KR100984452B1 - 마이크로 유체 시스템용 지지 유니트 및 그 제조방법 - Google Patents

마이크로 유체 시스템용 지지 유니트 및 그 제조방법 Download PDF

Info

Publication number
KR100984452B1
KR100984452B1 KR1020047013114A KR20047013114A KR100984452B1 KR 100984452 B1 KR100984452 B1 KR 100984452B1 KR 1020047013114 A KR1020047013114 A KR 1020047013114A KR 20047013114 A KR20047013114 A KR 20047013114A KR 100984452 B1 KR100984452 B1 KR 100984452B1
Authority
KR
South Korea
Prior art keywords
adhesive layer
support
hollow
microfluidic system
support unit
Prior art date
Application number
KR1020047013114A
Other languages
English (en)
Other versions
KR20040089663A (ko
Inventor
카와조에히로시
나카소아키시
아리케시게하루
Original Assignee
히다치 가세고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다치 가세고교 가부시끼가이샤 filed Critical 히다치 가세고교 가부시끼가이샤
Publication of KR20040089663A publication Critical patent/KR20040089663A/ko
Application granted granted Critical
Publication of KR100984452B1 publication Critical patent/KR100984452B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00119Arrangement of basic structures like cavities or channels, e.g. suitable for microfluidic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00822Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00869Microreactors placed in parallel, on the same or on different supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0832Geometry, shape and general structure cylindrical, tube shaped
    • B01L2300/0838Capillaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0481Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0655Valves, specific forms thereof with moving parts pinch valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/051Micromixers, microreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/032Gluing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Clinical Laboratory Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 제1의 지지체(2)와, 이 제1의 지지체(2)의 표면에 설치된 제1의 접착제층 (1a)과, 제1의 접착제층(1a)의 표면에 임의의 형상으로 부설된 복수의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군과, 이 제1의 중공 필라멘트군에 직교하는 방향으로 부설된 복수의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군과, 이 제2의 중공 필라멘트군의 표면에 설치된 제2의 접착제층(1b)과, 제2의 접착제층(1b)의 표면에 설치된 제2의 지지체(6)를 갖춘다. 제1 및 제2의 중공 필라멘트군은 유로층을 구성한다.

Description

마이크로 유체 시스템용 지지 유니트 및 그 제조방법{MICRO FLUID SYSTEM SUPPORT UNIT AND MANUFACTURING METHOD THEREOF}
본 발명은 지지체상에 중공(中空) 필라멘트를 소정의 형상으로 부설 고정한 마이크로 유체 시스템용 지지 유니트 및 그 제조방법에 관한 것이다.
화학이나 생화학 분야에서는 마이크로 전자기계 시스템(MEMS:Micro Electro Mechanical System) 기술을 응용한 반응계나 분석장치의 소형화에 관한 연구가 진행되고 있다. 종래의 연구개발에서는, 구성요소의 하나가 되는 마이크로 모터, 마이크로 펌프의 단일기능을 갖는 마이크로화한 기계요소(마이크로 머신)가 있다.
목적하는 화학반응이나 화학분석을 행하기 위해서는, 마이크로 머신 등의 각종 부품을 복수 조합시켜 시스템화할 필요가 있다. 일반적으로 이들 시스템의 완성형은 마이크로 리액터(Micro Reactor System), 마이크로 화학분석 시스템(μTAS:Micro Total Analysis System) 등으로 불리워지고 있다. 통상적으로, 마이크로 머신은 반도체 제조 프로세스를 적용하여 실리콘칩상에 형성한다. 복수의 요소를 하나의 칩에 형성(집적)하고 시스템화하는 것은, 원리적으로는 가능하고, 그 연구도 실제 행해지고 있다. 그러나, 그 제작 프로세스는 복잡하고, 대량 생산 레벨로 이것을 제조하는 것은 곤란하다고 예상되고 있다. 복수의 마이크로 머신 등을 접속 하여 유체 회로(시스템)를 형성하는 방법으로서, 실리콘 기판의 소정의 위치에 에칭 등으로 홈(溝)을 형성하여 유로(流路)로 하는 칩형 기판(나노리액터)이 제안되고 있다. 상기의 집적화하는 방법보다 제조는 훨씬 용이하다고 하는 장점이 있다. 그러나, 유로 단면적이 작아서 유체와 홈측면과의 계면 저항이 크고, 그 유로길이는 최대 mm 단위로 한 것이 현재 상태이고, 실제로 행해지는 합성반응이나 화학분석에서는 반응이나 분석의 스텝수나 양이 제한되어 버린다.
삭제
발명의 개시
본 발명은 상기 과제를 해결하기 위하여 이루어진 것이다. 즉, 본 발명의 목적은, 제조가 용이하고, 또한 반응이나 분석의 스텝수나 양을 제한하지 않는 cm 단위의 긴 거리의 마이크로 유체 시스템용 지지 유니트를 제공하는 것이다.
본 발명의 다른 목적은, 복잡한 유체 회로라도 장소를 필요로 하지 않는 소형 마이크로 유체 시스템용 지지 유니트를 제공하는 것이다.
본 발명의 또 다른 목적은, 복잡한 유체 회로를 형성할 수 있는 마이크로 유체 시스템용 지지 유니트의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 제1의 특징은, (a) 제1의 지지체와, (b) 이 제1의 지지체의 표면에 설치된 제1의 접착제층과, (c) 이 제1의 접착제층의 표면에 임의의 형상으로 부설된 중공 필라멘트를 구비하고, (d) 이 제1의 접착제층의 표면에 임의의 형상으로 부설된 마이크로 유체 시스템의 유로층으로서 기능하는 중공 필라멘트를 구비하는 마이크로 유체 시스템용 지지 유니트인 것을 요지로 한다. 본 발명의 제1의 특징에 있어서는, 이 중공 필라멘트에 교차하는 모양으로 중공 필라멘트를 더욱 입체적으로 부설할 수 있기 때문에, 정밀도가 우수하고, 제조가 용이하고, 또한 반응이나 분석의 스텝수나 양을 제한하지 않는 cm 단위의 긴 거리의 마이크로 유체 시스템용 지지 유니트를 제공할 수 있다. 또한, 본 발명의 제1의 특징에 의하면, 복잡한 유체 회로라도 장소를 필요로 하지 않는 소형 마이크로 유체 시스템용 지지 유니트를 제공할 수 있기 때문에, 마이크로 유체 시스템 자체의 컴팩트화를 꾀할 수도 있다.
또한, 본 발명의 제2의 특징은, (a) 제1의 지지체와, (b) 이 제1의 지지체의 표면에 설치된 제1의 접착제층과, (c) 제1의 접착제층의 표면에 임의의 형상으로 부설되고, 각각이 마이크로 유체 시스템의 복수의 유로층으로서 기능하는 복수의 중공 필라멘트로 이루어지는 제1의 중공 필라멘트군을 구비하는 마이크로 유체 시 스템용 지지 유니트인 것을 요지로 한다. 본 발명의 제2의 특징에 있어서는, 복수의 중공 필라멘트로 이루어지는 제1의 중공 필라멘트군에, 이것들에 교차하는 복수의 중공 필라멘트로 이루어지는 제2의 중공 필라멘트군을 입체적으로 부설할 수 있기 때문에, 정밀도가 좋고, 제조가 용이하고, 또한 반응이나 분석의 스텝수나 양을 제한하지 않는 cm 단위의 긴 거리의 마이크로 유체 시스템용 지지 유니트를 제공 할 수 있다. 또한, 본 발명의 제2의 특징에 의하면, 복잡한 유체 회로라도 장소를 필요로 하지 않는 소형 마이크로 유체 시스템용 지지 유니트를 제공할 수 있기 때문에, 마이크로 유체 시스템 자체의 컴팩트화를 꾀할 수도 있다.
본 발명의 제3의 특징은, (a) 제1의 지지체의 표면에 제1의 접착제층을 형성하는 스텝과, (b) 이 제1의 접착제층의 표면에 중공 필라멘트를 부설하는 스텝을 포함하는 마이크로 유체 시스템용 지지 유니트의 제조방법인 것을 요지로 한다. 본 발명의 제3의 특징과 관련된 마이크로 유체 시스템용 지지 유니트의 제조방법은, 제1의 특징에서 설명한 마이크로 유체 시스템용 지지 유니트를 사용하는 제조방법이다. 본 발명의 제3의 특징에 의하면, 복잡한 유체 회로를 형성할 수 있는 소형의 마이크로 유체 시스템용 지지 유니트의 제조방법을 제공할 수 있다.
본 발명의 제4의 특징은, (a) 제1의 지지체의 표면에 제1의 접착제층을 형성하는 스텝과, (b) 이 제1의 접착제층의 표면에 복수의 중공 필라멘트로 이루어지는 제1의 중공 필라멘트군을 부설하는 스텝을 포함하는 마이크로 유체 시스템용 지지 유니트의 제조방법인 것을 요지로 한다. 본 발명의 제4의 특징과 관련된 마이크로 유체 시스템용 지지 유니트의 제조방법은, 제2의 특징에서 설명한 마이크로 유체 시스템용 지지 유니트를 사용하는 제조방법이다. 본 발명의 제4의 특징에 의하면, 복잡한 유체 회로를 형성할 수 있는 소형의 마이크로 유체 시스템용 지지 유니트의 제조방법을 제공할 수 있다.
발명을 실시하기 위한 최선의 형태
도면을 참조하여 본 발명의 실시예를 설명한다. 이하의 도면의 기재에 있어서, 동일 또는 유사한 부분에는 동일 또는 유사한 부호로 나타내고 있다. 다만, 도면은 모식적인 것이며, 두께와 평면치수와의 관계, 각층의 두께의 비율 등은 현실의 것과는 다르다. 따라서, 구체적인 두께나 치수는 이하의 설명에 비추어 판단해야 할 것이다. 또한, 도면 상호간에 있어서도 서로의 치수의 관계나 비율이 다른 부분이 포함되어 있는 것은 물론이다.
(제1의 실시예)
(마이크로 유체 시스템용 지지 유니트)
도 1에 도시한 바와 같이, 본 발명의 제1의 실시예에 따른 마이크로 유체 시스템용 지지 유니트는, 제1의 지지체(2)와, 이 제1의 지지체(2)의 표면에 설치된 제1의 접착제층(1a)과, 제1의 접착제층(1a)의 표면에 임의의 형상으로 부설된 복수의 중공 필라멘트(501, 502, 503,····, 508)로 이루어지는 제1의 중공 필라멘트군과, 이 제1의 중공 필라멘트군과 교차하는 방향으로 부설된 복수의 중공 필라멘트(511, 512, 513,····, 518)로 이루어지는 제2의 중공 필라멘트군과, 이 제2의 중공 필라멘트군의 표면에 설치된 제2의 접착제층(1b)과, 제2의 접착제층(1b)의 표면에 설치된 제2의 지지체(6)를 구비한다. 복수의 중공 필라멘트(501, 502, 503,····, 508)로 이루어지는 제1의 중공 필라멘트군, 및 복수의 중공 필라멘트(511, 512, 513,····, 518)로 이루어지는 제2의 중공 필라멘트군은, 각각 본 발명의 제1의 실시예에 따른 마이크로 유체 시스템용 지지 유니트의 약액(藥液)의 유로층을 구성하고 있다.
복수의 중공 필라멘트(501~508 및 511~518)의 내경 및 외경은 목적에 따라 선택하면 좋지만, 밀리리터(mL)~마이크로리터(μL) 단위의 유체를 흘리기 때문에, 내경은 Φ 0.05mm~0.5mm 정도의 것이 바람직하다. 이러한 지름의 중공 필라멘트(501~508 및 511~518)를 제작할 경우는, 폴리이미드(PI), 폴리에테르에테르케톤(PEEK), 폴리에테르이미드(PEI), 폴리페닐렌설파이드(PPS), 4불화에틸렌·퍼플루오로알콕시에틸렌 공중합체(PFA) 등의 재질이 특히 적합하다. Φ 0.05mm 이하의 내경으로 하면, 중공 필라멘트(501~508 및 511~518)의 내벽면과 유체와의 계면저항의 영향을 무시할 수 없게 된다. 한편, Φ 0.5mm 보다 큰 내경에서는 유체를 연속적으로 흘리기 위해서는 고압이 필요하게 되어 다른 부품에의 부담이 늘고, 또한 유체중에의 기포의 혼입 등이 생겨버린다. 복수의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군, 및 복수의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군에 흘리고 있는 유체에 화학반응을 생기게 할 경우는, 중공 필라멘트(501~508, 511~518)는 내약품성을 구비하는 것이 좋다. 또한, 중공 필라멘트(501~508, 511~518)에 흘리고 있는 유체에 광을 조사하여, 광화학반응을 생기게 하거나, 분광 분석을 할 경우는, 중공 필라멘트(501~508, 511~518)에 광투과성이 있으면 좋다. 광투과율은 목적에 맞는 값이 좋지만, 목적 파장에서 80% 이상인 것이 바람직하고, 더욱이, 90%이상이면 최적이다. 즉, 도 9a에 도시한 바와 같이, 소정 개소(箇所)의 제2의 지지체(6), 제2의 접착제층(1b) 및 중공 필라멘트(58)가 투명한 것, 또는 중공 필라멘트(58)가 노출하고, 또한 적어도 이 개소의 중공 필라멘트(58)가 투명하면 좋다.
중공 필라멘트(501~508, 511~518)를 제1의 지지체(2)에 고정하는 것은, 자유로운 상태로 하는 것과 비교하여, 주위의 온도·전기장·자기장 등 여러가지 환경을 제어하기 쉽다고 하는 우수한 장점이 있다. 이것은, 화학반응이나 화학분석을 행할 경우에 유리하고, 특히 마이크로화된 반응계 및 분석계에 있어서는 불가결하다. 또한, 부품과의 배치(alignment)가 용이해서 접속하기 쉽다. 또한, 다수의 중공 필라멘트(501~508, 511~518)를 컴팩트하게 수용할 수 있다고 하는 이점도 있다.
또한, 화학분석을 행할 경우, 복수의 중공 필라멘트(501~508, 511~518)를 갖고 있는 것이 작업 효율을 높이는 점에서 좋다. 이 경우, 제1의 중공 필라멘트군을 구성하는 복수의 중공 필라멘트(501~508)는, 동시에 분석을 개시했을 때, 거의 동시에 분석 결과를 얻을 수 있어야 한다고 하는 관점으로부터, 서로 같은 길이인 것이 요구된다. 마찬가지로, 제2의 중공 필라멘트군을 구성하는 복수의 중공 필라멘트(511~518)도 같은 길이인 것이 요구된다. 즉, 시료의 유입부부터 유출부까지 외부로부터 받는 에너지량이 균일하고, 또한 다른 중공 필라멘트가 받는 에너지량과도 거의 차이가 없는 것이 중요하다. 이러한 관점으로부터, 중공 필라멘트(501~508, 511~518)에 전해지는 열의 분포가 균일해지도록 중공 필라멘트(501~508, 511~518)가 2장 이상의 지지체 사이에 끼워져 있어 있는 것이 바람직하 다.
또한, 제1의 중공 필라멘트군을 구성하는 복수의 중공 필라멘트(501~508) 및 제2의 중공 필라멘트군을 구성하는 복수의 중공 필라멘트(511~518)는, 각각 서로 같은 간격으로 배열되어 있는 것이 바람직하다. 또한, 제1의 중공 필라멘트군을 구성하는 복수의 중공 필라멘트(501~508) 및 제2의 중공 필라멘트군을 구성하는 복수의 중공 필라멘트(511~518)의 관의 두께는 균일한 쪽이 좋다.
복수의 중공 필라멘트(501~508, 511~518)는, 시판되는 각종 재질의 튜브를 사용할 수 있고, 목적에 맞는 임의의 재질의 것을 선택하면 좋다. 예컨대, 폴리염화비닐수지(PVC), 폴리염화비닐리덴수지, 폴리초산비닐수지, 폴리비닐알코올수지(PVA), 폴리스틸렌수지(PS), 스틸렌·아크릴로니트릴·부타디엔 공중합체(ABS), 폴리에틸렌수지(PE), 에틸렌·초산비닐 공중합체(EVA), 폴리프로필렌수지(PP), 폴리4 -메틸펜텐(TPX), 폴리메틸메타크릴레이트(PMMA), PEEK, PI, PEI, PPS, 초산셀룰로스, 4불화에틸렌수지(PTFE), 4불화·6불화 프로필렌수지(FEP), PFA, 4불화에틸렌·에틸렌 공중합체(ETFE), 3불화염화에틸렌(PCTFE), 불화비닐리덴(PVDF), 폴리에틸렌테레프탈레이트수지(PET), 폴리아미드수지(나일론), 폴리아세탈(POM), 폴리페닐렌테레프탈레이트(PPO), 폴리카보네이트수지(PC), 폴리우레탄수지, 폴리에스테르 엘라스토머, 폴리올레핀수지, 실리콘수지, 폴리이미드수지 등의 유기재질이나, 유리, 석영, 카본 등의 무기재질이 있다.
제1의 지지체(2)의 재질, 형상, 사이즈 등은 목적에 따라 선정하면 좋다. 또한 제1의 지지체(2)의 판두께, 필름두께의 적정한 범위는 목적이나 요청되는 기능 에 따라 다르다. 예컨대, 제1의 지지체(2)에 전기절연성을 요할 경우는, 프린트 배선판 등에 사용되고 있는 에폭시 수지판 또는 폴리이미드 수지판이나, 플렉시블 배선판에 사용되고 있는 듀퐁사제의 카프톤 필름으로 대표되는 바와 같은 폴리이미드 필름이나, 도오레사제의 루밀라 필름으로 대표되는 바와 같은 PET 필름을 선정한다. 제1의 지지체(2)의 판두께(필름두께)는 두꺼운 쪽이 바람직하고, 0.05mm 이상인 것이 특히 바람직하다. 또한, 제1의 지지체(2)에 방열성을 요할 경우는, 알루미늄(Al)판, 동(Cu)판, 스테인레스판, 티타늄(Ti)판 등의 금속제의 판을 선정한다. 제1의 지지체(2)의 판두께는 두꺼운 쪽이 더욱 바람직하고, 0.5mm 이상인 것이 특히 바람직하다. 또한, 제1의 지지체(2)에 광투과성을 요할 경우는, 유리, 석영판 등 투명 무기재료판이나, 폴리카보네이트, 아크릴 등 투명 유기재료판이나 필름을 선정한다. 제1의 지지체(2)의 판두께(필름두께)는 얇은 쪽이 바람직하고, 0.5mm 이하인 것이 특히 바람직하다. 또한, 제1의 지지체(2)의 표면에 동 등의 금속 패턴을 에칭이나 도금으로 형성한 소위 플렉시블 회로기판이나 프린트 회로기판을 사용해도 좋다. 이로써, 마이크로 머신, 발열 소자, 압전(壓電) 소자, 온도·압력·변형·진동·전압·자계 등 각종의 센서나 저항·콘덴서·코일·트랜지스터나 IC 등의 전자부품, 또한 반도체 레이저(LD), 발광 다이오드(LED) 및 포토다이오드(PD) 등의 광부품 등, 여러가지 부품이나 소자를 실장하는 단자나 회로를 형성할 수 있어, 시스템화가 용이해진다.
제1의 지지체(2)의 표면에 형성하는 제1의 접착제층(1a)은, 감압성이나 감광성을 구비하는 접착제가 바람직하다. 이것들의 재료는, 압력이나 광 등을 인가(印 加)하므로써 점착성이나 접착성을 발현시키므로, 중공 필라멘트(중공 캐필러리)를 기계적으로 부설할 경우에 적합하다. 감압성 접착제로는, 고분자량 합성고무나 실리콘수지계의 접착제가 적합하다. 고분자량 합성 고무의 접착제로서는, 예컨대, 토오넥스사제의 비스타넥스 MML-120과 같은 폴리이소부틸렌이나, 니혼제온사제의 니폴 N1432 등의 아크릴로니트릴부타디엔 고무나, 듀퐁사제의 하이퍼론 20과 같은 크롤술폰화 폴리에틸렌 등을 사용할 수 있다. 이 경우는, 이들 재료를 용제에 용해해서 제1의 지지체(2)에 직접 도포건조하여 제1의 접착제층(1a)을 형성할 수 있다. 또한, 필요에 따라 이들 재료에 가교제를 배합하는 것도 가능하다.
또한, 일동전공사제 No. 500이나 3M사제의 A-10, A-20, A-30 등의 아크릴수지계의 양면 점착테이프 등도 사용할 수 있다. 실리콘수지계의 접착제로서는, 고분자량의 폴리디메틸실록산 또는 폴리메틸페닐실록산으로 이루어지고, 말단에 실라놀기를 갖는 실리콘 고무와, 메틸실리콘레진 또는 메틸페닐실리콘이라고 하는 실리콘레진을 주성분으로 한 실리콘 접착제가 적합하다. 응집력을 제어하기 위해서 각종의 가교를 행하여도 좋다. 예컨대, 실란의 부가반응, 알콕시 축합반응, 아세톡시 축합반응, 과산화물 등에 의한 라디컬 반응 등에 의해 가교를 행할 수 있다. 이러한 접착제로서 시판되는 것으로는, YR3286(GE도시바 실리콘 주식회사제, 상품명)이나 TSR1521(GE도시바 실리콘 주식회사제, 상품명), DKQ9-9009(다우코닝사제, 상품명)등이 있다. 감광성 접착제로서는, 예컨대, 프린트 기판의 에칭 레지스트로서 사용되고 있는 드라이필름 레지스트나 숄더 레지스트 잉크나 프린트 기판의 감광성 빌드업(build-up)재 등을 적용할 수 있다. 구체적으로는, 히다치화성공업(주)제의 H-K440이나 치바가이기사제의 프로빔 등이 있다. 특히, 빌드업 배선판 용도로서 제공되고 있는 포토비어 재료는 프린트 배선판의 제조공정이나 납땜에 의한 부품 실장공정에도 견딜 수 있다. 이와 같은 재료로서는 빛에 의해 가교가능한 관능기를 가진 공중합체 또는 단량체를 함유한 조성물 및/또는 빛 이외에 열로 가교가능한 관능기와 열중합 개시제를 혼합한 조성물이면 어느 것도 사용가능하다.
제1의 접착제층(1a)으로서는, 에폭시수지, 브롬화에폭시수지, 고무변성 에폭시수지, 고무분산 에폭시수지 등의 지환식 에폭시수지 또는 비스페놀 A계 에폭시수지 및 이들 에폭시수지의 산변성 물질 등을 들 수 있다. 특히, 광조사를 하여 광경화를 행하는 경우에는, 이들 에폭시수지와 불포화산과의 변성물질이 바람직하다. 불포화산으로서는 무수 말레인산 무수물, 테트라히드로프탈산 무수물, 이타콘산 무수물, 아크릴산, 메타크릴산 등을 들 수 있다. 이것들은 에폭시수지의 에폭시기에 대하여 같은 양 또는 같은 양 이하의 배합비율로 불포화카르본산을 반응시키는 것에 의해 얻어진다. 이외에도, 멜라민수지, 시아네이트에스테르수지와 같은 열경화성 재료, 또는 이것과 페놀수지와의 조합 등도 바람직한 적용예 중의 하나이다. 또한, 가요성 부여재의 사용도 적합한 조합이며, 그 예로서는 부타디엔아크릴로니트릴 고무, 천연 고무, 아크릴 고무, SBR, 카르본산 변성 부타디엔아크릴로니트릴 고무, 카르본산 변성 아크릴 고무, 가교 NBR 입자, 카르본산 변성 가교 NBR 입자 등을 들 수 있다. 이러한 여러가지 수지성분을 가하는 것으로, 광경화성, 열경화성이라고 하는 기본성능을 유지한 채, 경화물에 여러가지 성질을 부여할 수 있게 된다. 예컨대, 에폭시수지나 페놀수지와의 조합에 의해 경화물에 양호한 전기절연성을 부 여할 수 있게 된다. 고무 성분을 배합한 경우에는, 경화물에 강인한 성질을 부여함과 동시에, 산화성 약액에 의한 표면처리에 의해 경화물 표면의 조화(粗化)를 간단히 행할 수 있게 된다. 또한, 보통 사용되는 첨가제(중합안정제, 레벨링제, 안료, 염료 등)를 첨가해도 좋다. 또한, 필러를 배합하는 것도 하등 지장이 없다. 필러로서는 실리카, 용융 실리카, 탈크, 알루미나, 수화알루미나, 황산바륨, 수산화칼슘, 에어로질, 탄산칼슘 등의 무기미립자, 분말상 에폭시수지, 분말상 폴리이미드 입자 등의 유기 미립자, 분말상 폴리테트라플루오로에틸렌 입자 등을 들 수 있다. 이들 필러에는 미리 커플링 처리를 실시하여도 좋다. 이것들의 분산은 니더, 볼밀, 비즈밀, 3본롤 등 공지의 혼련방법에 의해 달성된다. 이러한 감광성 수지의 형성방법은, 액상의 수지를 롤코트, 커튼코트, 딥코트 등의 방법으로 도포하는 방식이나, 절연수지를 캐리어 필름상에 필름화해서 라미네이트로 적층시키는 방식을 사용할 수 있다. 구체적으로는, 히타치화성공업(주)제의 포토비어 필름 BF-8000 등이 있다.
제2의 지지체(6)는, 제1의 지지체(2)에서 나타낸 각종의 재료를 사용할 수 있다. 더욱이, 제2의 지지체(6)와 복수의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군 사이에 제2의 접착제층(1b)을 삽입하므로써, 복수의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군, 및 복수의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군을 보호하는 작용이 한층 더 증대하여 바람직하다. 제2의 지지체(6)로서 망목(網目)상 또는 다공성의 필름을 선택하면, 라미네이트시의 기포의 삽입이라는 불량이 생기기 어려워진다. 이 망목상 필름 또는 직물로서는, 동경스크린사제의 폴리에스테르 메쉬 TB-70 등이 있고, 다공성의 필름으로서는, 셀라니즈사제의 듀라가이드나 다이셀 화학공업사제의 셀가이드 2400 등이 있다.
제2의 접착제층(1b)은, 제1의 접착제층(1a)에서 나타낸 각종의 재료를 사용할 수 있다.
(마이크로 유체 시스템용 지지 유니트의 제조방법)
다음으로, 본 발명의 제1의 실시예에 따른 마이크로 유체 시스템용 지지 유니트의 제조방법에 대해서 도 2~도 8을 사용하여 설명한다.
(a) 우선, 도 2에 도시한 바와 같이, 제1의 지지체(2)의 표면에, 제1의 지지체(2)와 동일 형상으로, 거의 동일 사이즈의 제1의 접착제층(la)을 형성한다. 그리고, 도 3에 도시한 바와 같이, 제1의 접착제층(1a)의 표면의 주변부에 균등하게 4개의 직사각형의 이형층(3a, 3b, 3c, 3d)을 형성한다. 이러한 이형층(3a, 3b, 3c, 3d)을 제1의 접착제층(1a)의 표면에 형성하기 위해서는, 제1의 접착제층(1a)의 표면의 소정의 개소에, 시판되는 이형제를 미리 도포하는 방법이나, 이형 필름을 붙이는 방법이 있다. 다음으로, 이 제1의 지지체(2)에 커터 등으로 슬릿(4a, 4b, 4c, 4d)을 설치한다. 슬릿(4a, 4b, 4c, 4d)은, 도 3b에 도시한 바와 같이, 예컨대, 4개의 이형층(3a, 3b, 3c, 3d)의 각각의 내측의 주변의 근방의 위치에 형성한다.
(b) 다음으로, 도 4에 도시한 바와 같이, 제1의 접착제층(1a)이 형성된 제1의 지지체(2)의 표면에서, 이형층(3b)으로부터 이형층(3d)을 향하는 수직방향으로 복수의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군을 부설한다. 이 부설의 경우에는, 도시를 생략하고 있지만, 도 5a와 같은 NC 포선기(布線機)(61)를 사용한다(이러한 포선기로서, 일본 특개 2001-59910호 공보에 개시되어 있는 포선장치가 있다. 또한, 일본 특공소 50-9346호 공보에 개시되어 있는 장치는 포선시에 하중과 초음파 진동을 인가할 수 있다. 또한, 일본 특공평 7-95622호 공보에 개시되어 있는 장치는 하중의 인가와 레이저광의 조사가 가능하다). NC 포선기(61)는 수치제어되고, 초음파 진동과 하중의 출력 제어가 가능해서, NC 포선기(61)를 사용하는 것에 의해, 복수의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군의 부설 패턴을 정밀하게 제어할 수 있다. 구체적으로는, NC 포선기(61)를 제1의 지지체(2)에 대하여 수평으로 이동시키면서, 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군에 하중 및 초음파에 의한 진동을 건다.
(c) 다음으로, 도 5에 도시한 바와 같이, 복수의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군을, 이미 부설된 복수의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군에 교차하도록, 이형층(3a)으로부터 이형층(3c)을 향하는 방향으로 부설한다. 이 부설의 경우는, 도 5a에 도시한 바와 같이, NC 포선기(61)를 사용한다. 복수의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군의 부설 패턴을 정밀하게 제어할 수 있다. 구체적으로는, NC 포선기(61)를 제1의 지지체(2)에 대하여 수평으로 이동시키면서, 복수의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군에 하중 및 초음파에 의한 진동을 건다. 단, 이 NC 포선기(61)는 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군과 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군이 교차하는 부분에서는, 하중과 초음파 진동이 멈추도록 설정한다. 제1의 중공 필라멘트군과 제2의 중공 필라멘트군의 교차부의 근방에서, 하중 및/또는 초음파 진동을 정지하므로써, 중공 필라멘트(501~508, 511~518)에의 응력을 저감하고, 중공 필라멘트(501~508, 511~518)의 파손을 막을 수 있다.
(d) 다음으로, 도 6에 도시한 바와 같이, 이미 부설된 복수의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군, 및 복수의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군을 덮도록, 제1의 지지체(2)와 동일형상으로 거의 동일 사이즈의 제2의 접착제층(1b)을 형성한다. 또한, 제1의 지지체(2)와 동일 형상으로, 동일 사이즈의 제2의 지지체(6)를 준비하고, 제2의 접착제층(1b) 위에 제2의 지지체(6)를 접착(라미네이트)한다. 제2의 지지체(6)를 라미네이트하는 데에는 각종 방법이 고려된다. 이 때에, 제2의 지지체(6)가 망목상 또는 다공성의 필름인 경우는, 약간의 압력을 가하므로써 계면에 삽입되는 공기 등도 없이, 보호 필름을 제2의 접착제층(1b)에 밀착시킬 수 있다. 그러나, 제2의 지지체(6)가 균일한 필름인 경우는, 잔존 기포는 피할 수 없다. 이 경우는, 고압에서 프레스하는 방법도 고려되지만, 중공 필라멘트(501~508, 511~518)에 큰 힘이 가해져 중공부분의 변형이 생긴다. 더욱이, 제1의 중공 필라멘트군과 제2의 중공 필라멘트군의 교차부에서 국소적으로 큰 힘이 걸려 파손해버리는 등의 문제가 있다. 이러한 경우는, 진공 라미네이트 장치를 사용하여, 제2의 지지체(6)가 제2의 접착제층(1b)에 밀착하기 전에 진공상태로 하고, 그 후 저압에서 압착하므로써 계면에 삽입되는 공기도 없고, 중공 필라멘트(501~508, 511~518)에 큰 응력이 잔존하지 않아 파손도 없기 때문에 바람직하다.
(e) 그 후, 도 7b의 점선으로 도시한 원하는 형상의 절단선(7)을 따라 가공 절단한다. 제2의 지지체(6)를 라미네이트한 후에, 원하는 형상으로 마이크로 유체 시스템용 지지 유니트를 가공하는 방법으로서는, 커터에 의한 절단이나, 원하는 모양으로 미리 제작한 금속제의 칼형을 눌러서 절단가공하는 등의 방법이 있다.그러나, 커터로는 자동화에 어려움이 있고, 칼형은 치공구(治工具)의 제작에 시간이 걸리기 때문에, NC 구동의 레이저 가공기 쪽이 데이터의 준비만으로 작업할 수 있기 때문에 바람직하다. 또한, 레이저 가공기에 있어서도, 절단 전용의 출력이 큰 가공기보다도 프린트 기판용의 소경 천공 용도의 레이저 천공기가 바람직하다. 프린트 기판용의 레이저 천공기는, 단위시간당의 에너지 출력이 크고, 동일한 장소를 복수의 숏(shot)수로 천공하고, 구멍지름의 반정도씩 이동시켜 가는 방식이며, 레이저에 의한 타서 눌음 현상이 대단히 적어 바람직하다. 절단선(7)은 도 7b에 도시한 바와 같이, 미리 슬릿(4a, 4b, 4c, 4d)을 넣어 둔 위치(4a)에 겹치도록 가공 절단한다. 도 7a에 도시한 바와 같이, 미리 슬릿(4a, 4b, 4c, 4d)을 넣어 두는 것에 의해, 중공 필라멘트(518)의 단부 근방에서, 제1의 접착제층(1a)과 제2의 접착제층(1b)이 자동적으로 박리된다. 도시를 생략하고 있지만, 다른 중공 필라멘트(501~508, 511, 512, 513,·····, 517)의 단부도 동일하게 제1의 접착제층(1a)과 제2의 접착제층(1b)이 자동적으로 박리된다. 제1의 접착제층(1a)에 복수의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군, 및 복수의 중공 필라멘트 (511~518)로 이루어지는 제2의 중공 필라멘트군을 부설하고, 그 후에 제2의 접착제층(1b)을 개재하여 제2의 지지체(6)를 부착시킨 구조에서는, 복수의 중공 필라멘트(501~508, 511~518)의 단부를 노출하는 공정이 번잡하게 된다. 이 때문에, 불필요하게 되어서 최후에 제거되는 부분과, 제1의 지지체(2)로서 잔존하는 부분의 경계선이 되는 곳에 미리 슬릿(4a, 4b, 4c, 4d)을 설치해 두면, 중공 필라멘트(501~508, 511~518)의 단부를 노출하는 처리가 용이해진다.
(f) 도 7b의 점선으로 도시하는 절단선(7)을 따라 절단 가공한 후, 중공 필라멘트(501~508)의 단부 부근에 배치된 이형층(3b) 및 이형층(3d), 또한, 중공 필라멘트(511~518)의 단부 부근에 배치된 이형층(3a) 및 이형층(3c)를 제거하면, 도 1에 도시하는 마이크로 유체 시스템용 지지 유니트가 완성된다.
상기한 바와 같이, 불필요하게 되어서 최후에 제거되는 제1의 지지체(2)의 단부의 표면에 도 4에 도시한 바와 같이, 이형층(3a, 3b, 3c, 3d)을 마련해 두면, 마이크로 유체 시스템용 지지 유니트의 단부에서 복수의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군, 및 복수의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군을 각각 취출(取出)하는 처리를 더욱 용이하게 행할 수 있다. 그러나, 중공 필라멘트(501~508, 511~518)는 노출하는 부분의 길이에 대해서 주의해야 한다. 중공 필라멘트(501~508, 511~518)의 노출하지 않는 부분은 고정되어 있어, 중공 필라멘트(501~508, 511~518)내의 유체에 대하여, 온도, 유속분포, 영동속도분포 및 인가전압 등의 인자를 제어하기 쉽다. 한편, 중공 필라멘트(501~508, 511~518)의 노출하는 부분은, 고정되지 않고 자유로운 상태이므로, 전술 하는 각 인자를 제어하는 것은 어렵기 때문이다. 또한, 중공 필라멘트(501~508, 511~518)의 노출하는 부분은 취급 부주의 등에 의한 파손이 발생하기 쉬워진다. 따라서, 노출시키는 길이는 가능한 한 짧게 하는 것이 중요하고, 적어도 노출시키는 부분의 길이는 노출시키지 않는 부분의 길이보다 짧게 하는 것이 바람직하다.
또한, 본 발명의 제1의 실시예에 따른 마이크로 유체 시스템용 지지 유니트의 제조방법에 있어서는, 중공의 부재(중공 필라멘트)(501~508, 511~518)를 사용하고 있으므로, 설계나 제조에는 상응하는 고안이 필요하게 된다. 상기한 제1의 중공 필라멘트군과 제2의 중공 필라멘트군의 교차부의 부설 조건 이외에, 보호 필름층이 되는 제2의 지지체(6)의 형성 조건도 고려되고 있다. 더욱이, 복수의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군, 및 복수의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군의 각각의 직선부의 부설 조건이나, 중공 필라멘트(501~508, 511~518)의 곡률조건도 고려할 필요가 있다. 이러한 조건은 중공 필라멘트(501~508, 511~518)의 재질이나 제1의 접착제층(1a)의 사양에 크게 의존하므로, 일반적으로는 설정할 수 없다. 즉, 사용하는 중공 필라멘트(501~508, 511~518)나 제1의 접착제층(1a)에 알맞는 설계·제조 조건을 설정할 필요가 있다. 이 작업을 게을리 하면, 양호한 중공부를 확보할 수 없을 뿐만 아니라, 중공 필라멘트(501~508, 511~518)에 결함이 생겨 유체가 누설하는 사고 등이 생긴다.
(제2의 실시예)
본 발명의 제2의 실시예에 따른 마이크로 유체 시스템용 지지 유니트는, 도 8에 도시한 바와 같이, 제1의 접착제층(1a), 제2의 접착제층(1b) 및 제2의 지지체(6)를 벽부로 하고, 제1의 지지체(2)를 저부로 하는 중계부(8)를 구비하는 점이, 도 1에 도시한 본 발명의 제1의 실시예에 따른 마이크로 유체 시스템용 지지 유니트와 다르고, 이것 이외는 본 발명의 제1의 실시예와 같으므로 중복 기재는 생략한다.
중계부(8)는, 도 8에 도시한 바와 같이, 제1의 접착제층(1a)과 제2의 접착제층(1b) 사이로부터 중공 필라멘트(58)를 노출하는 구조로 되어 있다. 노출한 중공 필라멘트(58)는 유체를 배출한다. 중계부(8)는 배출된 유체를 혼합, 또는 분기시킨다. 중계부(8)의 형상이나 사이즈는 유체의 유량에 따라 정하면 좋다. 예컨대, 2~3개의 내경 φ 200㎛의 중공 필라멘트(58)로 형성한 유로와, 그 중공 필라멘트(58)를 유지하는 제1의 접착제층(1a)과 제2의 접착제층(1b)의 두께의 합계가 200㎛인 경우, 중계부(8)는 φ 2mm~φ 7mm 정도의 원주형상이 좋다.
중계부(8)가 되는 소정 개소의 제1의 접착제층(la), 제2의 접착제층(1b) 및 중공 필라멘트(58)의 제거 가공에는 레이저 가공이 바람직하다. 특히, 제거하는 부분의 부피, 즉 중계부(8)의 부피가 mm3 단위 이하인 작은 경우, 레이저 가공이 적합하다. 레이저 가공에 사용하는 레이저는, 탄산 가스 레이저, YAG 레이저, 엑시머 레이저 등이며, 제1의 접착제층(1a), 제2의 접착제층(1b) 및 중공 필라멘트(58)의 재질에 따라 선택하면 좋다. 한편, 중계부(8)를 레이저로 가공할 경우는, 제1의 지지체(2)의 표면에 레이저의 스토퍼(stopper)가 되는 동이나 알루미늄으로 된 금속 박막을 형성한 것을 사용하면 좋다. 중계부(8)의 부피가 cm3 단위 이상인 큰 범위를 제거할 경우는, 드릴 등의 기계가공을 적용해도 좋다. 기계가공의 경우, 절삭시에 생기는 수지 쓰레기를 제거하는 디스미어(desmear) 처리가 추가된다.
제2의 지지체(6)를 중계부(8)의 일부로 하는 방법으로서는, 제2의 지지체(6)에 제2의 접착제층(1b)을 접착한 후, 제2의 지지체(6)에 중계부(8)의 일부가 되는 형상으로 가공을 실시하는 공정이 있다. 이 경우는, 주사침 등의 니들로 제2의 지지체(6)를 찌르는 방법 등이 적합하다.
또 다른 방법으로서는, 제1의 접착제층(1a)과 제2의 접착제층(1b)에 중계부(8)를 형성할 때, 동시에 제2의 지지체(6)에도 중계부(8)의 일부가 되는 형상으로 가공을 실시하는 방법이 있다. 이 경우는, 전술한 레이저로 일괄해서 가공을 하는 방법 등이 적합하다.
또 다른 방법으로서는, 제2의 지지체(6)에 미리 중계부(8)의 일부가 되는 형상으로 가공을 실시해 두고, 이것을 제2의 접착제층(1b)에 접착하는 방법이 있다. 제2의 지지체(6)에 실시하는 가공법으로서는 드릴가공, 펀칭 및 레이저 가공 등이 있다.
본 발명의 제2의 실시예에 따른 마이크로 유체 시스템용 지지 유니트에 의하면, 중계부(8)를 구비하는 것에 의해, 중공 필라멘트(58)를 흐르는 유체를 혼합 또는 분기시킬 수 있다. 더욱이, 제2의 지지체(6)를 중계부(8)의 일부로 하므로써 중계부(8)를 열린 구조로 할 수 있으므로, 외부로부터 중계부에 새로운 유체를 주입 하거나, 또는 중계부(8)에 있는 유체를 외부로 취출할 수 있다.
도 1a는, 본 발명의 제1의 실시예에 따른 마이크로 유체 시스템용 지지 유니트의 단면도이고, 도 1b는, IA-IA선 화살표방향으로부터 본 단면도가 도 1a에 대응하는 평면도이다.
도 2는, 본 발명의 제1의 실시예에 따른 마이크로 유체 시스템용 지지 유니트의 제조방법을 설명하는 공정단면도(그것의 1예)이다.
도 3a는, 본 발명의 제1의 실시예에 따른 마이크로 유체 시스템용 지지 유니트의 제조방법을 설명하는 공정단면도(그것의 2예)이고, 도 3b는, ⅢA-ⅢA선 화살표방향으로부터 본 단면도가 도 3a에 대응하는 평면도이다.
도 4a는, 본 발명의 제1의 실시예에 따른 마이크로 유체 시스템용 지지 유니트의 제조방법을 설명하는 공정단면도(그것의 3예)이고, 도 4b는, IVA-IVA선 화살표방향으로부터 본 단면도가 도 4a에 대응하는 평면도이다.
도 5a는, 본 발명의 제1의 실시예에 따른 마이크로 유체 시스템용 지지 유니트의 제조방법을 설명하는 공정단면도(그것의 4예)이고, 도 5b는, VA-VA선 화살표방향으로부터 본 단면도가 도 5a에 대응하는 평면도이다.
도 6a는, 본 발명의 제1의 실시예에 따른 마이크로 유체 시스템용 지지 유니트의 제조방법을 설명하는 공정단면도(그것의 5예)이고, 도 6b는, ⅥA-ⅥA선 화살표방향으로부터 본 단면도가 도 6a에 대응하는 평면도이다.
도 7a는, 본 발명의 제1의 실시예에 따른 마이크로 유체 시스템용 지지 유니 트의 제조방법을 설명하는 공정단면도(그것의 6예)이고, 도 7b는, ⅦA-ⅦA선 화살표방향으로부터 본 단면도가 도 7a에 대응하는 평면도이다.
도 8a는, 본 발명의 제2의 실시예에 따른 중계부를 구비하는 마이크로 유체 시스템용 지지 유니트의 조감도이고, 도 8b는, 도 8a의 ⅧB-ⅧB선 방향의 단면도이다.
도 9a는, 본 발명의 그 밖의 실시예에 따른 마이크로 유체 시스템용 지지 유니트용 중공 필라멘트의 구조를 설명하는 조감도(그것의 1예)이고, 도 9b는, 본 발명의 그 밖의 실시예에 따른 마이크로 유체 시스템용 지지 유니트용 중공 필라멘트의 구조를 설명하는 조감도(그것의 2예)이다.
도 10은, 본 발명의 그 밖의 실시예에 따른 중계부를 구비하는 마이크로 유체 시스템용 지지 유니트의 단면도이다.
도 11a는, 도 11c에 도시하는 본 발명의 또 다른 실시예에 따른 마이크로 유체 시스템용 지지 유니트의 평면도의 XIA-XIA선 화살표방향으로부터 본 단면도이고, 도 11b는, 도 11c에 도시하는 평면도의 XIB-XIB선 화살표 방향으로부터 본 단면도이다.
도 12는, 도 11에 도시한 본 발명의 또 다른 실시예에 따른 마이크로 유체 시스템용 지지 유니트의 조감도이다.
도 13은, 본 발명의 또 다른 실시예에 따른 마이크로 유체 시스템용 지지 유니트의 변형예를 나타내는 조감도이다.
(실시예1)
제1의 지지체(2)로 두께 75㎛의 듀퐁사제 캅톤 300H를 사용하고, 그 표면에 도 2에 도시한 바와 같이, 제1의 접착제층(1a)으로서 두께 250㎛이고, 실온에서 점착성인 3M사제 VBH A-10 필름을 롤라미네이트하였다. 이 제1의 지지체(2)의 원하는 위치에 도 3에 도시한 바와 같이, 이형층(3a, 3b, 3c, 3d)으로서 편면 이형지를, 이형면이 접착제면에 밀착하도록 설치하였다. 더욱이, 도 4에 도시한 바와 같이, 커터로 제1의 지지체(2)의 원하는 위치에 슬릿(4a, 4b, 4c, 4d)을 넣었다. 이것에 도 5a에 도시한 바와 같이, 초음파 진동과 하중의 출력 제어가 가능하고, NC 제어로 X-Y 테이블을 가동할 수 있는 NC 포선기(61)를 사용하고, 히토시레이 공업주식회사의 고기능 엔프라 튜브(재질:PEEK, 내경 0.2mm, 외경 0.4mm)(62)로 이루어지는 중공 필라멘트(501~508, 511~518)를 부설하였다. 부설하는 중공 필라멘트(501~508, 511~518)에는, 하중 80g과 주파수 30kHz의 초음파에 의한 진동을 걸었다. 도 5b에 도시한 바와 같이, 중공 필라멘트(501~508, 511~518)의 부설은, 반경 5mm의 원호상(円弧狀)으로 행하고, 교차하는 부분도 설치하였다. 그 교차하는 부분의 근방에서는, 하중과 초음파 진동을 정지하는 것으로 하였다. 제2의 지지체(6)로서, 듀퐁사제 캅톤 300H의 표면에 3M사제 VBH A-10 필름을 롤라미네이트한 것을 사용하고, 도 6에 도시한 바와 같이, 진공 라미네이트로 복수의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군을 부설한 표면에 라미네이트하였다. 그 후의 외형가공에서는, 프린트 기판용의 소경 천공 용도의 레이저 천공기를 사용하고, 펄스 폭 5ms, 숏수 4숏으로 0.2mm의 구멍을 0.1mm 간격으로 이동시키고, 도 7에 도시하는 원하는 절단선(7)을 따라, 폭이 넓은 십자모양으로 가공 절단하였다. 이 때, 0.4mm 피치로 8개를 모아서 플랫케이블(flat cable)상이 되는 부분에서 미리 슬릿(4a, 4b, 4c, 4d)을 넣어 둔 부분과 겹치도록 가공하였다. 그 후, 중공 필라멘트(501~508, 511~518)의 단부 부근의 제1의 지지체(2)에 이형층(3a, 3b, 3c, 3d)이 붙어 있는 부분은 용이하게 제거할 수 있었다. 그리고, 8개의 전체 길이 20cm의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군, 및 8개의 전체 길이 20cm의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군을, 각각의 단부의 10mm의 길이를 노출시킨 형상으로 마이크로 유체 시스템용 지지 유니트를 제작하였다. 부설 부분 전반, 특히 교차하는 부분에서 중공 필라멘트의 파손은 없었다.
그 결과, 복수의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군, 및 복수의 중공 필라멘트(511~518)로 이루어지는 제2의 중공 필라멘트군으로 형성한 유로의 위치 편차는 설계도면에 대하여 ±10㎛ 이내로 유지되었다. 마이크로 유체 시스템용 지지 유니트를 온도조절기내에 넣고, 80℃로 유지하고, 액상의 착색 잉크를 한 방향의 말단으로부터 유입하고, 유출까지의 시간을 스톱워치 등의 계측 기기로 계측했을 경우, 8개가 거의 같은 타이밍(±1초 이하)으로 다른 말단으로부터 유출하였다.
(실시예2)
제1의 지지체(2)로 두께 0.5mm의 알루미늄판을 사용하고, 도 2에 도시한 바와 같이, 그 표면에 두께 100㎛의 제1의 접착제층(1a)으로서 비점착형 감압 접착제 다우코닝 아시아사제의 S9009를 롤라미네이트하였다. 또한, 도 3에 도시한 바와 같이, 중공 필라멘트의 말단부 부근의 표면에서 불필요하게 되는 부분에, 점착성이 없는 필름으로서 편면 이형지로 이루어지는 이형층(3a, 3b, 3c, 3d)을 이형면이 접착제면에 밀착하도록 설치하였다. 이것에, 도 4 및 도 5에 도시한 바와 같이, 초음파 진동과 하중의 출력 제어가 가능하고, NC 제어로 X-Y 테이블을 가동할 수 있는 NC 포선기(61)를 사용하고, 하기테크사의 유리 튜브 ESG-2(내경 0.8mm, 외경 1mm)를 부설하였다. 부설하는 중공 필라멘트(501~508, 511~518)에는, 하중 100g과 주파수 20kHz의 초음파에 의한 진동을 걸었다. 도 5b에 도시한 바와 같이, 중공 필라멘트(501~508, 511~518)의 부설은 반경 10mm의 원호상으로 하고, 교차하는 부분도 설치하였다. 그 교차하는 부분의 근방에서는, 하중과 초음파 진동을 정지하는 것으로 하였다. 제2의 지지체(6)로는 필름 지지체와 같은 듀퐁사제 캅톤 200H를 사용하고, 도 6에 도시한 바와 같이, 진공 라미네이트를 사용하여, 중공 필라멘트(501~508, 511~518)를 시설한 지지 유니트상에 라미네이트하였다. 이 때, 유입부, 유출부 및 교차부의 중공 필라멘트(501~508, 511~518) 근방에 온도측정용의 열전쌍을 매립하였다. 그 후, 도 7에 도시하는 외형가공에서는, 프린트 기판용의 외형가공기를 사용하여 원하는 모양으로 절단하였다. 이 때, 1mm 피치로 12개를 모아서 플랫케이블상이 되는 부분에서 미리 슬릿(4a, 4b, 4c, 4d)을 넣어 둔 부분과 겹치도록 가공하였다. 그 후, 복수의 중공 필라멘트(501~508, 511~518)의 단부 부근의 지지체에 점착성이 없는 필름이 붙어 있는 부분은 용이하게 제거할 수 있고, 12개의 전체 길이가 40cm인 중공 필라멘트(501~508, 511~518)를 50mm의 길이로 노출시킨 형상의 마 이크로 유체 시스템용 지지 유니트를 제작할 수 있었다. 중공 필라멘트(501~508, 511~518)로 형성한 유로의 위치 편차는, 설계도면에 대하여 ±20㎛ 이내로 유지되었다. 부설 부분 전반, 특히 교차 배선 부분에서 중공 필라멘트(501~508, 511~518)의 파손은 없었다.
공립 전자산업제의 필름 히트 FTH-40을 알루미늄판 이면의 전면에 붙여 90℃로 설정하였다. 약 20℃의 물을 한쪽의 말단으로부터 유입하고, 다른 말단으로부터 유출한 물의 온도를 측정한 바, 88±1℃이었다. 또한, 유입부, 유출부 및 교차부의 각 온도는 89±O.5℃이었으며, 정밀도가 우수한 온도제어가 가능하였다.
(실시예3)
도 8에 도시한 바와 같이, 제1의 지지체(2)로 두께 18㎛의 동을 표면에 갖는 동클래드 적층판(판두께 0.2mm)을 사용하고, 그 표면에 제1의 접착제층(1a) 및 제2의 접착제층(1b)으로서, 실온에서 비점착성 접착제인 다우코닝 아시아사제 S9009(두께 200㎛)를 롤라미네이트하였다. 이것에 초음파 진동과 하중의 출력 제어가 가능하고, NC 제어로 X-Y 테이블을 가동할 수 있는 멀티 와이어용 포선기를 사용하고, 히토시레이 공업주식회사의 고기능 엔프라 튜브(재질:PEEK, 내경 0.2mm, 외경 0.4mm)를 부설하였다. 부설하는 중공 필라멘트(58)에는, 하중 80g과 주파수 30kHz의 초음파에 의한 진동을 걸었다. 중공 필라멘트(58)의 부설은, 반경 5mm의 원호상으로 하고, 교차하는 부분도 설치하였다. 그 교차부의 근방에서는, 하중과 초음파 진동을 정지하는 것으로 하였다. 제2의 지지체(6)로서, 듀퐁사제 캅톤 200H의 표면에 다우코닝 아시아사제 S9009(두께 200㎛)를 롤라미네이트한 것을 사용하고, 진공 라미네이트로 중공 필라멘트(58)를 부설한 표면에 라미네이트하였다.
그 후, 중계부(8)가 되는 개소의 제2의 지지체(6), 제1의 접착제층(1a), 제2의 접착제층(1b) 및 중공 필라멘트(58)에 대하여 프린트 기판용의 소경 천공 용도의 레이저 천공기를 사용하여 펄스 폭 5ms, 숏수를 4숏으로 φ 0.2mm의 구멍을 뚫었다. 그 후, 로터로 외형가공하고, 복수의 유로가 접속한 중계부(8)를 갖는 마이크로 유체 시스템용 지지 유니트를 제작할 수 있었다.
(그 밖의 실시예)
본 발명은 상기의 형태에 의해 기재하였지만, 이 개시의 일부로 되는 부분 및 도면은 본 발명을 한정하는 것으로 이해해서는 안되다. 이 개시로부터 당업자에게는 여러가지 대체 실시예, 실시예 및 운용기술이 명확하게 될 것이다.
예컨대, 도 9a에 도시한 바와 같이, 마이크로 유체 시스템용 지지 유니트의 일부에 관통 구멍을 설치하고, 캠 부착 모터 등으로 중공 필라멘트(58)의 일부에 시간 주기적인 힘을 가해 이 개소의 중공 필라멘트를 변형시키고, 이 개소에 있는 유체를 이동시켜, 맥동류를 생기게 하는 마이크로 펌프, 또는 마이크로 밸브와 같은 수단을 사용할 경우는, 중공 필라멘트(58)에 탄성이 있으면 좋다. 중공 필라멘트(58)는 영율 103MPa 이하인 것이 특히 바람직하다.
또한, 도 9b에 도시한 바와 같이, 노출한 중공 필라멘트(58)의 일부에 금속막(59)을 형성하고, 전압 등을 인가하기 위한 단자를 형성할 수 있다. 이 경우, Cu, Al, 니켈(Ni), 크롬(Cr), 금(Au) 등을 단층, 또는 다층화하고, 도금이나 증착 등으로 형성하면 좋다.
또한, 마이크로 유체 시스템용 지지 유니트는 도 8a, 도 8b에 도시한 바와 같이, 개구부인 중계부(8)를 구비하고 있었지만, 중계부(8)가 유체의 혼합 또는 분지만을 행할 경우, 도 10에 도시한 바와 같이, 제2의 지지체(6)를 제거가공하지 않고 닫힌 구조로 하여도 좋다.
더욱이, 제1의 중공 필라멘트군과 제2의 중공 필라멘트군은 반드시 90도로 직교하고 있을 필요는 없고, 교차하고 있으면 좋다. 따라서, 예컨대, 제1 및 제2의 중공 필라멘트군 뿐만 아니라, 또한 제3의 중공 필라멘트군을 부설하는 것도 가능하다.
한편, 중공 필라멘트는 반드시 교차시킬 필요는 없고, 도 11 및 도 12에 도시한 바와 같이, 한 방향으로 주행하는 복수의 중공 필라멘트(501~508)로 이루어지는 제1의 중공 필라멘트군만으로 구성해도 좋다.
또한, 도 13에 도시한 바와 같이, 만곡을 그리는 복수의 중공 필라멘트(511~518)를 부설해도 좋다.
한편, 중공 필라멘트는 반드시 복수 부설되어 있지 않아도 좋고, 즉 중공 필라멘트는 단수여도 좋다.
이상과 같이, 본 발명에 의하면 제조가 용이하고, 또한 반응이나 분석의 공정수나 양을 제한하지 않는 cm 단위의 긴 거리의 마이크로 유체 시스템용 지지 유니트를 제공할 수 있다.
그 결과, 본 발명에 의하면 정밀도가 좋고, 또한 제조 편차가 적은 유체 회로(마이크로 유체 시스템)를 제공할 수 있다. 더욱이, 입체적으로 복수의 중공 필라멘트로 이루어지는 제1의 중공 필라멘트군과, 이것에 직교하는 복수의 중공 필라멘트로 이루어지는 제2의 중공 필라멘트군을 부설할 수 있기 때문에, 복잡한 유체 회로라도 소형의 마이크로 유체 시스템을 제공할 수 있다.
또한, 본 발명에 의하면, 중공 필라멘트를 배열해 유체의 유로로 한 마이크로 유체 시스템용 지지 유니트와, 그러한 마이크로 유체 시스템용 지지 유니트를, 정밀도가 좋고, 또한 제조 편차가 적게 제조하는 방법을 제공할 수 있다.

Claims (26)

  1. 제1의 지지체와,
    상기 제1의 지지체의 표면에 설치된 제1의 접착제층과,
    상기 제1의 접착제층의 표면에 부설된 마이크로 유체 시스템의 유로층으로서 기능하고, 만곡을 갖는 중공 필라멘트
    를 구비하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  2. 제1의 지지체와,
    상기 제1의 지지체의 표면에 설치된 제1의 접착제층과,
    상기 제1의 접착제층의 표면에 부설되고, 각각이 마이크로 유체 시스템의 복수의 유로층으로서 기능하고, 만곡을 갖는 복수의 중공 필라멘트로 이루어지는 제1의 중공 필라멘트군
    을 구비하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  3. 제 2항에 있어서,
    상기 제1의 중공 필라멘트군의 표면에 설치된 제2의 접착제층과,
    상기 제2의 접착제층의 표면에 설치된 제2의 지지체
    를 더 구비하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  4. 제 2항 또는 제 3항에 있어서,
    상기 제1의 접착제층의 표면에서 상기 제1의 중공 필라멘트군과 서로 교차하는 방향으로 부설되고, 상기 마이크로 유체 시스템의 다른 복수의 유로층으로서 기능하는, 복수의 중공 필라멘트로 이루어지는 제2의 중공 필라멘트군을 더 구비하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  5. 제 2항 또는 제 3항에 있어서,
    상기 복수의 중공 필라멘트의 일부가, 상기 제1의 지지체로부터 노출해 있는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  6. 제 2항 또는 제 3항에 있어서,
    상기 복수의 중공 필라멘트의 적어도 1개의 일부에 금속막이 형성되어 있는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  7. 제 2항 또는 제 3항에 있어서,
    상기 복수의 중공 필라멘트의 적어도 1개의 일부가 광투과성의 재질로 형성된 광투과부를 구비하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  8. 제1의 지지체와,
    상기 제1의 지지체의 표면에 설치된 제1의 접착제층과,
    상기 제1의 접착제층의 표면에 부설된, 만곡을 갖는 복수의 중공 필라멘트와,
    상기 제1의 접착제층과 상기 중공 필라멘트상에 설치된 제2의 접착제층과,
    상기 제2의 접착제층의 표면에 설치된 제2의 지지체와,
    상기 제1의 접착제층과 상기 제2의 접착제층에 설치되고, 상기 중공 필라멘트의 경로와 연통하는 중계부
    를 구비하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  9. 제 8항에 있어서, 상기 중계부는 상기 제2의 지지체의 일부를 포함하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  10. 제1의 지지체의 표면에 제1의 접착제층을 형성하는 스텝과,
    상기 제1의 접착제층의 표면에 만곡을 갖는 중공 필라멘트를 부설하는 스텝
    을 포함하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트의 제조방법.
  11. 제1의 지지체의 표면에 제1의 접착제층을 형성하는 스텝과,
    상기 제1의 접착제층의 표면에 만곡을 갖는 복수의 중공 필라멘트로 이루어지는 제1의 중공 필라멘트군을 부설하는 스텝
    을 포함하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트의 제조방법.
  12. 제 11항에 있어서,
    상기 제1의 접착제층을 형성하는 스텝과, 상기 제1의 중공 필라멘트군을 부설하는 스텝 사이에,
    상기 제1의 접착제층의 표면의 중공 필라멘트를 노출시키는 개소에 이형층을 설치하는 스텝과,
    상기 제1의 지지체에 슬릿을 설치하는 스텝
    을 더 포함하고, 상기 제1의 중공 필라멘트군은 상기 1쌍의 이형층의 쌍방의 표면에 접하여 부설되는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트의 제조방법.
  13. 제 11항 또는 제 12항에 있어서,
    상기 제1의 중공 필라멘트군을 부설하는 스텝 후, 상기 제1의 접착제층의 표면에서 상기 제1의 중공 필라멘트군과 서로 교차하는 방향으로 복수의 중공 필라멘트로 이루어지는 제2의 중공 필라멘트군을 부설하는 스텝을 더 포함하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트의 제조방법.
  14. 제 11항 또는 제 12항에 있어서,
    상기 제1의 중공 필라멘트군을 부설하는 스텝 후,
    상기 제1의 중공 필라멘트군의 표면에 제2의 접착제층을 형성하는 스텝과,
    상기 제2의 접착제층의 표면에 제2의 지지체를 접착하는 스텝
    을 더 포함하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트의 제조방법.
  15. 제1의 지지체의 표면에 제1의 접착제층을 형성하는 스텝과,
    상기 제1의 접착제층의 표면에 만곡을 갖는 복수의 중공 필라멘트를 부설하는 스텝과,
    상기 제1의 접착제층과 상기 중공 필라멘트상에 제2의 접착제층을 형성하는 스텝과,
    상기 제1의 접착제층 및 상기 제2의 접착제층에 상기 중공 필라멘트와 연통하는 중계부를 형성하는 스텝과,
    상기 제2의 접착제층의 표면에 제2의 지지체를 접착하는 스텝
    을 포함하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트의 제조방법.
  16. 제 15항에 있어서, 상기 제1의 접착제층 및 상기 제2의 접착제층에 중계부를 형성하는 스텝은, 상기 제2의 지지체도 상기 중계부의 일부가 되도록 형성하는 것을 더 포함하는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트의 제조방법.
  17. 제 2항 또는 제 3항에 있어서,
    상기 복수의 중공 필라멘트의 적어도 1개의 일부가 광투과성의 재질로 형성되는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  18. 제 1항, 제 2항 또는 제 8항 중 어느 한 항에 있어서,
    상기 중공 필라멘트의 부설 형상은 상기 제1의 접착제층에 의하여 고정되는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  19. 삭제
  20. 삭제
  21. 제 8항에 있어서,
    상기 제1의 접착제층과 상기 제2의 접착제층이 접착되어 있는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  22. 제 8항에 있어서,
    상기 제1의 접착제층과 상기 제2의 접착제층과의 사이의 상기 중공 필라멘트의 주위에 공극이 있는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  23. 제 1항, 제 2항 또는 제 8항 중 어느 한 항에 있어서,
    상기 제1의 지지체의 표면에 단자 또는 회로가 형성되는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  24. 제 1항, 제 2항 또는 제 8항 중 어느 한 항에 있어서,
    상기 제1의 지지체의 표면에 마이크로 머신, 발열소자, 압전소자, 센서, 전자부품, 광부품으로부터 선택되는 적어도 하나가 실장되는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  25. 제 1항, 제 2항 또는 제 8항 중 어느 한 항에 있어서,
    상기 중공 필라멘트는, 직선부를 갖는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
  26. 제 1항, 제 2항 또는 제 8항 중 어느 한 항에 있어서,
    상기 중공 필라멘트의 단부가, 상기 제1의 지지체로부터 노출해 있는 것을 특징으로 하는 마이크로 유체 시스템용 지지 유니트.
KR1020047013114A 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트 및 그 제조방법 KR100984452B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2002048580 2002-02-25
JPJP-P-2002-00048580 2002-02-25
JP2002292978 2002-10-04
JPJP-P-2002-00292978 2002-10-04
JP2003046414A JP3933058B2 (ja) 2002-02-25 2003-02-24 マイクロ流体システム用支持ユニット及びその製造方法
JPJP-P-2003-00046414 2003-02-24
PCT/JP2003/002066 WO2003070623A1 (en) 2002-02-25 2003-02-25 Micro fluid system support unit and manufacturing method thereof

Related Child Applications (3)

Application Number Title Priority Date Filing Date
KR1020067016791A Division KR100984938B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020067016790A Division KR100984919B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020067016792A Division KR100984956B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트

Publications (2)

Publication Number Publication Date
KR20040089663A KR20040089663A (ko) 2004-10-21
KR100984452B1 true KR100984452B1 (ko) 2010-09-29

Family

ID=27761226

Family Applications (8)

Application Number Title Priority Date Filing Date
KR1020077030259A KR100984403B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020067016790A KR100984919B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020077030261A KR100984431B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020097025349A KR101009209B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트 및 그 제조방법
KR1020067016792A KR100984956B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020077030260A KR20080009764A (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020067016791A KR100984938B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020047013114A KR100984452B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트 및 그 제조방법

Family Applications Before (7)

Application Number Title Priority Date Filing Date
KR1020077030259A KR100984403B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020067016790A KR100984919B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020077030261A KR100984431B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020097025349A KR101009209B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트 및 그 제조방법
KR1020067016792A KR100984956B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020077030260A KR20080009764A (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트
KR1020067016791A KR100984938B1 (ko) 2002-02-25 2003-02-25 마이크로 유체 시스템용 지지 유니트

Country Status (10)

Country Link
US (9) US20050249637A1 (ko)
EP (8) EP1902781B1 (ko)
JP (1) JP3933058B2 (ko)
KR (8) KR100984403B1 (ko)
CN (5) CN101096009A (ko)
AT (5) ATE514479T1 (ko)
AU (1) AU2003211695A1 (ko)
DE (1) DE60326323D1 (ko)
TW (1) TW579367B (ko)
WO (1) WO2003070623A1 (ko)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933058B2 (ja) * 2002-02-25 2007-06-20 日立化成工業株式会社 マイクロ流体システム用支持ユニット及びその製造方法
US20050100712A1 (en) * 2003-11-12 2005-05-12 Simmons Blake A. Polymerization welding and application to microfluidics
CN101722065A (zh) * 2004-02-18 2010-06-09 日立化成工业株式会社 微型流体系统用支撑单元
WO2006004939A2 (en) * 2004-06-29 2006-01-12 University Of Cincinnati Polymorphisms and haplotypes of the alpha 2c adrenergic receptor gene
US8097225B2 (en) * 2004-07-28 2012-01-17 Honeywell International Inc. Microfluidic cartridge with reservoirs for increased shelf life of installed reagents
WO2006059649A1 (ja) 2004-11-30 2006-06-08 Hitachi Chemical Co., Ltd. 分析前処理用部品
CN102172508A (zh) * 2004-12-09 2011-09-07 日立化成工业株式会社 微流体系统用支持单元及其制造方法
US7390377B1 (en) 2005-09-22 2008-06-24 Sandia Corporation Bonding thermoplastic polymers
US8011768B2 (en) * 2006-08-23 2011-09-06 Canon Kabushiki Kaisha Ink tank
JP2008281366A (ja) * 2007-05-08 2008-11-20 Hitachi Chem Co Ltd マイクロ流体システム用支持ユニット
JP5012186B2 (ja) * 2007-05-08 2012-08-29 日立化成工業株式会社 マイクロ流体システム用支持ユニットの製造方法
JP5217323B2 (ja) * 2007-09-14 2013-06-19 株式会社明電舎 バイポーラ積層型電気二重層キャパシタ
JP5262064B2 (ja) * 2007-10-30 2013-08-14 富士ゼロックス株式会社 マイクロリアクターを用いた反応方法及びマイクロリアクター
US20090149256A1 (en) * 2007-12-07 2009-06-11 Kam Lim Lui Joystick for Video Game Machine
CN201133614Y (zh) * 2007-12-07 2008-10-15 付强 电视游戏机用发光棒
WO2009139407A1 (ja) * 2008-05-16 2009-11-19 日本化薬株式会社 マイクロ分析チップ用粘着シート及びマイクロ分析チップ並びにその製造方法
WO2010118427A1 (en) * 2009-04-10 2010-10-14 Canon U.S. Life Sciences, Inc. Fluid interface cartridge for a microfluidic chip
CN104412110A (zh) * 2012-07-09 2015-03-11 索尼公司 微芯片和用于制造微芯片的方法
KR101475906B1 (ko) * 2014-04-30 2014-12-23 박동현 마이크로플루이딕스 칩 기반의 잔류농약 검출용 전처리 키트 및 이를 이용한 잔류농약 검출 방법
US10585518B2 (en) * 2014-10-15 2020-03-10 Microsoft Technology Licensing, Llc Display module support
US10272426B2 (en) * 2015-04-21 2019-04-30 Jsr Corporation Method of producing microfluidic device, microfluidic device, and photosensitive resin composition
US10529911B2 (en) 2016-01-29 2020-01-07 Microjet Technology Co., Ltd. Piezoelectric actuator
EP3203076B1 (en) 2016-01-29 2021-05-12 Microjet Technology Co., Ltd Miniature fluid control device
US10451051B2 (en) 2016-01-29 2019-10-22 Microjet Technology Co., Ltd. Miniature pneumatic device
US10487820B2 (en) 2016-01-29 2019-11-26 Microjet Technology Co., Ltd. Miniature pneumatic device
US10615329B2 (en) 2016-01-29 2020-04-07 Microjet Technology Co., Ltd. Piezoelectric actuator
US10388850B2 (en) 2016-01-29 2019-08-20 Microjet Technology Co., Ltd. Piezoelectric actuator
US10388849B2 (en) 2016-01-29 2019-08-20 Microjet Technology Co., Ltd. Piezoelectric actuator
US10371136B2 (en) 2016-01-29 2019-08-06 Microjet Technology Co., Ltd. Miniature pneumatic device
US10584695B2 (en) 2016-01-29 2020-03-10 Microjet Technology Co., Ltd. Miniature fluid control device
EP3203080B1 (en) 2016-01-29 2021-09-22 Microjet Technology Co., Ltd Miniature pneumatic device
US9976673B2 (en) 2016-01-29 2018-05-22 Microjet Technology Co., Ltd. Miniature fluid control device
EP3203081B1 (en) 2016-01-29 2021-06-16 Microjet Technology Co., Ltd Miniature fluid control device
US10639744B2 (en) * 2016-05-05 2020-05-05 The Hong Kong Polytechnic University Method of laser joining of dissimilar materials with ultrasonic aid
US10683861B2 (en) 2016-11-10 2020-06-16 Microjet Technology Co., Ltd. Miniature pneumatic device
US10746169B2 (en) 2016-11-10 2020-08-18 Microjet Technology Co., Ltd. Miniature pneumatic device
US10655620B2 (en) 2016-11-10 2020-05-19 Microjet Technology Co., Ltd. Miniature fluid control device
TWI690657B (zh) * 2016-11-10 2020-04-11 研能科技股份有限公司 微型流體控制裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882522A (en) * 1996-01-10 1999-03-16 Asahi Kasei Kogyo Kabushiki Kaisha Paint recovering method and collecting material
JP2000019145A (ja) 1998-07-06 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> 電気化学検出器およびその製造方法
WO2001009607A1 (en) * 1999-07-30 2001-02-08 Large Scale Proteomics, Corp. Microarrays and their manufacture

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674602A (en) 1969-10-09 1972-07-04 Photocircuits Corp Apparatus for making wire scribed circuit boards
US3702658A (en) 1971-02-24 1972-11-14 Du Pont Permeation separation apparatus
US3852716A (en) 1973-03-02 1974-12-03 Staid Inc Point-of-sale processing system
US3915652A (en) 1973-08-16 1975-10-28 Samuel Natelson Means for transferring a liquid in a capillary open at both ends to an analyzing system
US4693778A (en) * 1985-07-19 1987-09-15 Kollmorgen Technologies Corporation Apparatus for making scribed circuit boards and circuit board modifications
JPS62280367A (ja) 1986-05-30 1987-12-05 Hitachi Electronics Eng Co Ltd 冷却型気相反応装置
US5070606A (en) * 1988-07-25 1991-12-10 Minnesota Mining And Manufacturing Company Method for producing a sheet member containing at least one enclosed channel
US4970034A (en) 1988-09-23 1990-11-13 W. R. Grace & Co.-Conn. Process for preparing isotropic microporous polysulfone membranes
US5236665A (en) 1988-10-20 1993-08-17 Baxter International Inc. Hollow fiber treatment apparatus and membrane oxygenator
US5174900A (en) 1989-03-24 1992-12-29 The Standard Oil Company Apparatus for separation and for treatment of fluid feedstreams, wafers for use therein and related methods
US4959152A (en) * 1989-03-24 1990-09-25 The Standard Oil Company Hollow fiber separation module and method for the use thereof
JP3003714B2 (ja) 1991-03-29 2000-01-31 日本電信電話株式会社 移動通信着信制御方法
EP0521495A3 (en) * 1991-07-05 1993-03-10 Akzo N.V. Process and apparatus for manufacturing hollow fibre modules
US5264171A (en) 1991-12-31 1993-11-23 Hoechst Celanese Corporation Method of making spiral-wound hollow fiber membrane fabric cartridges and modules having flow-directing baffles
JPH0682190A (ja) 1992-09-01 1994-03-22 Kobe Steel Ltd 強制液冷用アルミニウム冷却板
DE4308697A1 (de) * 1993-03-18 1994-09-22 Durst Franz Prof Dr Dr H C Verfahren zur Anreicherung eines ersten gasförmigen oder flüssigen Mediums mit einem zweiten Gas oder einer zweiten Flüssigkeit sowie ein Reaktor zur Durchführung des Verfahrens
AU6409794A (en) 1993-03-19 1994-10-11 E.I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
US5534328A (en) 1993-12-02 1996-07-09 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
ATE214633T1 (de) 1993-10-28 2002-04-15 Houston Advanced Res Ct Mikrofabriziertes poröses durchflussgerät
US5429807A (en) * 1993-10-28 1995-07-04 Beckman Instruments, Inc. Method and apparatus for creating biopolymer arrays on a solid support surface
GB9405518D0 (en) * 1994-03-21 1994-05-04 Mupor Ltd Porous metal composite body
US5591139A (en) * 1994-06-06 1997-01-07 The Regents Of The University Of California IC-processed microneedles
GB9414444D0 (en) 1994-07-18 1994-09-07 Secr Defence Cvd diamond coating of elongate substrate material
US5540464A (en) * 1994-10-04 1996-07-30 J&W Scientific Incorporated Capillary connector
EP0725272B1 (de) 1995-02-01 2002-06-12 Metrohm Ag Vorrichtung zur Ionenchromatografie und Verfahren zum zyklischen Regenerieren von mehreren Suppressoren einer solchen Vorrichtung
US5716825A (en) * 1995-11-01 1998-02-10 Hewlett Packard Company Integrated nucleic acid analysis system for MALDI-TOF MS
US5799817A (en) * 1996-02-16 1998-09-01 Sharp; Bruce R. Storage tank systems with encapsulated flow paths
US5628425A (en) 1996-05-10 1997-05-13 Sharp; Bruce R. Composite storage tank having double wall characteristics
WO1998000231A1 (en) * 1996-06-28 1998-01-08 Caliper Technologies Corporation High-throughput screening assay systems in microscale fluidic devices
US5779897A (en) 1996-11-08 1998-07-14 Permea, Inc. Hollow fiber membrane device with inert filaments randomly distributed in the inter-fiber voids
GB9625491D0 (en) 1996-12-07 1997-01-22 Central Research Lab Ltd Fluid connections
US5789143A (en) * 1997-04-30 1998-08-04 Eastman Kodak Company Thioethers in photographic elements
US5955353A (en) * 1997-05-22 1999-09-21 Excorp Medical, Inc. Hollow fiber bioreactor with an extrafilament flow plug
WO1998053311A2 (en) 1997-05-23 1998-11-26 Gamera Bioscience Corporation Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system
JP4217378B2 (ja) 1997-08-01 2009-01-28 スリーエム カンパニー 微生物の検知および計数の方法および器具
JPH11156184A (ja) 1997-11-27 1999-06-15 Toyo Eng Corp 試料合成装置
JPH11211694A (ja) 1998-01-29 1999-08-06 Yuichi Mori キャピラリーおよびその製造方法
NL1008315C2 (nl) 1998-02-16 1999-08-25 Stichting Fund Ond Material Met Si-chip geïntegreerde microdialyse-sonde.
DE19908863A1 (de) 1998-03-01 1999-09-02 Rennebeck Verfahren und Vorrichtung zur Gewinnung von Synthesegas
JP2000015065A (ja) 1998-07-03 2000-01-18 Hitachi Ltd 触媒担持中空糸膜
US6387234B1 (en) 1998-08-31 2002-05-14 Iowa State University Research Foundation, Inc. Integrated multiplexed capillary electrophoresis system
JP3419691B2 (ja) 1998-09-04 2003-06-23 日本電信電話株式会社 極微少量フローセル、及びその製造方法
CA2344398A1 (en) * 1998-09-18 2000-03-30 The University Of Utah Surface micromachined microneedles
US7048723B1 (en) * 1998-09-18 2006-05-23 The University Of Utah Research Foundation Surface micromachined microneedles
DE69920178T2 (de) 1998-12-09 2005-09-22 Cook Inc., Bloomington Super-elastische gebogene hohlnadel zur medizinischen verwendung
JP2000246092A (ja) 1999-03-04 2000-09-12 Kawamura Inst Of Chem Res マイクロケミカルデバイスの製造方法
CZ9900769A3 (cs) * 1999-03-04 2000-10-11 Petr Ing. Drsc. Hušek Použití špičky s filtrem k vytvoření sloupce sorbentu s definovaným objemem v prostoru pod filtrem
JP2001248072A (ja) 2000-03-02 2001-09-14 Mitsubishi Rayon Co Ltd 中空繊維内壁部の処理方法及びゲル充填方法
KR100538502B1 (ko) 1999-03-05 2005-12-23 미쯔비시 레이온 가부시끼가이샤 생체 관련 물질 함유 담체
US6148508A (en) * 1999-03-12 2000-11-21 Caliper Technologies Corp. Method of making a capillary for electrokinetic transport of materials
DE19912541C1 (de) * 1999-03-19 2000-10-26 Karlsruhe Forschzent Verfahren zum Abtöten schädlicher Mikroorganismen in Flüssigkeiten durch kurzzeitiges Hocherhitzen
US6436292B1 (en) 1999-04-02 2002-08-20 Symyx Technologies, Inc. Parallel high-performance liquid chromatography with post-separation treatment
US6256533B1 (en) 1999-06-09 2001-07-03 The Procter & Gamble Company Apparatus and method for using an intracutaneous microneedle array
JP3706902B2 (ja) 1999-06-17 2005-10-19 日本電信電話株式会社 光ファイバ布線装置と光ファイバ布線方法
US20020015952A1 (en) * 1999-07-30 2002-02-07 Anderson Norman G. Microarrays and their manufacture by slicing
US6423536B1 (en) * 1999-08-02 2002-07-23 Molecular Dynamics, Inc. Low volume chemical and biochemical reaction system
EP1203959B1 (en) * 1999-08-11 2007-06-13 Asahi Kasei Kabushiki Kaisha Analyzing cartridge and liquid feed control device
JP3506652B2 (ja) 2000-03-22 2004-03-15 株式会社日立製作所 キャピラリアレイ電気泳動装置
EP1275005A1 (en) 2000-04-06 2003-01-15 Caliper Technologies Corporation Methods and devices for achieving long incubation times in high-throughput systems
US6632400B1 (en) * 2000-06-22 2003-10-14 Agilent Technologies, Inc. Integrated microfluidic and electronic components
US6893733B2 (en) 2000-07-07 2005-05-17 Delphi Technologies, Inc. Modified contoured crushable structural members and methods for making the same
FR2813073A1 (fr) * 2000-12-19 2002-02-22 Commissariat Energie Atomique Dispositif de positionnement et de guidage pour la connexion etanche de capillaires a un micro-composant
JP4385541B2 (ja) 2001-04-02 2009-12-16 三菱化学株式会社 流通型微小反応流路,反応装置及び反応方法
US6719147B2 (en) 2001-04-27 2004-04-13 The University Of Delaware Supported mesoporous carbon ultrafiltration membrane and process for making the same
US6837988B2 (en) 2001-06-12 2005-01-04 Lifescan, Inc. Biological fluid sampling and analyte measurement devices and methods
CA2460063C (en) 2001-09-12 2010-07-20 Becton, Dickinson And Company Microneedle-based pen device for drug delivery and method for using same
US20030070752A1 (en) 2001-09-27 2003-04-17 Kevin Bergevin Method of manufacture for fluid handling barrier ribbon with polymeric tubes
JP3686999B2 (ja) 2001-11-01 2005-08-24 株式会社産学連携機構九州 機能性膜の製造方法および機能性膜
US7004928B2 (en) 2002-02-08 2006-02-28 Rosedale Medical, Inc. Autonomous, ambulatory analyte monitor or drug delivery device
JP3933058B2 (ja) 2002-02-25 2007-06-20 日立化成工業株式会社 マイクロ流体システム用支持ユニット及びその製造方法
JP4221505B2 (ja) 2002-07-18 2009-02-12 独立行政法人産業技術総合研究所 マイクロ反応装置の製造方法およびマイクロ反応装置
JP3805292B2 (ja) * 2002-08-26 2006-08-02 日立化成工業株式会社 電気泳動部材、その製造方法及びキャピラリ電気泳動装置
TW536524B (en) 2002-09-17 2003-06-11 Fan-Gen Tzeng Network-type micro-channel device for micro-fluid
DE10345817A1 (de) 2003-09-30 2005-05-25 Boehringer Ingelheim Microparts Gmbh Verfahren und Vorrichtung zum Koppeln von Hohlfasern an ein mikrofluidisches Netzwerk
CN101722065A (zh) * 2004-02-18 2010-06-09 日立化成工业株式会社 微型流体系统用支撑单元
US7818077B2 (en) 2004-05-06 2010-10-19 Valve Corporation Encoding spatial data in a multi-channel sound file for an object in a virtual environment
JP2005326068A (ja) 2004-05-13 2005-11-24 Daikin Ind Ltd 熱交換器用プレート及び熱交換器
WO2006059649A1 (ja) * 2004-11-30 2006-06-08 Hitachi Chemical Co., Ltd. 分析前処理用部品
CN102172508A (zh) 2004-12-09 2011-09-07 日立化成工业株式会社 微流体系统用支持单元及其制造方法
US8235887B2 (en) * 2006-01-23 2012-08-07 Avantis Medical Systems, Inc. Endoscope assembly with retroscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882522A (en) * 1996-01-10 1999-03-16 Asahi Kasei Kogyo Kabushiki Kaisha Paint recovering method and collecting material
JP2000019145A (ja) 1998-07-06 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> 電気化学検出器およびその製造方法
WO2001009607A1 (en) * 1999-07-30 2001-02-08 Large Scale Proteomics, Corp. Microarrays and their manufacture

Also Published As

Publication number Publication date
WO2003070623A1 (en) 2003-08-28
US20090274586A1 (en) 2009-11-05
KR101009209B1 (ko) 2011-01-19
KR100984938B1 (ko) 2010-10-01
DE60326323D1 (de) 2009-04-09
EP1902782A3 (en) 2008-04-02
EP1486455A1 (en) 2004-12-15
EP1913997B1 (en) 2011-06-29
KR20080009764A (ko) 2008-01-29
AU2003211695A1 (en) 2003-09-09
JP2004174701A (ja) 2004-06-24
KR100984431B1 (ko) 2010-09-30
KR100984919B1 (ko) 2010-10-01
KR20060098401A (ko) 2006-09-18
EP1902781A2 (en) 2008-03-26
EP1902779A2 (en) 2008-03-26
JP3933058B2 (ja) 2007-06-20
KR20060098402A (ko) 2006-09-18
EP1486455B1 (en) 2009-02-25
US20110036479A1 (en) 2011-02-17
EP1902781B1 (en) 2011-06-29
EP1902780A3 (en) 2008-04-02
US20090274583A1 (en) 2009-11-05
ATE514480T1 (de) 2011-07-15
CN101096009A (zh) 2008-01-02
KR20040089663A (ko) 2004-10-21
EP1486455A4 (en) 2007-03-21
US8889084B2 (en) 2014-11-18
CN1639054B (zh) 2011-11-02
CN101096008A (zh) 2008-01-02
CN1639054A (zh) 2005-07-13
CN101096008B (zh) 2012-07-04
EP1913998B1 (en) 2011-06-29
EP2255870A3 (en) 2014-05-28
KR20100006579A (ko) 2010-01-19
ATE514479T1 (de) 2011-07-15
KR20060098403A (ko) 2006-09-18
US20090274584A1 (en) 2009-11-05
EP1902779B1 (en) 2011-06-29
EP1902779A3 (en) 2008-04-02
US20090274585A1 (en) 2009-11-05
EP1913997A2 (en) 2008-04-23
TW579367B (en) 2004-03-11
US20090269245A1 (en) 2009-10-29
KR100984403B1 (ko) 2010-09-29
KR100984956B1 (ko) 2010-10-01
ATE514481T1 (de) 2011-07-15
EP2255870A2 (en) 2010-12-01
CN101096007A (zh) 2008-01-02
EP1913998A1 (en) 2008-04-23
US8865090B2 (en) 2014-10-21
CN101096007B (zh) 2011-10-05
EP1902782A2 (en) 2008-03-26
ATE514478T1 (de) 2011-07-15
ATE423618T1 (de) 2009-03-15
US20050249637A1 (en) 2005-11-10
EP1913997A3 (en) 2008-04-30
US20090274582A1 (en) 2009-11-05
KR20080007411A (ko) 2008-01-18
KR20080009765A (ko) 2008-01-29
US20090274581A1 (en) 2009-11-05
EP1902780A2 (en) 2008-03-26
TW200303845A (en) 2003-09-16
EP1902781A3 (en) 2008-04-02
CN102086015A (zh) 2011-06-08

Similar Documents

Publication Publication Date Title
KR100984452B1 (ko) 마이크로 유체 시스템용 지지 유니트 및 그 제조방법
JP4023516B2 (ja) マイクロ流体システム用支持ユニット
CN101380599A (zh) 微型流体系统用支撑单元及其制造方法

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
A107 Divisional application of patent
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130913

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140912

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150911

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160909

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170908

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190916

Year of fee payment: 10