KR100888286B1 - 흡열성 물질을 포함하고 있는 하부 절연체가 장착된이차전지 - Google Patents

흡열성 물질을 포함하고 있는 하부 절연체가 장착된이차전지 Download PDF

Info

Publication number
KR100888286B1
KR100888286B1 KR1020060068818A KR20060068818A KR100888286B1 KR 100888286 B1 KR100888286 B1 KR 100888286B1 KR 1020060068818 A KR1020060068818 A KR 1020060068818A KR 20060068818 A KR20060068818 A KR 20060068818A KR 100888286 B1 KR100888286 B1 KR 100888286B1
Authority
KR
South Korea
Prior art keywords
battery
electrode assembly
secondary battery
insulator
temperature
Prior art date
Application number
KR1020060068818A
Other languages
English (en)
Other versions
KR20080009348A (ko
Inventor
홍기주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020060068818A priority Critical patent/KR100888286B1/ko
Publication of KR20080009348A publication Critical patent/KR20080009348A/ko
Application granted granted Critical
Publication of KR100888286B1 publication Critical patent/KR100888286B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명은 전극조립체의 하단과 전지케이스 내면 사이에 절연체('하부 절연체')가 장착되어 있고, 상기 하부 절연체 상에는 흡열성 물질이 포함되어 있는 구조의 이차전지를 제공하는 바, 이러한 이차전지는 전지 내부 온도의 상승을 억제할 뿐만 아니라 전지의 온도 상승시 발생되는 가스로 인해 전극조립체가 유동하는 현상을 방지하여 가스 분출 장치인 벤트(vent) 구조의 안정적인 작동을 담보하는 효과가 있다. 또한, 노트북 PC용 원통형 전지의 경우, 전지팩 제작 시 전극조립체 하단부의 열적 손상을 방지할 수 있는 효과도 있다.

Description

흡열성 물질을 포함하고 있는 하부 절연체가 장착된 이차전지 {Secondary Battery Having Bottom Insulator with Endothermic Material}
도 1a 및 1b는 종래기술에서 전지 내부 온도의 상승으로 인해 원통형 이차전지에 장착된 젤리-롤형 전극조립체의 유동 과정을 나타낸 단면도들이다;
도 2는 온도 변화에 따른 전지 내부에서 발생된 가스의 종류와 양을 나타낸 다이어그램이다;
도 3은 본 발명의 하나의 실시예에 따른 원통형 전지에서, 내부 단락 또는 고온 조건시 전지 내부의 온도 구배와 가스(gas)의 흐름을 모식적으로 나타낸 단면도이다;
도 4는 본 발명의 하나의 실시예 및 비교예에 대하여 온도 변화시 전지의 발열량의 변화 추이를 모식화한 다이어그램이다;
도 5는 본 발명의 실험예 2에서 고온 보존 후 발화된 실시예 1과 비교예 1의 전지들에 대한 X-선 사진들이다.
본 발명은 흡열성 물질을 포함하고 있는 하부 절연체가 장착된 이차전지에 관한 것으로, 더욱 상세하게는, 전극조립체의 하단과 전지케이스 내면 사이에 절연체('하부 절연체')가 장착되어 있고 상기 하부 절연체(bottom insulator) 상에는 흡열성 물질이 포함되어 있는 구조의 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요의 증가로, 이차전지의 수요 또한 급격히 증가하고 있으며, 그 중에서도 에너지 밀도와 작동전압이 높고 보존과 수명 특성이 우수한 리튬 이차전지는 각종 모바일 기기는 물론 다양한 전자제품의 에너지원으로 널리 사용되고 있다.
이차전지는 외부 및 내부의 구조적 특징에 따라 대략 원통형 전지, 각형 전지 및 파우치형 전지로 분류되며, 이차전지를 구성하는 양극/분리막/음극 구조의 전극조립체의 구조에 따라 크게 젤리-롤형(권취형)과 스택형(적층형)으로 구분된다.
그 중에서 흔히 사용되는 젤리-롤형 전극조립체는, 집전체로 사용되는 금속 호일에 전극 활물질 등을 코팅하고 건조 및 프레싱한 후, 소망하는 폭과 길이의 밴드 형태로 재단하고 분리막을 사용하여 음극과 양극을 격막한 후 나선형으로 감아 제조된다. 젤리-롤형 전극조립체는 주로 원통형 전지에 사용되며, 경우에 따라서는, 이를 판상형으로 압축하여 각형 또는 파우치형 전지에 적용하기도 한다.
전지가 고온의 환경에 노출되거나 오작동 등에 의하여 내부 단락이 일어나게 되면, 양극 계면에서 전해액의 분해 반응이 일어나게 되고 그로 인해 가스가 다량 발생하여 결국 내압의 증가로 전지케이스가 파열될 수 있다. 이를 제어하기 위해 종래의 전지에는 벤트(vent) 구조의 안전장치를 사용한다. 즉, 전지 내부의 가스 발생으로 인해 일정 수준 이상으로 압력이 상승하게 되면 벤트 구조가 작동되어 내부 가스를 배출하여 내압 상승을 해소하게 된다.
그러나, 전지의 이상 고온 현상이 발생하면 그로 인해 다량의 가스가 발생하게 되고 발생된 가스는 젤리-롤형 전극조립체를 전지의 상단부로 이동시켜 상기 벤트 구조를 막게 되어, 결국 가스 배출 장치의 작동을 저해하게 된다.
전지 내부온도의 상승과 관련하여, 흡열성 물질을 첨가하여 이러한 온도 상승을 억제하고 하는 연구가 시도되고 있다. 예를 들어, 일본 특허출원공개 제2003-031187호에는, 전지케이스의 외장 필름재 또는 외장 필름의 접착제에 흡열 반응을 갖는 화합물로 된 흡열제를 첨가하는 기술이 개시되어 있다. 그러나, 상기 기술은 전지케이스의 외부를 흡열제가 둘러싸고 있는 구조로 되어 있어서, 단락 등 전지셀 내부요인에 의해 유발된 온도 상승시, 앞서 설명한 바와 같은, 벤트 구조의 폐쇄 현상을 방지하지는 못하는 것으로 확인되었고, 더욱이 상당히 많은 양의 흡열제를 사용함으로 인해 제조비용의 상승이 불가피하다는 문제점을 가지고 있다.
또한, 일본 특허출원공개 제2002-025623호에는, 전지의 용기 내부에, 구체적으로는 분리막과 양극 사이에, 흡열제를 첨가하는 기술이 개시되어 있다. 그러나, 상기 기술은 흡열제를 전극조립체의 막계면 전체에 도포해야 하기 때문에 첨가되는 흡열제의 양이 증가하게 되며, 흡열제의 열흡수 용량을 초과하는 온도의 상승이 있게 되면 전극조립체의 이동으로 인한 가스 분출 장치를 폐쇄가 발생하게 된다는 문 제점을 여전히 안고 있다. 더욱이, 전지의 작동과 직접 관련된 전극조립체 내부에 흡열제가 첨가됨으로 인해 전지의 작동 성능이 저하되는 단점도 확인되었다.
따라서, 이러한 문제점을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 전극조립체의 하단에 장착되는 하부 절연체 상에 흡열성 물질을 포함시킴으로써, 전지 내부 온도의 상승을 억제할 뿐만 아니라 온도가 상승함에 따라 발생되는 다량의 가스로 인해 전극조립체가 유동하는 현상을 방지하여 가스 분출 장치의 안정적인 작동이 확보되는 등의 예상치 못한 작용 효과를 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 이차전지는, 전극조립체가 전지케이스 내에 장착되어 있는 구조의 이차전지로서, 전극조립체의 하단과 전지케이스 내면 사이에 절연체('하부 절연체')가 장착되어 있고, 상기 하부 절연체 상에는 흡열성 물질이 포함되어 있는 것으로 구성되어 있다.
상기 하부 절연체(bottom insulator)에 포함되어 있는 흡열성 물질은 일차적으로 전지 내부의 온도 상승시에 발생된 열을 흡수하여 내부 온도의 상승을 억제하게 되며, 이차적으로는 전극조립체의 유동을 막아 가스 분출 장치의 안정적인 작동을 담보한다. 이는 전지 하단부의 온도를 상단부에 비해 상대적으로 낮게 유지시킴으로써, 하단부에서의 가스 발생 전에 이미 가스 발생 온도에 도달한 상단부에서 먼저 가스가 발생하도록 유도하여, 결과적으로 전지 상단부를 채운 가스량이 하단부에서 발생한 가스량에 비해 상대적으로 많아짐에 따라 전극조립체의 유동을 막아주기 때문이다.
상기 흡열성 물질은 발생된 열량을 흡수하는 성질을 가진 물질이라면 특별히 제한되는 것은 아니며, 고온에서 반응 특성을 유지하고 일정 수준 이상의 저장 특성이 요구됨을 고려할 때, 바람직하게는 무기물 입자일 수 있다. 더욱이, 반응 표면적비를 높이고 전지 내부의 다른 구성물질들과의 반응성을 고려할 때, 알루미나, 티타늄 산화물 등과 같은 금속 산화물의 분말이 더욱 바람직하다.
흡열성 물질은 다양한 방식으로 하부 절연체 상에 포함될 수 있으며, 바람직하게는 전극조립체로부터 발생한 열의 신속한 흡수를 수행할 수 있도록 흡열성 물질이 하부 절연체의 외면에 코팅되어 있는 구조일 수 있다.
상기 코팅은, 예를 들어, 바인더로서 PVDF 공중합체, 시아노 수지(cyano-resine) 등과 휘발성 용매로서 아세톤 등을 사용, 흡열성 물질로서 금속 산화물 분말을 혼합한 슬러리를 절연체 상에 도포한 후 건조하여 형성할 수 있다.
상기 흡열성 물질은 하부 절연체 전체 중량을 기준으로 10 내지 80 중량%로 포함되어 있는 것이 바람직하다. 상기 흡열성 물질의 포함을 통해서, 전지 내부의 온도 상승의 억제 및 그로 인해 발생하는 가스에 의해 전극조립체가 밀려 올라가는 현상을 방지하기 위해서는 전지의 상단에 비해 하단의 온도가 일정 수준 이하로 유지되어야 한다. 따라서, 흡열성 물질의 함유량이 하부 절연체 전체 중량을 기준으로 10 중량% 미만인 경우에는, 전지 내부의 온도 상승을 억제하기 어렵고, 특히 상기와 같은 전극조립체의 유동을 방지하기 위한 전지의 상단과 하단의 온도차를 일정 수준 이상으로 유지하는 효과를 발휘하기 어렵다. 반대로, 80 중량%을 초과하는 경우에는, 흡열성 물질의 함량 증가가 흡수 열용량의 증가에 크게 기여하지 못하고, 오히려 부피 증가 및 하부 절연체의 물리적 특성을 저해할 수 있으므로 바람직하지 않다.
상기 전극조립체는 다수의 전극 탭들을 연결하여 양극과 음극을 구성하면서 동시에 전지케이스 내에 장착되어 있는 구조라면 특별히 제한되는 것은 아니며, 바람직하게는 젤리-롤형 구조를 들 수 있다.
본 발명에 따른 이차전지는 원통형 또는 각형의 형태일 수 있으며, 구체적으로는 금속 캔으로 이루어진 전지케이스에 젤리-롤형 전극조립체가 내장되어 있는 원통형 또는 각형 전지에 바람직하게 적용될 수 있다. 특히, 내부 온도의 상승시 앞서 설명한 바와 같은 전극조립체의 상승으로 인해 벤트 구조가 폐쇄되는 현상이 발생할 가능성이 높은 원통형 전지에 더욱 바람직하게 사용될 수 있다.
또한, 노트북 PC용 원통형 전지의 경우, 전지팩 제작 시 바닥면을 Ni 플레이트와 용접함에 따라 젤리-롤형 전극조립체의 하단부에 발생할 수 있는 열적 손 상(damage)을 방지할 수 있는 효과가 있다.
이하, 도면을 참조하여 본 발명을 더욱 자세히 설명하지만 본 발명의 범주가 그것에 한정된 것은 아니다.
먼저, 도 1a 및 1b에는 젤리-롤형 전극조립체를 포함하고 있는 종래기술에 따른 원통형 전지에서 다량의 가스 발생시 전극조립체의 유동 과정을 보여주는 단면도들이 모식적으로 도시되어 있다.
이들 도면을 참조하면, 원통형 전지(100)는 원통형의 금속 캔(120) 내부에 젤리-롤형 전극조립체(101, 102)가 내장되어 있으며, 상단에는 볼록한 형태의 캡(130)이 장착되어 있고, 금속 캔(120)과 캡(130)은 기계적 결착방식에 의해 결합되어 있다.
금속 캔(120)과 캡(130)의 결합 부위에는 가스켓(131)이 삽입되어 있어서, 전지(100) 내부의 가스, 전해액 등이 외부로 누출되는 것을 방지한다. 금속 캡(130)과 전극조립체(101, 102) 사이에는 특정한 구조로 이루어진 가스 분출 장치인 벤트(vent: 140)가 장착되어 있다. 벤트(140)는 전지 내부에서 다량의 가스가 발생하여 내압이 상승할 때 파열되어, 가스가 캡(130)을 통해 외부로 배출될 수 있도록 하는 역할을 한다. 경우에 따라서는, 이러한 가스 배출과 함께 전지(100)의 통전상태를 차단하여 전지(100)의 작동을 멈추도록 구성되기도 한다.
전지(100)의 조립 과정에서, 리드(150)에 의해 전극조립체(101)를 캡(130)(구체적으로는 벤트(140))의 하단에 연결할 수 있도록, 전극조립체(101)과 밴트(140) 사이에는 소정의 이격 공간(A)이 존재한다. 따라서, 정상적인 작동 상태 에서, 도 1a에서 보는 바와 같이, 전극조립체(101)는 그것의 상단에 소정의 이격 공간(A)을 형성한 상태에서 금속 캔(120)의 내부에 장착되어 있다. 일반적인 원통형 전지에서, 캡(130)은 양극 단자를 형성하도록 리드(150)를 통해 전극조립체(101)의 양극과 연결되어 있다.
전극조립체(101)의 하단에는 전극 연결부(주로, 음극 연결부)를 제외하고 금속 캔(120)과 전기적 절연상태를 유지할 수 있도록, 하부 절연체(110)가 위치되어 있다.
전지(100)가 이상 고온에 노출되거나 또는 내부단락이 유발되는 경우, 전극조립체(101)에서는 전해액 분해 반응이 일어나게 되고, 그로 인해 다량의 가스가 발생하게 된다. 이러한 고온 노출 또는 내부단락에 의한 전해액 분해가 주로 전지(100)의 하단 부근에서 발생하거나 또는 그 부위로 확산될 경우, 발생한 다량의 가스에 의해, 도 1b에서 보는 바와 같이, 젤리-롤형 전극조립체(102) 자체가 전지(100)의 상부 쪽으로 이동하게 된다. 따라서, 그와 같이 상향 이동된 전극조립체(102)에 의해 가스 분출을 위한 안전 장치인 벤트(140)가 폐쇄되어 정상적인 가스 분출이 방해를 받게 된다. 따라서, 가압 가스가 배출되지 못함으로써 전지(100)의 내부에서는 더욱 큰 압력이 발생하게 되고, 그러한 압력이 임계값을 초과하게 되면 금속 캔(120)의 급격한 파열, 즉, 폭발이 유발될 수 있다. 이러한 현상은 전지(100)의 안전성 측면에서 매우 심각한 문제이다.
도 2에는 정상적인 작동 온도와 비정상적인 온도 상승시 전지 내부에서 발생하는 가스에 대한 성분 조성이 각각 그래프로 도시되어 있다.
도 2를 참조하면, 전지의 온도가 23℃일 때와 비교하여 80℃로 상승하였을 때의 가스 발생량은 매우 큰 것을 알 수 있다. 즉, 고온에서는 이산화탄소를 중심으로 다량의 가스가 방출되며, 이는 전지 내의 전기화학적 반응을 저해할 뿐만 아니라, 발생된 가스의 압력에 의해 젤리-롤형 전극조립체의 유동을 유발하게 된다. 상부로 이동한 전극조립체는, 도 1b에서와 같이, 벤트 구조를 폐쇄시켜 정상적인 가스 분출을 저해하게 되고, 그로 인해 전지의 고온 안전성을 저해할 뿐만 아니라 전지의 발화 내지 파열을 유발하게 된다.
도 3에는 본 발명의 하나의 실시예에 따른 원통형 이차전지의 구조와, 내부 단락 또는 비정상적인 고온 상태에서 전지 내부의 온도 구배 및 가스의 흐름을 모식적으로 보여주는 단면도가 도시되어 있다.
도 3을 참조하면, 본 발명의 원통형 전지(200)는 전반적인 구조에서 도 1a의 원통형 전지(100)와 동일하고, 다만, 하부 절연체(210)에 흡열성 물질이 포함되어 있다는 점에서 차이가 있다.
예를 들어, 전지(200)에서 전극조립체(201)의 중앙 하부(B)에서 내부 단락이 유발되거나, 외부로부터 중앙 하부(B)를 중심으로 약 150℃의 고열이 가해지면, 전극조립체(201)에서는 그것에 함침된 전해액이 분해되기 시작한다. 전지(200)의 내부온도는 전해액 분해 반응 등의 영향으로 약 180℃까지 상승하게 된다.
전지(200) 전체 높이를 기준으로 중앙 하부(B)의 높이를 'h'라 할 때, 도 1a에서와 같은 전지(100)에서의 전극조립체(101) 내부의 온도 구배(temperature gradient)는 h를 기준으로 위쪽과 아래쪽 방향으로 온도가 감소하는 경향을 보인다 (이점 쇄선 참조). 전해액 분해로 인한 가스 발생량은 온도에 대략 비례하므로, 내부 단락 또는 고열의 인가 점(B)이 중앙 하부에 위치함을 고려할 때, 전지 전체의 높이 중심(hc)을 기준으로 하부의 가스 발생량이 더욱 많아지게 된다. 따라서, 도 1b에서와 같은 전극조립체의 상향 이동이 일어나게 된다.
반면에, 본 발명에서는 전극조립체(201)의 하단에 위치한 하부 절연체(210)에 흡열성 물질이 포함되어 있으므로, 중앙 하부(B)의 아래쪽에서 발생한 열은 하부 절연체(210)로 상당량 흡수되어, 온도가 급격히 떨어지는 비대칭적인 온도 구배를 나타낸다 (점선 참조). 이러한 온도 저하는 전해액 분해 반응을 억제하여, 전지 전체의 높이 중심(hc)을 기준으로 하부의 가스 발생량을 크게 감소시킴으로써, 도 1b에서와 같은 전극조립체의 상향 이동을 방지할 수 있다.
결과적으로, 전극조립체(201)가 전지케이스(220)의 하단에 안착된 상태에서, 전해액 분해반응으로 인해 발생한 다량의 가스는 상부로 이동하여 벤트(240)를 작동시키게 된다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
[실시예 1]
바인더로서 PVDF 공중합체와 시아노 수지의 혼합물과 휘발성 용매인 아세톤 을 알루미나 산화물 분말 5 g에 혼합하여 슬러리를 제조하고 이를 전지의 하단부에 장착되는 하부 절연체 상에 도포한 후 80℃에서 1 시간 이상을 건조하였다.
LiCoO2의 리튬 코발트 산화물을 이용한 양극 활물질에 카본 블랙과 결착제인 PVdF를 각각 2.5 중량%씩 혼합하여, 용매인 NMP와 함께 교반한 후, 금속 집전체인 알루미늄 호일에 코팅하였다. 이를 120℃의 진공오븐에서 2 시간 이상 건조하여 양극을 제조하였다.
상기 양극과 구리호일에 MCMB 인조흑연을 코팅한 음극 및 폴리프로필렌으로 제조된 다공성 분리막을 이용해 권취하여 젤리-롤형의 전극조립체를 제조하였다.
조립된 젤리-롤형 전극조립체를 상기 하부 절연체를 장착한 원통형 케이스에 넣고 리드선을 연결한 후, 1 M의 LiPF6 염이 녹아있는 부피비 1 : 1의 에틸렌카보네이트(EC)와 다이메틸카보네이트(DMC) 용액을 전해질로 주입한 다음, 밀봉하여 이차전지를 조립하였다.
[비교예 1]
상기 실시예 1과 비교하여, 하부 절연체 상에 흡열성 물질을 코팅하지 않았다는 점을 제외하고는 실시예 1과 동일하게 이차전지를 조립하였다.
[실험예 1]
상기 실시예 1과 비교예 1에서 각각 조립된 이차전지들에 대하여 외부 온도 를 변화시켜 가면서, 그에 따른 전지의 발열량을 측정하여 하기 도 4에 나타내었다.
먼저, 30℃에서 200℃까지 외부 온도를 상승시키면서 그에 따른 전지의 발열량을 측정하고, 외부 온도를 냉각시키면서 전지의 발열량을 다시 측정하였다. 하부 절연체에 흡열성 물질을 코팅한 전극조립체를 사용한 실시예 1의 전지에 대해 측정한 결과를 [A:
Figure 112006052371840-pat00001
]로 표시하고, 비교예 1의 전지에 대한 측정 결과를 [B:
Figure 112006052371840-pat00002
]로 표기하였다.
하기 도 4에서 보는 바와 같이, 하부 절연체에 흡열성 물질을 코팅한 경우와 그렇지 않은 경우 전지 내부의 발열량의 차이는 현저한 것으로 확인되었다. 실험을 실시한 전영역의 온도범위, 즉, 30℃ ~ 200℃에서 흡열성 물질을 코팅하지 않은 비교예 1의 전지는 상대적으로 높은 발열량을 보이고 있다. 반면에, 본 발명에 따라 하부 절연체에 흡열성 물질을 코팅한 실시예 1의 전지는 온도 상승 억제효과를 확인할 수 있다.
또한, 발열량이 현저히 증가하는 온도 범위는 90℃에서 120℃ 사이로 두 경우 모두 유사하나, 이 범위에서 발열량의 크기, 즉 그래프상의 하단부 면적의 크기는 5 배 이상의 차이를 보이고 있다. 즉, 실시예 1의 전지에서는 발열량의 많은 부분이 흡열성 물질이 코팅되어 있는 하부 절연체에 의해 흡수되었음을 알 수 있다.
더욱이, 발열량의 최고값(peak)이 나타나는 온도 범위의 차이가 뚜렷한데, 비교예 1의 전지는 114.5℃ 부근에서 최고값(1)을 나타냄에 반하여, 실시예 1의 전 지는 110.5℃ 부근에서 최고값(2)이 관측된다.
이는 전지 내부의 온도 상승을 억제하는 효과 뿐만 아니라, 전지의 발열 개시 온도 자체를 높여줌으로써 전지의 안전성을 현저하게 향상시키는 효과가 있음을 확인할 수 있다.
[실험예 2]
상기 실시예 1과 비교예 1에서 조립된 각각 5 개의 이차전지들을 150℃ 이상의 고온 환경에서 보관하여 파열 여부를 확인하였다. 파열은 전극조립체가 전지케이스 외부로 탈리되는 현상으로 정의한다. 그 결과가 하기 표 1에 개시되어 있다.
<표 1>
Figure 112006052371840-pat00003
상기 표 1에서 보는 바와 같이, 본 발명에 따른 실시예 1의 전지들 중에서 파열된 전지가 확인되지 않음에 반하여, 비교예 1의 전지들은 3 개의 전지들이 파열되었음을 확인하였다.
상기 실험 과정에서 발화된 전지들에 대해 X-선을 조사하여 얻어진 사진들이 도 5에 개시되어 있다.
도 5(A)에서 보는 바와 같이, 실시예 1의 전지는 발화 후에도 전극조립체가 원래의 위치에 있는 것을 확인할 수 있다. 반면에, 도 5(B)에서 보는 바와 같이, 비교예 1의 전지는 상부로 이동한 전극조립체가 벤트의 작동을 방해하여 발화 후 전지의 파열이 유발되었음을 알 수 있다.
이상, 본 발명에 따른 실시예를 참조하여 발명의 내용을 상술하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상의 설명과 같이 본 발명에 따른 전극조립체의 하단에 장착되는 하부 절연체 상에 특정한 흡열성 물질을 포함시킨 이차전지는 전지 내부 온도의 상승 억제 및 온도 상승에 따라 발생되는 가스로 인해 전극조립체가 유동하는 현상을 방지하여 가스 배출용 안전 장치인 벤트 구조의 안정적인 작동의 확보를 통해 고온 저장 특성 및 고온 안전성을 획기적으로 향상시킬 수 있다. 또한, 노트북 PC용 원통형 전지의 경우, 전지팩 제작 시 전극조립체 하단부의 열적 손상을 방지할 수 있는 효과도 있다.

Claims (8)

  1. 전극조립체가 전지케이스에 장착되어 있는 구조의 이차전지로서, 전극조립체의 하단과 전지케이스 내면 사이에 절연체('하부 절연체')가 장착되어 있고, 상기 하부 절연체 상에는 흡열성 물질이 포함되어 있는 것을 특징으로 하는 이차전지.
  2. 제 1 항에 있어서, 상기 흡열성 물질은 무기물 입자인 것을 특징으로 하는 이차전지.
  3. 제 2 항에 있어서, 상기 무기물 입자는 금속 산화물 분말인 것을 특징으로 하는 이차전지.
  4. 제 1 항에 있어서, 상기 흡열성 물질은 하부 절연체의 외면에 코팅되어 있는 것을 특징으로 하는 이차전지.
  5. 제 4 항에 있어서, 상기 코팅은 바인더로서 (i) PVDF 공중합체, 또는 (ii) 시아노 수지, 또는 (iii) PVDF 공중합체 및 시아노 수지와, 휘발성 용매로서 아세톤에 금속 산화물 분말을 혼합한 슬러리를 절연체 상에 도포한 후 건조하여 형성되는 것을 특징으로 하는 이차전지.
  6. 제 1 항에 있어서, 상기 흡열성 물질은 하부 절연체 전체 중량을 기준으로 10 내지 80 중량%로 포함되어 있는 것을 특징으로 하는 이차전지.
  7. 제 1 항에 있어서, 상기 전극조립체는 젤리-롤이고 상기 전지케이스는 원통형 또는 각형의 금속 캔인 것을 특징으로 하는 이차전지.
  8. 제 7 항에 있어서, 상기 전지는 노트북 PC용 원통형 전지인 것을 특징으로 하는 이차전지.
KR1020060068818A 2006-07-24 2006-07-24 흡열성 물질을 포함하고 있는 하부 절연체가 장착된이차전지 KR100888286B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060068818A KR100888286B1 (ko) 2006-07-24 2006-07-24 흡열성 물질을 포함하고 있는 하부 절연체가 장착된이차전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060068818A KR100888286B1 (ko) 2006-07-24 2006-07-24 흡열성 물질을 포함하고 있는 하부 절연체가 장착된이차전지

Publications (2)

Publication Number Publication Date
KR20080009348A KR20080009348A (ko) 2008-01-29
KR100888286B1 true KR100888286B1 (ko) 2009-03-10

Family

ID=39221746

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060068818A KR100888286B1 (ko) 2006-07-24 2006-07-24 흡열성 물질을 포함하고 있는 하부 절연체가 장착된이차전지

Country Status (1)

Country Link
KR (1) KR100888286B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132162B1 (ko) * 2008-04-02 2012-04-05 주식회사 엘지화학 그루브에 흡열성 물질을 포함하고 있는 하부 절연체가장착된 이차전지
KR101690576B1 (ko) * 2014-12-19 2016-12-28 에스케이이노베이션 주식회사 이차 전지
KR102511430B1 (ko) * 2018-09-07 2023-03-17 주식회사 엘지에너지솔루션 이차전지 및 그를 포함하는 전지팩

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354101A (ja) 1998-06-09 1999-12-24 Matsushita Electric Ind Co Ltd 密閉型電池およびその製造法
KR100686850B1 (ko) 2005-12-23 2007-02-26 삼성에스디아이 주식회사 원통형 리튬 이차 전지
KR20070025418A (ko) * 2005-09-02 2007-03-08 주식회사 엘지화학 온도 제어용 흡열 시트를 포함하고 있는 전지팩
KR20070071244A (ko) * 2005-12-29 2007-07-04 삼성에스디아이 주식회사 리튬 이차전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354101A (ja) 1998-06-09 1999-12-24 Matsushita Electric Ind Co Ltd 密閉型電池およびその製造法
KR20070025418A (ko) * 2005-09-02 2007-03-08 주식회사 엘지화학 온도 제어용 흡열 시트를 포함하고 있는 전지팩
KR100686850B1 (ko) 2005-12-23 2007-02-26 삼성에스디아이 주식회사 원통형 리튬 이차 전지
KR20070071244A (ko) * 2005-12-29 2007-07-04 삼성에스디아이 주식회사 리튬 이차전지

Also Published As

Publication number Publication date
KR20080009348A (ko) 2008-01-29

Similar Documents

Publication Publication Date Title
JP6490053B2 (ja) 円筒形密閉電池及び電池パック
JP4915390B2 (ja) 非水電解質電池
KR101163387B1 (ko) 젤리-롤형 전극조립체를 포함하는 이차전지
JP5737481B2 (ja) 密閉型非水電解質二次電池
JP4735579B2 (ja) 非水電解質電池
WO2015146077A1 (ja) 円筒形密閉電池
KR101502040B1 (ko) 비수 전해질 2차 전지용 세퍼레이터, 그 제조 방법 및 비수 전해질 2차 전지
JP2002203553A (ja) 正極活物質及び非水電解質二次電池
JP3480190B2 (ja) 非水電解液二次電池
JP2012059489A (ja) ラミネート電池
KR20150070971A (ko) 리튬 이온 2차 전지
KR20140092833A (ko) 리튬 이황화철 배터리
WO2012053286A1 (ja) 電気化学素子用セパレータとその製造方法、電気化学素子用電極および電気化学素子
JP2005011540A (ja) 非水電解液二次電池
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
JP4385586B2 (ja) 非水電解液二次電池
JP3480189B2 (ja) 非水電解液二次電池
KR100888286B1 (ko) 흡열성 물질을 포함하고 있는 하부 절연체가 장착된이차전지
JP2000331715A (ja) 非水系二次電池
KR20180013345A (ko) 안정성이 향상된 리튬 이차 전지
JP2009059571A (ja) 電池用集電体及びこれを用いた電池
EP3273511B1 (en) Negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell in which said negative electrode is used
JP2011119139A (ja) 非水電解質電池
KR100788540B1 (ko) 리튬 이차 전지
KR101132162B1 (ko) 그루브에 흡열성 물질을 포함하고 있는 하부 절연체가장착된 이차전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150217

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160216

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 12