KR100852326B1 - 테트라페닐나프탈렌 유도체 및 이를 이용한 유기발광소자 - Google Patents

테트라페닐나프탈렌 유도체 및 이를 이용한 유기발광소자 Download PDF

Info

Publication number
KR100852326B1
KR100852326B1 KR1020070023452A KR20070023452A KR100852326B1 KR 100852326 B1 KR100852326 B1 KR 100852326B1 KR 1020070023452 A KR1020070023452 A KR 1020070023452A KR 20070023452 A KR20070023452 A KR 20070023452A KR 100852326 B1 KR100852326 B1 KR 100852326B1
Authority
KR
South Korea
Prior art keywords
group
formula
compound
substituted
mmol
Prior art date
Application number
KR1020070023452A
Other languages
English (en)
Other versions
KR20070092667A (ko
Inventor
김연환
이동훈
장혜영
홍성길
여성진
김공겸
정동섭
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20070092667A publication Critical patent/KR20070092667A/ko
Application granted granted Critical
Publication of KR100852326B1 publication Critical patent/KR100852326B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/24Polycyclic condensed hydrocarbons containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/58[b]- or [c]-condensed
    • C07D209/70[b]- or [c]-condensed containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/18Benzimidazoles; Hydrogenated benzimidazoles with aryl radicals directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • C07F7/0807Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Indole Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 신규한 테트라페닐나프탈렌 유도체 및 이를 이용한 유기발광소자를 제공한다.
유기발광소자

Description

테트라페닐나프탈렌 유도체 및 이를 이용한 유기발광소자{TETRAPHENYLNAPHTHALENE DERIVATIVES AND ORGANIC LIGHT EMITTING DIODE USING THE SAME}
도 1 내지 도 5는 본 발명의 신규 화합물을 적용할 수 있는 유기 발광 소자의 예를 도시한 것이다.
본 발명은 신규한 구조의 테트라 페닐 나프탈렌 유도체 및 이를 이용한 유기발광소자에 관한 것이다. 본 출원은 2006년 3월 10일에 각각 한국 특허청에 제출된 한국 특허 출원 제10-2006-0022845호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기발광소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기발광소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전 자수송층, 전자 주입층 등으로 이루어질 수 있다. 이러한 유기발광소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기발광소자는 자발광, 고휘도, 고효율, 낮은 구동 전압, 넓은 시야각, 높은 콘트라스트, 고속 응답성 등의 특성을 갖는 것으로 알려져 있다.
유기발광소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다. 그리고, 상기 발광 재료는 분자량에 따라 고분자형과 저분자형으로 분류될 수 있고, 발광 메커니즘에 따라 전자의 일중항 여기상태로부터 유래되는 형광 재료와 전자의 삼중항 여기상태로부터 유래되는 인광 재료로 분류될 수 있다. 또한, 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료로 구분될 수 있다.
한편, 발광 재료로서 하나의 물질만 사용하는 경우 분자간 상호 작용에 의하여 최대 발광 파장이 장파장으로 이동하고 색순도가 떨어지거나 발광 감쇄 효과로 소자의 효율이 감소되는 문제가 발생하므로, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여 발광 재료로서 호스트/도판트 계를 사용할 수 있다. 그 원리는 발광층을 형성하는 호스트 보다 에너지 대역 간극이 작은 도판트를 발광층에 소량 혼합하면, 발광층에서 발생한 엑시톤이 도판트로 수송되어 효율이 높은 빛을 내는 것이다. 이 때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
전술한 유기발광소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지 안정하고 효율적인 유기발광소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이며, 따라서 새로운 재료의 개발이 계속 요구되고 있다.
본 발명자들은 신규한 구조를 갖는 테트라 페닐 나프탈렌 유도체를 밝혀내었으며, 또한 이 화합물을 유기발광소자에 적용시 소자의 발광효율, 안정성 및 수명을 크게 향상시킬 수 있다는 사실을 밝혀내었다.
이에 본 발명은 신규한 테트라 페닐 나프탈렌 유도체 및 이를 이용한 유기발광소자를 제공하는 것을 목적으로 한다.
본 발명은 하기 화학식 1의 화합물을 제공한다.
Figure 112007019391958-pat00001
상기 화학식 1에 있어서, R11 내지 R14, R21 내지 R25, R31 내지 R35, R41 내지 R45, R51 내지 R55는 서로 같거나 상이하고, 독립적으로 수소, 치환 또는 비치환된 직쇄 또는 분지쇄의 지방족 탄화수소기, 치환 또는 비치환된 아릴알킬기, 치환 또는 비치환된 아릴알케닐기, 치환 또는 비치환된 아릴알키닐기, 치환 또는 비치환된 지방족 고리기, 치환 또는 비치환된 헤테로 고리기, 치환 또는 비치환된 방향족 고리기, 치환 또는 비치환된 헤테로 방향족 고리기, 상기 고리들로부터 선택된 2 이상의 고리의 축합고리기, -BR'R'', -NR'R'', -OR', -PR'R'', -SR' 및 SiR'R''R''' 이루어진 군에서 선택되며, 여기서 R', R'' 및 R'''는 각각 독립적으로 수소, 치환 또는 비치환된 직쇄 또는 분지쇄의 지방족 탄화수소기, 치환 또는 비치환된 아릴알킬기, 치환 또는 비치환된 아릴알케닐기, 치환 또는 비치환된 아릴알키닐기, 치환 또는 비치환된 지방족 고리기, 치환 또는 비치환된 헤테로 고리기, 치환 또는 비치환된 방향족 고리기, 치환 또는 비치환된 헤테로 방향족 고리기 및 상기 고리들로 부터 선택된 2 이상의 고리의 축합고리기로부터 선택되되, 단 R11 내지 R14, R21 내지 R25, R31 내지 R35, R41 내지 R45 및 R51 내지 R55가 동시에 수소는 아니다.
또한, 본 발명은 제1 전극, 1층 이상의 유기물층 및 제2 전극을 순차적으로 적층된 형태로 포함하는 유기발광소자에 있어서, 상기 유기물층 중 1층 이상이 상기 화학식 1의 화합물을 포함하는 것인 유기발광소자를 제공한다.
이하, 본 발명을 더욱 상세히 설명한다.
본 발명은 상기 화학식 1의 화합물을 제공한다. 상기 화학식 1의 치환기를 보다 상세히 설명하면 다음과 같다.
상기 화학식 1의 치환기 중, 지방족 탄화수소기는 탄소수가 1 내지 20인 것이 바람직하며, 이들의 예로는 직쇄 또는 분지쇄의 알킬기, 알케닐기 또는 알키닐기 등이 있다.
상기 화학식 1의 치환기 중, 지방족 고리기는 탄소수 5 내지 20인 것이 바람직하며, 단일 고리 또는 축합 고리일 수 있다.
상기 화학식 1의 치환기 중, 헤테로 고리기는 B, N, O, P, S 또는 Si를 고리원으로 포함하는 헤테로 고리일 수 있으며, 단일 고리 또는 축합 고리일 수 있다.
상기 화학식 1의 치환기 중, 방향족 고리기는 탄소수 5 내지 20인 것이 바람직하며, 단일 고리 또는 축합 고리일 수 있다. 예컨대, 벤젠, 나프탈렌, 비페닐, 안트라센 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 화학식 1의 치환기 중, 헤테로 방향족 고리기는 B, N, O, P, S 또는 Si 를 고리원으로 포함하는 헤테로 방향족 고리일 수 있으며, 단일 고리 또는 축합 고리일 수 있다. 예컨대, 이미다졸기,티아졸기,옥사졸기등이 있으나, 이들에만 한정되는 것은 아니다.
상기 화학식 1의 치환기 중, 아릴알킬기, 아릴알케닐기 및 아릴알키닐기는 각각 탄소수 5 내지 20의 방향족 고리기에 의하여 치환된 탄소수 1 내지 20의 알킬기, 알케닐기 및 알키닐기인 것이 바람직하다.
상기 지방족 탄화수소기, 아릴알킬기, 아릴알케닐기 및 아릴알키닐기, 지방족 고리기, 헤테로 고리기, 방향족 고리기 또는 헤테로 방향족 고리기는 각각 치환 또는 비치환될 수 있는데, 이들이 치환되는 경우 그 치환기로는 치환 또는 비치환된 지방족 탄화수소기, 치환 또는 비치환된 지방족 고리기, 치환 또는 비치환된 헤테로 고리기, 치환 또는 비치환된 방향족 고리기, 치환 또는 비치환된 헤테로 방향족 고리기, -BR'R'', -NR'R'', -OR', -PR'R'', -SR' 및 SiR'R''R''' 이루어진 군에서 선택되며, 여기서 R', R'' 및 R'''는 각각 독립적으로 수소, 치환 또는 비치환된 직쇄 또는 분지쇄의 지방족 탄화수소기, 치환 또는 비치환된 지방족 고리기, 치환 또는 비치환된 헤테로 고리기, 치환 또는 비치환된 방향족 고리기, 치환 또는 비치환된 헤테로 방향족 고리기 및 상기 고리들로부터 선택된 2 이상의 고리의 축합고리기로부터 선택될 수 있으나, 이들에만 한정되는 것은 아니다.
상기 지방족 탄화수소기, 아릴알킬기, 아릴알케닐기 및 아릴알키닐기, 지방족 고리기, 헤테로 고리기, 방향족 고리기, 헤테로 방향족 고리기, -BR'R'', -NR'R'', -OR', -PR'R'', -SR' 및 SiR'R''R'''는 B, N, O, P, S 및 Si 중에서 선택 되는 1종 이상의 원소를 1 내지 10개 포함하는 것이 바람직하다. 구체적으로, 상기 화학식 1의 R11 내지 R14, R21 내지 R25, R31 내지 R35, R41 내지 R45, R51 내지 R55는 카바졸릴기, 아릴아민기, 아릴아민기로 치환된 아릴아민기, 아릴알케닐기로 치환된 아릴아민기, 아릴아민기로 치환된 아릴알케닐기, 아릴기로 치환된 바이티에닐기, 아릴기로 치환된 티에닐기, 아릴기로 치환된 이미다졸릴기, 이미다졸릴기로 치환된 아릴, 아릴기로 치환된 벤즈이미다졸릴기, 벤즈이미다졸릴기로 치환된 아릴기, 아릴기로 치환된 실란기, 알킬아릴기로 치환된 보론기, 아릴기 또는 알킬기로 치환된 Si 포함 헤테로고리기, 또는 페닐 또는 나프틸로 치환된 안트라세닐기인 것이 더욱 바람직하다.
본 발명에 있어서, 화학식 1의 R11 내지 R14, R21 내지 R25, R31 내지 R35, R41 내지 R45, R51 내지 R55가 모두 수소인 경우 전공이나 전자의 수송 역할을 할 수 있는 작용기, 예컨대 헤테로 원소가 포함되어 있는 지방족 혹은 방향족 유도체가 존재하지 않기 때문에 단독으로는 유기발광소자의 유기물층 재료로 사용될 수 없다.
상기 화학식 1의 화합물은 하기 화학식 11 내지 17의 화합물일 수 있다:
[화학식 11]
Figure 112007019391958-pat00002
[화학식 12]
Figure 112007019391958-pat00003
[화학식 13]
Figure 112007019391958-pat00004
[화학식 14]
Figure 112007019391958-pat00005
[화학식 15]
Figure 112007019391958-pat00006
[화학식 16]
Figure 112007019391958-pat00007
[화학식 17]
Figure 112007019391958-pat00008
상기 화학식 11 내지 17에 있어서, R12, R23, R33, R43 및 R53은 상기 화학식 1에서 정의한 것과 같으나, 단 R12, R23, R33, R43 및 R53는 모두가 수소로 치환되어 있는 것은 아니다.
본 발명에 따른 화합물의 바람직한 구체적 예로는 하기 화합물들이 있으나, 이들에만 한정되는 것은 아니다.
Figure 112007019391958-pat00009
Figure 112007019391958-pat00010
Figure 112007019391958-pat00011
Figure 112007019391958-pat00012
Figure 112007019391958-pat00013
Figure 112007019391958-pat00014
Figure 112007019391958-pat00015
Figure 112007019391958-pat00016
Figure 112007019391958-pat00017
Figure 112007019391958-pat00018
Figure 112007019391958-pat00019
Figure 112007019391958-pat00020
Figure 112007019391958-pat00021
Figure 112007019391958-pat00022
Figure 112007019391958-pat00023
Figure 112007019391958-pat00024
Figure 112007019391958-pat00025
Figure 112007019391958-pat00026
Figure 112007019391958-pat00027
상기 화학식 1의 화합물은 예컨대 다음과 같이 제조될 수 있다.
하기 화학식 h 내지 k의 출발물질을 이용하여 하기 화학식 a 내지 g의 중간물질을 제조한다.
중간물질
Figure 112007019391958-pat00028
Figure 112007019391958-pat00029
출발물질
Figure 112007019391958-pat00030
구체적으로, 본 발명의 하나의 실시 상태에 따르면, 상기 화학식 h 내지 k의 출발물질을 아이소아밀 나이트라이트과 함께 디클로로에탄에 용해하고, 이를 환류 교반시키면서 여기에 디클로로에탄에 용해된 안트라닐닉엑시드 또는 2-아미노 5-브로모벤조익엑시드를 적가하여 상기 화학식 a 내지 g의 중간물질을 제조할 수 있다.
이어서, 상기 중간물질들을 상기 화학식 1의 화합물에 치환하고자 하는 치환기의 전구체 물질, 소듐 t-부톡사이드, Pd(dba)2 및 P(t-Bu)3와 함께 톨루엔에 넣어 반응시키고, 이 반응 혼합액을 THF와 H2O의 혼합액에 넣는다. 이어서, 유기층을 층분리하고 건조 및 농축하고, 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 상기 화학식 1의 화합물을 제조할 수 있다.
상기 화학식 1의 화합물은 신규한 구조의 테트라 페닐 나프탈렌 유도체로서, 그 구조적 특징으로 인하여 유기발광소자에서 다양한 유기물층 재료로서 사용될 수 있다. 구체적으로 설명하면 다음과 같다.
상기 화학식 1의 화합물의 입체 구조는 하기 그림과 같이 A 부분, B 부분 및 C 부분으로 나누어 생각할 수 있다.
Figure 112007019391958-pat00031
상기 화학식 1의 화합물의 코어는 A 부분인 나프탈렌 중심에 B 부분인 벤젠링들이 공간적으로 약간 비틀어진 구조로 결합되어 있다. 유기물이 이와 같이 비틀어진 삼차원 구조를 갖는 경우, 유기물들 사이의 pi-pi 상호 작용이 최소화되어 유기물들 사이에서의 들뜬 이합체(excimer)나 들뜬 복합체 형성을 억제 하는 효과를 가질 수 있다.
한편, 화합물의 컨쥬게이션 길이와 에너지 밴드갭은 밀접한 관계가 있다. 구체적으로, 화합물의 컨쥬게이션 길이가 길수록 일반적으로 에너지 밴드갭이 작아진 다. 그러나, 컨쥬게이션 길이가 길어져도, 컨쥬게이션 된 부분들이 평면을 이루지 않으면 그 컨쥬게이션 정도는 감소된다. 상기 화학식 1의 구조는 위에 전술한 바와 같이 A 부분과 B 부분 간의 비틀어진 입체 구조로 인해, 밴드갭이 큰 성질을 갖는다.
상기 화학식은 상기와 같이 에너지 밴드갭이 큰 코어 구조에 R11 내지 R55에 다양한 치환기가 도입됨으로써 다양한 에너지 밴드갭을 가질 수 있다. 통상 에너지 밴드갭이 큰 코어 구조에 치환기를 도입하여 에너지 밴드갭을 조절하는 것은 용이하나, 코어 구조가 에너지 밴드갭이 작은 경우에는 치환기를 도입하여 에너지 밴드갭을 조절하기는 어렵다.
상기 B 부분인 벤젠링에 치환기가 도입되는 경우, 상기 서술한 입체 구조적 특이성으로 인하여, 밴드갭이 큰 물질을 쉽게 만들 수 있다. 상기 화학식 1의 화합물의 이와 같은 성질은 밴드갭이 커야 하는 인광이나 형광의 청색 호스트(host)나 도펀트(dopant), 전자 주입 또는 수송 물질, 정공 주입 또는 수송 물질 등으로서의 적용에 유리하다. 반면, C 부분에 치환기가 도입되는 경우, C 부분은 B 부분에 비해 상대적으로 덜 비틀어진 구조를 갖는다. 따라서, C 부분에 다양한 치환기를 도입하면, 밴드갭을 쉽게 작게 만들 수 있다. 이런 점은 화학식 1의 화합물을 밴드갭이 작아야 하는 녹색이나 적색 호스트나 도펀트로의 적용에 유리하다.
전술한 바와 같이, 상기 화학식 1의 화합물은 상기 B 부분과 C 부분에 다양한 치환기가 도입됨으로써 다양한 밴드갭을 가질 수 있다. 따라서, 상기 화학식 1 의 화합물은 다양한 치환기에 의하여 유기발광소자에서 정공 주입 또는 수송층, 발광층, 전자 주입 또는 수송층에서 요구되어지는 조건들을 더욱 적합하게 충족시키는 화합물들이 될 수 있다. 또한, 본 발명에서는 상기 화학식 1의 화합물 중 치환기에 따라 적절한 에너지 준위를 갖는 화합물을 선택하여 유기발광소자에 사용함으로써 구동 전압이 낮고 광효율이 높은 소자를 구현할 수 있다.
본 발명은 제1 전극, 제2 전극 및 이들 전극 사이에 배치된 유기물층을 포함하는 유기발광소자에 있어서, 상기 유기물층 중 1층 이상이 상기 화학식 1의 화합물을 포함하는 유기발광소자를 제공한다.
본 발명에 따른 유기발광소자는, 유기물층 중 1층 이상을 상기 화학식 1의 화합물을 포함하도록 형성하는 것을 제외하고는, 당 기술 분야에 통상의 제조 방법 및 재료를 이용하여 당 기술 분야에 알려져 있는 구조로 제조될 수 있다. 본 발명에 따른 유기발광소자의 구조는 도 1 내지 5에 예시되어 있으나, 이들 구조에만 한정된 것은 아니다.
예컨대, 본 발명에 따른 유기발광소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층 및 전자수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차 례로 증착시켜 유기발광소자를 만들 수도 있다(국제 특허 출원 공개 제2003/012890호). 상기 유기물층은 정공주입층, 정공수송층, 발광층 및 전자수송층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 양극 물질로는 통상 유기물층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐주석 산화물(ITO), 인듐아연산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입받을 수 있는 물질로서, 정공주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴 헥사아자트리페닐렌, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
정공수송 물질로는 양극이나 정공주입층으로부터 정공을 수송 받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물 (Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
전자수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
본 발명에 따른 유기발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
실시예
이하, 제조예 및 실험예를 통하여 본 발명을 보다 상세하게 설명한다.그러나, 이하의 제조예 및 실험예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
제조예
[출발물질의 제조]
화학식 h로 표시되는 출발물질의 제조
[화학식 h]
Figure 112007019391958-pat00032
벤질(8.4 g, 40 mmol)과 디페닐아세톤(8.4 g, 40 mmol)을 에탄올 250 mL에 녹인 후 온도를 올려 1시간 동안 환류 교반시킨 후, 여기에 에탄올 20 mL에 녹인 KOH(2.2 g, 40 mmol)를 천천히 적가하였다. 이 후 30 분 더 환류 교반 후 서서히 냉각하고, 여기에서 생성된 진한 붉은 고체 분말을 감압 여과 후 진공 건조하여 상기 화학식 h로 표시되는 출발 물질을 얻었다(4.5 g, 30 %).
MS [M+H] 385
화학식 i로 표시되는 출발물질의 제조
[화학식 i]
Figure 112007019391958-pat00033
벤질(1.14 g, 5.4 mmol)과 디(4-브로모페닐)아세톤(2.0 g, 5.4 mmol)을 에탄올 40 mL 에 녹인 후 온도를 올려 1시간 동안 환류 교반시키고, 여기에 에탄올 10 mL 에 녹인 KOH(0.3 g, 5.4 mmol)를 천천히 적가하였다. 이 후 30 분 더 환류 교반한 후 서서히 냉각하고, 여기에서 생성된 진한 붉은 고체 분말을 감압 여과 후 진공 건조하여 화학식 i로 표시되는 출발 물질을 얻었다.
(2.0 g, 68 %); 1H NMR (400 MHz, DMSO-d 6 ) 7.50-7.48(d, 4H), 7.30-7.23(m, 6H), 7.11-7.09(d, 4H), 6.98-6.96(d, 4H) ; MS [M+H] 540,542,544
화학식 j로 표시되는 출발물질의 제조
[화학식 j]
Figure 112007019391958-pat00034
4,4`-디브로모벤질(9.8 g, 27 mmol)과 디페닐아세톤(6.2 g, 30 mmol)을 에탄올 250 mL에 녹인 후 온도를 올려 1시간 동안 환류 교반시킨 후, 여기에 에탄올 20 mL 에 녹인 KOH(1.64 g, 30 mmol)를 천천히 적가하였다. 이 후 30 분 더 환류 교반한 후 서서히 냉각하고, 여기에 생성된 진한 붉은 고체 분말을 감압 여과 후 진공 건조하여 화학식 j로 표시되는 출발 물질을 얻었다.
(9.0 g, 62 %); 1H NMR (400 MHz, DMSO-d 6 ) 7.50-7.47(d, 4H), 7.33-7.27(m, 6H), 7.17-7.15(d, 4H), 6.94-6.92(d, 4H) ; MS [M+H] 540,542,544
화학식 k로 표시되는 출발물질의 제조
[화학식 k]
Figure 112007019391958-pat00035
4,4`-디브로모벤질(9.8 g, 27 mmol)과 디(4-브로모페닐)아세톤(2.0 g, 5.4 mmol)을 에탄올 40 mL 에 녹인 후 온도를 올려 1시간 동안 환류 교반시키고, 여기에 에탄올 10 mL 에 녹인 KOH(0.3 g, 5.4 mmol)를 천천히 적가하였다. 이 후 30 분 더 환류 교반한 후 서서히 냉각하고, 여기에서 생성된 진한 붉은 고체 분말을 감압 여과 후 진공 건조하여 화학식 k로 표시되는 출발 물질을 얻었다. MS [M+H] 700
[중간물질의 제조]
화학식 a로 표시되는 중간물질의 제조
[화학식 a]
Figure 112007019391958-pat00036
화학식 i로 표시되는 출발물질(2.0 g, 3.7 mmol)과 아이소아밀 나이트라이트(0.54 mL, 4.1 mmol) 을 디클로로에탄 50 mL 에 첨가한 후 온도를 올려 완전히 녹이고, 환류 교반시키면서 디클로로에탄 25 mL 에 완전히 녹인 안트라닐닉엑시드(0.51 g, 3.7 mmol)를 천천히 적가하였다. 이 후 반응액의 색이 사라지면 서서히 냉각하고, 사용된 용매를 진공 증류장치를 사용하여 제거하고, 얻어진 고체를 디클로로메탄과 에탄올을 이용하여 재침전시켰다. 생성된 흰색 고체 분말을 감압 여과 후 진공 건조하여 화학식 a로 표시되는 중간 물질을 얻었다.
(2.0 g, 93 %); 1H NMR (400 MHz, DMSO-d 6 ) 7.48 (s, 4H), 7.45-7.43(d, 4H), 7.17-7.15(d, 4H), 6.92-6.91(d, 4H), 6.92-6.88(m, 6H) ; MS [M+H] 588,590,592
화학식 b로 표시되는 중간물질의 제조
[화학식 b]
Figure 112007019391958-pat00037
화학식 j로 표시 되는 출발 물질(5.72 g, 10.5 mmol)과 아이소아밀 나이트라이트(1.54 mL, 11.6 mmol) 을 디클로로에탄 50 mL 에 첨가 후 온도를 올려 완전히 녹이고, 환류 교반시키면서 디클로로에탄 50 mL 에 완전히 녹인 안트라닐닉엑시드(1.44 g, 10.5 mmol)를 천천히 적가하였다. 이 후 반응액의 색이 사라지면 서서히 냉각하고 사용된 용매를 진공 증류장치를 사용하여 제거하고, 얻어진 고체를 디클로로메탄과 에탄올을 이용하여 재침전시켰다. 생성된 흰색 고체 분말을 감압 여과한 후 진공 건조하여 화학식 b로 표시되는 중간 물질을 얻었다.
(4.9 g, 79 %); 1H NMR (400 MHz, DMSO-d 6 ) 7.50-7.43(m, 4H), 7.33-7.20(m, 10H), 7.13-7.11(d, 4H), 6.89-6.87(d, 4H) ; MS [M+H] 588,590,592
화학식 c로 표시되는 중간물질의 제조
[화학식 c]
Figure 112007019391958-pat00038
화학식 k로 표시 되는 출발 물질(3.50 g, 5 mmol)과 아이소아밀 나이트라이트(0.73 mL, 11.6 mmol)을 디클로로에탄 50 mL 에 첨가한 후 온도를 올려 완전히 녹이고, 환류 교반시키면서 디클로로에탄 50 mL 에 완전히 녹인 안트라닐닉엑시드(0.754 g, 5.5 mmol)를 천천히 적가하였다. 이 후 반응액의 색이 사라지면 서서히 냉각하고, 사용된 용매를 진공 증류장치를 사용하여 제거하고 얻어진 고체를 디클로로메탄과 에탄올을 이용하여 재침전시켰다. 생성된 흰색 고체 분말을 감압 여과 후 진공 건조하여 화학식 c로 표시되는 중간 물질을 얻었다.
(2.43 g, 65 %); 1H NMR (400 MHz, DMSO-d 6 ) 7.32-7.37(m, 10H), 7.45-7.49(d, 8H), 7.67(m, 2H); MS [M+H] 700
화학식 d로 표시되는 중간물질의 제조
[화학식 d]
Figure 112007019391958-pat00039
화학식 h로 표시되는 출발 물질(4.03 g, 10.5 mmol)과 아이소아밀 나이트라이트(1.54 mL, 11.6 mmol)을 디클로로에탄 50 mL 에 첨가한 후 온도를 올려 완전히 녹이고, 환류 교반시키면서 디클로로에탄 50 mL 에 완전히 녹인 2-아미노 5-브로모벤조익엑시드(2.27 g, 10.5 mmol)를 천천히 적가하였다. 이 후 반응액의 색이 사라지면 서서히 냉각하고, 사용된 용매를 진공 증류장치를 사용하여 제거하고, 얻어진 고체를 디클로로메탄과 에탄올을 이용하여 재침전시켰다. 생성된 흰색 고체 분말을 감압 여과한 후 진공 건조하여 화학식 d로 표시되는 중간 물질을 얻었다.
(3.75 g, 70 %); 1H NMR (400 MHz, CDCl3) 7.20-7.32(m, 12H), 7.43-7.48 (m, 9H), 7.58(d, 1H), 7.88 (d, 1H); MS [M+H] 512
화학식 e로 표시되는 중간물질의 제조
[화학식 e]
Figure 112007019391958-pat00040
화학식 i로 표시되는 출발 물질(6.4 g, 11.8 mmol)과 아이소아밀 나이트라이트(1.73 mL, 13 mmol)을 디클로로에탄 300 mL 에 첨가 후 온도를 올려 완전히 녹이고, 환류 교반시키면서 디클로로에탄 100 mL 에 완전히 녹인 2-아미노-5-브로모벤조익엑시드(2.80 g, 13 mmol)를 천천히 적가하였다. 이 후 반응액의 색이 사라지면 서서히 냉각하고, 사용된 용매를 진공 증류장치를 사용하여 제거하고, 얻어진 고체를 디클로로메탄과 에탄올을 이용하여 재 침전시켰다. 생성된 흰색 고체 분말을 감압 여과 후 진공 건조하여 화학식 e로 표시되는 중간 물질을 얻었다.
(6.8 g, 86 %); 1H NMR (500 MHz, DMSO-d 6 ) 7.67-7.65 (dd, 1H), 7.53-7.52(d, 1H), 7.50-7.46(dt, 4H), 7.40-7.38(d, 1H), 7.20-7.16(dt, 4H), 6.94- 6.86(m, 10H) ; MS [M+H] 665,666,667,668,669,670,671
화학식 f로 표시되는 중간물질의 제조
[화학식 f]
Figure 112007019391958-pat00041
화학식 j로 표시되는 출발 물질(5.72 g, 10.5 mmol)과 아이소아밀 나이트라이트(1.54 mL, 11.6 mmol)을 디클로로에탄 50 mL에 첨가 후 온도를 올려 완전히 녹이고, 환류 교반시키면서 디클로로에탄 50 mL에 완전히 녹인 2-아미노-5-브로모벤조익엑시드(2.27 g, 10.5 mmol)를 천천히 적가하였다. 이 후 반응액의 색이 사라지면 서서히 냉각하고, 사용된 용매를 진공 증류장치를 사용하여 제거하고, 얻어진 고체를 디클로로메탄과 에탄올을 이용하여 재침전시켰다. 생성된 흰색 고체 분말을 감압 여과한 후 진공 건조하여 화학식 f로 표시되는 중간 물질을 얻었다.
(5.62 g, 80 %); 1H NMR (400 MHz, DMSO-d 6 ) 7.19-7.25(m, 2H), 7.29-7.39 (m, 8H), 7.44-7.52(m, 9H), 7.60 (d, 1H), 7.90 (s, 1H) ; MS [M+H] 670
화학식 g로 표시되는 중간물질의 제조
[화학식 g]
Figure 112007019391958-pat00042
출발물질로서 화학식 j 대신 화학식 k의 화합물을 사용한 것을 제외하고는 화학식 f의 화합물의 제조방법과 동일하게 실시하여 화학식 g의 중간물질을 얻었다. MS [M+H] 827
제조예 1 (화학식 1-1로 표시되는 화합물의 제조)
[화학식 1-1]
Figure 112007019391958-pat00043
화학식 a(4.9 g, 8.3 mmol), 카바졸(3.2 g, 19.1 mmol), 소듐 t-부톡사이드(2.0 g, 21 mmol), Pd(dba)2(0.24 g, 0.4 mmol) 및 P(t-Bu)3(0.09 g, 0.4 mmol) 를 톨루엔 (80 mL)에 넣고, 12시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 1-1의 화합물(2.38 g, 38%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 8.16-8.14(d, 4H), 7.69-7.68(q, 2H), 7.56-7.53(q, 2H), 7.69-7.68(dd, 2H), 7.42-7.31(m, 14H), 7.21-7.17(m, 12H), 6.98-6.96(dd, 4H); MS [M+H] 763
제조예 2 (화학식 1-2로 표시되는 화합물의 제조)
[화학식 1-2]
Figure 112007019391958-pat00044
화학식 b(2.0 g, 3.4 mmol), 카바졸(1.3 g, 7.8 mmol), 소듐 t-부톡사이드(0.81 g, 8.5 mmol), Pd(dba)2(0.1 g, 0.2 mmol) 및 P(t-Bu)3(0.04 g, 0.2 mmol)를 톨루엔 (40 mL)에 넣고, 5시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 1-2의 화합물(1.34 g, 52%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 8.26-8.24(d, 4H), 7.83-7.81(q, 2H), 7.67- 7.65(q, 2H), 7.55-7.44(m, 12H), 7.32-7.24(m, 8H), 7.06-6.97(m, 10H); MS [M+H] 763
제조예 3 (화학식 2-2로 표시되는 화합물의 제조)
[화학식 2-2]
Figure 112007019391958-pat00045
화학식 a(1.3 g, 2.2 mmol), 나프틸페닐아민(1.1 g, 5.1 mmol), 소듐 t-부톡사이드(0.63 g, 6.6 mmol), Pd(dba)2(0.06 g, 0.1 mmol) 및 P(t-Bu)3(0.03 g, 0.1 mmol) 를 톨루엔 (20 mL)에 넣고, 2시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 2-2의 화합물(0.2 g, 11%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 8.00-7.98(d, 2H), 7.88-7.87(d, 2H), 7.76-7.74(d, 2H), 7.63-7.60(q, 2H), 7.57-7.48(m, 6H), 7.44-7.40(t, 2H), 7.26-7.19(m, 6H), 7.03-7.01(d, 8H), 6.94-6.90(m, 8H), 6.86-6.77(m, 12H); MS [M+H] 867
제조예 4 (화학식 2-3로 표시되는 화합물의 제조)
[화학식 2-3]
Figure 112007019391958-pat00046
화학식 a(1.3 g, 2.2 mmol), 3-톨릴페닐아민(0.87 mL, 5.1 mmol), 소듐 t-부톡사이드(0.63 g, 6.6 mmol), Pd(dba)2(0.06 g, 0.1 mmol) 및 P(t-Bu)3(0.03 g, 0.1 mmol) 를 톨루엔 (20 mL)에 넣고, 2시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 2-3의 화합물(1.3 g, 74%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 7.71-7.69(q, 2H), 7.56-7.54(q, 2H), 7.29-7.25(t, 4H), 7.18-7.15(t, 2H), 7.10-7.08(d, 4H), 7.02-6.98(t, 2H), 6.96-6.95(m, 6H), 6.91-6.88(m, 8H), 6.85-6.82(m, 6H), 6.72-6.70(d, 4H), 2.22 (s, 6H); MS [M+H] 795
제조예 5 (화학식 2-5로 표시되는 화합물의 제조)
[화학식 2-5]
Figure 112007019391958-pat00047
화학식 b(0.83 g, 1.4 mmol), 디페닐아민(0.50 g, 3.0 mmol), 소듐 t-부톡사이드(0.34 g, 3.5 mmol), Pd(dba)2(0.03 g, 0.04 mmol) 및 P(t-Bu)3(0.02 g, 0.04 mmol) 를 톨루엔 (14 mL)에 넣고, 1시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 2-5의 화합물(0.25 g, 23%)을 얻었다.
MS [M+H] 767
제조예 6 (화학식 2-6로 표시되는 화합물의 제조)
[화학식 2-6]
Figure 112007019391958-pat00048
화학식 b(1.5 g, 2.54 mmol), 나프틸페닐아민(1.1 g, 5.1 mmol), 소듐 t-부톡사이드(0.73 g, 5.8 mmol), Pd(dba)2(0.07 g, 0.13 mmol) 및 P(t-Bu)3(0.03 g, 0.13 mmol) 를 톨루엔 (25 mL)에 넣고, 2시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 2-6의 화합물(0.85 g, 38%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 7.58-7.54(m, 2H), 7.49-7.47(m, 2H), 7.37-7.29(t, 6H), 7.25-7.23(d, 4H), 7.18-7.14(t, 4H), 7.08-7.04(t, 2H), 6.94-6.90(t, 2H), 6.84-6.82(d, 4H), 6.76-6.72(t, 6H), 6.59-6.57(d, 6H), 6.53(s, 2H); MS [M+H] 867
제조예 7 (화학식 2-7로 표시되는 화합물의 제조)
[화학식 2-7]
Figure 112007019391958-pat00049
화학식 b(1.5 g, 2.54 mmol), 3-톨릴페닐아민(1.01 mL, 5.1 mmol), 소듐 t-부톡사이드(0.73 g, 5.8 mmol), Pd(dba)2(0.07 g, 0.13 mmol) 및 P(t-Bu)3(0.03 g, 0.13 mmol) 를 톨루엔 (25 mL)에 넣고, 2시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 2-7의 화합물(0.72 g, 36%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 7.94-7.92(d, 2H), 7.81-7.79(d, 2H), 7.60-7.58(d, 2H), 7.52-7.49(q, 2H), 7.45-7.40(m, 6H), 7.33-7.30(m, 6H), 7.23-7.12(m, 10H), 7.08-7.06(d, 2H), 6.91-6.87(t, 2H), 6.72-6.65(dd, 8H), 6.52-6.49(d, 4H), 2.11 (s, 6H); MS [M+H] 795
제조예 8 (화학식 2-9로 표시되는 화합물의 제조)
[화학식 2-9]
Figure 112007019391958-pat00050
화학식 d(1.06 g, 2.07 mmol), 디페닐아민(0.39 g, 2.3 mmol), 소듐 t-부톡사이드(0.24 g, 2.5 mmol), Pd(dba)2(0.024 g, 0.04 mmol) 및 P(t-Bu)3(0.01 g, 0.04 mmol) 를 톨루엔 (20 mL)에 넣고, 1시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 2-9의 화합물(0.9 g, 73%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 7.35-7.32(d, 1H), 7.27-7.17(m, 9H), 7.13-7.11(d, 1H), 7.04-7.02(m, 6H), 7.01-6.97(m, 6H), 6.86-6.84(m, 8H), 6.82-6.78(m, 2H); MS [M+H] 600
제조예 9 (화학식 2-10로 표시되는 화합물의 제조)
[화학식 2-10]
Figure 112007019391958-pat00051
화학식 e(0.51 g, 0.76 mmol), 디페닐아민(0.41 g, 2.4 mmol), 소듐 t-부톡사이드(0.26 g, 2.7 mmol), Pd(dba)2(0.022 g, 0.04 mmol) 및 P(t-Bu)3(0.01 g, 0.04 mmol) 를 톨루엔 (40 mL)에 넣고, 12시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 2-10의 화합물(0.45 g, 65%)을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.35-7.32(d, 1H), 7.27-7.17(m, 9H), 7.13-7.11(d, 1H), 7.04-7.02(m, 6H), 7.01-6.97(m, 6H), 6.86-6.84(m, 8H), 6.82-6.78(m, 2H); MS [M+H] 934
제조예 10 (화학식 3-1로 표시되는 화합물의 제조)
[화학식 3-1]
Figure 112007019391958-pat00052
화학식 a(0.50 g, 0.85 mmol), 4-페닐아미노스틸벤(0.48 g, 1.8 mmol), 소듐 t-부톡사이드(0.20 g, 2.1 mmol), Pd(dba)2(0.03 g, 0.05 mmol) 및 P(t-Bu)3(0.01 g, 0.05 mmol)를 톨루엔 (40 mL)에 넣고, 1시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 3-1의 화합물(0.2 g, 24%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 7.74-7.72(q, 2H), 7.58-7.56(d, 6H), 7.52-7.49(d, 4H), 7.38-7.29(m, 8H), 7.26-7.23(t, 2H), 7.19-7.05(m, 10H), 7.00- 6.95(m, 10H), 6.92-6.86(m, 12H); MS [M+H] 971
제조예 11 (화학식 3-4로 표시되는 화합물의 제조)
[화학식 3-4]
Figure 112007019391958-pat00053
화학식 b(0.50 g, 0.85 mmol), 4-페닐아미노스틸벤(0.48 g, 1.8 mmol), 소듐 t-부톡사이드(0.20 g, 2.1 mmol), Pd(dba)2(0.01 g, 0.02 mmol) 및 P(t-Bu)3(0.005 g, 0.02 mmol) 를 톨루엔 (20 mL)에 넣고, 3시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 3-4의 화합물(0.57 g, 69%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 7.61-7.59(q, 2H), 7.50-7.48(d, 4H), 7.46-7.44(q, 2H), 7.39-7.31(m, 14H), 7.27-7.20(m, 10H), 7.09-6.98(m, 6H), 6.90-6.85(m, 8H), 6.80-6.78(d, 4H), 6.68-6.66(d, 4H); MS [M+H] 971
제조예 12 (화학식 3-7로 표시되는 화합물의 제조)
[화학식 3-7]
Figure 112007019391958-pat00054
화학식 d(0.49 g, 0.96 mmol), 4-페닐아미노스틸벤(0.28 g, 1.1 mmol), 소듐 t-부톡사이드(0.12 g, 2.9 mmol), Pd(dba)2(0.006 g, 0.01 mmol) 및 P(t-Bu)3(0.003 g, 0.01 mmol)를 톨루엔 (10 mL)에 넣고, 2시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 THF 과 에탄올에서 재결정하여 화학식 3-7의 화합물(0.99 g, 73%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 7.58-7.56(d, 2H), 7.49-7.47(d, 2H), 7.38-7.36(m, 3H), 7.30-7.14(m, 11H), 7.09-7.6.96(m, 11H), 6.87-6.78(m, 10H); MS [M+H] 702
제조예 13 (화학식 3-8로 표시되는 화합물의 제조)
[화학식 3-8]
Figure 112007019391958-pat00055
화학식 e(0.50 g, 0.75 mmol), 4-페닐아미노스틸벤(0.63 g, 2.3 mmol), 소듐 t-부톡사이드(0.25 g, 2.6 mmol), Pd(dba)2(0.01 g, 0.015 mmol) 및 P(t-Bu)3(0.003 g, 0.015 mmol) 를 톨루엔 (20 mL)에 넣고, 3시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 3-8의 화합물(0.87g, 93%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 7.61-7.59(d, 1H), 7.52-7.45(m, 10H), 7.41-7.20 (m, 19H), 7.14-7.04(m, 14H), 6.98-6.90(m, 19H), 6.84-6.82(d, 2H), 6.77-6.73(t, 4H); MS [M+H] 1240
제조예 14 (화학식 5-1로 표시되는 화합물의 제조)
[화학식 5-1]
Figure 112007019391958-pat00056
화학식 d(3 g, 5.8 mmol), 4-포밀벤젠보로닉엑시드(0.97 g, 6.4 mmol), Pd(PPh3)4(0.02 g, 0.017 mmol)를 톨루엔(30 mL)에 넣고, 4M K2CO3 용액 (15ml) 첨가한 후, 3시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 톨루엔 층을 분리해내고, 물층은 CH2Cl2 (30ml)로 추출하였다. 유기층을 층 분리하고 합하여 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 흰색 화합물를(2.2g, 70%)을 얻었다. 이 화합물을 초산 5ml에 녹이고, N-페닐벤젠1,2-디아민(0.75g, 4 mmol)을 첨가한 후, 3시간 가량 환류 교반시켰다. 실온으로 온도를 내린 후 형성된 고체를 여과하고, 여과물을 에탄올과 물로 씻어주어 화학식 5-1의 화합물(2.29g, 80%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 7.20-7.34(m, 19H), 7.43-7.50(m, 8H), 7.52-7.56 (m, 5H), 7.69-7.74(m, 3H), 7.90(s, 1H); MS [M+H] 700
제조예 15 (화학식 5-2로 표시되는 화합물의 제조)
[화학식 5-2]
Figure 112007019391958-pat00057
화학식 d(3 g, 5.8 mmol), 3-포밀벤젠보로닉엑시드(0.97 g, 6.4 mmol), Pd(PPh3)4(0.02 g, 0.017 mmol)를 톨루엔 (30 mL)에 넣고, 4M K2CO3 용액 (15ml) 첨가한 후, 3시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액을 톨루엔 층을 분리해내고, 물층은 CH2Cl2 (30ml)로 추출하였다. 유기층을 층 분리하고 합하여 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 흰색 화합물를(1.9 g, 60%)을 얻었다. 이 화합물을 초산 5ml에 녹이고, N-페닐벤젠1,2-디아민(0.65g, 3.5 mmol)을 첨가한 후, 3시간 가량 환류 교반시켰다. 실온으로 온도를 내린 후 형성된 고체를 여과하고, 여과물을 에탄올과 물로 씻어주어 화학식 5-2의 화합물(1.98g, 80%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 7.20-7.36(m, 20H), 7.43-7.56(m, 11H), 7.69-7.74(m, 4H), 7.90(s, 1H); MS [M+H] 701
제조예 16 (화학식 6-1로 표시되는 화합물의 제조)
[화학식 6-1]
Figure 112007019391958-pat00058
화학식 b(0.89 g, 1.5 mmol), 9-페닐-10-안트라센보로닉엑시드(2.2 g, 7.5 mmol), Pd(PPh3)4(0.3 g, 0.3 mmol) 를 2M K2CO3 수용액 (200mL) 과 THF (200 mL)에 넣고, 24시간 가량 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액에서 유기층을 층 분리하고 여과하여 고체를 얻고, 이를 THF 에 다시 녹인 후 컬럼크로마토그래피로 정제한 후 THF와 에탄올에서 재결정하여 화학식 6-1의 화합물(1.0 g, 71%)을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 7.92-7.90(q, 2H), 7.69-7.67(q, 2H), 7.62-7.41 (m, 26H), 7.36-7.33(q, 4H), 7.28-7.26(d, 6H), 7.15-7.11(m, 6H), 6.84-6.80(t, 2H); MS [M+H] 937
제조예 17 (화학식 6-2로 표시되는 화합물의 제조)
[화학식 6-2]
Figure 112007019391958-pat00059
화학식 b의 화합물 대신 화학식 a의 화합물을 사용한 것을 제외하고는 제조예 16과 동일하게 실시하여 화학식 6-2의 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d 6 ) 8.13-8.11(m, 2H), 7.97-7.95(m, 2H), 7.20-7.71 (m, 44H) ; MS [M+H] 937
제조예 18 (화학식 5-9로 표시되는 화합물의 제조)
[화학식 5-9]
Figure 112007019391958-pat00060
화학식 a(1.0 g, 1.6 mmol) 를 무수 THF (50 mL)에 넣고, 교반 하면서 -78 oC 까지 냉가 후, nBuLi (2.5 M in hexane, 3.2 mmol, 1.28 ml) 을 천천히 넣고 1시간 가량 교반후 상온에서 1 시간 더 교반하였다. 트라이페닐실릴클로라이드 (0.77 g, 2.6 mmol) 을 주사기로 천천히 첨가 후 2시간 교반하였다. 반응이 끝난 후 미량 의 물로 완전 종결시킨 후 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 5-9 의 화합물(0.5 g, 33%)을 얻었다.
MS [M+H] 949
제조예 19 (화학식 5-10로 표시되는 화합물의 제조)
[화학식 5-10]
Figure 112007019391958-pat00061
화학식 b(1.0 g, 1.6 mmol) 를 무수 THF (50 mL)에 넣고, 교반하면서 -78 oC 까지 냉각 후, nBuLi (2.5 M in hexane, 3.2 mmol, 1.28 ml) 을 천천히 넣고 1시간 가량 교반후 상온에서 1 시간 더 교반하였다. 트라이페닐실릴클로라이드 (0.77 g, 2.6 mmol) 을 주사기로 천천히 첨가한 후 2시간 교반하였다. 반응이 끝난 후 미량의 물로 완전 종결시키고, 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클 로로메탄과 에탄올에서 재결정하여 화학식 5-10의 화합물(0.6 g, 40%)을 얻었다
MS [M+H] 949
제조예 20 (화학식 5-12로 표시되는 화합물의 제조)
[화학식 5-12]
Figure 112007019391958-pat00062
화학식 b(1.0 g, 1.6 mmol) 를 무수 THF (50 mL)에 넣고, 교반하면서 -78 oC 까지 냉각한 후, nBuLi (2.5 M in hexane, 3.2 mmol, 1.28 ml) 을 천천히 넣고 1시간 가량 교반한 후, 다이메시틸보론프로라이드 (0.8 g, 3.0 mmol)를 첨가 후 2시간 교반하고 상온에서 12시간 더 교반하였다. 반응이 끝난 후 미량의 물로 완전 종결시키고, 반응 혼합액을 THF와 H2O의 혼합액에 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. 컬럼크로마토그래피로 정제한 후 디클로로메탄과 에탄올에서 재결정하여 화학식 5-12의 화합물(0.5 g, 36%)을 얻었다
MS [M+H] 873
실험예
실험예 1
ITO(인듐주석산화물)가 1000 Å의 두께로 박막 코팅된 유리 기판 (corning 7059 glass)을 분산제를 녹인 증류수에 넣고 초음파로 세척하였다. 세제는 Fischer Co.의 제품을 사용하였으며, 증류수는 Millipore Co. 제품의 필터(Filter)로 2 차 걸러진 증류수를 사용하였다. ITO를 30 분간 세척한 후, 증류수로 2 회 반복하여 초음파 세척을 10 분간 진행하였다. 증류수 세척이 끝난 후 이소프로필알콜, 아세톤, 메탄올 용제 순서로 초음파 세척을 하고 건조시켰다.
상기 ITO 전극 위에 헥사니트릴 헥사아자트리페닐렌(500Å), 4,4'-비스[N-(1-나프틸)-N-페닐아미노]비페닐(NPB) (400Å), Alq3 (300Å) 및 제조예 14 에서 제조된 하기 화학식 5-1의 화합물(200Å)을 순차적으로 열 진공 증착하여 정공주입층, 정공수송층, 발광층, 전자수송층을 차례로 형성시켰다.
[화학식 5-1]
Figure 112007019391958-pat00063
상기 전자수송층 위에 순차적으로 12Å의 두께의 리튬 플루오라이드(LiF)와 2000Å의 두께의 알루미늄을 증착하여 음극을 형성하여, 유기발광소자를 제조하였다.
상기의 과정에서 유기물의 증착속도는 0.4~0.7 Å/sec를 유지하였고, 음극의 리튬플루오라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 x 10-7~ 5 x 10-8 torr를 유지하였다.
상기와 같이 제작된 소자에 6.8 V의 순방향 전계를 가하였을 때, 3400 nit에 해당하는 녹색 발광이 관측되었다.
실험예 2
실험예 1과 동일한 방법으로 준비한 ITO 전극 위에 하기 화학식 A 화합물(800Å), 4,4'-비스[N-(1-나프틸)-N-페닐아미노]비페닐(NPB) (400Å), 상기 제조예 16에서 제조된 화학식 6-1의 화합물(300Å) 및 화학식 B의 화합물 (200Å) 을 순차적으로 열 진공 증착하여 정공주입층, 정공수송층, 발광층, 전자수송층을 차례로 형성시켰다.
[화학식 A]
Figure 112007019391958-pat00064
[화학식 B]
Figure 112007019391958-pat00065
상기 전자수송층(화학식 B 화합물) 위에 순차적으로 12 Å의 두께의 리튬 플루오라이드(LiF)와 2000 Å의 두께의 알루미늄을 증착하여 음극을 형성하여, 유기발광소자를 제조하였다.
상기의 과정에서 유기물의 증착속도는 0.4~0.7 Å/sec를 유지하였고, 음극의 리튬플루오라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 x 10-7~ 5 x 10-8 torr를 유지하였다.
상기와 같이 제작된 소자에 7.9 V의 순방향 전계를 가하였을 때, 2000 nit에 해당하는 청색 발광이 관측되었다.
실험예 3
화학식 6-1의 화합물 대신에, 상기 제조예 17에서 제조된 화학식 6-2의 화합물을 사용한 것을 제외하고는, 실험예 2와 동일한 방법으로 유기발광소자를 제작하였다. 이와 같이 제작된 소자에 8.1 V의 순방향 전계를 가하였을 때, 1700 nit에 해당하는 청색 발광이 관측되었다.
실험예 4
발광층 형성시 화학식 6-1의 화합물에 하기 화학식 C의 화합물을 2중량%를 첨가한 것을 제외하고는 실험예 2와 동일한 방법으로 유기발광소자를 제작하였다. 상기와 같이 제작된 소자에 8.1 V의 순방향 전계를 가하였을 때, 3700 nit에 해당하는 청색 발광이 관측되었다.
[화학식 C]
Figure 112007019391958-pat00066
본 발명의 화합물은 신규한 화합물로서, 코어 구조에 다양한 치환기가 도입됨으로써 유기발광소자에 사용되기 위한 요건, 예컨대 적절한 에너지 준위 등을 만족시킬 수 있다. 따라서, 본 발명의 화합물은 유기발광소자에서 다양한 역할을 할 수 있으며, 유기발광소자에 적용시 소자의 구동전압을 낮추고, 광 효율을 향상시키며, 소자의 수명 특성을 향상시킬 수 있다.

Claims (8)

  1. 하기 화학식 1의 화합물:
    [화학식 1]
    Figure 112008022547518-pat00067
    상기 화학식 1에 있어서, R11 내지 R14, R21 내지 R25, R31 내지 R35, R41 내지 R45, R51 내지 R55 는 서로 같거나 상이하고, 독립적으로 수소; 카바졸릴기; 아릴아민기; 아릴아민기로 치환된 아릴아민기; 아릴알케닐기로 치환된 아릴아민기; 아릴아민기로 치환된 아릴알케닐기; 아릴기로 치환된 바이티에닐기; 아릴기로 치환된 티에닐기; 아릴기로 치환된 이미다졸릴기; 이미다졸릴기로 치환된 아릴기; 아릴기로 치환된 벤즈이미다졸릴기; 벤즈이미다졸릴기로 치환된 아릴기; 아릴기로 치환된 실란기; 알킬아릴기로 치환된 보론기; 아릴기 또는 알킬기로 치환된 Si 포함 헤테로고리기; 및 페닐 또는 나프틸로 치환된 안트라세닐기로 이루어진 군으로부터 선택되고, 단 R11 내지 R14, R21 내지 R25, R31 내지 R35, R41 내지 R45, R51 내지 R55 가 동시에 수소는 아니며,
    상기 아릴아민기는 C5-C20의 방향족 고리기에 의하여 치환된 아민기이고,
    상기 아릴알케닐기는 C5-C20의 방향족 고리기에 의하여 치환된 C2-C20의 알케닐기이며,
    상기 아릴기는 C5-C20의 방향족 고리기이고,
    상기 알킬아릴기는 C1-C20의 알킬기에 의하여 치환된 C5-C20의 방향족 고리기이고,
    상기 알킬기는 C1-C20의 알킬기이며,
    상기 Si 포함 헤테로 고리기는 Si를 고리원으로 포함하는 단일고리 또는 축합고리이다.
  2. 제1항에 있어서, 상기 화학식 1의 화합물의 치환기인 아릴알케닐기, 헤테로 고리기 및 아릴기는 B, N, O, P, S 및 Si 중에서 선택되는 1종 이상의 원소를 1 내지 10개 포함하는 것인 화합물.
  3. 삭제
  4. 제1항에 있어서, 상기 화학식 1의 화합물은 하기 화학식 11 내지 17의 화합물 중에서 선택되는 것인 화합물:
    [화학식 11]
    Figure 112007019391958-pat00068
    [화학식 12]
    Figure 112007019391958-pat00069
    [화학식 13]
    Figure 112007019391958-pat00070
    [화학식 14]
    Figure 112007019391958-pat00071
    [화학식 15]
    Figure 112007019391958-pat00072
    [화학식 16]
    Figure 112007019391958-pat00073
    [화학식 17]
    Figure 112007019391958-pat00074
    상기 화학식 11 내지 17에 있어서, R12, R23, R33, R43 및 R53은 상기 화학식 1에서 정의한 것과 같으나, 단 R12, R23, R33, R43 및 R53는 수소가 아니다.
  5. 제1항에 있어서, 상기 화학식 1의 화합물은 하기 구조식으로 표시되는 화합물들로부터 선택되는 것인 화합물:
    Figure 112007019391958-pat00075
    Figure 112007019391958-pat00076
    Figure 112007019391958-pat00077
    Figure 112007019391958-pat00078
    Figure 112007019391958-pat00079
    Figure 112007019391958-pat00080
    Figure 112007019391958-pat00081
    Figure 112007019391958-pat00082
    Figure 112007019391958-pat00083
    Figure 112007019391958-pat00084
    Figure 112007019391958-pat00085
    Figure 112007019391958-pat00086
    Figure 112007019391958-pat00087
    Figure 112007019391958-pat00088
    Figure 112007019391958-pat00089
    Figure 112007019391958-pat00090
    Figure 112007019391958-pat00091
    Figure 112007019391958-pat00092
    Figure 112007019391958-pat00093
  6. a) 하기 화학식 h 내지 k의 출발물질 중 1 이상을 아이소아밀 나이트라이트과 함께 디클로로에탄에 용해하고, 이를 환류 교반시키면서 여기에 디클로로에탄에 용해된 안트라닐닉엑시드 또는 2-아미노 5-브로모벤조익엑시드를 적가하여 하기 화학식 a 내지 g의 중간물질 중 1 이상을 제조하는 단계:
    b) 상기 중간물질을 중간물질에 도입하고자 하는 치환기의 전구체 물질, 소듐 t-부톡사이드, Pd(dba)2 및 P(t-Bu)3와 함께 톨루엔에 넣어 반응시키고, 이 반응 혼합액을 THF와 H2O의 혼합액에 넣은 후, 유기층을 층분리하여 건조 및 농축한 후 디클로로메탄과 에탄올에서 재결정하는 단계를 포함하는 제1항에 따른 화학식 1의 화합물의 제조 방법:
    Figure 112007019391958-pat00094
    Figure 112007019391958-pat00095
    Figure 112007019391958-pat00096
  7. 제1 전극, 1층 이상의 유기물층 및 제2 전극을 순차적으로 적층된 형태로 포함하는 유기발광소자에 있어서, 상기 유기물층 중 1층 이상이 제1항의 화합물을 포함하는 것인 유기발광소자.
  8. 제7항에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층으로 이루어진 군에서 선택되는 1층 이상을 포함하는 것인 유기발광소자.
KR1020070023452A 2006-03-10 2007-03-09 테트라페닐나프탈렌 유도체 및 이를 이용한 유기발광소자 KR100852326B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060022845 2006-03-10
KR20060022845 2006-03-10

Publications (2)

Publication Number Publication Date
KR20070092667A KR20070092667A (ko) 2007-09-13
KR100852326B1 true KR100852326B1 (ko) 2008-08-14

Family

ID=38509675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070023452A KR100852326B1 (ko) 2006-03-10 2007-03-09 테트라페닐나프탈렌 유도체 및 이를 이용한 유기발광소자

Country Status (7)

Country Link
US (1) US8329316B2 (ko)
EP (1) EP1993992B1 (ko)
JP (2) JP5437641B2 (ko)
KR (1) KR100852326B1 (ko)
CN (1) CN101400643B (ko)
TW (1) TWI359803B (ko)
WO (1) WO2007105884A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11417843B2 (en) 2018-10-12 2022-08-16 Samsung Display Co., Ltd. Organic electroluminescence device and amine compound for organic electroluminescence device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI359803B (en) * 2006-03-10 2012-03-11 Lg Chemical Ltd Tetraphenylnaphthalene derivatives and organic lig
KR100893044B1 (ko) * 2006-07-26 2009-04-15 주식회사 엘지화학 안트라센 유도체, 이를 이용한 유기 전자 소자 및 이 유기전자 소자를 포함하는 전자 장치
TW200911735A (en) * 2007-06-01 2009-03-16 Du Pont Hole transport materials
WO2008152939A1 (ja) * 2007-06-15 2008-12-18 Idemitsu Kosan Co., Ltd. 芳香族ホウ素誘導体、有機エレクトロルミネッセンス素子及びそれを用いた有機エレクトロルミネッセンス材料含有溶液
WO2008156052A1 (ja) * 2007-06-20 2008-12-24 Idemitsu Kosan Co., Ltd. 多環系環集合化合物及びそれを用いた有機エレクトロルミネッセンス素子
KR100991416B1 (ko) * 2007-12-31 2010-11-03 다우어드밴스드디스플레이머티리얼 유한회사 유기 발광 화합물 및 이를 포함하는 유기 발광 소자
WO2009104733A1 (ja) * 2008-02-22 2009-08-27 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子用材料ならびに有機エレクトロルミネッセンス素子
KR100901887B1 (ko) * 2008-03-14 2009-06-09 (주)그라쎌 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 발광소자
US8551624B2 (en) 2008-12-01 2013-10-08 E I Du Pont De Nemours And Company Electroactive materials
IT1403886B1 (it) 2010-12-15 2013-11-08 Sigea Srl Uso di esteri lipoati di glicosamminoglicani in campo tricologico
KR101499356B1 (ko) 2013-06-28 2015-03-05 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
TWI549957B (zh) 2013-09-30 2016-09-21 Lg化學股份有限公司 雜環化合物及使用其之有機發光裝置
KR101672096B1 (ko) 2013-09-30 2016-11-02 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
KR102285608B1 (ko) * 2015-03-23 2021-08-04 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN107383071A (zh) * 2017-07-28 2017-11-24 长春海谱润斯科技有限公司 一种咪唑类衍生物及其应用
KR20190052505A (ko) * 2017-11-08 2019-05-16 에스에프씨 주식회사 아민 치환기를 갖는 나프탈렌 유도체 화합물 및 이를 포함하는 유기발광소자
KR20190090695A (ko) * 2018-01-25 2019-08-02 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
EP3828161A3 (en) * 2019-11-27 2021-07-07 Samsung Display Co., Ltd. Organic electroluminescence device and diamine compound for organic electroluminescence device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027048A (ja) * 2001-07-11 2003-01-29 Fuji Photo Film Co Ltd 発光素子
JP2004256420A (ja) * 2003-02-25 2004-09-16 Japan Science & Technology Agency 全置換ナフタレン誘導体の製造方法
JP2005302657A (ja) * 2004-04-15 2005-10-27 Sharp Corp 有機発光素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077142A (en) * 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices
US5989737A (en) 1997-02-27 1999-11-23 Xerox Corporation Organic electroluminescent devices
JP3965800B2 (ja) * 1997-12-01 2007-08-29 チッソ株式会社 トリアリールアミン誘導体を用いた有機電界発光素子
AU2002317506A1 (en) * 2001-07-11 2003-01-29 Fuji Photo Film Co., Ltd. Light-emitting device and aromatic compound
EP1491568A1 (en) * 2003-06-23 2004-12-29 Covion Organic Semiconductors GmbH Semiconductive Polymers
US20050025993A1 (en) 2003-07-25 2005-02-03 Thompson Mark E. Materials and structures for enhancing the performance of organic light emitting devices
US7018723B2 (en) * 2003-07-25 2006-03-28 The University Of Southern California Materials and structures for enhancing the performance of organic light emitting devices
US8709613B2 (en) * 2004-05-12 2014-04-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element employing the same, and process for producing aromatic amine derivative
TWI359803B (en) * 2006-03-10 2012-03-11 Lg Chemical Ltd Tetraphenylnaphthalene derivatives and organic lig

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027048A (ja) * 2001-07-11 2003-01-29 Fuji Photo Film Co Ltd 発光素子
JP2004256420A (ja) * 2003-02-25 2004-09-16 Japan Science & Technology Agency 全置換ナフタレン誘導体の製造方法
JP2005302657A (ja) * 2004-04-15 2005-10-27 Sharp Corp 有機発光素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Canadian Journal of Chemistry, 2005, 83(9), pp. 1324-38*
Journal of Organic Chemistry, 2004, 69(13), pp. 4559-62*
Journal of the American Chemical Society, 2006(1월 10일), 128(4), pp. 1340-45*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11417843B2 (en) 2018-10-12 2022-08-16 Samsung Display Co., Ltd. Organic electroluminescence device and amine compound for organic electroluminescence device

Also Published As

Publication number Publication date
CN101400643B (zh) 2013-03-27
JP5437641B2 (ja) 2014-03-12
TW200740716A (en) 2007-11-01
WO2007105884A1 (en) 2007-09-20
JP2009529526A (ja) 2009-08-20
EP1993992B1 (en) 2014-11-26
US8329316B2 (en) 2012-12-11
CN101400643A (zh) 2009-04-01
EP1993992A4 (en) 2010-10-27
US20090174312A1 (en) 2009-07-09
KR20070092667A (ko) 2007-09-13
TWI359803B (en) 2012-03-11
JP2013053151A (ja) 2013-03-21
EP1993992A1 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
KR100852326B1 (ko) 테트라페닐나프탈렌 유도체 및 이를 이용한 유기발광소자
KR100852328B1 (ko) 신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한유기 전기 발광 소자
KR100867526B1 (ko) 신규한 디아민 유도체, 이의 제조방법 및 이를 이용한유기전자소자
KR100963378B1 (ko) 유기 금속 착물 유도체 및 이를 이용하는 유기발광소자
KR101367514B1 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기전자소자
KR100864154B1 (ko) 신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한유기전자소자
KR101012578B1 (ko) 신규한 디아민 유도체 및 이를 이용한 유기 전자 소자
KR20110002156A (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
KR20130059265A (ko) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
KR20100112903A (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
KR20100119077A (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
KR20110006915A (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
KR20100007791A (ko) 신규한 안트라센 유도체 및 이를 이용한 유기 전자 소자
KR100767571B1 (ko) 인덴 유도체 및 이를 이용한 유기 발광 소자
KR101251455B1 (ko) 퀴놀린유도체를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101560028B1 (ko) 새로운 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
KR100967355B1 (ko) 유기 전기 발광 소자용 재료 및 이를 이용한 유기 전기발광 소자
KR101153095B1 (ko) 신규한 시클로알켄 유도체 및 이를 이용한 유기전자소자
KR101396647B1 (ko) 신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한 유기전자소자
KR100887870B1 (ko) 신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한유기전자소자
KR101295492B1 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기전기소자
KR20110131155A (ko) 신규한 디티에노피롤 유도체 및 이를 이용한 유기전기소자
KR101182560B1 (ko) 신규한 디티에노피롤 유도체 및 이를 이용한 유기전기소자
KR100865447B1 (ko) 신규한 화합물, 이의 제조방법 및 이를 이용한유기전기소자
KR20140016214A (ko) 신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한 유기전자소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130730

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140716

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150716

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160803

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170718

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180619

Year of fee payment: 11