, 2 mm의 지름 및 8 mm의 평균 길이를 가진 압출물을 형성하였다. 압출물을 이어서, 약 120℃에서 건조시키고, 600℃에서 소성하였다. 압출물은 50 중량%의 CuO 및 50 중량%의 Al2O3를 포함하였다. 이 실시예에서, 활성 조성물은 지지체 성분을 함유하지 않았고; 따라서 지지체는 사용된 결합제에서만 유래한 것이다.
가장 중요한 촉매 특성들을 표 2에 요약하였다. 본 발명의 것이 아닌 촉매 C1을 사용하고, 실시예 1과 유사한 방식으로 수행된 수소화 실험의 결과들을 표 3에 나타내었다.
촉매 데이터
실시예 부피 밀도 [g/l] 절삭 경도 [N] 지름 [mm] BET [m2/g] 기공 부피
[cm3/g]
D=10-100 nm의 경우
1 906 25 1.7 104 0.31 0.24
2 790 20 1.7 121 0.48 0.36
C 1 620 11 1.8 155 0.59 0.13
수소화 결과
Ex.
압력[바] 열점의 온도
[℃]
WHSV
[MA 질량(kg)/cat 부피(l)*h]
GHSV
[1/h]
공급 c (MA)
[부피%]
C (MA)
[mol%]
S (SA)
[mol%]
S (THF)
[mol%]
S (GBL)
[mol%]
S (BuOH)
[mol%]
1 10 250 0.15 2800 1.25 100 0.7 51.6 45.8 0.3
2 10 250 0.17 3200 1.25 100 1.5 49.3 47.6 0.1
V 1 10 250 0.03 700 1.15 100 60.6 1.0 32.4 0
GHSV 기체 시간당 공간 속도 = 촉매 부피를 기준으로 한 STP에서의 반응 기체의 부피 흐름
C 전환율
S 선택도
명확하게 볼 수 있는 바와 같이, 본 발명에 따른 촉매들은 원하는 생성물 THF 및 GBL에 대한 훌륭한 선택성을 보인다. 크게 감소된 WHSV에도 불구하고, 비교 촉매는 여전히 많은 양의 숙신산 무수물(SA)을 생성한다. 즉, 그 활성이 매우 감소된다.
도 1은 실시예 2에서 기재된 바와 같은 촉매 압출물의 주사 전자 현미경사진 을 보여준다(연마편으로부터 후방산란된 전자에 의해 생성된 화상; 도면에 보여지는 추출물은 약 170x170 ㎛2). 어두운 영역에서는, 실제로 알루미늄만이 EPMA를 이용해서 검출되고(이 주사 전자 화상에서, 비교적 고밀도 영역은, 예를 들어 높은 구리 함량의 결과로서, 더 밝게 보임); 나머지 영역에서는, 알루미늄과 구리 모두 존재한다. 어두운 입자 구역은 약 18%의 이 샘플 중 미립자 산화알루미늄 비율을 나타내며; 본 연마편이 샘플을 대표한다는 것을 추정케 하고, 이는 전체 촉매 압출물 중 약 18 부피%의 미립자 Al2O3와 상응한다.

Claims (11)

  1. 카르보닐 화합물의 수소화를 위한 촉매 성형체로서, 거시적으로 균일한 구조를 갖고, 산화물 지지체 물질 및 촉매의 총 질량 기준 5 내지 85 중량%의 산화구리를 포함하며,
    a) 성형체의 기공 부피는 0.15 ml/g 초과이고, 기공 지름은 10 nm 내지 100 nm 범위이며,
    b) 성형체 중 산화물 지지체 물질은 미세 분산 형태로 존재하고 또한 1 내지 95 부피%의 성형체 부피 비율까지 미립자 형태로 존재하는 촉매 성형체.
  2. 제1항에 있어서, 사용되는 산화물 지지체 물질이 산화알루미늄, 산화티타늄, 산화지르코늄, 산화규소, 산화망간 또는 이들의 혼합물인 촉매 성형체.
  3. 제1항 또는 제2항에 있어서, 산화물 지지체 물질이 Al2O3인 촉매 성형체.
  4. 제3항에 있어서, Al2O3이 X선-무정형 물질로서 존재하는 촉매 성형체.
  5. 제1항 또는 제2항에 있어서, 압출물인 촉매 성형체.
  6. 산화물 지지체 물질 및 활성 성분의 총 질량 기준 10 내지 98 중량%의 산화구리를 포함하는 활성 성분을, 동일한 지지체 물질 또는 이들의 전구체를 포함하는 결합제와 혼합하고, 성형체를 형성하도록 성형하는, 제1항 또는 제2항에 따른 카르보닐 화합물의 수소화를 위한 촉매 성형체의 제조 방법.
  7. 제6항에 있어서, 카르보닐 화합물의 수소화를 위한 촉매 성형체 중 10 내지 98 중량%의 산화물 지지체 물질이, 사용된 결합제로부터 유래되는 것인 제조 방법.
  8. 제1항 또는 제2항에 있어서, 말레산 무수물의 기체-상 수소화를 위한 촉매 성형체.
  9. 삭제
  10. 삭제
  11. 삭제
KR1020067013749A 2003-12-09 2004-12-04 산화구리계 촉매 압출물 및 카르보닐 화합물 수소화에있어서의 이들의 용도 KR101084825B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10357717A DE10357717A1 (de) 2003-12-09 2003-12-09 Katalysatorextrudate auf Basis Kupferoxid und ihre Verwendung zur Hydrierung von Carbonylverbindungen
DE10357717.3 2003-12-09
PCT/EP2004/013809 WO2005058491A1 (de) 2003-12-09 2004-12-04 Katalysatorextrudate auf basis kupferoxid und ihre verwendung zur hydrierung von carbonylverbindungen

Publications (2)

Publication Number Publication Date
KR20060132861A KR20060132861A (ko) 2006-12-22
KR101084825B1 true KR101084825B1 (ko) 2011-11-21

Family

ID=34672549

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067013749A KR101084825B1 (ko) 2003-12-09 2004-12-04 산화구리계 촉매 압출물 및 카르보닐 화합물 수소화에있어서의 이들의 용도

Country Status (9)

Country Link
US (2) US7807603B2 (ko)
EP (1) EP1694438B1 (ko)
JP (1) JP4625470B2 (ko)
KR (1) KR101084825B1 (ko)
CN (1) CN100496718C (ko)
AT (1) ATE489166T1 (ko)
DE (2) DE10357717A1 (ko)
MY (1) MY144948A (ko)
WO (1) WO2005058491A1 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004033556A1 (de) * 2004-07-09 2006-02-16 Basf Ag Katalysatorformkörper und Verfahren zur Hydrierung von Carbonylverbindungen
DE102008008872B4 (de) * 2008-02-13 2010-04-29 Lurgi Gmbh Verfahren zum Herstellen von Fettalkoholen
JP5643197B2 (ja) * 2008-07-09 2014-12-17 ポステック アカデミー−インダストリー ファンデーション 不均一銅ナノ触媒およびその製造方法
US9393369B2 (en) 2008-09-15 2016-07-19 Medimop Medical Projects Ltd. Stabilized pen injector
US8828903B2 (en) * 2008-11-10 2014-09-09 Basf Corporation Copper catalyst for dehydrogenation application
CN102464636A (zh) * 2010-11-13 2012-05-23 华中药业股份有限公司 一种dl-泛内酯的合成方法
US9006489B2 (en) 2011-06-07 2015-04-14 Jiangsu Sinorgchem Technology Co., Ltd. Method for pretreating and using copper-based catalyst
US10335545B2 (en) 2012-01-31 2019-07-02 West Pharma. Services IL, Ltd. Time dependent drug delivery apparatus
US10668213B2 (en) 2012-03-26 2020-06-02 West Pharma. Services IL, Ltd. Motion activated mechanisms for a drug delivery device
US9463280B2 (en) 2012-03-26 2016-10-11 Medimop Medical Projects Ltd. Motion activated septum puncturing drug delivery device
DE102012019123B4 (de) * 2012-09-28 2021-10-21 Clariant International Ltd. Hydrierkatalysator und Verfahren zu dessen Herstellung durch die Verwendung von unkalziniertem Ausgangsmaterial
US9889256B2 (en) 2013-05-03 2018-02-13 Medimop Medical Projects Ltd. Sensing a status of an infuser based on sensing motor control and power input
DE102014013530A1 (de) 2014-09-12 2016-03-17 Clariant International Ltd. Extrudierter Cu-Al-Mn-Hydrierkatalysator
JP6732431B2 (ja) * 2014-11-20 2020-07-29 花王株式会社 脂肪族アルコールの製造方法
US9512054B2 (en) 2015-02-10 2016-12-06 Eastman Chemical Company Method for making a high purity alcohol
US9744297B2 (en) 2015-04-10 2017-08-29 Medimop Medical Projects Ltd. Needle cannula position as an input to operational control of an injection device
RU2609264C1 (ru) 2015-12-09 2017-01-31 Акционерное Общество "Газпромнефть - Московский Нпз" (Ао "Газпромнефть - Мнпз") Способ получения высокооктановых компонентов из олефинов каталитического крекинга
EP3630226A1 (en) 2017-05-30 2020-04-08 West Pharma. Services Il, Ltd. Modular drive train for wearable injector
FR3067342B1 (fr) * 2017-06-13 2022-02-25 Ifp Energies Now Procede de preparation de solides a partir d'un melange d'au moins deux poudres de malachite
RU2677875C1 (ru) * 2017-12-18 2019-01-22 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира и воздуха
WO2020190550A1 (en) 2019-03-19 2020-09-24 Dow Technology Investments Llc Catalyst and process for vapor-phase aldehyde hydrogenation
WO2020205265A1 (en) * 2019-04-01 2020-10-08 Basf Corporation Copper extrudate catalyst and applications for hydrogenation and hydrogenolysis
CN116060025A (zh) * 2021-10-31 2023-05-05 中国石油化工股份有限公司 一种加氢催化剂及其制备方法和应用
WO2023246892A1 (en) * 2022-06-22 2023-12-28 Basf Corporation Shaped catalyst body

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271324A (en) * 1962-06-01 1966-09-06 Ethyl Corp Catalyst composition consisting of copper oxide-iron oxide on alumina
US3447893A (en) * 1966-02-04 1969-06-03 Ethyl Corp Oxidation catalysts
US3438721A (en) * 1966-02-24 1969-04-15 American Cyanamid Co Oxidation catalyst for hydrocarbon combustion exhaust gases and process for using the same
US3661806A (en) * 1970-01-05 1972-05-09 Grace W R & Co Exhaust gas oxidation catalyst and process
US3759845A (en) * 1970-09-16 1973-09-18 Gaf Corp Catalyst for preparing 1,4-butanediol
JPS5338714B2 (ko) * 1971-10-04 1978-10-17
JPS4949953A (ko) * 1972-09-18 1974-05-15
JPS5141026B2 (ko) * 1972-09-20 1976-11-08
IT996627B (it) * 1972-10-13 1975-12-10 Degussa Procedimento per la produzione di un catalizzatore sopportaio
US3988263A (en) * 1974-10-02 1976-10-26 Union Oil Company Of California Thermally stable coprecipitated catalysts useful for methanation and other reactions
US4174355A (en) * 1977-02-22 1979-11-13 The B. F. Goodrich Company Process for removing α-acetylenes from diolefins
US4165546A (en) * 1978-04-24 1979-08-28 Philipson Alvin L Portable cuspidor
US4423155A (en) * 1981-02-20 1983-12-27 Mobil Oil Corporation Dimethyl ether synthesis catalyst
US4601998A (en) * 1983-08-17 1986-07-22 Mobil Oil Corporation Method and catalyst for removing contaminants from hydrocarbonaceous fluids using a copper-group via metal-alumina catalyst
US4666879A (en) * 1985-09-11 1987-05-19 Harshaw/Filtrol Partnership Extruded copper chromite-alumina hydrogenation catalyst
GB8610196D0 (en) * 1986-04-25 1986-05-29 Ici Plc Sulphur compounds removal
US5218003A (en) * 1988-01-14 1993-06-08 Air Products And Chemicals, Inc. Liquid phase process for dimethyl ether synthesis
US4977123A (en) * 1988-06-17 1990-12-11 Massachusetts Institute Of Technology Preparation of extrusions of bulk mixed oxide compounds with high macroporosity and mechanical strength
US5155086A (en) * 1989-09-12 1992-10-13 Engelhard Corporation Hydrogenation catalyst, process for preparing and process of using said catalyst
US5347021A (en) * 1990-04-16 1994-09-13 Isp Investments Inc. Process of vapor phase catalytic hydrogenation of maleic anhydride to gamma-butyrolactone in high conversion and high selectivity using an activated catalyst
US5948726A (en) * 1994-12-07 1999-09-07 Project Earth Industries, Inc. Adsorbent and/or catalyst and binder system and method of making therefor
CA2250132A1 (en) * 1996-03-21 1997-09-25 Mallinckrodt Chemical, Inc. Preparation and use of non-chrome catalysts for cu/cr catalyst applications
US6800665B1 (en) * 1996-05-13 2004-10-05 Jfe Holdings, Inc. Method for producing dimethyl ether
DE69933184T2 (de) * 1998-11-16 2007-08-30 Fushun Research Institute of Petroleum and Petrochemicals, Sinopec, Fushun Kupferhaltiger Katalysator, dessen Verfahren zur Herstellung und seine Verwendung
WO2001037990A1 (en) * 1999-11-03 2001-05-31 Plug Power Inc Thermal regulating catalyst composition
US20020061277A1 (en) * 2000-09-25 2002-05-23 Engelhard Corporation Non-pyrophoric water-gas shift reaction catalysts
DE10061555A1 (de) * 2000-12-11 2002-06-20 Basf Ag Schalenkatalysator für die Hydrierung von Maleinsäureanhydrid und verwandten Verbindungen zu gamma-Butyrolacton und Tetrahydrofuran und Derivaten davon
DE10061558A1 (de) * 2000-12-11 2002-06-13 Basf Ag Verfahren zur Hydrierung von Maleinsäureanhydrid und verwandten Verbindungen in einem Wirbelschichtreaktor
DE10061557A1 (de) * 2000-12-11 2002-06-13 Basf Ag Verfahren zur Hydrierung von Maleinsäureanhydrid und verwandten Verbindungen in zwei hintereinandergeschalteten Reaktionszonen
DE10061556A1 (de) * 2000-12-11 2002-06-13 Basf Ag Verfahren zur Herstellung von Tetrahydrofuran
DE10104226A1 (de) * 2001-01-31 2002-08-01 Basf Ag Kern/Mantel-Katalysatorformkörper
DE10111198A1 (de) * 2001-03-08 2002-09-19 Basf Ag Methanolreformierungskatalysator mit verringertem Volumenschwund
DE10111197A1 (de) * 2001-03-08 2002-09-19 Basf Ag Verfahren zur Herstellung von Katalysatoren mit geringem Volumenschwund
US6664207B2 (en) * 2001-09-26 2003-12-16 Conocophillips Company Catalyst for converting carbon dioxide to oxygenates and processes therefor and therewith
US6800586B2 (en) * 2001-11-23 2004-10-05 Engelhard Corporation NOx reduction composition for use in FCC processes

Also Published As

Publication number Publication date
US7459571B2 (en) 2008-12-02
EP1694438A1 (de) 2006-08-30
KR20060132861A (ko) 2006-12-22
CN100496718C (zh) 2009-06-10
US7807603B2 (en) 2010-10-05
WO2005058491A1 (de) 2005-06-30
DE10357717A1 (de) 2005-07-14
DE502004011938D1 (de) 2011-01-05
JP2007516824A (ja) 2007-06-28
MY144948A (en) 2011-11-30
JP4625470B2 (ja) 2011-02-02
ATE489166T1 (de) 2010-12-15
US20080064883A1 (en) 2008-03-13
US20070117719A1 (en) 2007-05-24
CN1964783A (zh) 2007-05-16
EP1694438B1 (de) 2010-11-24

Similar Documents

Publication Publication Date Title
KR101084825B1 (ko) 산화구리계 촉매 압출물 및 카르보닐 화합물 수소화에있어서의 이들의 용도
KR100549741B1 (ko) 카르보닐 화합물의 수소화 방법
KR101179360B1 (ko) 카르보닐 화합물의 수소화를 위한 촉매 성형체 및 수소화방법
JP4886136B2 (ja) カルボニル化合物を水素化する触媒および方法
JP4664902B2 (ja) 触媒およびカルボニル化合物を水素化する方法
TWI490034B (zh) 製備具有增強氫化活性之經承載氫化觸媒之方法
US20080207953A1 (en) Catalyst and Method for Hyrogenating Carbonyl Compounds
JP2008505156A (ja) 触媒およびカルボニル化合物の水素化法
JP3997054B2 (ja) カルボニル化合物を水素化する方法
KR20080039411A (ko) 카르보닐 화합물의 수소화 촉매 및 방법
KR100839292B1 (ko) 카르보닐 화합물의 수소화 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141029

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151029

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161110

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171025

Year of fee payment: 7