KR100653302B1 - 스티렌 유도체 - Google Patents

스티렌 유도체 Download PDF

Info

Publication number
KR100653302B1
KR100653302B1 KR1020000053035A KR20000053035A KR100653302B1 KR 100653302 B1 KR100653302 B1 KR 100653302B1 KR 1020000053035 A KR1020000053035 A KR 1020000053035A KR 20000053035 A KR20000053035 A KR 20000053035A KR 100653302 B1 KR100653302 B1 KR 100653302B1
Authority
KR
South Korea
Prior art keywords
group
formula
styrene derivative
carbon atoms
tert
Prior art date
Application number
KR1020000053035A
Other languages
English (en)
Other versions
KR20010050374A (ko
Inventor
무쯔오 나까시마
준 하따께야마
준 와따나베
유지 하라다
Original Assignee
신에쓰 가가꾸 고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에쓰 가가꾸 고교 가부시끼가이샤 filed Critical 신에쓰 가가꾸 고교 가부시끼가이샤
Publication of KR20010050374A publication Critical patent/KR20010050374A/ko
Application granted granted Critical
Publication of KR100653302B1 publication Critical patent/KR100653302B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/017Esters of hydroxy compounds having the esterified hydroxy group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/225Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/30Compounds having groups
    • C07C43/313Compounds having groups containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/708Ethers
    • C07C69/712Ethers the hydroxy group of the ester being etherified with a hydroxy compound having the hydroxy group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Photolithography (AREA)

Abstract

하기 화학식 1로 표시되는 스티렌 유도체.
Figure 112000018969287-pat00001
(식 중, R1은 수소 원자, 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 알킬기 또는 불소 치환 알킬기, 클로로 원자, 또는 트리클로로메틸기를 나타낸다. R2는 페놀의 보호기를 나타낸다. p, q, r은 각각 0 ≤ p < 5, O ≤ q < 5, 0 < r < 5 범위의 0 또는 자연수이고, 또한 0 < p+q < 5를 만족한다.)
스티렌 유도체, 화학 증폭 레지스트 재료

Description

스티렌 유도체 {Styrene Derivatives}
본 발명은 미세가공 기술에 적합한 화학 증폭 레지스트 재료의 베이스 폴리머용의 단량체로 유용한 스티렌 골격을 갖는 신규 스티렌 유도체에 관한 것이다.
LSI의 고집적화와 고속도화에 따라, 패턴 룰의 미세화가 급속히 진행되고 있다. 미세화가 급속히 진보한 배경에는, 투영 렌즈의 고NA화, 레지스트 재료의 성능 향상, 단파장화등이 있다. 특히 i선 (365 nm)으로부터 KrF (248 nm)으로의 단파장화는 큰 변혁을 가져왔고, 0.18 마이크론 룰의 소자 양산도 가능해졌다. 레지스트 재료의 고해상도화, 고감도화에 대하여, 산을 촉매로 한 화학 증폭 포지티브형 레지스트 재료 (특공 평2-27660호, 특개 소63-27829호 공보 등에 기재)는 우수한 특징을 갖는 것으로, 원자외선 리소그래피에 특히 주류를 이루는 레지스트 재료가 되었다.
KrF 엑시머 레이저용 레지스트 재료는, 일반적으로 0.3 마이크론 프로세스에 사용되기 시작하였고, 0.25 마이크론 룰을 거쳐, 현재 0.18 마이크론 룰의 양산화로의 적용, 또한 0.15 마이크론 룰의 검토도 시작되고 있으며, 미세화의 기세는 점점 더 가속화되고 있다. KrF에서 ArF (193 nm)으로의 단파장화는, 디자인 룰을 0.13 ㎛ 이하로 미세화할 것으로 기대되지만, 종래 사용되어 온 노볼락이나 폴리비닐페놀계의 수지는 193 nm 부근에서 매우 강한 흡수를 하기 때문에, 레지스트용의 베이스 수지로서 사용할 수 없다. 이러한 점에서, 투명성과, 필요한 드라이 에칭 내성의 확보를 위해, 아크릴계나 시클로올레핀계의 지환족계의 수지가 검토되었으나 (특개 평9-73173호, 특개 평10-10739호, 특개 평9-230595호, WO 97/33198호 공보), 또한 0.10 ㎛ 이하의 미세화를 기대할 수 있는 F2 (157 nm)에 관해서는, 투명성의 확보가 더욱 곤란해지며, 아크릴계에서는 전혀 광을 투과하지 않고, 시클로올레핀계에서도 카르보닐 결합을 갖는 것은 강한 흡수를 한다는 것을 알 수 있었다.
본 발명은 상기 사정에 감안하여 이루어진 것으로, 200 nm 이하, 특히 F2 (157 nm), Kr2 (146 nm), KrAr (134 nm), Ar2 (126 nm) 등의 진공 자외광에 있어서의 투과율이 우수한 화학 증폭 레지스트 재료의 베이스 폴리머의 제조 원료로 유용한 신규 스티렌 유도체를 제공하는 것을 목적으로 한다.
본 발명자는, 상기 목적을 달성하기 위해서 예의 검토를 행한 결과, 후술하는 방법에 의해 하기 화학식 1로 표시되는 신규 스티렌 유도체가 얻어짐과 동시에, 이 신규 스티렌 유도체를 사용하여 얻어지는 불소화된 폴리히드록시스티렌을 베이스로 하는 수지를 사용함으로써, 투명성과 알칼리 가용성을 확보한 레지스트 재료가 얻어진다는 것을 발견하였다.
즉, 본 발명자의 검토에 의하면, 폴리히드록시스티렌의 경우 160 nm 부근에서 투과율이 약간 향상되지만, 실용 수준과는 거리가 멀고, 카르보닐, 탄소 탄소간의 2중 결합을 줄이는 것이 투과율 확보를 위한 필요 조건으로 판명되었다. 그러나, 아크릴에 대하여 페놀은, 에칭 내성이나 알칼리 가용성에 있어서 우수한 특성을 나타내며, 또한 할로겐 치환, 그 중에서도 특히 상기 스티렌 유도체를 사용하여 얻어지는 불소 치환된 중합체에 의해서 투과율이 향상되고, 실용에 가까운 투과율을 얻을 수 있다는 것을 발견한 것이다.
따라서, 본 발명은 하기 화학식 1로 표시되는 스티렌 유도체를 제공하는 것이다.
<화학식 1>
Figure 112000018969287-pat00002
(식 중, R1은 수소 원자, 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 알킬기 또는 불소 치환 알킬기, 클로로 원자, 또는 트리클로로메틸기를 나타낸다. R2는 페놀의 보호기를 나타낸다. p, q, r은 각각 O ≤ p < 5, 0 ≤ q < 5, 0 < r < 5 범위의 0 또는 자연수이며, 또한 0<p+q<5를 만족한다.)
여기서, R1의 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 알킬기로서는, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, sec-부틸기, tert-부틸 기, 시클로펜틸기, 시클로헥실기, 2-에틸헥실기, n-옥틸기 등을 예시할 수 있으며, 특히 탄소수 1 내지 4, 그 중에서도 메틸기인 것이 바람직하다. 또한, 불소화된 알킬기는 상기 알킬기의 수소 원자 중 일부 또는 전부가 불소 원자로 치환된 것이며, 트리플루오로메틸기, 2,2,2-트리플루오로에틸기, 3,3,3-트리플루오로프로필기, 1,1,2,3,3,3-헥사플루오로프로필기 등을 들 수 있다.
R2의 페놀기의 보호기로서는, 메틸기, 비닐기, 알릴기, 벤질기, 및 하기 화학식 10, 11, 12, 13 및 14로 표시되는 기로부터 선택되는 것이 바람직하다.
Figure 112000018969287-pat00003
Figure 112000018969287-pat00004
Figure 112000018969287-pat00005
Figure 112000018969287-pat00006
Figure 112000018969287-pat00007
(식 중, R3은 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 알킬기를 나타낸다. R4, R5는 각각 수소 원자 또는 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 헤테로 원자를 포함할 수 있는 알킬기, R6은 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 헤테로 원자를 포함할 수 있는 알킬기, 아릴기, 아랄킬기 또는 옥소알킬기이며, R4와 R5, R4와 R6, R5과 R6 은 각각 결합하여 탄소수 3 내지 12의 환상 구조를 형성할 수 있다. R7, R8, R9는 각각 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 헤테로 원자를 포함할 수 있는 알킬기, 아릴기, 아랄킬기 또는 옥소알킬기이며, R7과 R8, R7과 R9, R8과 R9는 각각 결합하여 탄소수 3 내지 12의 환상 구조를 형성할 수 있다. R10, R11, R12는 각각 탄소수 1 내지 4의 직쇄상 또는 분지상의 알킬기를 나타낸다. R13은 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 헤테로 원자를 포함할 수 있는 알킬기, 아릴기, 아랄킬기 또는 옥소알킬기를 나타내고, a는 O 내지 10의 정수이다.)
여기서, R3의 알킬기로서는, R1과 동일한 것을 예시할 수가 있으며, 바람직하게는 탄소수 1 내지 4, 보다 바람직하게는 메틸기를 들 수 있다. 화학식 10으로 표시되는 화합물을 구체적으로 예시하면, 아세틸기, 프로피오닐기, 부티릴기, 이소부티릴기 등을 들 수 있다.
R4, R5, R6의 알킬기로서도, R1과 동일한 것을 예시할 수 있으며, 바람직하게는 탄소수 1 내지 8, 보다 바람직하게는 1 내지 6이다. 이들 알킬기는, 산소, 황, 질소, 불소 등의 헤테로 원자를 포함할 수 있으며, 구체적으로는 산소 원자, 황 원자, NH기가 알킬기에 개재된 것, 또 알킬기의 수소 원자 중 일부 또는 전부가 불소 원자로 치환된 것을 들 수 있다.
R4와 R5, R4와 R6, R5와 R6은 탄소수 3 내지 12, 특히 5 내지 10의 환을 형성할 수 있으며, 환을 형성할 경우에는 R4, R5, R6은 각각 상기 탄소수의 환을 형성하는 알킬렌기를 나타낸다.
화학식 11로 표시되는 기를 구체적으로 예시하면, 메톡시메틸기, 메톡시에톡시메틸기, 1-메톡시에틸기, 1-에톡시에틸기, 1-n-프로폭시에틸기, 1-이소프로폭시에틸기, 1-n-부톡시에틸기, 1-이소부톡시에틸기, 1-sec-부톡시에틸기, 1-tert-부톡시에틸기, 1-tert-아밀옥시에틸기, 1-에톡시-n-프로필기, 1-시클로펜틸옥시에틸기, 1-시클로헥실옥시에틸기, 1-메톡시-n-프로필기, 에톡시프로필기, 1-메톡시-1-메틸-에틸기, 1-에톡시-1-메틸-에틸기 등의 직쇄상 또는 분지상 아세탈기 등을 들 수 있 다. 이를 식으로 나타내면 하기와 같다.
Figure 112000018969287-pat00008
상기 화학식 11로 표시되는 기 중에서 환상의 것으로서는, 구체적으로는 테트라히드로푸란-2-일기, 2-메틸테트라히드로푸란-2-일기, 테트라히드로피란-2-일기, 2-메틸테트라히드로피란-2-일기 등을 예시할 수 있다. 화학식 11로서는, 에톡시에틸기, 부톡시에틸기, 에톡시프로필기가 바람직하다.
R7, R8, R9의 알킬기로서도, R1과 동일한 것을 예시할 수 있으며, 바람직하게는 탄소수 1 내지 8, 보다 바람직하게는 1 내지 6이다. 이들 알킬기는, 산소, 황, 질소, 불소 등의 헤테로 원자를 포함할 수 있으며, 구체적으로는, 산소 원자, 황 원자, NH기가 알킬기에 개재된 것, 또는 알킬기의 수소 원자 중 일부 또는 전부가 불소 원자로 치환된 것을 들 수 있다.
R7과 R8, R7과 R9, R8과 R9는 탄소수 3 내지 12, 특히 5 내지 10의 환을 형성할 수 있으며, 환을 형성할 경우 R7, R8, R9는 각각 상기 탄소수의 환을 형성하는 알킬렌기를 나타낸다.
화학식 12로 표시되는 3급 알킬기로서는, tert-부틸기, 트리에틸카르빌기, 1-에틸노르보닐기, 1-메틸시클로헥실기, 1-에틸시클로펜틸기, 2-(2-메틸)-아다만틸기, 2-(2-에틸)아다만틸기, tert-아밀기 등을 들 수 있다.
R10, R11, R12의 알킬기로서는, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, sec-부틸기, tert-부틸기를 들 수 있으며, 화학식 13으로 표시되는 기를 구체적으로 예시하면, 트리메틸실릴기, 트리에틸실릴기, tert-부틸디메틸실릴기 등을 들 수 있다.
R13의 알킬기도, R1과 동일한 것을 예시할 수 있으며, 또한 이 알킬기에 포함되는 헤테로 원자는, R4 내지 R9와 동일한 것을 들 수 있다. 화학식 14로 표시되는 기를 구체적으로 예시하면, tert-부톡시카르보닐기, tert-부톡시카르보닐메틸기, tert-아밀옥시카르보닐기, tert-아밀옥시카르보닐메틸기, 1-에톡시에톡시카르보닐메틸기, 2-테트라히드로피라닐옥시카르보닐메틸기, 2-테트라히드로프라닐옥시카르보닐메틸기, 트리에틸카르빌옥시카르보닐메틸기, 1-에틸노르보닐옥시카르보닐메틸기, 1-메틸시클로헥실옥시카르보닐메틸기, 1-에틸시클로헥실옥시카르보닐메틸기, 1-메틸시클로펜틸옥시카르보닐메틸기, 1-에틸시클로펜틸옥시카르보닐메틸기, 2-(2-메틸)아다만틸옥시카르보닐메틸기, 2-(2-에틸)아다만틸옥시카르보닐메틸기, tert-아밀옥시카르보닐메틸기 등을 들 수 있다.
또한, R6, R7, R8, R9, R13은, 페닐기, p-메틸페닐기, p-에틸페닐기, p-메톡시페닐기 등의 알콕시 치환 페닐기 등의 탄소수 6 내지 20의 비치환 또는 치환 아릴기, 벤질기, 페네틸기 등의 탄소수 7 내지 20의 아랄킬기 등이나 이들 기에 산소 원자를 갖는, 또는 탄소 원자에 결합하는 수소 원자가 히드록시기로 치환되거나 2개의 수소 원자가 산소 원자로 치환되어 카르보닐기를 형성하는 하기 식으로 표시되는 바와 같은 알킬기 등의 기도 들 수 있다.
Figure 112000018969287-pat00009
R6, R7, R8, R9, R13은, 탄소수 4 내지 20의 옥소알킬기로서도 예시할 수 있으 며, 3-옥소알킬기, 또는 하기 식으로 표시되는 기 등을 들 수 있다.
Figure 112000018969287-pat00010
상기 화학식 1에 있어서, p, q, r은 각각 0 ≤ p < 5, 0 ≤ q < 5, 0 < r < 5 범위의 0 또는 자연수이며, 또한 0 < p+q < 5를 만족한다. 보다 바람직하게는, q ≥ 2이며, 더욱 바람직하게는, q = 2, r = 1이다.
따라서, 본 발명의 스티렌 유도체는, 바람직하게는 하기 화학식 2, 보다 바람직하게는 하기 화학식 3, 더욱 바람직하게는 하기 화학식 4로 표시되는 것이다.
Figure 112000018969287-pat00011
Figure 112000018969287-pat00012
(식 중, s는 0 < s < 5 범위의 자연수이다.)
Figure 112000018969287-pat00013
이 경우, OR2기는 파라 위치에 있는 것이 바람직하고, 따라서 하기 화학식 5, 특히 하기 화학식 6 내지 8의 것이 적절하다.
Figure 112000018969287-pat00014
Figure 112000018969287-pat00015
Figure 112000018969287-pat00016
Figure 112000018969287-pat00017
또한, OR2기가 메타 위치에 있는 하기 화학식 9의 것이 적절하다.
Figure 112000018969287-pat00018
본 발명의 화합물의 제조 방법은 하기 화학식 1a로 표시되는 벤젠유도체와 하기 화학식 1b로 표시되는 비닐 유도체를 교차 결합 (cross coupling)시켜 얻는 방법이 일반적이다.
Figure 112000018969287-pat00019
Figure 112000018969287-pat00020
(R1, R2, p, q, r은 상기와 동일 의미를 나타내며, X는 할로겐 원자, 특히 브롬 원자, 요오드 원자를 나타낸다.)
교차 결합시킬 경우 화학식 1a 또는 1b로부터 제조되는 유기 금속 화합물로서는, 유기 리튬 화합물, 유기 마그네슘 화합물, 유기 아연 화합물, 유기 구리 화합물, 유기 티탄 화합물, 유기 주석 화합물, 유기 붕소 화합물 등을 들 수 있다. 또한, 이 교차 결합시킬 때에는, 팔라듐, 니켈, 구리 등의 전이 금속 촉매가 필요하지만, 팔라듐 촉매로서는 예를 들면 테트라키스(트리페닐포스핀) 팔라듐(0), 디(1,2-비스(디페닐포스피노)에탄) 팔라듐(0) 등의 0가의 팔라듐 화합물, 또는 아세트산 팔라듐, 염화 팔라듐, [1,1'-비스(디페닐포스피노)페로센] 팔라듐(Ⅱ) 클로라이드 등의 2가의 팔라듐 화합물이나 이들과 배위자로 이루어지는 착체 화합물, 또는 이들의 2가의 팔라듐 화합물과 환원제의 조합 등을 사용할 수 있다.
니켈 촉매로서는, (1,3-비스(디페닐포스피노)프로판)니켈 클로라이드(Ⅱ), (1,2-비스(디페닐포스피노)에탄)니켈 클로라이드(Ⅱ), 비스(트리페닐포스핀)니켈 클로라이드(Ⅱ) 등의 2가의 니켈 화합물이나 테트라키스(트리페닐포스핀) 니켈(0) 등의 O가의 니켈 화합물을 들 수 있다.
구리 촉매로서는, 염화 구리(I), 브롬화 구리(I), 요오드화 구리 (I), 시안화 구리(I) 등의 1가의 구리염, 염화 구리(Ⅱ), 브롬화 구리(Ⅱ), 요오드화 구리(Ⅱ), 시안화 구리(Ⅱ), 아세트산 구리(Ⅱ) 등의 2가의 구리염, 디리튬테트라큐플레이트 등의 구리 착체를 들 수 있다.
본 발명의 스티렌 유도체를 단량체로서 사용하여 그 중합체(고분자 화합물)을 제조할 경우, 일반적으로는 상기 단량체류와 용매를 혼합하고, 촉매를 첨가하여, 경우에 따라서는 가열 또는 냉각하면서 중합 반응을 행한다. 중합 반응은 개시제(또는 촉매)의 종류, 개시 방법(빛, 열, 방사선, 플라즈마 등), 중합 조건(온도, 압력, 농도, 용매, 첨가물) 등에 의해서도 지배된다. 본 발명의 스티렌 유도체의 중합에 있어서는, AIBN 등의 라디칼에 의해서 중합이 개시되는 라디칼 공중합, 알킬 리튬 등의 촉매를 사용한 이온 중합(음이온 중합) 등이 일반적이다. 이들 중합은 그 통상법에 따라 행할 수 있다.
상기 중합에 의해 얻어진 고분자 화합물을 베이스 폴리머로 한 레지스트 재료는 유기 용매와 산 발생제를 첨가하여 제조하는 방법이 일반적이다. 또한, 경우에 따라서 가교제, 염기성 화합물, 용해 저지제 등을 첨가할 수 있다. 이들 레지스트 재료의 제조는 통상법에 따라서 행할 수 있다.
이하에 실시예 및 참고예를 나타내어 본 발명을 구체적으로 설명하지만, 본 발명은 하기 예에 제한되는 것은 아니다.
<실시예 1>
4-tert-부톡시-2,3-디플루오로스티렌의 합성
1L의 반응기에 4-tert-부톡시 2,3-디플루오로-1-요오드벤젠 31.2 g (0.10 mol)과 테트라히드로푸란 (이후, THF 라 한다) 100 ㎖를 넣어 60 ℃로 가온하였다. 여기에, 테트라키스(트리페닐포스핀) 팔라듐(0) 1.16 g (1 mmo1)을 첨가하고, 이어서 비닐아연 클로라이드의 1M의 THF 용액 120 ㎖를 적하하였다. 적하 종료 후 30분 숙성한 후, 반응액을 염화암모늄 포화 수용액에 붓고, 또한 통상법에 의해 아세트산 에틸로 추출하여 조(粗)생성물을 얻었다. 이것을 실리카겔크로마토그래피로 정제하여 목적물 17.6 g (수율 83%)을 얻었다.
IR (ν) : 2980, 1500, 1470, 1369, 1302, 1161, 1049, 949, 860 (cm-1)
1H-NMR : 1.37 ppm 9H (s)
5.37 ppm 1H (d)
5.78 ppm 1H (d)
6.74-6.84 ppm 2H (m)
7.06-7.15 ppm 1H (m)
<실시예 2>
4-tert-부톡시-2,6-디플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 4-tert-부톡시-2,6-디플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
IR (ν) : 2981, 1620, 1487, 1369, 1128, 999, 991, 879 (cm-1)
1H-NMR : 1.38 ppm 9H (s)
5.47 ppm 1H (d)
5.94 ppm 1H (d)
6.49-6.57 ppm 2H (m)
6.66 ppm 1H (dd)
<실시예 3>
4-tert-부톡시-3,5-디플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 4-tert-부톡시-3,5-디플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 4>
3-tert-부톡시-2,6-디플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 3-tert-부톡시-2,6-디플루오로-1-요오드벤젠을 사용하여, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 5>
4-아세톡시-2,3-디플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 4-아세톡시-2,3-디플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 6>
4-(1-에톡시에틸옥시)-2-플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 4-(1-에톡시에틸옥시)-2-플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 7>
4-벤질옥시-3-플루오로-α-메틸스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 4-벤질옥시-3-플루오로-1-요오드벤젠을, 비닐아연 클로라이드 대신에 1-메틸비닐아연클로라이드를 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 8>
2-알릴옥시-4-플루오로-α-메틸스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 2-알릴옥시-4-플루오로-1-요오드벤젠을, 비닐아연클로라이드 대신에 1-메틸비닐아연클로라이드를 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 9>
3-비닐옥시-4-플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 3-비닐옥시-4-플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 10>
2-(tert-부틸디메틸실릴옥시)-5-플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 2-(tert-부틸디메틸실릴옥시)-5-플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 11>
4-(2-테트라히드로피라닐옥시)-2,3,5,6-테트라플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 4-(2-테트라히드로피라닐옥시)-2,3,5,6-테트라플루오로-1-요오도벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 12>
3-tert-부톡시카르보닐옥시-2-플루오로스티렌의 합성 `
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 3-tert-부톡시카르보닐옥시-2-플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 13>
2-아세톡시-6-플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 2-아세톡시-6-플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 14>
3-메톡시메틸옥시-4-플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 3-메톡시메틸옥시-4-플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 15>
4-(1-에틸시클로펜틸옥시카르보닐메틸옥시)-2,6-디플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 4-(1-에틸시클로펜틸옥시카르보닐메틸옥시)-2,6-디플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 16>
2-아세톡시-4,5,6-트리플루오로-α-메틸스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 2-아세톡시-4,5,6-트리플루오로-1-요오드벤젠을, 비닐아연 클로라이드 대신에 1-메틸비닐아연 클로라이드를 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 17>
3-tert-부톡시-2,4,6-트리플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 3-tert-부톡시-2,4,6-트리플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 18>
3-tert-부톡시-4,5,6-트리플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 3-tert-부톡시-4,5,6-트리플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 19>
3-아세톡시-4-트리플루오로메틸스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 3-아세톡시-4-트리플루오로메틸-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 20>
4-tert-부톡시-2,3,5,6-테트라플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 4-tert-부톡시-2,3,5,6-테트라플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
IR (ν) : 2981, 1514, 1485, 1371, 1140, 1080, 968, 941 (cm-1)
1H-NMR : 1.41 ppm 9H (s)
5.65 ppm 1H (d)
6.06 ppm 1H (d)
6.66 ppm 1H (dd)
<실시예 21>
4-tert-부톡시-2,3-디플루오로-α-트리플루오로메틸스티렌의 합성
실시예 1의 비닐아연클로라이드 대신에, 1-트리플루오로메틸-비닐아연 클로라이드를 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<실시예 22>
3-tert-부톡시-6-플루오로스티렌의 합성
실시예 1의 4-tert-부톡시-2,3-디플루오로-1-요오드벤젠 대신에, 3-tert-부톡시-6-플루오로-1-요오드벤젠을 사용하고, 실시예 1과 동일한 조작으로 목적물을 얻었다.
<참고예 1>
폴리(2,3-디플루오로-4-히드록시스티렌)의 합성
2L의 플라스크에서 2,3-디플루오로-4-tert-부톡시스티렌 100 g을 톨루엔 460 ㎖에 용해시키고, 계중의 산소를 충분히 제거한 후, 개시제 AIBN 3.1 g을 넣고 60 ℃까지 승온하여 24 시간 동안 중합 반응시켰다.
얻어진 중합체를 정제하기 위해, 반응 혼합물을 메탄올/물(4:1) 혼합 용매중에 붓고, 얻어진 중합체를 침전·분리하여, 90 g의 백색 중합체인 폴리(2,3-디플루오로-4-tert-부톡시스티렌)를 얻었다.
이 중합체를 2L의 플라스크에 옮기고, 아세톤에 용해시켜 15% 용액화 하였다. 이 용액을 60 ℃까지 가온하고, 12N 염산 46 ㎖을 조금씩 적하한 후, 7 시간 동안 탈보호 반응시켰다.
반응액에 피리딘 66 g을 첨가한 후 농축하고, 순수한 물 5L에 부어 중합체를 침전시켰다. 얻어진 중합체를 아세톤에 녹이고, 순수한 물 5L에 부어 중합체를 침전시키는 조작을 2회 반복한 후, 중합체를 분리, 건조시켰다. 이렇게 하여 얻어진 81 g의 백색 중합체[폴리(2,3-디플루오로-4-히드록시스티렌)]은 광산란법에 의해 중량 평균 분자량이 8,700 g/mol이고, GPC 용출 곡선에 의해 분산도 (=Mw/Mn)가 1.65인 중합체임을 확인할 수 있었다.
<참고예 2>
폴리(2,6-디플루오로-4-히드록시스티렌)의 합성
2L의 플라스크에 2,6-디플루오로-4-tert-부톡시스티렌 100 g을 톨루엔 460 ㎖에 용해시키고, 계중의 산소를 충분히 제거한 후, 개시제 AIBN 3.1 g을 넣고, 60 ℃까지 승온하여 24 시간 동안 중합 반응시켰다.
얻어진 중합체를 정제하기 위해서, 반응 혼합물을 메탄올/물 (4:1) 혼합 용매 중에 붓고, 얻어진 중합체를 침전·분리하여, 88 g의 백색 중합체인 폴리(2,3-디플루오로-4-tert-부톡시스티렌)을 얻었다.
이 중합체를 2L의 플라스크에 옮기고, 아세톤에 용해시켜 15% 용액화 하였다. 이 용액을 60 ℃까지 가온하고, 12N 염산 45 ㎖를 조금씩 적하한 후, 7 시간 동안 탈보호 반응시켰다.
반응액에 피리딘 65 g을 첨가한 후 농축하고, 순수한 물 5L에 부어 중합체를 침전시켰다. 얻어진 중합체를 아세톤에 녹이고, 순수한 물 5L에 부어 중합체를 침전시키는 조작을 2회 반복한 후, 중합체를 분리, 건조시켰다. 이렇게 하여 얻어진 81 g의 백색 중합체[폴리(2,6-디플루오로-4-히드록시스티렌)]은 광산란법에 의해 중량 평균 분자량이 8,800 g/mol이며, GPC 용출 곡선에 의해 분산도(=Mw/Mn)가 1.67인 중합체임을 확인할 수 있었다.
본 발명의 스티렌 유도체를 중합함으로써 얻어지는 중합체를 이용하여 제조한 레지스트 재료는 고에너지선에 감응하고, 200 nm 이하, 특히 170 nm 이하의 파장에 있어서의 감도, 해상성, 플라즈마 에칭 내성이 우수하다. 따라서, 본 발명의 화합물은, 특히 F2 엑시머 레이저의 노광 파장에서의 흡수가 작은 레지스트 재료의 베이스 폴리머를 얻는데 적합한 원료가 될 수 있는 것으로, 이것을 사용한 레지스 트 재료는 미세하고 또한 기판에 대하여 수직인 패턴을 용이하게 형성할 수 있고, 이 때문에 초 LSI 제조용의 미세 패턴 형성 재료로서 적합하다.

Claims (10)

  1. 하기 화학식 1로 표시되는 스티렌 유도체.
    <화학식 1>
    Figure 712005001455415-pat00035
    [식 중,
    R1은 수소 원자, 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 알킬기 또는 불소 치환 알킬기, 클로로 원자, 또는 트리클로로메틸기를 나타내고,
    R2는 하기 화학식 10, 11, 12, 13 및 14로 표시되는 기에서 선택되는 페놀의 보호기를 나타내고,
    <화학식 10>
    Figure 712005001455415-pat00036
    <화학식 11>
    Figure 712005001455415-pat00037
    <화학식 12>
    Figure 712005001455415-pat00038
    <화학식 13>
    Figure 712005001455415-pat00039
    <화학식 14>
    Figure 712005001455415-pat00040
    (여기서, R3은 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 알킬기를 나타내며, R4, R5는 각각 수소 원자 또는 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 헤테로 원자를 포함할 수 있는 알킬기, R6은 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 알킬기, 아릴기, 아랄킬기 또는 옥소알킬기이고, R4와 R5, R4와 R6, R5와 R6은 각각 결합되어 탄소수 3 내지 12의 환상 구조를 형성할 수 있으며, R7, R8, R9는 각각 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 헤테로 원자를 포함할 수 있는 알킬기, 아릴기, 아랄킬기 또는 옥소알킬기이고, R7과 R8, R7과 R9, R8과 R9는 각각 결합하여 탄소수 3 내지 12의 환상 구조를 형성할 수 있으며, R10, R11, R12는 각각 탄소수 1 내지 4의 직쇄상 또는 분지상의 알킬기를 나타내며, R13은 탄소수 1 내지 20의 직쇄상, 분지상 또는 환상의 헤테로 원자를 포함할 수 있는 알킬기, 아릴기, 아랄킬기 또는 옥소알킬기를 나타내고, a는 O 내지 1O의 정수임)
    p, q, r은 각각 O ≤ p < 5, 0 ≤ q < 5, 0 < r < 5 범위의 0 또는 자연수이고, 또한 0 < p+q < 5를 만족한다.]
  2. 제1항에 있어서, R1이 수소 원자인 하기 화학식 2로 표시되는 스티렌 유도체.
    <화학식 2>
    Figure 112000018969287-pat00022
    (식 중, R2, p, q, r은 상기와 동일한 의미를 나타낸다.)
  3. 제2항에 있어서, 하기 화학식 3으로 표시되는 스티렌 유도체.
    <화학식 3>
    Figure 112000018969287-pat00023
    (식 중, R2, r은 상기와 동일한 의미를 나타내고, s는 0 < s < 5 범위의 자연수이다.)
  4. 제3항에 있어서, 하기 화학식 4로 표시되는 스티렌 유도체.
    <화학식 4>
    Figure 112000018969287-pat00024
    (식 중, R2는 상기와 동일한 의미를 나타낸다.)
  5. 제4항에 있어서, 하기 화학식 5로 표시되는 스티렌 유도체.
    <화학식 5>
    Figure 112000018969287-pat00025
    (식 중, R2는 상기와 동일한 의미를 나타낸다.)
  6. 제5항에 있어서, 하기 화학식 6으로 표시되는 스티렌 유도체.
    <화학식 6>
    Figure 112000018969287-pat00026
    (식 중, R2는 상기와 동일한 의미를 나타낸다.)
  7. 제5항에 있어서, 하기 화학식 7로 표시되는 스티렌 유도체.
    <화학식 7>
    Figure 112000018969287-pat00027
    (식 중, R2는 상기와 동일한 의미를 나타낸다.)
  8. 제5항에 있어서, 하기 화학식 8로 표시되는 스티렌 유도체.
    <화학식 8>
    Figure 112000018969287-pat00028
    (식 중, R2는 상기와 동일한 의미를 나타낸다.)
  9. 제4항에 있어서, 하기 화학식 9로 표시되는 스티렌 유도체.
    <화학식 9>
    Figure 112000018969287-pat00029
    (식 중, R2는 상기와 동일한 의미를 나타낸다.)
  10. 삭제
KR1020000053035A 1999-09-08 2000-09-07 스티렌 유도체 KR100653302B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP99-253930 1999-09-08
JP25393099 1999-09-08

Publications (2)

Publication Number Publication Date
KR20010050374A KR20010050374A (ko) 2001-06-15
KR100653302B1 true KR100653302B1 (ko) 2006-12-04

Family

ID=17258007

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000053035A KR100653302B1 (ko) 1999-09-08 2000-09-07 스티렌 유도체

Country Status (3)

Country Link
US (1) US6369279B1 (ko)
KR (1) KR100653302B1 (ko)
TW (1) TW506961B (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW527363B (en) * 1999-09-08 2003-04-11 Shinetsu Chemical Co Polymers, chemical amplification resist compositions and patterning process
US6680157B1 (en) * 2000-10-12 2004-01-20 Massachusetts Institute Of Technology Resist methods and materials for UV and electron-beam lithography with reduced outgassing
JP3999030B2 (ja) * 2001-12-13 2007-10-31 セントラル硝子株式会社 含フッ素重合性単量体およびそれを用いた高分子化合物、反射防止膜材料
EP1405849A1 (en) * 2002-10-04 2004-04-07 Corning Incorporated Halogenated styrene compounds and low-absorption-loss polymers obtainable therefrom
US20040136870A1 (en) * 2002-10-25 2004-07-15 Kochy Thomas E. Automatic analysis apparatus
CN102731382B (zh) * 2006-01-13 2015-09-02 美国陶氏益农公司 6-(多取代芳基)-4-氨基吡啶甲酸酯及其作为除草剂的用途
US7951525B2 (en) * 2008-09-08 2011-05-31 International Business Machines Corporation Low outgassing photoresist compositions
KR20150108370A (ko) * 2013-01-23 2015-09-25 우베 고산 가부시키가이샤 비수 전해액 및 그것을 이용한 축전 디바이스
JP6939702B2 (ja) 2017-06-21 2021-09-22 信越化学工業株式会社 レジスト材料及びパターン形成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649207A (en) * 1987-02-03 1989-01-12 Sagami Chem Res Photo-crosslinkable fluorinated styrene polymer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491628A (en) 1982-08-23 1985-01-01 International Business Machines Corporation Positive- and negative-working resist compositions with acid generating photoinitiator and polymer with acid labile groups pendant from polymer backbone
JPS62289539A (ja) * 1986-06-10 1987-12-16 Sagami Chem Res Center フルオロスチレン誘導体
EP0249139B2 (en) 1986-06-13 1998-03-11 MicroSi, Inc. (a Delaware corporation) Resist compositions and use
JP2578646B2 (ja) 1988-07-18 1997-02-05 三洋電機株式会社 非水系二次電池
US6013416A (en) 1995-06-28 2000-01-11 Fujitsu Limited Chemically amplified resist compositions and process for the formation of resist patterns
JP3751065B2 (ja) 1995-06-28 2006-03-01 富士通株式会社 レジスト材料及びレジストパターンの形成方法
JPH09230595A (ja) 1996-02-26 1997-09-05 Nippon Zeon Co Ltd レジスト組成物およびその利用
AU725653B2 (en) 1996-03-07 2000-10-19 B.F. Goodrich Company, The Photoresist compositions comprising polycyclic polymers with acid labile pendant groups
US5998099A (en) 1996-03-08 1999-12-07 Lucent Technologies Inc. Energy-sensitive resist material and a process for device fabrication using an energy-sensitive resist material
US5843624A (en) 1996-03-08 1998-12-01 Lucent Technologies Inc. Energy-sensitive resist material and a process for device fabrication using an energy-sensitive resist material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649207A (en) * 1987-02-03 1989-01-12 Sagami Chem Res Photo-crosslinkable fluorinated styrene polymer

Also Published As

Publication number Publication date
KR20010050374A (ko) 2001-06-15
TW506961B (en) 2002-10-21
US6369279B1 (en) 2002-04-09

Similar Documents

Publication Publication Date Title
US5399647A (en) Photoresist composition of 1-(1&#39;-cyanoethenyl)adamantane
JP2856116B2 (ja) ビニルモノマー、重合体、フォトレジスト組成物、及びそれを用いたパターン形成方法
JP5030474B2 (ja) 半導体リソグラフィー用樹脂組成物
JP2013213225A (ja) Aba型トリブロック共重合体及びその製造方法
US8663903B2 (en) Top coating composition
WO2005005404A1 (ja) フッ素系環状化合物、フッ素系重合性単量体、フッ素系高分子化合物、並びにそれを用いたレジスト材料及びパターン形成方法
KR100679446B1 (ko) 케텐-알데히드 공중합체를 함유하는 산분해성 수지 조성물
KR100653302B1 (ko) 스티렌 유도체
JP2943759B2 (ja) (メタ)アクリレート、重合体、フォトレジスト組成物およびそれを用いたパターン形成方法
JP3943268B2 (ja) 共重合体樹脂及び共重合体樹脂を含むフォトレジスト組成物
JP3642316B2 (ja) 化学増幅レジスト用単量体、化学増幅レジスト用重合体、化学増幅レジスト組成物、パターン形成方法
US11814351B2 (en) Bifunctional (meth)acrylate compound and polymer
JP2616250B2 (ja) 有橋環式炭化水素アルコールおよび感光性材料用中間化合物
KR100503192B1 (ko) 고분자 화합물 및 그의 제조 방법
US20120022219A1 (en) Vinyl ether-based star polymer and process for production thereof
JP3900240B2 (ja) スチレン誘導体
JP5731401B2 (ja) ビニルエーテル系星型ポリマーの製造方法
JP3970673B2 (ja) 多重環構造のエーテルモノマー、ならびにこれより得られる感光性ポリマー及び化学増幅型レジスト組成物
KR100455538B1 (ko) 스티렌 유도체
JPH09197674A (ja) 化学増幅形レジスト用のベース樹脂およびその製造方法
US8304572B2 (en) Synthesis of fluoroalcohol-substituted (meth)acrylate esters and polymers derived therefrom
JP2000137328A (ja) 化学増幅型感光性レジスト組成物
JP2001181226A (ja) スチレン誘導体
JP3916425B2 (ja) 含フッ素アクリレート誘導体とその製造法、およびそれを用いた高分子化合物
JP3724994B2 (ja) 化学増幅型レジスト用感光性ポリマーとこれを含む化学増幅型レジスト化合物

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20050601

Effective date: 20061027

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121114

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131031

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151102

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161028

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171030

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181119

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191118

Year of fee payment: 14