RU2677875C1 - Катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира и воздуха - Google Patents

Катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира и воздуха Download PDF

Info

Publication number
RU2677875C1
RU2677875C1 RU2017144331A RU2017144331A RU2677875C1 RU 2677875 C1 RU2677875 C1 RU 2677875C1 RU 2017144331 A RU2017144331 A RU 2017144331A RU 2017144331 A RU2017144331 A RU 2017144331A RU 2677875 C1 RU2677875 C1 RU 2677875C1
Authority
RU
Russia
Prior art keywords
hydrogen
catalyst
copper
dme
dimethyl ether
Prior art date
Application number
RU2017144331A
Other languages
English (en)
Inventor
Сухэ Дэмбрылович Бадмаев
Владимир Дмитриевич Беляев
Алексей Александрович Печенкин
Владимир Александрович Собянин
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН)
Priority to RU2017144331A priority Critical patent/RU2677875C1/ru
Application granted granted Critical
Publication of RU2677875C1 publication Critical patent/RU2677875C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

Изобретение относится к каталитическому способу осуществления реакции парциального окисления диметилового эфира (ДМЭ). Описано применение медьсодержащей системы, нанесенной на оксид алюминия, в качестве катализатора для получения обогащенной по водороду газовой смеси парциальным окислением диметилового эфира, причем в состав катализатора входит оксид меди в количестве до 20 мас.%, исключая 10 мас.%, остальное AlO. Осуществляют способ получения обогащенной по водороду газовой смеси парциальным окислением диметилового эфира в присутствии оксидного катализатора с вышеописанным применением в качестве катализатора медьсодержащей системы. Технический результат - получение обогащенной по водороду газовой смеси, которая может использоваться для питания топливных элементов различного назначения, в том числе и для топливных элементов. 2 н. и 5 з.п. ф-лы, 8 пр., 4 табл.

Description

Изобретение относится к каталитическому способу осуществления реакции парциального окисления диметилового эфира ДМЭ с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике. Например, в качестве топлива для питания топливных элементов различного назначения, в том числе и для топливных элементов, установленных на передвижных средствах. В настоящее время топливные элементы рассматриваются как альтернативный и экологически чистый источник электрической энергии.
Основным топливом для питания топливных элементов является водород или обогащенная по водороду газовая смесь, которая может быть получена посредством паровой и воздушной конверсии природного газа, бензина (ископаемые топлива) и спиртов. Несмотря на развитую инфраструктуру и относительно низкую цену ископаемых топлив, их использование имеет такие недостатки, как высокая температура конверсии (выше 600°С для природного газа и выше 800°С для бензина). В отличие от ископаемых топлив ДМЭ может легко конвертироваться в водородсодержащий газ при относительно низкой температуре (около 300°С). Важно отметить, что ДМЭ является коррозионно-инертным и нетоксичным соединением. ДМЭ по физико-химическим свойствам близок к сжиженному нефтяному газу и легко хранится и транспортируется. Указанные факты позволяют рассматривать ДМЭ как перспективное сырье для получения водорода для питания топливных элементов.
Исследованию процесса парциального окисления ДМЭ в водородсодержащий газ посвящено немного работ. Согласно этим литературным данным, реакция наиболее эффективно протекает на катализаторах, представляющих собой металлы VIII группы, нанесенные на различные оксидные носители.
Известны следующие системы, представляющие металлы VIII группы, нанесенные на оксидные носители. В работе (Sh. Wang, Т. Ishihara, Y. Takita. Partial oxidation of dimethyl ether over various supported metal catalysts, Appl. Catal. A: Gen, vol. 228 (2002) p.167-176) проведено сопоставительное исследование каталитической активности металлов VIII группы (Rh, Ru, Pt, Со, Ni, Fe), нанесенные на различные носители, такие как оксиды алюминия, кремния, магния, а также смешанных оксиды в парциальном окислении ДМЭ в водородсодержащий газ. В работе (Y. Chen, Z. Shao, N. Xu, Partial oxidation of dimethyl ether to H2/syngas over supported Pt catalyst, J. Natural Gas Chem, vol. - 17 (2008). p. 75-80.) для проведения парциального окисления ДМЭ предложены катализаторы, представляющие собой металлы Pt, нанесенные на церий-циркониевые оксидные носители. Недостатками катализаторов на основе благородных металлов является их высокая себестоимость и высокая температура проведения процесса с использованием этих катализаторов.
Предполагается, что реакция парциального окисления ДМЭ может протекать по последовательной схеме, согласно которой часть ДМЭ окисляется кислородом до H2O и CO2 (реакция 1), затем протекает паровая конверсия ДМЭ (реакция 2) путем взаимодействия оставшегося ДМЭ и образовавшихся по реакции 1 паров воды:
Figure 00000001
Figure 00000002
Известно, что реакция паровой конверсии ДМЭ протекает по двухстадийной схеме через гидратацию ДМЭ в метанол (реакция 3) и паровую конверсию образовавшегося метанола в водородсодержащий газ (реакция 4):
Figure 00000003
Figure 00000004
Кроме того, в ходе реакции может образовываться моноксид углерода, например, по обратной реакции паровой конверсии СО:
Figure 00000005
Известно, что реакции 1, 4 и 5 могут протекать на медьсодержащих центрах, а реакция 3 протекает на кислотных центрах. Следовательно, парциальное окисление ДМЭ в водородсодержащий газ может быть осуществлено на катализаторах, содержащих кислотные и медьсодержащие центры.
Задачей, на решение которой направлено настоящее изобретение, является разработка новой бифункциональной каталитической системы, не содержащей благородные металлы и обладающей высокой каталитической активностью в отношении парциального окисления ДМЭ при низкой температуре, а также разработка процесса получения из ДМЭ газовой смеси, обогащенной по водороду, с использованием этой каталитической системы.
Задача решается разработкой катализатора получения обогащенной по водороду газовой смеси взаимодействием ДМЭ и воздуха или кислорода, представляющего собой бифункциональный катализатор, содержащий кислотные для гидратации ДМЭ (реакция 3) и медьсодержащие центры для глубокого окисления ДМЭ (реакция 1), паровой конверсии метанола (реакция 4) и обратной реакции паровой конверсии СО (реакция 5).
В состав катализатора парциального окисления ДМЭ входит оксид меди до 20 мас. %, предпочтительно, 5-20, остальное - оксид алюминия Al2O3.
В состав катализатора парциального окисления ДМЭ входят оксиды меди и церия до 40 мас. %, предпочтительно, 10-40, остальное - оксид алюминия Al2O3. Медно-цериевые оксиды применяют с весовым соотношением Cu-Се=1:2-2:1.
В состав катализатора парциального окисления ДМЭ входят оксиды меди и цинка до 40 мас. %, предпочтительно, 10-40, остальное - оксид алюминия Al2O3. Медно-цинкоые оксиды применяют с весовым соотношением Cu-Zn=1:2-2:1.
Задача также решается разработкой способа получения обогащенной по водороду газовой смеси взаимодействием ДМЭ и воздуха в присутствии катализатора, представляющего собой нанесенный оксид меди на оксид алюминия. Реакцию осуществляют при 200-350°С, 1-100 атм и мольном соотношении воздух / диметиловый эфир=1-5.
Отличительными признаками предлагаемой каталитической системы является то, что в качестве активных компонентов используется соединения, не содержащие благородные металлы, а также низкая температура процесса 200-350°С.
В предлагаемой каталитической системе активные компоненты гидратации ДМЭ, глубокого окисления ДМЭ, паровой конверсии метанола и обратной реакции паровой конверсии СО находятся на поверхности одного катализатора и, таким образом, обеспечивают бифункциональность катализатора.
Бифункциональные катализаторы CuO-СеО2/γ-Al2O3 и CuO-ZnO/y-Al2O3 готовили пропиткой гранул γ-Al2O3 (Sуд=200 м2/г, объем пор 0,7 см3/г, суммарная концентрация льюисовских и бренстедовских поверхностных кислотных центров 600 мкмоль/г) раствором азотнокислых солей меди и церия/цинка, взятых в заданном соотношении. Полученные образцы сушили на воздухе и затем в течение 2 ч прокаливали при 400°С.
Отличительным признаком предлагаемого способа получения обогащенной по водороду газовой смеси путем взаимодействия ДМЭ и воздуха является использование вышеописанного бифункционального катализатора.
Сущность изобретения иллюстрируются следующими примерами.
Пример 1.
Парциальное окисление ДМЭ осуществляют в установке проточного типа в кварцевом реакторе с внутренним диаметром 4 мм на навеске катализатора 0,5 мл при соотношении воздух : ДМЭ=5:1 или N22:ДМЭ=4:1:1, времени контакта 5000 ч-1, температуре 200°С и давлении 1 атм. Состав оксидного катализатора составляет, мас. %: оксид меди - 20, остальное - оксид алюминия. Полученные результаты приведены в таблице 1.
Пример 2.
Аналогично примеру 1, но реакцию проводят при температуре 250°С, результаты приведены в таблице 1.
Пример 3.
Аналогично примеру 1, но реакцию проводят при температуре 300°С, результаты приведены в таблице 1.
Пример 4.
Аналогично примеру 1, но состав оксидного катализатора составляет, мас. %: оксид меди - 20, оксид церия - 10, остальное - оксид алюминия. Полученные результаты приведены в таблице 2.
Пример 5.
Аналогично примеру 4, но реакцию проводят при температуре 250°С, результаты приведены в таблице 2.
Пример 6.
Аналогично примеру 4, но реакцию проводят при температуре 300°С, результаты приведены в таблице 2.
Пример 7.
Аналогично примеру 1, но время контакта 10000 ч-1, а состав оксидного катализатора составляет, мас. %: оксид меди - 10, оксид цинка - 5, остальное - оксид алюминия. Полученные результаты приведены в таблице 3.
Пример 8.
Аналогично примеру 1, но соотношение воздух : ДМЭ=5:2 или N2:O2:ДМЭ=4:1:2, время контакта 10000 ч-1, а состав оксидного катализатора составляет, мас. %: оксид меди - 10, оксид цинка - 5, остальное - оксид алюминия. Полученные результаты приведены в таблице 4.
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009

Claims (7)

1. Применение медьсодержащей системы, нанесенной на оксид алюминия, в качестве катализатора для получения обогащенной по водороду газовой смеси парциальным окислением диметилового эфира, причем в состав катализатора входит оксид меди в количестве до 20 мас.%, исключая 10 мас.%, остальное Al2O3.
2. Применение по п. 1, отличающееся тем, что в состав катализатора входят медно-цериевые оксиды в количестве до 40 мас.%, остальное Al2O3.
3. Применение по п. 1, отличающееся тем, что в состав катализатора входят медно-цинковые оксиды в количестве до 40 мас.%, остальное A12O3.
4. Применение по п. 2, отличающееся тем, что медно-цериевые оксиды имеют весовое соотношение Cu:Ce=1:2 - 2:1.
5. Применение по п. 3, отличающееся тем, что медно-цинковые оксиды имеют весовое соотношение Cu:Zn=1:2 - 2:1.
6. Способ получения обогащенной по водороду газовой смеси парциальным окислением диметилового эфира в присутствии оксидного катализатора, отличающийся тем, что в качестве катализатора применяют медьсодержащую систему по любому из пп. 1-5.
7. Способ по п. 6, отличающийся тем, что процесс осуществляют при температуре 200-350°С, давлении 1 атм и мольном отношении воздух/ДМЭ=1-5.
RU2017144331A 2017-12-18 2017-12-18 Катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира и воздуха RU2677875C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017144331A RU2677875C1 (ru) 2017-12-18 2017-12-18 Катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира и воздуха

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017144331A RU2677875C1 (ru) 2017-12-18 2017-12-18 Катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира и воздуха

Publications (1)

Publication Number Publication Date
RU2677875C1 true RU2677875C1 (ru) 2019-01-22

Family

ID=65085214

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017144331A RU2677875C1 (ru) 2017-12-18 2017-12-18 Катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира и воздуха

Country Status (1)

Country Link
RU (1) RU2677875C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775522A1 (en) * 1995-11-21 1997-05-28 MONTECATINI TECNOLOGIE S.r.l. Catalysts for the oxychlorination of ethylene, method for preparing them, and oxichlorination method using the same
RU2286210C1 (ru) * 2005-10-17 2006-10-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Бифункциональный катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира
RU2397155C2 (ru) * 2005-01-20 2010-08-20 Полимери Эуропа С.П.А. Способ получения фенола
US7807603B2 (en) * 2003-12-09 2010-10-05 Basf Aktiengesellschaft Catalyst extrudates based on copper oxide and their use for hydrogenating carbonyl compounds
RU138423U1 (ru) * 2013-06-05 2014-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Устройство получения обогащенной водородом газовой смеси
RU2533608C1 (ru) * 2013-04-16 2014-11-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0775522A1 (en) * 1995-11-21 1997-05-28 MONTECATINI TECNOLOGIE S.r.l. Catalysts for the oxychlorination of ethylene, method for preparing them, and oxichlorination method using the same
US7807603B2 (en) * 2003-12-09 2010-10-05 Basf Aktiengesellschaft Catalyst extrudates based on copper oxide and their use for hydrogenating carbonyl compounds
RU2397155C2 (ru) * 2005-01-20 2010-08-20 Полимери Эуропа С.П.А. Способ получения фенола
RU2286210C1 (ru) * 2005-10-17 2006-10-27 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Бифункциональный катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира
RU2533608C1 (ru) * 2013-04-16 2014-11-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана
RU138423U1 (ru) * 2013-06-05 2014-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Устройство получения обогащенной водородом газовой смеси

Similar Documents

Publication Publication Date Title
JP5592250B2 (ja) 二酸化炭素の合成ガスへの接触水素化
Palma et al. Enhancing Pt-Ni/CeO2 performances for ethanol reforming by catalyst supporting on high surface silica
Song et al. Methanol steam reforming for hydrogen production over ternary composite ZnyCe1Zr9Ox catalysts
JP4951352B2 (ja) メタノールと過酸化物との間の触媒反応
ES2879398T3 (es) Catalizador de cáscara de huevo
US7771702B2 (en) Sulfur-tolerant catalysts and related precursors and processes
WO2002038268A1 (fr) Catalyseur de reformage pour hydrocarbures et procede de reformage correspondant
Wang et al. Production of hydrogen by ethanol steam reforming over nickel–metal oxide catalysts prepared via urea–nitrate combustion method
TWI294413B (en) Method for converting co and hydrogen into methane and water
US20100227232A1 (en) Initiating a Reaction Between Hydrogen Peroxide and an Organic Compound
JP2019155227A (ja) Co2メタン化触媒及びこれを用いた二酸化炭素の還元方法
Yan et al. Hydrogen production by steam reforming of dimethyl ether and CO-PrOx in a metal foam micro-reactor
Fajín et al. Light alcohols reforming towards renewable hydrogen production on multicomponent catalysts
JP5593106B2 (ja) 水素製造方法、水素製造装置及び燃料電池システム
Ledesma et al. CuZn/ZrO2 catalytic honeycombs for dimethyl ether steam reforming and autothermal reforming
RU2677875C1 (ru) Катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира и воздуха
US20060111457A1 (en) Process for the production of a hydrogen-rich reformate gas by methanol autothermal reforming reaction
KR101245484B1 (ko) 수성가스 전환 반응용 촉매와 이 촉매를 이용하여 수성가스전환 반응에 의한 합성가스의 제조방법
JP3837520B2 (ja) Coシフト反応用触媒
Dongmei et al. Steam reforming of dimethyl ether over coupled catalysts of CuO-ZnO-Al2O3-ZrO2 and solid-acid catalyst
RU2286210C1 (ru) Бифункциональный катализатор и способ получения обогащенной по водороду газовой смеси из диметилового эфира
Sepúlveda et al. The promoter effect of Co on the catalytic activity of the Cu oxide active phase supported on Al 2 O 3 in the hydrogenolysis of glycerol
Iwasa et al. Effect of Cs promoter on the activity of Pd/ZnO catalyst for selective oxidation of CO in H2-rich gas
RU2533608C1 (ru) Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана
JPS60202740A (ja) メタノ−ル改質用触媒