KR100404378B1 - 스티렌계중합체및성형체 - Google Patents

스티렌계중합체및성형체 Download PDF

Info

Publication number
KR100404378B1
KR100404378B1 KR1019960703904A KR19960703904A KR100404378B1 KR 100404378 B1 KR100404378 B1 KR 100404378B1 KR 1019960703904 A KR1019960703904 A KR 1019960703904A KR 19960703904 A KR19960703904 A KR 19960703904A KR 100404378 B1 KR100404378 B1 KR 100404378B1
Authority
KR
South Korea
Prior art keywords
group
styrene
titanium
polymer
cyclopentadienyl
Prior art date
Application number
KR1019960703904A
Other languages
English (en)
Inventor
다쿠마 아오야마
다카아키 우치다
아키토시 마스야마
고메이 야마사키
Original Assignee
이데미쓰세끼유가가꾸가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이데미쓰세끼유가가꾸가부시끼가이샤 filed Critical 이데미쓰세끼유가가꾸가부시끼가이샤
Application granted granted Critical
Publication of KR100404378B1 publication Critical patent/KR100404378B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/04Cp or analog not bridged to a non-Cp X ancillary anionic donor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

1. 청구범위에 기재된 발명이 속한 기술분야
본 발명은 스티렌계 중합체 및 성형체에 관하고, 더욱 상세하게는 파단강도, 내충격강도, 내열성 등의 여러 특성에 우수한 신디오탁틱구조를 갖는 스티렌계 중합체 및 그 성형체에 관한 것이다.
2. 발명이 해결하려고 하는 기술적과제
본 발명은 파단강도가 높은 연신필름, 아이조드충격강도, 열변형온도, 장기 내열에 있어서의 파단강도가 높고, 고온하에서의 파단적 또는 연속적인 사용에 의해 표면광택이 저하하지 않는 성형체를 형성할 수 있는 신디오탁틱구조를 갖는 스티렌계 중합체(SPS)를 개발하는 것을 목적으로 한다.
3. 발명의 해결방법의 요지
고도한 신디오탁틱구조를 갖는 중량평균분자량 1 ×104~2 ×106의 스티렌계 중합체이고, 그 스티렌계 중합체를 1, 2, 4-트리클로로벤젠에 용해후, 냉각하여 얻어진 겔에서 염화메틸렌으로 추출된 추출물의 중량분율이 10중량%이하인 SPS 및 이 SPS로 이루어진 성형체이다.
4. 발명의 중요한 용도
본 발명의 스티렌계 중합체는 식품포장재료 등의 시이트, 자동차용부품, 건재, 전기 ·전자재료, 필름, 섬유, 부직포 등의 제조에 적합하다.

Description

스티렌계 중합체 및 성형체
본발명은 스티렌계 중합체 및 성형체에 관하고, 더욱 상세하게는 파단강도, 내충격강도, 내열성 등의 여러 특성에 우수한 신디오탁틱구조를 갖는 스티렌계 중합체 및 그 성형체에 관한 것이다.
신디오탁틱구조를 갖는 스티렌계 중합체가 우수한 기계적강도, 내열성, 외관, 내용제성을 갖는 것은 이미 알려져 있고, 다양한 용도가 기대되고 있다. 그러나, 공지의 중합방법으로 얻어지는 신디오탁틱구조를 갖는 스티렌계 중합체 중에는 기대하는 기계적강도, 내열성이 떨어질 것이 기대되고, 실용상 문제가 되는 경우가 있다. 이와 같은 문제가 있는 중합체에 대하여 여러가지로 검토한 바, 신디오탁틱 구조를 갖는 스티렌계 중합체를 1, 2, 4-트리클로로벤젠에 용해한 후, 냉각하여 얻어진 겔에서의 염화메틸렌추출물의 양이 증가함에 따라 연신필름의 파단강도의 저하, 또 사출성형품의 아이조드충격강도, 열변형온도 및 장기내열에 있어서의 파단강도의 저하가 일어나고, 게다가 고온하에서의 단속적 또는 연속적인 사용에 의해 성형품의 표면광택의 저하가 일어나는 것을 알았다.
따라서, 신디오탁틱구조를 갖는 스티렌계 중합체(이하, SPS로 약칭할 때가 있음)가 본래 갖는 특성을 활용하고, 더욱더 용도의 전개를 가능하게 하기 위해서는 상기와 같은 문제점을 해결할 필요가 있다.
따라서, 본 발명은 1, 2, 4-트리클로로벤젠용액을 냉각하여 얻어진 겔에서의 염화메틸렌추출물의 양이 감소하고, 연신필름의 파단강도의 저하, 또 사출성형품의 아이조드충격강도, 내변형온도 및 장기내열에 있어서의 파단강도의 저하를 일으키지 않고, 고온하에서의 단속적 또는 연속적인 사용에 의해 성형품의 표면광택이 저하하지 않는 신디오탁틱구조를 갖는 스티렌계 중합체 및 그 성형체를 개발하는 것을 목적으로 한다.
그래서 본 발명자들은 상기한 문제를 해결하기 위해 예의 연구를 거듭한 결과, 특정의 분자량범위에 있는 신디오탁틱구조를 갖는 스티렌계 중합체이고, 상기의 염화메틸렌추출물량이 10중랑%이하인 것이 상기 목적에 합치하는 것을 밝혀냈다. 본 발명은 이러한 지식에 기초하여 완성한 것이다. 즉, 본 발명은 고도한 신디오탁틱구조를 갖는 중량평균분자량 1 ×104~ 2 ×106의 스티렌계 중합체이고, 그 스티렌계 중합체를 1, 2, 4-트리클로로벤젠에 용해후, 냉각하여 얻어진 겔에서 염화메틸렌으로 추출된 추출물의 중량분율이 10중량%이하인 것을 특징으로 하는 신디오탁틱구조를 갖는 스티렌계 중합체 및 그 중합체로 이루어진 성형체를 제공하는 것이다.
본 발명의 스티렌계 중합체는 고도한 신디오탁틱구조를 갖는 것이지만, 여기에서 고도한 신디오탁틱구조는 입체화학구조가 고도한 신디오탁틱구조, 즉 탄소-탄소결합으로 형성된 주쇄에 대하여 측쇄인 페닐기나 치환페닐기가 번갈아 반대방향에 위치하는 입체구조를 갖는 것이고, 그 탁티시티는 동위체탄소에 의한 핵자기공명법(13C-NMR)에 의해 정량된다.13C-NMR법에 의해 측정된 탁티시티는 연속하는 복수개의 구성단위의 존재비율, 예를 들면 2개의 경우는 다이아드, 3개의 경우는 트리아드, 5개의 경우는 펜타드로 나타낼 수 있다. 본 발명에서 말하는 고도한 신디오탁틱구조를 갖는 스티렌계 중합체는 스티렌계 반복단위의 연쇄에 있어서, 바람직하게는 라세미다이아드로 75%이상, 보다 바람직하게는 85%이상, 또는 라세미펜타드로 바람직하게는 30%이상, 보다 바람직하게는 50%이상의 신디오탁티시티를 갖는 폴리스티렌, 폴리(알킬스티렌), 폴리(할로겐화 스티렌), 폴리(할로겐화 알킬스티렌), 폴리(알콕시스티렌), 폴리(비닐안식향산에스테르), 이들의 수소화중합체 또는 혼합물 또는 이들을 주성분으로 하는 공중합체를 말한다. 여기에서, 폴리(알킬스티렌)으로서는 폴리(메틸스티렌), 폴리(에틸스티렌), 폴리(이소프로필스티렌), 폴리(t-부틸스티렌), 폴리(페닐스티렌), 폴리(비닐나프탈렌), 폴리(비닐스티렌)등을 들 수 있다. 폴리(할로겐화 스티렌)으로서는 폴리(클로로스티렌), 폴리(브로모스티렌), 폴리(플루오로스티렌) 등을 들 수 있다. 폴리(할로겐화 알킬스티렌)으로서는 폴리(클로로메틸스티렌)등, 폴리(알콕시스티렌)으로서는 폴리(메톡시스티렌), 폴리(에톡시스티렌) 등을 들 수 있다. 다시또 이들의 구성 단위를 함유하는 공중합체의 코모노머성분으로서는 상기 스티렌계 중합체의 모노머외, 에틸렌, 프로필렌, 부텐, 헥센, 옥텐 등의 올레핀모노머, 부타디엔, 이소프렌 등의 디엔모노머, 환상올렌핀모노머, 환상디엔모노머, 메타크릴산메틸, 무수말레인산, 아크릴로니트릴 등의 극성 비닐모노머를 들 수 있다. 상기 스티렌계 중합체중 특히 바람직한 것으로서는 폴리스티렌, 폴리(알킬스티렌), 폴리(할로겐화 스티렌), 수소화폴리스티렌 및 이들의 구조단위를 함유하는 공중합체를 들 수 있다.
또, 본 발명에 사용하는 SPS는 중량평균분자량이 1 ×104이상 2 ×106이하인 것이 필요하고, 특히 50,000이상인 것이 가장 바람직하다. 여기에서 중량 평균분자량이 1 ×104미만이면 성형품의 강도부족이라는 불편한 점이 있고, 또 2 ×108을 초과하면 성형성의 저하라는 문제가 있다.
또, 본 명세서에 있어서 중량평균분자량은 겔침투크로마토그래피 측정법에 의해 밀리포어(Millipore)사제 GPC(Waters-150C), 도소사제 GPC컬럼(GMH6-HT)를 사용하고, 용리액(溶離液)으로서 1, 2, 4-트리클로로벤젠을 사용하여 135℃에서 측정하고, 표준폴리스티렌의 검량선을 사용하여 환산한 값이다.
이와 같은 SPS는 각종의 방법으로 제조된 것이고, 예를 들면 (a)천이금속화합물 및 (b)양이온과 복수의 기가 금속에 결합한 음이온으로 이루어진 배위착화물 또는 알루미녹산 및 또 필요에 따라 (c)알킬화제를 주성분으로 하는 중합용 촉매를 사용하고, 스티렌계 단량체(상기 스티렌계 중합체에 대응하는 단량체)를 중합하는 것에 의해 제조할 수 있다.
상기 (a)천이금속화합물로서는 각종의 것을 사용할 수 있지만, 통상은 하기일반식(I) 또는 일반식(2)로 표시되는 화합물이 사용된다.
[식중, M은 주기율표 3∼6족의 금속 또는 란탄계 금속을 나타내고, R1, R2, R3및 R4는 각각 알킬기, 알콕시기, 아릴기, 시클로펜타디에닐기, 알킬티오기, 치환시클로펜타디에닐기, 인데닐기, 치환인데닐기, 플루오레닐기, 할로겐원자, 아미노기 또는 킬레이트제를 나타내고, a, b 및 c는 각각 0∼4의 정수를 나타내고, d 및 e는 각각 0∼3의 정수를 나타낸다. 또 R1~R4의 어느 2개를 CH2또는 Si(CH3)2등으로 가교한 착체를 또한 함유한다.]
상기 M으로 표시된 주기율표 3∼6족의 금속 또는 란탄계 금속으로서는 바람직하게는 제4족 금속, 특히 티탄, 지르코늄, 하프늄등이 사용된다.
티탄화합물로서는 여러 가지의 것이 있지만, 예를 들면 하기 일반식(3) 또는 일반식(4)로 표시되는 티탄화합물 및 티탄킬레이트화합물에서 선택된 적어도 1종의 화합물이다.
[식중, R5, R6, R7및 R8은 각각 수소원자, 탄소수 1∼20의 알킬기, 탄소수 1∼20의 알콕시기, 탄소수 6∼20의 아릴기, 알킬아릴기, 아릴알킬기, 탄소수 1∼20의 아실옥시기, 시클로펜타디에닐기, 치환시클로펜타디에닐기, 인데닐기, 치환인데닐기, 플루오레닐기, 알킬티오기, 아릴티오기, 킬레이트제, 아미노기 또는 할로겐원자를 나타낸다. a, b 및 c는 각각 0∼4의 정수를 나타내고, d 및 e는 각각 0∼3의 정수를 나타낸다. 또한 R5~R8의 어느 2개를 CH2또는 Si(CH3)2등으로 가교한 착체를 또한 함유한다.]
상기 일반식(3) 또는 (4)중의 R5, R6, R7및 R8은 각각 수소원자, 탄소수 1∼20의 알킬기(구체적으로는 메틸기, 에틸기, 프로필기, 부틸기, 아밀기, 이소아밀기, 이소부틸기, 옥틸기, 2-에틸헥실기등), 탄소수 1∼20의 알콕시기(구체적으로는 메톡시기, 에톡시기, 프로폭시기, 부톡시기, 아밀옥시기, 헥실옥시기, 2-에틸헥실옥시기등), 탄소수 6∼20의 아릴기, 알킬알릴기, 아릴알킬기(구체적으로는 페닐기, 톨릴기, 크실릴기, 벤질기등), 탄소수 1∼20의 아실옥시기(구체적으로는 헵타데실카르보닐옥시기등), 시클로펜타디에닐기, 치환시클로펜타디에닐기(구체적으로는 메틸시클로펜타디에닐기, 1, 2-디메틸시클로펜타디에닐기, 펜타메틸시클로펜타디에닐기, 4, 5, 6, 7-테트라히드로-1, 2, 3 트리메틸인데닐기등), 인데닐기, 치환인데닐기(구체적으로는 메틸인데닐기, 디메틸인데닐기, 테트라메틸인데닐기, 헥사메틸인데닐기등), 플루오레닐기(구체적으로는 메틸플루오레닐기, 디메틸플루오레닐기, 테트라메틸플루오레닐기, 옥타메틸플루오레닐기등), 알킬티오기(구체적으로는 메틸티오기, 에틸티오기, 부틸티오기, 아밀티오기, 이소아밀티오기, 이소부틸티오기, 옥틸티오기, 2-에틸헥실티오기등), 아릴티오기(구체적으로는 페닐티오기, p-메틸페닐티오기, p-메톡시페닐티오기등), 킬레이트제(구체적으로는 2, 2'-티오비스(4-메틸-6-t-부틸페닐)기등) 또는 할로겐원자(구체적으로는 염소, 브롬, 요오드, 불소)를 나타낸다. 이들 R5, R6, R7및 R8은 동일한 것이라도, 다른 것이라도 좋다.
더욱더 적당한 티탄화합물로서는 일반식(5)
[식중, R은 시클로펜타디에닐기, 치환시클로펜타디에닐기, 인데닐기, 치환 인데닐기, 플루오레닐기 등을 나타내고, X, Y 및 Z는 각각 독립하여 수소원자, 탄소수 1∼12의 알킬기, 탄소수 1∼12의 알콕시기, 탄소수 6∼20의 아릴기, 탄소수 6∼20의 아릴옥시기, 탄소수 6∼20의 아릴알킬기, 탄소수 1∼40의 알킬 또는 아릴아미드기 또는 할로겐원자를 나타낸다.]로 표시되는 화합물이다. 여기에서 X, Y 및 Z 중 1개와 R가 CH2, SiR2등에 의해 가교한 화합물도 함유한다. 이 식중의 R로 표시되는 치환시클로펜타디에닐기는 예를 들면 탄소수 1∼6의 알킬기이고 1개이상 치환된 시클로펜타디에닐기, 구체적으로는 메틸시클로펜타디에닐기; 1, 2-디메틸시클로펜타디에닐기; 1, 2, 4-트리메틸시클로펜타디에닐기; 1, 2, 3, 4-테트라메틸시클로펜타디에닐기; 트리메틸시릴시클로펜타디에닐기; 1, 3-디(트리메틸시릴)시클로펜타디에닐기; t-부틸시클로펜타디에닐기; 1, 3-디(t-부틸)시클로펜타디에닐기; 펜타메틸시클로펜타디에닐기등이다. 또한, X, Y 및 Z는 각각 독립하여 수소원자, 탄소수 1~12의 알킬기(구체적으로는 메틸기, 에틸기, 프로필기, n-부틸기, 이소부틸기, 아밀기, 이소아밀기, 옥틸티오기, 2-에틸헥실기등), 탄소수 1∼12의 알콕시기(구체적으로는 메톡시기, 에톡시기, 프로폭시기, 부톡시기, 아밀옥시기, 헥실옥시기, 옥틸옥시기, 2-에틸헥실옥시기등), 탄소수 6∼20의 아릴기(구체적으로는 페닐기, 나프틸기등), 탄소수 6∼20의 아릴옥시기(구체적으로는 페녹시기등), 탄소수 6∼20의 아릴알킬기(구체적으로는 벤질기등), 탄소수 1∼40의 알킬기 또는 아릴아미드기 (구체적으로는 디메틸아미드기, 디에틸아미드기, 디페닐아미드기, 메틸페닐아미드기등) 또는 할로겐원자(구체적으로는 염소, 브롬, 요오드, 불소)를 나타낸다.
이와 같은 일반식(5)로 표시되는 티탄화합물의 구체예로서는 시클로펜타디에닐트리메틸티탄; 시클로펜타디에닐트리에틸티탄; 시클로펜타디에닐트리프로필티탄; 시클로펜타디에닐트리부틸티탄; 메틸시클로펜타디에닐트리메틸티탄; 1, 2-디메틸시클로펜타디에닐트리메틸티탄; 1, 2, 4-트리메틸시클로펜타디에닐트리메틸티탄; 1, 2, 3, 4-테트라메틸시클로펜타디에닐트리메틸티탄; 펜타메틸시클로펜타디에닐트리메틸티탄; 펜타메틸시클로펜타디에닐트리에틸티탄; 펜타메틸시클로펜타디에닐트리프로필티탄; 펜타메틸시클로펜타디에닐트리부틸티탄; 시클로펜타디에닐메틸티탄 디클로라이드; 시클로펜타디에닐에틸티탄 디클로라이드; 펜타메틸시클로펜타디에닐메틸티탄 디클로라이드; 펜타메틸시클로펜타디에닐에틸티탄 디클로라이드; 시클로펜타디에닐디메틸티탄모노클로라이드; 시클로펜타디에닐디에틸티탄 모노클로라이드; 시클로펜타디에닐티탄 트리메톡시드; 시클로펜타디에닐티탄 트리에톡시드; 시클로펜타디에닐티탄 트리프로폭시드; 시클로펜타디에닐티탄 트리페녹시드; 펜타메틸시클로펜타디에닐티탄 트리메톡시드; 펜타메틸시클로펜타디에닐티탄 트리에톡시드;펜타메틸시클로펜타디에닐티탄 트리프로폭시드; 펜타메틸시클로펜타디에닐티탄 트리부톡시드; 펜타메틸시클로펜타디에닐티탄 트리페녹시드; 시클로펜타디에닐티탄 트리클로라이드; 펜타메틸시클로펜타디에닐티탄 트리클로라이드; 시클로펜타디에닐메톡시티탄 디클로라이드; 시클로펜타디에닐디메틸티탄 클로라이드; 펜타메틸시클로펜타디에닐메톡시티탄 디클로라이드; 시클로펜타디에닐트리벤질티탄; 펜타메틸시클로펜타디에닐메틸디에톡시티탄; 인데닐티탄 트리클로라이드; 인데닐티탄 트리메톡시드; 인데닐티탄 트리에톡시드; 인데닐트리메틸티탄; 인데닐트리벤질티탄; (t-부틸아미도)디메틸(테트라메틸 n5-시클로펜타디에닐)실란티탄 디클로라이드; (t-부틸아미도)디메틸(테트라메틸 n5-시클로펜타디에닐)실란티탄디메틸; (t-부틸아미도)디메틸(테트라메틸 n5-시클로펜타디에닐)실란티탄디메톡시 등을 들 수 있다.
이들 티탄화합물중, 할로겐원자를 함유하지 않는 화합물이 적당하고, 특히 상술한 바와 같이 π원자계 배위자를 1개 갖는 티탄화합물이 바람직하다.
또한 티탄화합물로서는 일반식(6)
[식중, R9, R10은 각각 할로겐원자, 탄소수 1∼20의 알콕시기, 아실옥시기를 나타내고, k는 2∼20을 나타낸다.]
으로 표시되는 축합티탄화합물을 이용해도 좋다. 또한, 상기 티탄화합물은 에스테르나 에테르등과 착체를 형성시킨 것을 이용해도 좋다.
상기 일반식(6)으로 표시되는 3가 티탄화합물은 전형적으로는 삼염화티탄 등의 삼할로겐화티탄, 시클로펜타디에닐티타늄 디클로라이드 등의 시클로펜타디에닐티탄화합물을 들 수 있고, 이외 4가티탄화합물을 환원하여 얻어지는 것을 들 수 있다. 이들 3가 티탄화합물은 에스테르, 에테르 등과 착체를 형성한 것을 이용해도 좋다.
또한, 천이금속화합물로서의 지르코늄화합물로는 테트라벤질지르코늄, 지르코늄테트라에톡시드, 지르코늄테트라부톡시드, 비스인데닐지르코늄디클로라이드, 트리이소프로폭시지르코늄클로라이드, 지르코늄벤질디클로라이드, 트리부톡시지르코늄클로라이드등이 있고, 하프늄화합물로는 테트라벤질하프늄, 하프늄테트라에톡시드, 하프늄테트라부톡시드 등이 있고, 또 바나듐화합물로는 바나딜비스아세틸아세토네이트, 바나딜트리아세틸아세토네이트, 트리에톡시바나딜, 트리프로폭시바나딜등이 있다. 이들 천이금속화합물 중에서는 티탄화합물이 바람직하다.
또 다른 (a)성분인 천이금속화합물로서는 공역π전자를 갖는 배위자를 2개 갖는 천이금속화합물, 예를 들면 일반식(7)
[식중, M1은 티탄, 지르코늄 또는 하프늄을 나타내고, R11및 R12는 각각 시클로펜타디에닐기, 치환시클로펜타디에닐기, 인데닐기 또는 플루오레닐기를 나타내고, R13및 R14는 각각 수소원자, 할로겐원자, 탄소수 1∼20의 탄화 수소기, 탄소수1∼20의 알콕시기, 아미노기 또는 탄소수 1∼20의 티오알콕시기를 나타낸다. 단, R11및 R12는 탄소수 1∼5의 탄화수소기, 탄소수 1∼20 및 규소수 1∼5의 알킬시릴기 또는 탄소수 1∼20 및 게르마늄수 1∼5의 게르마늄함유 탄화수소기에 의해 가교되어 있어도 좋다.]
로 표시되는 천이금속화합물로 이루어진 군에서 선택된 적어도 1종의 화합물이 있다.
상기 일반식(7)중의 R11및 R12는 각각 시클로펜타디에닐기, 치환시클로펜타디에닐기(구체적으로는 메틸시클로펜타디에닐기; 1, 3-디메틸시크로펜타디에닐기; 1, 2, 4-트리메틸시클로펜타디에닐기; 1, 2, 3, 4-테트라메틸시클로펜타디에닐기; 펜타메틸시클로펜타디에닐기; 트리메틸시릴시클로펜타디에닐기; 1, 3-디(트리메틸시릴)시클로펜타디에닐기; 1, 2, 4-트리(트리메틸시릴)시클로펜타디에닐기; t-부틸시클로펜타디에닐기; 1, 3-디(t-부틸)시클로펜타디에닐기, 1, 2, 4-트리(t-부틸)시클로펜타디에닐기 등), 인데닐기, 치환인데닐기(구체적으로는 메틸인데닐기; 디메틸인데닐기; 트리메틸인데닐기등), 플루오레닐기 또는 치환플루오레닐기(예를 들면 메틸플루오레닐기)를 나타내고, R11및 R12는 각각 동일해도 달라도 좋고, 또 R11과 R12가 탄소수 1∼5의 알킬리덴(구체적으로는 메틸렌기, 에틸리덴기, 프로필리덴기, 디메틸카르빌기 등) 또는 탄소수 1∼20 및 규소수 1∼5의 알킬시릴기(구체적으로는 디메틸시릴기, 디에틸시릴기, 디벤질시릴기등)에 의해 가교된 구조의 것도 좋다.한편, R13및 R14는 각각 상술한 바와 같은 것이지만, 보다 상세하게는 각각 독립하여 수소원자, 탄소수 1∼20의 알킬기(메틸기, 에틸기, 프로필기, n-부틸기, 이소부틸기, 아밀기, 이소아밀기, 옥틸기, 2-에틸헥실기등), 탄소수 6∼20의 아릴기(구체적으로는 페닐기, 나프틸기등), 탄소수 7∼20의 아릴알킬기(구체적으로는 벤질기등), 탄소수 1∼12의 알콕시기(구체적으로는 메톡실기, 에톡실기, 프로폭실기, 부톡실기, 아밀옥시기, 헥실옥시기, 옥틸옥시기, 2-에틸헥실옥시기등), 탄소수 6∼20의 아릴옥시기(구체적으로는 페녹시기등), 또 아미노기나 탄소수 1∼20의 티오알콕시기를 나타낸다.
이와 같은 일반식(7)로 표시되는 천이금속화합물의 구체예로서는 비스시클로펜타디에닐티탄디메틸; 비스시클로펜타디에닐티탄디에틸; 비스시클로펜타디에닐티탄디프로필; 비스시클로펜타디에닐티탄디부틸; 비스(메틸시클로펜타디에닐)티탄디메틸; 비스(t-부틸시클로펜타디에닐)티탄디메틸; 비스(1, 3-디메틸시클로펜타디에닐)티탄디메틸; 비스(1, 3-디t-부틸시클로펜타디에닐)티탄디메틸; 비스(1, 2, 4-트리메틸시클로펜타디에닐)티탄디메틸; 비스(1, 2, 3, 4-테트라메틸시클로펜타디에닐)티탄디메틸; 비스시클로펜타디에닐티탄디메틸; 비스(트리메틸시릴시클로펜타디에닐)티탄디메틸; 비스(1, 3-디(트리메틸시릴)시클로펜타디에닐)티탄디메틸; 비스(1, 2, 4-트리((트리메틸시릴)시클로펜타디에닐)티탄디메틸, 비스인데닐티탄디메틸; 비스플루오레닐티탄디메틸; 메틸렌비스시클로펜타디에닐티탄디메틸; 에틸리덴비스시클로펜타디에닐티탄디메틸; 메틸렌비스(2, 3, 4, 5-테트라메틸시클로펜타디에닐)티탄디메틸; 에틸리덴비스(2, 3, 4, 5-테트라메틸시클로펜타디에닐)티탄디메틸; 디메틸시릴비스(2, 3, 4, 5-테트라메틸시클로펜타디에닐)티탄디메틸; 메틸렌비스인데닐티탄디메틸; 에틸리덴비스인데닐티탄디메틸; 디메틸시릴비스인데닐티탄디메틸; 메틸렌비스플루오레닐티탄디메틸; 에틸리덴비스플루오레닐티탄디메틸; 디메틸시릴비스플루오레닐티탄디메틸; 메틸렌(t-부틸시클로펜타디에닐)(시클로펜타디에닐)티탄디메틸; 메틸렌(시클로펜타니에닐)(인데닐)티탄디메틸; 에틸리덴(시클로펜타디에닐)(인데닐)티탄디메틸; 디메틸시릴(시클로펜타디에닐)(인데닐)티탄디메틸; 메틸렌(시클로펜타디에닐)(플루오레닐)티탄디메틸; 에틸리덴(시클로펜타디에닐)(플루오레닐)티탄디메틸; 디메틸시릴(시클로펜타디에닐)(플루오레닐)티탄디메틸; 메틸렌(인데닐)(플루오레닐)티탄디메틸; 에틸리덴(인데닐)(플루오레닐)티탄디메틸; 디메틸시릴(인테닐)(플루오레닐)티탄디메틸; 비스시클로펜타디에닐티탄디벤질; 비스(t-부틸시클로펜타디에닐)티탄디벤질; 비스(메틸시클로펜타디에닐)티탄디벤질; 비스(1, 3-디메틸시클로펜타디에닐)티탄디벤질; 비스(1, 2, 4-트리메틸시클로펜타디에닐)티탄디벤질; 비스(1, 2, 3, 4-테트라메틸시클로펜타디에닐)티탄디벤질; 비스펜타메틸시클로펜타디에닐티탄디벤질; 비스(트리메틸시릴시클로펜타디에닐)티탄디벤질; 비스(1, 3-디-(트리메틸시릴시클로펜타디에닐)티탄디벤질; 비스(1, 2, 4-트리(트리메틸시릴)시클로펜타디에닐)티탄디벤질; 비스인데닐티탄디벤질; 비스플루오레닐티탄디벤질; 메틸렌비스시클로펜타디에닐티탄디벤질; 에틸리덴비스시클로펜타디에닐티탄디벤질; 메틸렌비스(2, 3, 4, 5-테트라메틸시클로펜타디에닐)티탄디벤질; 에틸리덴비스(2, 3, 4, 5-테트라메틸시클로펜타디에닐)티탄디벤질; 디메틸시릴비스(2, 3, 4, 5-테트라메틸시클로펜타디에닐)티탄디벤질; 메틸렌비스인데닐티탄디벤질; 에틸리덴비스인데닐티탄디벤질; 디메틸시릴비스인데닐티탄디벤질; 메틸렌비스플루오레닐티탄디벤질; 에틸리덴비스플루오레닐티탄디벤질; 디메틸시릴비스플루오레닐티탄디벤질; 메틸렌(시클로펜타디에닐)(인데닐)티탄디벤질; 에틸리덴(시클로펜타디에닐)(인데닐)티탄디벤질; 디메틸시릴(시클로펜타디에닐)(인데닐)티탄디벤질; 메틸렌(시클로펜타디에닐)(플루오레닐)티탄디벤질; 에틸리덴(시클로펜타디에닐)(플루오레닐)티탄디벤질; 디메틸시릴(시클로펜타디에닐)(플루오레닐)티탄디벤질, 메틸렌(인데닐)(플루오레닐)티탄디벤질; 에틸리덴(인데닐)(플루오레닐)티탄디벤질; 디메틸시릴(인데닐)(플루오레닐)티탄디벤질; 비스시클로펜타디에닐티탄디메톡사이드; 비스시클로펜타디에닐티탄디에톡시드; 비스시클로펜타디에닐티탄디프로폭사이드; 비스시클로펜타디에닐티탄디부톡사이드; 비스시클로펜타디에닐티탄페녹사이드; 비스(메틸시클로펜타디에닐)티탄디메톡사이드; 비스(1, 3-디메틸시클로펜타디에닐)티탄디메톡사이드; 비스(1, 2, 4-트리메틸시클로펜타디에닐)티탄디메톡사이드; 비스(1, 2, 3, 4-테트라메틸시클로펜타디에닐)티탄디메톡사이드; 비스펜타메틸시클로펜타디에닐티탄디메톡사이드; 비스(트리메틸시릴시클로펜타디에닐)티탄디메톡사이드; 비스(1, 3-디(트리메틸시릴)시클로펜타디에닐)티탄디메톡사이드; 비스(1, 2, 4-트리(트리메틸시릴)시클로펜타디에닐)티탄디메톡사이드; 비스인데닐티탄디메톡사이드; 비스플루오레닐티탄디메톡사이드; 메틸렌비스시클로펜타디에닐티탄디메톡사이드; 에틸리덴비스시클로펜타디에닐티탄디메톡사이드; 메틸렌비스(2, 3, 4, 5-테트라메틸시클로펜타디에닐)티탄디메톡사이드; 에틸리덴비스(2, 3, 4, 5-테트라메틸시클로펜타디에닐)티탄디메톡사이드; 디메틸시릴비스(2, 3, 4, 5-테트라메틸시클로펜타디에닐)티탄디메톡사이드; 메틸렌비스인데닐티탄디메톡사이드; 메틸렌비스(메틸인데닐)티난디메톡사이드; 에틸리덴비스인데닐티탄디메톡사이드; 디메틸시릴비스인데닐티탄디메톡사이드; 메틸렌비스플루오레닐티탄디메톡사이드; 메틸렌비스(메틸플루오레닐)티탄디메톡사이드; 에틸리덴비스플루오레닐티탄디메톡사이드; 디메틸시릴비스플루오레닐티탄디메톡사이드; 메틸렌(시클로펜타디에닐)(인데닐)티탄디메톡사이드; 에틸리덴(시클로펜타디에닐)(인데닐)티탄디메톡사이드; 디메틸시릴(시클로펜타디에닐)(인데닐)티탄디메톡사이드; 메틸렌(시클로펜타디에닐)(플루오레닐)티탄디메톡사이드; 에틸리덴(시클로펜타디에닐)(플루오레닐)티탄디메톡사이드; 디메틸시릴(시클로펜타디에닐)(플루오레닐)티탄디메톡사이드; 메틸렌(인데닐)(플루오레닐)티탄디메톡사이드; 에틸리덴(인데닐)(플루오레닐)티탄디메톡사이드; 디메틸시릴(인데닐)(플루오레닐)티탄디메톡사이드 등을 들 수 있다.
또한, 지르코늄화합물로서는 에틸리덴비스시클로펜타디에닐지르코늄디메톡사이드, 디메틸시릴비스시클로펜타디에닐지르코늄디메톡사이드등이 있고, 또 하프늄화합물로서는 에틸리덴비스시클로펜타디에닐하프늄디메톡사이드, 디메틸시릴비스시클로펜타디에닐하프늄디메톡사이드등이 있다. 이들중에서도 특히 티탄화합물이 바람직하다.
또 이들의 조합외, 2, 2'-티오비스(4-메틸-6-t-부틸페닐)티탄디이소프로폭시드; 2, 2'-티오비스(4-메틸-6-t-부틸페닐)티탄디메톡시드 등의 2좌배위형 착체라도 좋다.
중합용 촉매의 (b)성분인 양이온과 복수의 기가 금속에 결합한 음이온으로 이루어진 배위착화물로서는 여러 가지의 것이 있지만, 예를 들면 하기 일반식(8) 또는 일반식(9)로 표시되는 화합물을 바람직하게 사용할 수 있다.
(단, L2는 후술의 M4, T1T2M5또는 T3 3C이다.)
[식(8), (9)중, L1은 루이스염기, M2및 M3는 각각 주기율표의 5족∼15족에서 선택되는 금속, M4는 주기율표의 8족∼12족에서 선택되는 금속, M5는 주기율표의 8족∼10족에서 선택되는 금속, X1~Xn은 각각 수소원자, 디알킬 아미노기, 알콕시기, 아릴옥시기, 탄소수 1∼20의 알킬기, 탄소수 6∼20의 아릴기, 알킬아릴기, 아릴알킬기, 치환알킬기, 치환아릴기, 유기메탈로이드기 또는 할로겐원자를 나타내고, T1및 T2는 각각 시클로펜타디에닐기, 치환시클로펜타디에닐기, 인데닐기 또는 플루오레닐기, T3는 알킬기를 나타낸다. p는 M2, M3의 원자가이고 1∼7의 정수, n은 2∼8의 정수, g는 L1-H, L2의 이온 가수이고 1∼7의 정수, h는 1이상의 정수, i=hx g/(n-p)이다.]
M2및 M3의 구체예로서는 B, Al, C, Si, P, As, Sb 등의 각 원자, M4의 구체예로서는 Ag, Cu 등의 각 원자, M5의 구체예로서는 Fe, Co, Ni 등의 각 원자를 들 수 있다. X1~Xn의 각각의 구체예로서는 예를 들면 디알킬아미노기로서 디메틸아미노기, 디에틸아미노기, 알콕시기로서 메톡시기, 에톡시기, n-부톡시기, 아릴옥시기로서 페녹시기, 2, 6-디메틸페녹시기, 나프틸옥시기, 탄소수 1∼20의 알킬기로서 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, n-옥틸기, 2-에틸헥실기, 탄소수 6∼20의 아릴기, 알킬아릴기 또는 아릴알킬기로서 페닐기, p-톨릴기, 벤질기, 펜타플루오르페닐기, 3, 5-디(트리플루오르메틸)페닐기, 4-t-부틸페닐기, 2, 6-디메틸페닐기, 3, 5-디메틸페닐기, 2, 4-디메틸페닐기, 1, 2-디메틸페닐기, 할로겐으로서 F, Cl, Br, I, 유기메탈로이드기로서 펜타메틸안티몬기, 트리메틸시릴기, 트리메틸게르밀기, 디페닐아르신기, 디시클로헥실안티몬기, 디페닐붕소기를 들 수 있다. T1및 T2의 치환시클로펜타디에닐기의 구체예는 메틸시클로펜타디에닐기, 부틸시클로펜타디에닐기, 펜타메틸시클로펜타디에닐기를 들 수 있다.
일반식(8) 또는 (9)의 화합물중에서, 구체적으로는 하기의 것을 특히 바람직하게 사용할 수 있다. 예를 들면 일반식(8)의 화합물로서는 테트라페닐붕산트리에틸암모늄, 테트라페닐붕산트리(n-부틸)암모늄, 테트라페닐붕산트리메틸암모늄, 테트라(펜타플루오르페닐)붕산트리에틸암모늄, 테트라(펜타플루오르페닐)붕산트리(n-부틸)암모늄, 헥사플루오르비소산트리에틸암모늄 등을 들 수 있다. 또, 예를 들면일반식(9)의 화합물로서는 테트라(펜타플루오르페닐)붕산피리디늄, 테트라(펜타플루오르페닐)붕산피롤리늄, 테트라(펜타플루오르페닐)붕산N, N-디메틸아닐리늄, 테트라(펜타플루오르페닐)붕산메틸디페닐암모늄, 테트라페닐붕산페로세늄, 테트라(펜타플루오르페닐)붕산디메틸페로세늄, 테트라(펜타플루오르페닐)붕산페로세늄, 테트라(펜타플루오르페닐)붕산데카메틸페로세늄, 테트라(펜타플루오르페닐)붕산아세틸페로세늄, 테트라(펜타플루오르페닐)붕산포르밀페로세늄, 테트라(펜타플루오르페닐)붕산시아노페로세늄, 테트라페닐붕산은, 테트라(펜타플루오르페닐)붕산은, 테트라페닐붕산트리틸, 테트라(펜타플루오르페닐)붕산트리틸, 헥사플루오르비소산은, 헥사플루오르안티몬산은, 테트라플루오르붕산은 등을 들 수 있다.
또한, (b)성분으로서는 상기 복수의 기가 금속에 결합한 음이온과 양이온으로 이루어진 배위착화합물외에 알루미녹산을 사용할 수 있다. 여기에서 알루미녹산은 각종의 유기알루미늄화합물과 축합체를 접촉하여 얻어지는 것이다. 반응원료로 하는 유기알루미늄화합물로서는 통상은 일반식
(식중, R15는 탄소수 1∼8의 알킬기를 나타낸다.)으로 표시되는 유기알루미늄화합물, 구체적으로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄 등을 들 수 있고, 그 중에서도 트리메틸알루미늄이 가장 바람직하다. 한편, 유기알루미늄화합물과 축합시킨 축합제로서는 전형적으로는 물을 들 수 있지만, 이외에 알킬알루미늄이 축합반응하는 어떠한 것을 사용해도 좋다. 이와 같은 알루미녹산으로서는 일반식(11)
(식중, n은 중합도를 나타내고, 2∼50의 수이며, R16은 탄소수 1∼8의 알킬기를 나타낸다.)로 표시되는 쇄상알킬알루미녹산, 또는 일반식(12)
로 표시되는 반복단위를 갖는 환상알킬알루미녹산등이 있다. 이와 같은 알킬알루미녹산중, R16이 메틸기인 것, 즉 메틸알루미녹산이 특히 바람직하다. 일반적으로 트리알킬알루미늄 등의 알킬알루미늄화합물과 물과의 접촉생성물은 상술의 쇄상알킬알루미녹산이나 환상알킬알루미녹산과 함께, 미반응의 트리알킬알루미녹산, 각종의 축합생성물의 혼합물, 또는 이들이 복잡하게 화합한 분자이고, 이들은 알킬알루미늄화합물과 물과의 접촉조건에 의해 각종 생성물이 된다. 이 경우에 알킬알루미늄화합물과 물과의 반응은 특별히 제한은 없고, 공지의 수단에 준하여 반응시키면 된다.
중합용 촉매는 다시 필요에 따라 (c)알킬화제를 함유할 수 있다. 여기에서알킬화제로서는 각종의 것이 있지만, 예를 들면 일반식(13)
(식중, R17및 R18은 각각 탄소수 1∼8, 바람직하게는 1∼4의 알킬기를 나타내고, X는 수소 또는 할로겐을 나타낸다. 또, m은 0<m3, 바람직하게는 2 또는 3, 더욱 바람직하게는 3이고, n은 0n<3, 바람직하게는 0 또는 1이다.)
으로 표시되는 알킬기함유알루미늄화합물이나 일반식(14)
(식중, R17은 전기와 동일하다.)
로 표시되는 알킬기함유마그네슘화합물, 또 일반식(15)
(식중, R17은 전기와 동일하다.)
로 표시되는 알킬기함유아연화합물을 들 수 있다.
이들 알킬기함유화합물중, 알킬기함유알루미늄화합물, 특히 트리알킬알루미늄이나 디알킬알루미늄화합물이 바람직하다. 구체적으로는 트리메틸알루미늄, 트리에틸알루미늄, 트리-n-프로필알루미늄, 트리이소프로필알루미늄, 트리-n-부틸알루미늄, 트리이소부틸알루미늄, 트리-t-부틸알루미늄 등의 트리알킬알루미늄, 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디-n-프로필알루미늄클로라이드,디이소프로필알루미늄클로라이드, 디-n-부틸알루미늄클로라이드, 디이소부틸알루미늄클로라이드, 디-t-부틸알루미늄클로라이드 등의 디알킬알루미늄할로겐화물, 디메틸알루미늄메톡사이드, 디메틸알루미늄에톡사이드 등의 디알킬알루미늄알콕사이드, 디메틸알루미늄하이드라이드, 디에틸알루미늄하이드라이드, 디이소부틸알루미늄하이드라이드 등의 디알킬알루미늄하이드라이드 등을 들 수 있다. 또 다른 알킬화제의 구체예로서는 디메틸마그네슘, 디에틸마그네슘, 디-n-프로필마그네슘, 디이소프로필마그네슘 등의 디알킬마그네슘이나 디메틸아연, 디에틸아연, 디-n-프로필에틸아연, 디이소프로필아연 등의 디알킬아연을 들 수 있다.
중합용촉매는 상기 (a), (b)성분 및 필요에 따라 (c)성분을 함유하는 것이지만, 이 촉매를 조제하기 위해서는 여러 수법을 적용할 수 있다. 예를 들면 성분중 어떤 것을 미리 모노머에 투입해도 좋고, 또 촉매성분을 서로 반응시킨 후에 모노머에 투입하는 것도 가능하다.
상술의 (a), (b), (c)성분의 첨가 또는 접촉은 중합온도하에서 행할 수 있는 것은 물론, 0∼100℃의 온도로 행하는 것도 가능하다. 또 (a), (b), (c) 각 성분의 첨가순서, 접촉순서에 대해서도 특별히 제한은 없다.
상기와 같은 촉매는 고도의 신디오탁틱구조를 갖는 스티렌계 중합체의 제조에 있어서 높은 활성을 나타낸다.
본 발명에 있어서는 SPS를 정제하여 1, 2, 4-트리글로로벤젠에 가열용해 후, 냉각하여 얻어진 겔에서 염화메틸렌으로 추출된 추출물의 양이 10중량% 이하, 바람직하게는 8중량%, 더욱 바람직하게는 6중량%이하인 SPS를 사용한다. 염화메틸렌에의한 추출물이 10중량%보다 많으면, 연신필름의 파단강도, 사출성형의 아이조드충격강도나 열변형온도가 저하하고, 또 장기내열에 있어서의 파단강도나 광택이 저하한다.
이와 같이 염화메틸렌에 의한 추출물의 양이 억제된 SPS를 조제하는 방법에는 특별히 제한은 없지만, 예를 들면 ① 폴리머중에 잔존하는 미반응모노머와 같은 휘발성물질을 휘산시키고 제거하기 위하여 압출기로 SPS를 과립화할 때 휘산처리(volatilization treatment)를 실시하는 방법, 및 ② SPS조제에 사용하는 중합용촉매를 적절하게 선택하는 방법등이 있다.
①의 방법에서, 휘산처리시에 통상 물을 0.01∼5중량%, 보다 바람직하게는 0.5∼1.5중량%로 원료인 신디오탁틱구조를 갖는 스티렌계 중합체 분말에 공급할 필요가 있다. 다른 방법으로, 통상 알코올을 0.1중량%이상, 보다 바람직하게는 0.7∼5중량%로 SPS분말에 공급할 필요가 있다. 물 또는 알코올을 공급하는 수법으로서 물 또는 알코올을 압출기에 직접공급하는 방법, 또는 물이나 알코올을 스티렌계 중합체 분말에 가하는 또다른 방법을 사용할 수 있다. 더욱더 스티렌계 중합체 분말은 용융하여 가소화되고, 다음에 물 또는 알코올이 가소화된 폴리머에 공급된다. 또 다수의 벤트를 갖는 압출기를 사용하여 과립화할 때에 휘발성물질은 마지막 벤트의 상류측의 임의의 벤트에 의해 휘발되고 난 후, 폴리머에 물 또는 알코올의 공급이 행해진다. 과립이 다수의 압출기에 의해 만들어질 때, 휘발성물질은 맨하류측 압출기의 마지막 벤트의 상류측의 임의의 벤트에 의해 휘발되고 난 후, 폴리머에 물 또는 알코올의 공급이 행해진다. 공급될 물은 액상 및 기상 어느 것이라도좋다. 알코올의 구체예로서는 메탄올, 에탄올, 부탄올 및 프로판올을 들 수 있고, 특히 메탄올 및 에탄올이 바람직하다.
상기한 휘산처리에 사용하는 압출기로서, 1개 또는 다수의 벤트를 갖는 벤트형 압출기를 사용할 수 있지만, 1축압출기, 물림형 단방향회전 쌍스크류 압출기, 물림형압출기 및 비물림형 역방향회전 쌍스크류 압출기가 단일 또는 2가지 이상의 연속조합으로 사용할 수 있다. 벤트의 압력은 0∼대기압, 바람직하게는 0∼200torr, 보다 바람직하게는 0∼500torr이다. 휘발시에 벤트의 압력이 너무 높으면 충분한 휘발이 행해지기 어렵다. 과립은 관계식, 즉 압출 성형비(kg/h) =K ×D ×H ×V[식중, K는 상수이고 167,400이며, D는 스크류직경(m)이고, H는 스크류홈깊이(m)이고, V는 0.1∼0.2의 스크류주변속도(m/sec)이다.]를 만족하는 압출성형비로 400℃까지 폴리머의 용융온도범위에 있는 성형온도에서 행하는 것이 바람직하다. 다수의 성형기가 연속하여 연결되어 있는 경우, 상기한 압출성형비는 최하류측 성형기의 출구에서의 압출성형비를 의미한다. 성형기의 스크류 주변속도는 스크류직경 및 처리량 등의 요인에 달려 있지만, 각 벤트부분에서 표면재생효율을 향상시키기 위해서는 주변속도가 0.1∼2.0m/sec가 바람직하다. 주변속도가 2.0m/sec이상이면, 비정상적인 열발생이 종종 일어나고 요구되는 전력비용도 증가한다.
본 발명에 있어서 과립상태의 수지온도는 의도하는 스티렌계 중합체의 용융온도가 400℃이내에서 바람직하게 요구된다. 수지온도가 400℃를 초과하면 스티렌계 중합체가 분해될 염려가 있다. 바람직한 온도는 용융온도가 370℃이내이다. 이때 압출성형기의 실린더온도는 실온∼400℃, 보다 바람직하게는 유리전이온도∼400℃로 맞추는 것이 바람직하다. 성형시의 전단응력은 1 ×106Pa이하, 바람직하게는 5×105Pa이하이다. 전단응력이 너무 크면 용융파열이 발생하여 압출된 펠릿의 형태가 때때로 비정상적이 되고, 다음 성형단계에 악영향을 준다.
더욱더 휘발의 효율성을 높이기 위해 질소, 아르곤, 헬륨 또는 이산화탄소와 같은 불활성기체를 주입할 수 있다.
중합용촉매를 적절하게 선택하는 상기한 방법 ②는 상기한 중합용촉매를 적절히 선택하고 조합함으로써 얻을 수 있다.
본 발명의 성형체는 상기 스티렌계 중합체(SPS)를 성형하여 얻을 수 있지만, 이 스티렌계 중합체로는 본 발명의 목적을 저해하지 않는 범위에서 일반적으로 사용되고 있는 열가소성수지, 고무, 산화방지제, 무기충전제, 가교제, 가교조제, 핵제, 가소제, 상용화제, 착색제, 대전방지제 등을 첨가하여, 조성물로서 사용할 수 있다.
상기 열가소성수지로서는 예를 들면 아탁틱구조의 폴리스티렌, 아이소탁틱 구조의 폴리스티렌, AS수지, ABS수지 등의 스티렌계 중합체를 위시하여 폴리에틸렌테레프탈레이드 등의 폴리에스테르, 폴리카보네이트, 폴리페닐렌옥사이드, 폴리술폰, 폴리에테르술폰 등의 폴리에테르, 폴리아미드, 폴리페닐렌술피드(PPS), 폴리옥시메틸렌 등의 축합계중합체, 폴리아크릴산, 폴리아크릴산에스테르, 폴리메틸메타크릴레이트 등의 아크릴계중합체, 폴리에틸렌, 폴리프로필렌, 폴리부텐, 폴리(4-메틸펜텐-1), 에틸렌-프로필렌공중합체 등의 폴리올레핀, 또는 폴리염화비닐, 폴리염화비닐리덴, 폴리불화비닐리덴 등의 할로겐함유비닐화합물중합체등, 또는 이들 혼합물을 들 수 있다.
또 고무로서는 각종의 것을 사용할 수 있지만, 사용할 수 있는 고무의 예로서는 천연고무, 폴리부타디엔, 폴리이소프렌, 폴리이소부틸렌, 네오프렌, 폴리술피드고무, 티오콜고무, 아크릴고무, 우레탄고무, 실리콘고무, 에피클로로히드린고무, 스티렌-부타디엔블록공중합체고무(SBR), 수소화한 스티렌-부타디엔블록공중합체(SEB), 스티렌-부타디엔-스티렌블록공중합체(SBS), 수소화한 스티렌-부타디엔-스티렌블록공중합체(SEBS), 스티렌-이소프렌블록공중합체(SIR), 수소화한 스티렌-이소프렌블록공중합체(SEP), 스티렌-이소프렌-스티렌블록공중합체(SIS), 수소화한 스티렌-이소프렌-스티렌블록공중합체(SEPS), 스티렌-부타디엔랜덤공중합체, 수소화한 스티렌-부타디엔랜덤공중합체, 스티렌-에틸렌-프로필렌랜덤공중합체, 스티렌-에틸렌-부틸렌랜덤공중합체, 에틸렌프로필렌고무(EPR), 에틸렌-프로필렌-디엔고무(EPDM), 부타디엔-아크릴로니트릴-스티렌코어쉘고무(ABS), 메타크릴산메틸-부타디엔-스티렌코어쉘고무(MBS), 메타크릴산메틸-부틸아크릴레이트-스티렌-코어쉘고무(MAS), 옥틸아크릴레이트-부타디엔-스티렌-코어쉘고무(MABS), 알킬아크릴레이트-부타디엔-아크릴로니트릴-스티렌코어쉘고무(AABS), 부타디엔-스티렌-코어쉘고무(SBR), 코어쉘형 미립자엘라스토머, 예를 들면 메타크릴산메틸-부틸아크릴레이트실록산 등의 실록산함유 코어쉘고무, 및 이들 고무를 변형함으로써 얻어지는 고무를 들 수 있다.
특히, SBR, SBS, SEB, SEBS, SIR, SEP, SIS, SEPS, 코어쉘고무 및 이들 고무를 변형시킴으로써 얻어지는 고무가 특히 바람직하다.
더욱더 변형된 고무의 예로서 극성기를 갖는 변형체로 스티렌-부틸아크릴레이트공중합체고무, 스티렌-부타디엔블록공중합체(SBR), 수소화한 스티렌-부타디엔블록공중합체(SEB), 스티렌-부타디엔-스티렌블록공중합체(SBS), 수소화한 스티렌-부타디엔-스티렌블록공중합체(SEBS), 스티렌-이소프렌블록공중합체(SIR), 수소화한 스티렌-이소프렌블록공중합체(SEP), 스티렌-이소프렌-스티렌블록공중합체(SIS), 수소화한 스티렌-이소프렌-스티렌블록공중합체(SEPS), 스티렌-부타디엔랜덤공중합체, 수소화한 스티렌-부타디엔랜덤공중합체, 스티렌-에틸렌-프로필렌랜덤공중합체, 스티렌-에틸렌-부틸렌랜덤공중합체, 에틸렌프로필렌고무(EPR) 및 에틸렌프로필렌-디엔고무(EPDM)을 변형시킴으로써 얻어진 고무를 들 수 있다. 특히, SEB, SEBS, SEP, SEPS, EPR 및 EPDM을 변형시킴으로써 얻어진 고무가 특히 바람직하다. 그 구체예로서 무수말레인산변형 SEBS, 무수말레인산변형 SEPS, 무수말레인산변형 EPR, 무수말레인산변형 EPDM, 에폭시변형 SEBS 및 에폭시변형 SEPS를 들 수 있다.
이들 고무는 단독으로 또는 2가지 이상 조합하여 사용할 수 있다.
산화방지제로서는 각종의 것이 있지만, 특히 트리스(2, 4-디-t-부틸페닐)포스피트, 트리스(모노- 및 디-노닐페닐)포스피트 등의 모노포스피트나 디포스피트 등의 인계 산화방지제 및 페놀계 산화방지제가 바람직하다. 디포스피트로서는 일반식
(식중, R18및 R19는 각각 탄소수 1∼20의 알킬기, 탄소수 3∼20의 시클로알킬기 또는 탄소수 6∼20의 아릴기를 나타낸다.)
로 표시되는 인계 화합물을 사용하는 것이 바람직하다.
상기 일반식으로 표시되는 인계 화합물의 구체예로서는 디스테아릴펜타에리스리톨디포스피트; 디옥틸펜타에리스리톨디포스피트; 디페닐펜타에리스리톨디포스피트; 비스(2, 4-디-t-부틸페닐)펜타에리스리톨디포스피트; 비스(2, 6-디-t-부틸-4-메틸페닐)펜타에리스리톨디포스피트; 디시클로헥실펜타에리스리톨디포스피트 등을 들 수 있다.
또한, 페놀계 산화방지제로서는 이미 알려진 것을 사용할 수 있고, 그 구체예로서는 2, 6-디-t-부틸-4-메틸페놀; 2, 6-디페닐-4-메톡시페놀; 2, 2'-메틸렌비스(6-t-부틸-4-메틸페놀); 2, 2'-메틸렌비스-(6-t-부틸-4-메틸페놀); 2, 2'-메틸렌비스[4-메틸-6-(α-메틸시클로헥실)페놀]; 1, 1-비스(5-t-부틸-4-히드록시-2-메틸페닐)부탄; 2, 2'-메틸렌비스(4-메틸-6-노닌페놀); 1, 1, 3-트리스-(5-t-부틸-4-히트록시-2-메틸페닐)부탄; 2, 2-비스-(5-t-부틸-4-히드록시-2-메틸페닐)-4-n-도데실메르캡토부탄; 에틸렌글리콜-비스[3, 3-비스(3-t-부틸-4-히드록시페닐)부틸레이트]; 1, 1-비스(3, 5-디메틸-2-히드록시페닐)-3-(n-도데실티오)-부탄; 4, 4'-티오비스(6-t-부틸-3-메틸페놀); 2, 3, 5-트리스(3, 5-디-t-부틸-4-히드록시벤질)-2, 4, 6-트리메틸벤젠; 디옥타데실-2, 3-비스(3, 5-디-t-부틸-4-히드록시벤질)말로네이트, n-옥타데실-3-(4-히드록시-3, 5-디-t-부틸페닐)프로피오네이트 및 테트라키스[메틸렌(3, 5-디-t-부틸-4-히드록시히드로신나메이트)]메탄을 들 수 있다.
또 상기 인계 산화방지제, 페놀계 산화방지제외에 아민계 산화방지제, 유황계 산화방지제 등을 단독으로 또는 혼합하여 사용할 수 있다.
상기의 산화방지제는 전기의 SPS 100중량부에 대하여 통상 0.0001∼1중량부이다. 여기에서 산화방지제의 배합비율이 0.0001중량부미만이면 분자량 저하가 현저하고, 한편 1중량부를 초과하면 기계적강도에 영향이 있기 때문에 어떤 것도 바람직하지 않다.
또 무기충전제로서는 섬유상, 과립상, 분말상 모두 사용할 수 있다. 섬유상 무기충전재로서는 유리섬유, 탄소섬유, 알루미나섬유 등을 들 수 있다. 한편, 과립상, 분말상 무기충전재로서는 탈크, 카본블랙, 그래파이트, 이산화티탄, 실리카, 마이카, 탄산칼슘, 황산칼슘, 탄산바륨, 탄산마그네슘, 황산마그네슘, 황산바륨, 옥시설페이트, 산화주석, 알루미나, 카올린, 탄화규산, 금속분말 등을 들 수 있다.
본 발명의 스티렌계 중합체로 이루어진 성형체는 그 형성은 특별히 한정되는 것은 아니고, 예를 들면 시이트, 필름, 섬유, 부직포, 용기, 사출성형품, 블로우성형체 등이라도 좋다.
본 발명의 스티렌계 수지성형체의 제조방법은 각종의 것을 들 수 있지만, 예를 들면 하기의 방법을 바람직한 것으로서 들 수 있다. 즉, 먼저 상기 SPS 또는 이것에 필요에 따라 상기의 각종 성분을 첨가한 조성물을 예비성형하고, 열처리용 예비성형체(필름, 시이트 또는 용기)로 한다. 이 성형에 있어서는 상기 성형소재의 가열용융한 것을 압출하여 소정형상으로 해도 좋고, 필름, 시이트의 경우는 T-다이성형, 용기등 다른 구조체는 사출성형 등에 의해 성형할 수 있다. 여기에서 사용하는 압출성형기는 일축압출성형기, 이축압축성형기의 어떤 것도 좋고, 또 벤트가 부착된 것, 벤트가 없는 것의 어떤 것도 좋다. 압출조건은 특별히 제한은 없고, 각종 상황에 따라 적절히 선정하면 좋지만 바람직하게는 용융시의 온도를 성형소재의 융점∼분해온도보다 50℃높은 온도의 범위에서 선정하고, 전단응력을 5 ×106dyne/㎤이하로 하면, 표면거칠음이 적은 열처리용 예비성형체를 얻을 수 있다.
상기 압출성형후, 얻어진 열처리용 예비성형체를 냉각고화하는 것이 바람직하다. 이때의 냉매는 기체, 액체, 금속등 각종의 것을 사용할 수 있다. 또 시이트성형에 의해 열처리용 예비성형체를 성형할 때에, 금속롤 등을 사용하는 경우는 에어 나이프, 에어 챔버, 터치 롤, 정전인가 등의 방법에 의하면, 두께불균형이나 표면불안정방지에 효과적이다. 냉각고화의 온도는 통상은 0℃∼열처리용 예비성형체의 유리전이온도보다 30℃높은 온도의 범위, 바람직하게는 유리전이온도보다 70℃ 낮은 온도이상 유리전이이하의 온도범위이다. 또 냉각속도는 특별히 제한은 없지만, 200∼3℃/초, 바람직하게는 200∼10℃/초의 범위에서 적절히 선정한다.
이 열처리용 예비성형체는 각종 형상의 것이지만, 통상은 두께 5mm이하, 바람직하게는 3mm이하의 시이트, 필름, 용기(튜브, 트레이등) 등의 성형체이다. 열처리전의 열처리용 예비성형체에 있어서, 두께가 5mm를 초과하는 것에서는 열처리용 예비성형체의 성형시에 내부의 결정화가 때때로 하얗게 탁해지는 경우가 있다. 더욱더 열처리용 예비성형체의 결정화도는 20%미만, 바람직하게는 15%미만이다. 열처리용 예비성형체의 결정화도가 20%를 초과하면, 열처리후의 스티렌계 수지성형체의 투명성이 충분하지 않다.
본 발명의 스티렌계 수지성형체는 예를 들면 상기 열처리용 예비성형체를 140∼180℃, 바람직하게는 150∼170℃의 온도범위에서 열처리를 하는 것에 의해 얻을 수 있다. 여기에서 열처리온도가 140℃미만에서는 내열성이 충분하지 않고 때때로 하얗게 탁해지는 경우가 있고, 180℃를 초과하는 경우는 투명성이 불충분하게 된다. 이 열처리의 시간은 통상 1초∼30분, 바람직하게는 1초∼10분이다. 또, 이때의 승온속도는 열처리용 예비성형체를 급승온하여 소정의 열처리온도로 하는 것이 바람직하고, 그 관점에서 30℃/분이상, 바람직하게는 50℃/분 이상이다. 승온속도가 30℃/분보다 늦으면 소정의 열처리 온도미만에서 열처리를 받게 되고, 스티렌계 수지성형체의 투명성이 손상된다. 또, 열처리의 가열방법은 특별히 제한은 없지만, 예를 들면 120∼200℃의 기체, 액체, 금속 등의 열매체에 접촉시키면 좋다. 또 상기 조건으로 열처리한 스티렌계 수지성형체를 필요에 따라 다시 한 번 열처리해도 좋다. 이때의 열처리조건으로서는 유리전이온도이상, 융점이하, 열처리시간 1초이상이 적당하다. 다시 한 번 열처리한 스티렌계 수지성형체는 결정화도의 향상은 기대할 수 없지만, 투명성을 손상시키지 않기 위해 열변형온도를 향상시킬 수 있다.다음에 본 발명을 실시예를 참조하여 더욱 상세히 설명하지만, 본 발명은 이들 실시예에 한정되는 것은 아니다.
제조예 1(신디오탁틱구조를 갖는 스티렌계 중합체의 제조)
건조하고, 질소로 씻어낸 500ml의 용기에 디메틸아닐륨테트라(펜타플루오르페닐)붕산염 90μmol, 펜타메틸시클로펜타디에닐티탄트리부톡사이드 90μmol, 트리이소부틸알루미늄 1.8mmol 및 톨루엔 30ml을 넣고, 실온에서 혼합했다.
다음에 다른 용기에 스티렌 250ml 및 트리에틸알루미늄 1.40mmol을 넣고, 70℃까지 온도를 높이고, 상기에서 조제한 촉매용액을 41.5ml을 첨가하고, 1시간 중합했다. 반응종료후, 생성물을 건조하고, 신디오탁틱폴리스티렌(SPS) 97g을 얻었다. 이것의 중량평균분자량은 350,000이었다.
제조예 2(신디오탁틱구조를 갖는 스티렌계 중합체의 제조)
트리에틸알루미늄의 사용량을 2.50mmol로 한 이외는 제조예 1과 마찬가지의 조작을 행하고, SPS 57g을 얻었다. 이것의 중량평균분자량은 220,000이었다.
제조예 3(신디오탁틱구조를 갖는 스티렌계 중합체의 제조)
스티렌 250ml 대신에 스티렌 225ml 및 p-메틸스티렌 25ml를 이용한 외는 제조예 1과 마찬가지의 조작을 행하고, 신디오탁틱 p-메틸스티렌-스티렌 공중합체 104g을 얻었다(p-메틸스티렌함량 7몰). 이것의 중량평균분자량은 370,000이었다.
제조예 4(신디오탁틱 구조를 갖는 스티렌계 중합체의 제조)
펜타메틸시클로펜타디에닐티탄트리부톡사이드 대신에 펜타메틸시클로펜타디에닐지르코늄트리메톡사이드를 사용한 이외는 제조예 1과 마찬가지의 조작을 행하고, SPS 10g을 얻었다. 이것의 중량평균분자량은 200,000이었다.
또, 이하에 있어서 폴리머의 염화메틸렌추출량 및 성형체의 특성은 하기의 방법으로 측정했다.
① 염화메틸렌추출량
건조하여 얻어진 폴리머 2g을 12ml의 1, 2, 4-트리클로로벤젠에 170℃에서 용해한 후, 실온까지 냉각하는 것에 의해 겔을 조제했다. 다음에 이 겔에서 추출용매로서 염화메틸렌을 사용하여 4시간 이상 속슬레추출하고, 염화메틸렌추출량을 구했다.
② 연신필름의 파단강도
연신필름에 대해서 23℃, 상대습도 50%의 분위기하에서 인장시험을 행하고, 척(chucks)사이의 거리를 100mm로 하고, 시험속도를 200mm/min으로서 JIS-C2318에 준거하여 파단강도를 평가했다.
③ 사출성형품의 파단강도
23℃, 상대습도 50%의 분위기하에서 인장시험을 행하고, 척사이의 거리를 115mm로 하고, 시험속도를 5mm/min으로서 JIS-K7113에 준거하여 파단강도를 평가했다.
④ 표면광택
사출성형으로 직경 40mm, 두께 3mm의 원반상의 판을 만들고, JIS-K7105에 준거하여 광택을 측정했다.
⑤ 원반상 판의 열처리
원반상 판의 열처리를 200℃, 12시간의 조건에서 행하고, 상기와 동일방법으로 광택을 측정했다.
실시예 1
제조예 1에 의해 중합한 건조전의 폴리머에, 물 1.0중량%를 가하고 2축 압출기를 사용하여 55kg/hr의 압출속도, 300∼320℃의 성형온도, 290℃의 실린더온도의 조건하에 과립화 및 휘산작용을 행했다.
얻어진 펠릿의 염화메틸렌추출물량을 측정했다. 다음에, 얻어진 펠릿에 산화방지제로서 Irg 1010(시바가이기사제) 및 Adekastab PEP36(아사히덴카고교사제)을 배합하여 끝에 T-다이를 갖는 2축스크류 압출기에 의해 시이트를 만들었다.
연속적인 쌍연신방법에 의해 원료구성시이트로부터 연신필름을 제조했다. 이때, 연신온도는 110℃, 배율은λ MD×λ TD= 3 ×3으로 했다. 여기에서λ MD는 MD방향의 연신배율,λ TD는 TD방향의 연신배율이다. 다음에 얻어진 연신필름을 고정단에서 240℃로 30초간 열처리했다. 이와 같이 해서 만들어진 연신필름의 파단강도를 하기의 방법으로 측정하고, 결과를 제1표에 나타낸다.
비교예 1
제조예 1에 의해 중합한 건조전의 폴리머에 스티렌함유 폴리머의 농도가 98중량%가 되도록 메탄올을 가하고, 130℃에서 3시간, 밀폐용기중에서 교반했다. 얻어진 폴리머를 진공건조후, 염화메틸렌추출량을 측정했다. 다음에 연신필름을 만들고, 그 파단강도를 측정했다. 각각의 결과를 제1표에 나타낸다.
제 1 표
실시예 2
① 무수말레인산변성폴리페닐렌에테르의 제조
폴리페닐렌에테르(이하, PPO라고 약칭한 때가 있음) (클로로포름중 25℃의 고유점도 0.45) 100중량부, 무수말레인산 3중량부를 드라이블렌드하고, 30mm 2축스크류압출기를 사용하여 스크류회전수 200rpm, 설정온도 300℃에서 용융혼연을 행했다. 이때 수지온도는 약 330℃였다. 얻어진 스트랜드를 냉각후 펠릿화하고 무수말레인산변성PPO를 얻었다.
② 정제폴리머 및 사출성형체의 제조
제조예 2에 의해 중합한 건조전의 폴리머를 사용한 이외는 실시예 1과 마찬가지로 해서 과립화 및 휘산을 행하고, 얻어진 펠릿의 염화메틸렌추출량을 측정하고, 결과를 제2표에 나타낸다.
상기의 신디오탁틱폴리스티렌 90중량% 및 SEBS(쉘화학(주)제 Kraton G-1651) 10중량%로 이루어진 조성물 100중량부에 대하여 무수말레인산변성 PPO 3중량부를 첨가함으로써 얻어진 혼합물 100중랑부에 산화방지제로서 Irg 1010(시바가이기사제), Adekastab PEP36(아사히덴카고교사제) 및 TPD(스미토모가가꾸사제)를 각각 0.3중량부, 핵제로서 PTBBA-Al(다이닛폰잉크가가꾸고교사제)를 0.3중량부 배합하여헨쉘믹서로 드라이블렌드한 후, 2축스크류추출기를 사용하여 유리섬유(닛폰덴키글래스사제, ECS03T-051/P)를 30중량% 사이드피드하면서 혼연하고, 펠릿을 만들고 얻어진 펠릿을 사용하여 사출형성하는 것에 의해 시험편을 얻었다.
이렇게 해서 성형된 시험편과 150℃에서 1,500시간 열처리한 시험편의 파단강도를 측정하고, 결과를 제2표에 나타낸다.
비교예 2
제조예 4에 의해 중합하고, 진공건조한 폴리머에 메탄올을 가하여 스티렌 함유폴리머의 농도를 20중량%로 한 후, 130℃에서 1시간 밀폐용기에서 교반했다. 이 폴리머를 여과에 의해 용액으로부터 분리한 후 진공건조한다. 그후, 염화메틸렌추출량을 측정했다. 다음에 사출성형품을 실시예 2와 마찬가지의 방법으로 만들고, 열처리전후의 파단강도를 측정하고 결과를 제2표에 나타낸다.
제 2 표
실시예 3
실시예 1에서 얻어진 신디오탁틱폴리스티렌의 펠릿에 산화방지제로서 Irg 1010(시바가이기사제) 및 Adekastab PEP36(아사히덴카고교사제)를 각각 0.1중량%배합하고, 사출성형에 의해 원반상의 판을 성형했다. 이 원반상의 판과 200℃에서 12시간 열처리를 했던 또다른 원반상의 판의 광택을 측정하고, 결과를 제3표에 나타낸다.
비교예 3
비교예 1에서 얻어진 신디오탁틱폴리스티렌의 파우더를 사용한 이외는 실시예 3과 마찬가지로 조작하여 원반상의 판을 만들고 열처리전후의 광택을 측정하고, 결과를 제3표에 나타낸다.
비교예 4
제조예 3에 의해 중합한 건조전의 폴리머에, 스티렌함유폴리머의 농도가 98중량%가 되도록 메탄올을 가하고, 130℃에서 3시간 밀폐용기중에서 교반한 후, 진공건조했다. 얻어진 폴리머의 염화메틸렌추출량을 측정하고, 또한 실시예 3과 마찬가지로 조작하여 원반상의 판을 만들고 열처리전후의 광택을 측정하고 결과를 제3표에 나타낸다.
제 3 표
본 발명에 관한 고도의 신디오탁틱구조를 갖는 스티렌계 중합체는 염화메틸렌 추출물의 양은 매우 적고, 이 중합체를 사용하는 것에 의해 파단강도가 높은 연신필름이 얻어지고, 또 아이조드충격강도, 열변형온도 및 장기내열에 있어서의 파단강도가 높은 사출성형품이 얻어진다. 사출성형품은 고온하에서 장시간 사용을 한다해도 표면광택의 저하를 충분히 억제할 수 있다. 따라서 본 발명의 스티렌계 중합체는 식품포장재료 등의 시이트, 자동차용부품, 건재, 전기 ·전자재료, 필름, 섬유, 부직포 등의 제조에 적합하다.

Claims (3)

  1. 라세미 다이아드(racemic diad) 기준으로 75% 이상의 신디오탁티시티(syndiotacticity)를 갖는 스티렌 중합체로서, 겔침투 크로마토그래피 측정법에 의해 측정된 중량평균분자량이 1 ×104~ 2 ×106이고 상기 스티렌계 중합체를 1,2,4-트리클로로벤젠에 용해한 후 냉각하여 수득할 수 있는 겔로부터 염화메틸렌으로 추출한 추출물의 중량분율이 10중량% 이하이고, 미반응 모노머 같은 휘발성분을 휘산 및 제거하기 위하여 압출기로 상기 SPS를 과립화시에 휘산처리를 실행하는 방법에 의해 수득될 수 있는 것을 특징으로 하는 신디오탁틱구조를 갖는 스티렌계 중합체.
  2. 제1항에 있어서,
    신디오탁틱구조를 갖는 스티렌계 중합체가 스티렌의 단독중합체 또는 스티렌과 스티렌계 모노머, 올레핀, 디엔모노머 또는 극성 비닐모노머와의 공중합체인 신디오탁틱 구조를 갖는 스티렌계 중합체.
  3. 제1항에 기재된 신디오탁틱 구조를 갖는 스티렌계 중합체로 이루어진 성형체.
KR1019960703904A 1994-11-29 1995-11-27 스티렌계중합체및성형체 KR100404378B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP94-294469 1994-11-29
JP29446994 1994-11-29

Publications (1)

Publication Number Publication Date
KR100404378B1 true KR100404378B1 (ko) 2004-04-03

Family

ID=17808185

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960703904A KR100404378B1 (ko) 1994-11-29 1995-11-27 스티렌계중합체및성형체

Country Status (11)

Country Link
US (1) US5698652A (ko)
EP (2) EP0988957A1 (ko)
JP (1) JP5295789B2 (ko)
KR (1) KR100404378B1 (ko)
CN (1) CN1082059C (ko)
AU (1) AU688624B2 (ko)
CA (1) CA2181350A1 (ko)
DE (1) DE69517022T2 (ko)
ES (1) ES2149379T3 (ko)
TW (1) TW397841B (ko)
WO (1) WO1996016997A1 (ko)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08302117A (ja) 1995-05-08 1996-11-19 Idemitsu Kosan Co Ltd ポリスチレン系樹脂組成物
JP2001521577A (ja) * 1997-04-18 2001-11-06 ザ ダウ ケミカル カンパニー シンジオタクチックビニル芳香族ポリマーの仕上げ処理方法
CA2305380A1 (en) * 1997-09-29 1999-04-22 National Research Council Of Canada Trivalent thrombin inhibitor
WO1999045547A1 (en) * 1998-03-02 1999-09-10 The Dow Chemical Company Syndiotactic monovinylidene aromatic polymer film
DE69914431T2 (de) 1998-09-29 2004-07-15 Idemitsu Petrochemical Co., Ltd. Thermoplastische Harzzusammensetzungen und ihre Spritzgussteile
US6635712B1 (en) 1999-10-05 2003-10-21 Idemitsu Petrochemical Co., Ltd. Molding material, process for producing molded article, and molded article
DE10348425B4 (de) * 2003-10-14 2008-07-24 Bühler AG Verfahren zur Herstellung eines Profils aus einem Polykondensat
EP2029790A1 (en) 2006-06-02 2009-03-04 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing
JP2010225620A (ja) 2009-03-19 2010-10-07 Panasonic Corp 回路モジュール
US8574694B2 (en) 2009-11-03 2013-11-05 Curwood, Inc. Packaging sheet with improved cutting properties
DE102010060176A1 (de) 2010-10-26 2012-04-26 Ensinger Gmbh Isoliersteg
WO2012058002A1 (en) * 2010-10-29 2012-05-03 Dow Global Technologies Llc Melt devolatilization extrusion process
EP2736963B1 (en) 2011-09-27 2017-12-06 Dow Global Technologies LLC Melt devolatilization extrusion process
WO2013099111A1 (ja) * 2011-12-27 2013-07-04 東レ株式会社 熱可塑性樹脂組成物およびその成形品
US8859638B1 (en) * 2013-05-31 2014-10-14 Lion Copolymer Geismar, Llc Method for making a high solids cross-linked ethylene propylene diene terpolymer latex
CN104423275B (zh) * 2013-08-19 2017-02-08 联想移动通信科技有限公司 一种系统电压控制装置、方法及终端
KR20200086295A (ko) 2017-12-01 2020-07-16 이데미쓰 고산 가부시키가이샤 스타이렌계 수지의 제조 방법 및 스타이렌계 수지 성형체
JP7249777B2 (ja) 2018-12-27 2023-03-31 出光興産株式会社 ポリスチレン系樹脂組成物
WO2020262277A1 (ja) 2019-06-27 2020-12-30 出光興産株式会社 スチレン系樹脂組成物
CN114174418A (zh) * 2019-08-27 2022-03-11 东洋苯乙烯股份有限公司 树脂组合物
WO2021240694A1 (ja) * 2020-05-27 2021-12-02 東洋スチレン株式会社 樹脂組成物
KR20230135058A (ko) 2021-01-22 2023-09-22 이데미쓰 고산 가부시키가이샤 스타이렌계 수지 조성물
CN114539774B (zh) * 2022-04-28 2022-07-15 江西聚真科技发展有限公司 一种绝缘导热聚苯硫醚/碳纤维复合材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252207A (ja) * 1991-01-28 1992-09-08 Idemitsu Kosan Co Ltd スチレン系重合体の精製方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799234A (en) * 1971-02-22 1974-03-26 Welding Engineers Countercurrent vapor stripping in screw devolatilizer
US3773740A (en) * 1971-10-21 1973-11-20 Union Carbide Corp Devolatilization method
JPS5837005A (ja) * 1981-08-31 1983-03-04 Mitsui Toatsu Chem Inc 熱可塑性樹脂より揮発性物質を除去する方法
US5006296A (en) * 1988-09-01 1991-04-09 The Dow Chemical Company Process for the preparation of fibers of stereoregular polystyrene
DE69023846T2 (de) * 1989-03-20 1996-04-11 Idemitsu Kosan Co Styrencopolymer und verfahren zur herstellung.
JP2858786B2 (ja) * 1989-05-31 1999-02-17 出光興産株式会社 スチレン系重合体成形品およびその製造方法
JPH0356504A (ja) * 1989-07-26 1991-03-12 Idemitsu Petrochem Co Ltd スチレン系重合体の残留揮発分の除去方法
JP2761043B2 (ja) * 1989-07-27 1998-06-04 出光興産株式会社 スチレン系重合体の製造方法
JP2723142B2 (ja) * 1989-08-02 1998-03-09 出光石油化学株式会社 スチレン系重合体の残留揮発分の除去方法
US5066741A (en) * 1990-03-22 1991-11-19 The Dow Chemical Company Process for preparation of syndiotactic vinyl aromatic polymers
JP2939354B2 (ja) * 1991-03-26 1999-08-25 出光興産株式会社 スチレン系重合体の製造方法及びその触媒
IT1250712B (it) * 1991-07-29 1995-04-21 Montecatini Tecnologie Srl Manufatti semicristallini a base di poli-p-metilstirene siondiotattico (s-ppms)
US5357014A (en) * 1991-08-09 1994-10-18 Idemitsu Kosan Co., Ltd. Styrenic resin molding and process for producing same
JP3178620B2 (ja) * 1992-04-17 2001-06-25 出光興産株式会社 スチレン系重合体の精製方法
US5380822A (en) * 1992-07-27 1995-01-10 Novacor Chemicals (International) S.A. Water assisted devolatilization
JPH06145214A (ja) * 1992-11-02 1994-05-24 Idemitsu Kosan Co Ltd スチレン系重合体の精製方法
JPH07300508A (ja) * 1994-05-02 1995-11-14 Nippon Steel Chem Co Ltd 低揮発分α−メチルスチレン系共重合樹脂の製造方法
JP2006083384A (ja) * 1994-11-29 2006-03-30 Idemitsu Kosan Co Ltd スチレン系重合体及び成形体
WO1996037352A1 (fr) * 1995-05-26 1996-11-28 Idemitsu Petrochemical Co., Ltd Procede de production de resine styrenique
JPH08318529A (ja) * 1995-05-26 1996-12-03 Idemitsu Petrochem Co Ltd スチレン系樹脂の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252207A (ja) * 1991-01-28 1992-09-08 Idemitsu Kosan Co Ltd スチレン系重合体の精製方法

Also Published As

Publication number Publication date
US5698652A (en) 1997-12-16
CA2181350A1 (en) 1996-06-06
EP0988957A1 (en) 2000-03-29
EP0757064A4 (en) 1997-05-07
CN1140457A (zh) 1997-01-15
CN1082059C (zh) 2002-04-03
TW397841B (en) 2000-07-11
DE69517022T2 (de) 2000-09-14
WO1996016997A1 (fr) 1996-06-06
ES2149379T3 (es) 2000-11-01
EP0757064A1 (en) 1997-02-05
DE69517022D1 (de) 2000-06-21
EP0757064B1 (en) 2000-05-17
AU688624B2 (en) 1998-03-12
JP2009068022A (ja) 2009-04-02
AU3936795A (en) 1996-06-19
JP5295789B2 (ja) 2013-09-18

Similar Documents

Publication Publication Date Title
KR100404378B1 (ko) 스티렌계중합체및성형체
EP0271875B1 (en) Process for producing crystalline vinyl aromatic polymers having a predominantly syndiotactic structure
EP0611802A2 (en) Styrene-based polymer compositions
US5183871A (en) Styrene polymer molding material and process for preparing same
KR950012726B1 (ko) 스티렌계 중합체 조성물의 제조방법
US5023304A (en) Process for producing styrene-based polymer
JP2790636B2 (ja) 食品包装用延伸フイルム
JP2742099B2 (ja) 平滑性フィルム
WO2019107525A1 (ja) スチレン系樹脂の製造方法及びスチレン系樹脂成形体
JP2006083384A (ja) スチレン系重合体及び成形体
JP2672589B2 (ja) スチレン系重合体成形品およびその製造方法
JP2681643B2 (ja) ポリスチレン系樹脂組成物
CN1256697A (zh) 利用催化剂失活进行的间规乙烯基芳烃聚合物的固态脱挥发分作用
JP2710324B2 (ja) スチレン系重合体成形品とその製造方法
EP0363506A1 (en) Process for production of styrene-based polymers
AU730641B2 (en) Long chain branched syndiotactic vinyl aromatic polymers
KR20020019065A (ko) 작용기-함유 스티렌계 공중합체의 제조방법 및작용기-함유 스티렌계 공중합체
JP3574694B2 (ja) ポリスチレン系樹脂及びその成形体
JPH0543622A (ja) スチレン系樹脂成形体及びその製造方法
JP3649257B2 (ja) スチレン系樹脂製シート・フィルムの製造方法
JPH05320448A (ja) 樹脂組成物及びそれを用いた多層材料
JP2000198918A (ja) ポリフェニレンエ―テル樹脂組成物
JPH05104617A (ja) 透明成形体及びその製造方法
JP2001206916A (ja) スチレン系共重合体及びその製造法
JPH1017739A (ja) ガラス強化ポリスチレン系樹脂組成物

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141007

Year of fee payment: 12

EXPY Expiration of term