KR100379248B1 - 덴드리머를 이용한 나노 입자가 표면에 부착된무기-고분자 복합 소재 및 그 제조 방법 - Google Patents

덴드리머를 이용한 나노 입자가 표면에 부착된무기-고분자 복합 소재 및 그 제조 방법 Download PDF

Info

Publication number
KR100379248B1
KR100379248B1 KR10-2000-0072959A KR20000072959A KR100379248B1 KR 100379248 B1 KR100379248 B1 KR 100379248B1 KR 20000072959 A KR20000072959 A KR 20000072959A KR 100379248 B1 KR100379248 B1 KR 100379248B1
Authority
KR
South Korea
Prior art keywords
dendrimer
inorganic
metal
matrix
nanoparticles
Prior art date
Application number
KR10-2000-0072959A
Other languages
English (en)
Other versions
KR20020043829A (ko
Inventor
원종옥
강용수
정범석
전지원
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2000-0072959A priority Critical patent/KR100379248B1/ko
Priority to JP2001054992A priority patent/JP3473846B2/ja
Priority to US09/860,531 priority patent/US6590056B2/en
Publication of KR20020043829A publication Critical patent/KR20020043829A/ko
Application granted granted Critical
Publication of KR100379248B1 publication Critical patent/KR100379248B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/003Dendrimers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 나노미터 단위의 무기(금속) 입자를 고분자 물질의 표면에 균일하게 분산시켜서, 광학적, 전기적, 자기적 기능성 재료로 이용할 수 있도록 해 주는 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재 및 그 제조 방법에 관한 것이다.
본 발명은 고분자 물질로 된 매트릭스에 무수화물 반응기를 형성하는 단계와; 덴드리머에 금속과 무기염 중에서 어느 하나를 선택 첨가하여 덴드리머-금속 전구체 용액과 덴드리머-무기 입자 용액 중에서 어느 한 용액을 형성하는 단계와; 무수화물 반응기가 형성된 매트릭스와 상기 어느 한 용액을 반응시켜 화학적으로 결합시키는 단계와; 광선을 조사하여 금속 또는 무기 입자 이온을 환원시켜 주는 단계를 포함하는 것을 특징으로 하는 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재 제조 방법과, 이 방법에 의하여 제조된 것을 특징으로 하는 복합 소재를 제공한다.

Description

덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재 및 그 제조 방법{Inorganic-organic hybrid polymers composed of nano-particles on the surface using dendrimers and Fabrication Method Thereof}
본 발명은 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재 및 그 제조 방법에 관한 것으로, 보다 상세하게는 나노미터 단위의 무기(금속) 입자를 고분자 물질의 표면에 균일하게 분산시켜서, 광학적, 전기적, 자기적 기능성 재료로 이용할 수 있도록 해 주는 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재 및 그 제조 방법에 관한 것이다.
일반적으로, 금속 또는 반도체의 나노미터 단위 입자, 즉 나노 입자(nano-particles)는 비선형 광학 효과를 나타내므로, 나노 입자가 중합체 또는 유리 매트릭스(Matrix)에 분산되어 있는 복합 재료는 광기능성 재료로서 관심을 모아왔다.
또한, 자성 특성을 갖는 나노 입자들은 전자기 저장 매체로 사용되는 등 많은 응용이 있다. 이러한 복합 재료를 제조하는 한 가지 방법은 진공 침착, 스퍼터링, CVD, 졸-겔 방법 등으로 제조된 나노 입자를 적절한 지지막 위에 단일막으로 부착시키는 것이다.
예를 들면, 유리 표면 위에 (3-mercaptopropyl)trimethoxysilane이나 (3-aminopropyl)trimethoxysilane 등을 시레인(silane, SiH4)으로 부착한 후, 나노 입자가 있는 용액 내에 함침하여 자기 조립 단일층을 만드는 방법이 알려져 있다(Doron, A.; Katz, E.; Willner, I. Langmuir, 1995, 11, 1313; Graber, K. C.; Freeman, R.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735; Freeman, R.G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A.P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C. Walter, D. G.; Natan, M. J. Science, 1995, 267, 1629).
기존의 나노 입자 분산 매트릭스 시스템은, 나노 입자의 표면 에너지가 높기 때문에 일어나는 부가적인 나노 입자의 상태 변화와 아울러 나노 입자가 매트릭스에 분산될 때 응집물을 형성하기 쉬워서, 예를 들면 비선형 광학 등에 사용하는 데에는 광산란을 유발하는 등 만족스러운 복합 재료 특성을 나타내지 못하고 있다.
덴드리머(dendrimer)는 나노미터 크기의 고분자로 세대라고 표현되는 층 구조를 하고 있으며, 분자량 분포가 좁고, 그 말단에 반응기를 많이 갖고 있는 특징이 있다. 이러한 덴드리머 말단의 많은 반응기를 이용해 화학적으로 고분자 표면에 부착시키는 방법에 대해서는 특허가 출원되어 있다(원종옥, 강용수, 박용순, 차봉준, 박현채, 정범석, 국내 특허 출원번호 10-2000-42435호).
미세 입자의 특성은 유한 크기(finite size) 효과로 인하여 덩어리 상태와는 다른 특성을 가진다. 이러한 미세 입자를 제조하기 위하여 다양한 물리적, 화학적 합성 경로가 안정성 있고, 단분산상이며, 원자가가 영가인 나노미터 크기의 금속 입자를 생산하기 위하여 시도되어 왔다.
그러한 것들은 스퍼터링(sputtering), 금속 증착, 연마, 금속염 환원 및 중성 유기 금속 전구체 분해를 포함한다.
종래 방법에 따라 제조된 Au, Ag, Pd, Pt 전이 금속의 입자는 응집된 분말 형태이거나 대기에 민감하며 비가역적으로 응집되는 경향이 있다. 이러한 대기 민감성은 많은 양의 물질이 있을 경우 안정성 문제를 일으키며, 공정 중에 고가의 공기 차단 처리 절차를 채용하지 않고 최종 제품이 밀봉 포장되지 않으면, 그 시간 동안 산화에 의해 붕괴되는 결과를 가져오기 때문에 문제가 된다.
입자의 비가역적인 응집은 입자 크기 분포를 좁힐 수 없는 분리 공정을 일으키고, 자기 기록 응용 분야 등 필수적인 부드럽고 얇은 필름을 쉽게 형성하는 것을 막는다. 그 응집체는 촉매 작용을 위한 화학적으로 활성인 표면적을 감소시키고, 생화학적 표지, 분리, 약품 전달 응용 분야에 필수적인 용해도를 크게 제한한다.
그러한 이유로 입자 차원의 정확한 크기 제어나 단분산상 나노 입자를 제조하는 것은 나노 물질의 기술적인 응용 분야에서는 중요한 목표가 되어 기계적인 연마, 금속 증착 축합, 레이저 어블레이션(ablation), 전기 스파크 부식과 같은 물리적인 방법과 금속염의 용액 상태의 환원, 금속 카르보닐 전구체의 열분해, 그리고 전기 화학적인 도금을 포함한 화학적 방법들로 제조되고 있다.
이러한 물리적 또는 화학적인 공정 중에 어떤 것은 적당한 안정제, 그리고 전달 유체 또는 적당한 안정제를 포함하는 전달 유체에서 증기 상태로부터 집적된 금속 입자의 존재에서 직접적으로 매트릭스와 복합화 시킬 때 상용성 및 영구 응집성이 일어나 기존의 기술들은 필요한 수준만큼 필요한 제어 수준으로 개선하는 것이 불가능했다.
아울러 금속 입자가 아무리 어렵게 단분산 상태로 제조된다 하더라도, 고분자 매트릭스 내에 분산시키는 과정에서 공정 중 발생하는 열이나 압력들의 조건에 의해 각각 입자들이 잘 분산되기보다는 분자끼리의 응집이 일어나는 문제, 고분자 매트릭스와의 비상용성, 계면에서의 디펙트(defects), 또한 제조된 입자들간의 응집성 등의 문제 등으로, 기존의 기술들은 필요한 수준만큼 제어수준으로 개선하는 것이 불가능하였다.
따라서, 본 발명은 이러한 종래 기술의 문제점을 감안하여 안출된 것으로, 그 목적은 무기 나노 입자가 고분자 물질 표면 위에 영구적인 응집 없이 잘 분산되어 있는 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재 및 그 제조 방법을 제공하는데 있다.
그리고, 본 발명의 다른 목적은 덴드리머를 이용하여 무기 나노 입자를 고분자 표면 위에 높은 접착력으로 부착시킬 수 있는 단순 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 무기 입자의 크기 및 고분자 표면의 나노 입자간의 거리를 금속 전구체 또는 덴드리머의 양으로부터 쉽게 조절하는 방법을 제공하는 것이다.
도 1a, b는 본 발명의 제조 공정을 개략적으로 나타낸 공정도.
도 2는 본 발명의 실시예 1에서 사용한 금속-덴드리머 콤플렉스를 자외선 조사 후에 얻어진 금 나노 입자의 크기를 TEM을 사용하여 측정한 사진.
도 3은 본 발명의 실시예 24에서 얻어진 필름의 사진.
상기한 목적을 달성하기 위하여, 본 발명은 고분자 물질로 된 매트릭스에 무수화물 반응기를 형성하는 단계와; 덴드리머에 금속과 무기염 중에서 어느 하나를 선택 첨가하여 덴드리머-금속 전구체 용액과 덴드리머-무기 입자 용액 중에서 어느 한 용액을 형성하는 단계와; 무수화물 반응기가 형성된 매트릭스와 상기 어느 한 용액을 반응시켜 화학적으로 결합시키는 단계와; 광선을 조사하여 금속 또는 무기 입자 이온을 환원시켜 주는 단계를 포함하는 것을 특징으로 하는 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재 제조 방법과, 이 방법에 의하여 제조된 것을 특징으로 하는 복합 소재를 제공한다.
본 발명에서 사용되는 상기 금속 전구체는 Au, Pt, Pd, Cu, Ag, Co, Fe, Ni, Mn, Sm, Nd, Pr, Gd, Ti, Zr, Si, In 원소, 상기 원소의 금속간 화합물(intermetallic compound), 상기 원소의 2성분 합금, 상기 원소의 3성분 합금, 바륨페라이트 및 스트론튬 페라이트 이외의 상기 원소 중 적어도 하나를 추가로 포함하는 Fe의 산화물로 이루어진 군에서 선택된 것을 이용한다.
본 발명에서 사용되는 매트릭스는 무수말레산 존재 하에 플라즈마 처리를 하여 무수물(anhydride) 기능기가 부착되는 고분자 필름으로 사용한다.
본 발명에서 사용되는 매트릭스로는 일반 공학용(engineering) 고분자 또는 특수 고분자 중 무수말레산 존재 하에 플라즈마 처리를 하여 무수물(anhydride) 기능기가 부착되는 고분자 필름은 모두 사용될 수 있다.
예를 들면, 폴리프로필렌, 이축 연신 폴리프로필렌, 저밀도 폴리에틸렌, 고밀도 폴리에틸렌, 폴리스티렌, 폴리메틸메타아크릴레이트, 폴리아미드 6, 폴리에틸렌 테레프탈레이트, 폴리-4-메틸-1-펜텐, 폴리부틸렌, 폴리펜타디엔, 폴리염화비닐, 폴리카보네이트, 폴리부틸렌 테레프탈레이트, 폴리디메틸실록산, 폴리술폰, 폴리이미드, 셀룰로스, 셀룰로스 아세테이트, 에틸렌-프로필렌 공중합체, 에틸렌-부텐-프로필렌 터폴리머, 폴리옥사졸린, 폴리에필렌옥사이드, 폴리프로필렌옥사이드, 폴리비닐피롤리돈 또는 그들의 유도체 등이 고분자 매트릭스 필름으로 사용될 수 있다.
도 1에 본 발명의 일반적인 반응 기구를 나타내었다.
고분자 매트릭스에 무수말레산을 플라즈마 반응 용기에 같이 넣고 플라즈마 처리를 하여 고분자 매트릭스 표면에 무수화물(anhydride) 반응기를 도입한다(제 1단계; 도 1a 참조, 생성물 1).
적당한 비율의 금속 또는 무기염을 덴드리머가 녹아 있는 용액에 첨가하여 덴드리머와 금속 또는 무기염과의 상호 작용에 의해 덴드리머-금속 전구체 용액 (제 2단계; 도 1b 참조, 생성물 2), 또는 덴드리머-무기입자 용액(제 3단계; 도 1c 참조, 생성물 3)을 형성시킨다.
덴드리머와 금속염/무기입자와의 콤플렉스 용액을 무수화물(anhydride) 반응기가 붙은 고분자 매트릭스와 반응시켜 화학적 반응을 유도한다(각각 제 4 및 제 5단계; 도 1d, 도 1e 참조, 생성물은 각각 4 및 5).
이어서 금속염을 함유하고 있는 덴드리머가 고분자 매트릭스 표면(생성물 4) 에 붙은 고분자 필름에 자외선을 조사하여 금속염을 환원시켜 나노 입자가 잘 분산되어 있는 무기-고분자 복합 필름을 제조한다(제 6단계; 도 1f 참조, 생성물 6).
본 발명에 따르는 복합 재료는 금속 나노 입자의 존재로 인해 비선형 광학 특성을 나타내며, 빛의 상 및 세기 또는 주파수를 조절하기 위한 한 요소로써 사용할 수 있다. 이는 응집물이 없는 나노 금속 복합재의 특성인 것으로 알려져 있다. 또한, 나노 입자 금속의 자기적 성질을 이용해 데이터 저장 매체로 사용될 수 있다.
또한, 본 발명에 따르는 복합재료는 표면의 유기 덴드리틱 고분자의 존재로 차후의 반응에 대한 물리적, 화학적 활성이 있다.
또한, 매트릭스의 성질을 조절함으로써, 금속 나노 입자의 비선형성 광학 효과와 매트릭스의 특성(예를 들면, 전기 전도성) 등을 이용하는 각종 적용 분야에 사용될 수 있으며, 금속 나노 입자가 촉매 활성을 갖는 경우, 복합 재료는 촉매 성분이 내열성 매트릭스에 의해 지지되는 촉매로써 사용될 수 있다.
다음 실시예에서 본 발명을 자세히 설명한다.
1. 실시예 1
스페셜티 실리콘 프로덕트(Specialty Silicone Product)에서 나온 상표명이 SSPM100인 폴리디메틸실리콘(PDMS) 막을 고분자 지지체로 사용하였다. 플라즈마 반응기 안에 메탄올로 여러 번 잘 씻은 PDMS 지지체와 머크(Merch)사의 무수말레산 102mg을 같이 넣고 진공으로 한 후 1분 동안 플라즈마 처리를 하였다.
플라즈마 장치는 오토일렉트릭(Autoelectric)사의 R-300A 라디오-주파수 생성기(radio-frequency generator)를 50W에서 13.56MHz로 고정해 놓고 처리를 하였다.
HAuCl420mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다. 반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다.
이 때, 얻어진 금 나노 입자의 TEM 그림을 도 2에 나타내었다(도 2에서 우측 하단에 표시된 바(bar)의 길이는 130nm이다). 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 접착력이 거의 없는 PDMS 막 위에 붉은 색의 금 나노 입자가 부착된 복합 필름을 얻었다.
2. 실시예 2
상기 실시예 1과 같은 방법으로 PDMS막을 무수말레산 존재 하에 처리하고, HAuCl440mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 무기-고분자 복합 필름을 제조하였다.
3. 실시예 3
상기 실시예 1과 같은 방법으로 PDMS막을 무수말레산 존재 하에 처리하고, HAuCl460mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 무기-고분자 복합 필름을 제조하였다.
4. 실시예 4
무수말레산을 200mg 사용하여 상기 실시예 1과 같은 방법으로 PDMS막을 무수말레산 존재 하에 처리하고, HAuCl420mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 접착력이 거의 없는 PDMS 막 위에 붉은 색의 금 나노 입자가 부착된 복합 필름을 얻었다.
5. 실시예 5
무수말레산을 200mg 사용하여 상기 실시예 1과 같은 방법으로 PDMS막을 무수말레산 존재 하에 처리하고, HAuCl440mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 무기-고분자 복합 필름을 제조하였다.
6. 실시예 6
무수말레산을 500mg 사용하여 상기 실시예 1과 같은 방법으로 PDMS막을 무수말레산 존재 하에 처리하고, HAuCl420mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 접착력이 거의 없는 PDMS 막 위에 붉은 색의 금 나노 입자가 부착된 복합 필름을 얻었다.
7. 실시예 7
무수말레산을 500mg 사용하여 상기 실시예 1과 같은 방법으로 PDMS막을 무수말레산 존재 하에 처리하고, HAuCl440mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 무기-고분자 복합 필름을 제조하였다.
8. 실시예 8
주식회사 율촌에서 나온 폴리에틸렌테레프탈레이트(PET) 막을 고분자 지지체로 사용하였다. 플라즈마 반응기 안에 메탄올로 여러 번 잘 씻은 PDMS 지지체와 머크(Merch)사의 무수말레산을 100mg 같이 넣고 진공으로 한 후 1분 동안 플라즈마 처리를 하였다. 플라즈마 장치는 오토일렉트릭(Autoelectric)사의 R-300A 라디오-주파수 생성기(radio-frequency generator)를 50W에서 13.56MHz로 고정해 놓고 처리를 하였다.
HAuCl420mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 PET 필름 표면 위에 붉은 색의 금 나노 입자가 부착된 복합 필름을 얻었다.
9. 실시예 9
상기 실시예 8과 같은 방법으로 PET막을 무수말레산 존재 하에 처리하고, HAuCl440mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 무기-고분자 복합 필름을 제조하였다.
10. 실시예 10
상기 실시예 8과 같은 방법으로 PET막을 무수말레산 존재 하에 처리하고, HAuCl460mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 무기-고분자 복합 필름을 제조하였다.
11. 실시예 11
무수말레산을 201mg 사용하여 상기 실시예 8과 같은 방법으로 PET막을 무수말레산 존재 하에 처리하고, HAuCl420mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 PET 필름 표면 위에 붉은 색의 금 나노 입자가 부착된 복합 필름을 얻었다.
12. 실시예 12
무수말레산을 201mg 사용하여 상기 실시예 8과 같은 방법으로 PET막을 무수말레산 존재 하에 처리하고, HAuCl440mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 무기-고분자 복합 필름을 제조하였다.
13. 실시예 13
무수말레산을 501mg 사용하여 상기 실시예 8과 같은 방법으로 PET막을 무수말레산 존재 하에 처리하고, HAuCl420mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 PET 필름 표면 위에 붉은 색의 금 나노 입자가 부착된 복합 필름을 얻었다.
14. 실시예 14
무수말레산을 501mg 사용하여 상기 실시예 8과 같은 방법으로 PET막을 무수말레산 존재 하에 처리하고, HAuCl440mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 3세대 덴드리머(20중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PDMS 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 무기-고분자 복합 필름을 제조하였다.
15. 실시예 15
상기 실시예 8과 같은 방법으로 PET막을 무수말레산 존재 하에 처리하고, HAuCl420mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 4세대 덴드리머(10중량%)를 10mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PET 지지체 12cm2당 100mg 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 무기-고분자 복합 필름을 제조하였다.
16. 실시예 16
상기 실시예 8과 같은 방법으로 PET막을 무수말레산 존재 하에 처리하고, HAuCl420mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 4세대 덴드리머(10중량%)를 45mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PET 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 무기-고분자 복합 필름을 제조하였다.
17. 실시예 17
상기 실시예 8과 같은 방법으로 PET막을 무수말레산 존재 하에 처리하고, HAuCl420mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 4세대 덴드리머(10중량%)를 90mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PET 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 무기-고분자 복합 필름을 제조하였다.
18. 실시예 18
상기 실시예 8과 같은 방법으로 PET막을 무수말레산 존재 하에 처리하고, HAuCl460mg을 10g의 물에 녹이고, polyamidoamine Starburst(Aldrich 사) 4세대 덴드리머(10중량%)를 90mg 첨가하여 금이온-덴드리머 콤플렉스를 제조하였다. 처리한 PET 지지체 12cm2당 100mg의 금이온-덴드리머 콤플렉스를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결 시켰다.
반응 후 바로 자외선을 조사하여 금이온의 환원을 유도하였다. 환원 반응 후 반응하지 않은 덴드리머 또는 금이온-덴드리머 콤플렉스를 씻어내어 무기-고분자 복합 필름을 제조하였다.
19. 실시예 19
상기 실시예 8과 같은 방법으로 PET막을 무수말레산 존재 하에 처리하고, Cd(NO3)24H2O(Baker 사)를 100㎖ 메탄올에 녹이고, 15mg의 Na2S(Alfa 사)를 100mg에 녹여 각각 2.0mM stock 용액을 제조한다. polyamidoamine Starburst(Aldrich 사) 4세대 덴드리머(10중량%)를 1.14 ×10-4M stock 용액을 만들고, 이 용액 10㎖에 2.0mM Cd2+용액과 2.0mM S2-용액을 각각 10㎖ 첨가하여 CdS-덴드리머 용액을 제조한다.
처리한 PET 지지체 12cm2당 100mg의 CdS-덴드리머를 올려놓고 120℃에서 1시간 동안 두어 반응을 완결시켰다. 반응 후 반응하지 않은 덴드리머 또는 CdS-덴드리머를 씻어내어 무기-고분자 복합 필름을 제조하였다.
20. 실시예 20
덴드리머-금속 콤플렉스로 HAuCl4와 AgBF4를 1:1 몰비로 섞은 금속염을 사용하여 상기 실시예 8과 같은 방법으로 복합 필름을 제조하였다.
21. 실시예 21
덴드리머-금속 콤플렉스로 HAuCl4와 H2PtCl4를 1:1 몰비로 섞은 금속염을 사용하여 상기 실시예 8과 같은 방법으로 복합 필름을 제조하였다.
22. 실시예 22
덴드리머-금속 콤플렉스로 FeCl2금속염을 사용하여 상기 실시예 8과 같은 방법으로 복합 소재를 제조하였다.
23. 실시예 23
덴드리머-금속 콤플렉스로 CoCl2금속염을 사용하여 상기 실시예 8과 같은 방법으로 복합 소재를 제조하였다.
24. 실시예 24
상기 실시예 8과 같은 방법으로 덴드리머-금속 전구체가 PET 필름 표면에 부착된 복합 필름 위에 패턴화(patterning)하여 패턴화(patterning) 된 금-고분자 필름을 제조하였다.
상기와 같이 제조된 필름의 사진을 도 3에 나타내었으며, 도 3에서 보는 바와 같이, 매트릭스 바탕 위에 나란하게 배치된 다수의 직선 형태의 패턴이 형성되어 있다.
상기한 바와 같이 이루어진 본 발명은 말단에 많은 기능기를 갖고 있을 뿐 아니라 금속 이온과 콤플렉스를 이루는 덴드리머의 성질을 이용하여 고분자 필름 표면 위에 금속전구체-덴드리머 콤플렉스를 간단한 플라즈마 방법을 통해 고분자 필름 표면 위에 부착을 시키고, 이어 간단한 UV조사를 하여 금속 나노 입자를 고분자 필름 표면 위에 영구적 응집 없이 부착시켜 금속-고분자 복합 필름을 제조할 수 있다.
또한, 덴드리머가 금속 나노 입자를 제조하는데 안정제 역할을 할 뿐 아니라, 무기 나노입자를 저장하는 그릇 역할을 하는 장점을 이용하여 무기 나노입자가 고분자 필름 표면에 응집 없이 높은 접착력으로 붙은 무기-고분자 복합 필름도 제조할 수 있다.
이러한 본 발명은 간단한 플라즈마 방법이나, UV 조사 등을 사용해서 공정이 수월하고 여러 응용 가능성이 높은 나노미터 크기의 무기/금속 입자가 영구적 응집 없이 잘 분산되어 있는 무기-고분자 복합 필름을 제조할 수 있는 효과를 갖는다.
이와 같이 본 발명에 의하면 기존의 금속 나노 입자 제조 및 나노 입자를 매트릭스 위에 분산하는 공정에 있어서, 기존의 복합 재료 공정의 문제점인 금속 또는 무기 나노 입자와 고분자 매트릭스와의 낮은 접착력, 나노 입자들간의 응집체형성의 문제를, 덴드리머를 이용하여 입자의 크기가 조절되고, 응집이 일어나지 않는 복합 소재를 제조할 수 있다.
이상에서는 본 발명을 특정의 바람직한 실시예를 예로 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.

Claims (7)

  1. 고분자 물질로 된 매트릭스에 무수화물 반응기를 형성하는 단계와;
    덴드리머에 금속과 무기염 중에서 어느 하나를 선택 첨가하여 덴드리머-금속 전구체 용액과 덴드리머-무기 입자 용액 중에서 어느 한 용액을 형성하는 단계와;
    무수화물 반응기가 형성된 매트릭스와 상기 어느 한 용액을 반응시켜 화학적으로 결합시키는 단계와;
    광선을 조사하여 금속 또는 무기 입자 이온을 환원시켜 주는 단계를 포함하는 것을 특징으로 하는 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재의 제조 방법.
  2. 제 1항에 있어서, 상기 매트릭스는 고분자 물질과 무수말레산을 함께 플라즈마 처리를 함으로써, 무수화물 반응기를 형성하는 것을 특징으로 하는 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재의 제조 방법.
  3. 제 1항 또는 제 2항에 있어서, 상기 매트릭스는 폴리프로필렌, 이축 연신 폴리프로필렌, 저밀도 폴리에틸렌, 고밀도 폴리에틸렌, 폴리스티렌, 폴리메틸메타아크릴레이트, 폴리아미드 6, 폴리에틸렌 테레프탈레이트, 폴리-4-메틸-1-펜텐, 폴리부틸렌, 폴리펜타디엔, 폴리염화비닐, 폴리카보네이트, 폴리부틸렌 테레프탈레이트, 폴리디메틸실록산, 폴리술폰, 폴리이미드, 셀룰로스, 셀룰로스 아세테이트, 에틸렌-프로필렌 공중합체, 에틸렌-부텐-프로필렌 터폴리머, 폴리옥사졸린, 폴리에필렌옥사이드, 폴리프로필렌옥사이드, 폴리비닐피롤리돈 또는 그들의 유도체 유도체 중에서 선택된 적어도 어느 한 종류인 것을 특징으로 하는 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재의 제조 방법.
  4. 제 1항에 있어서, 상기 덴드리머-금속 전구체 및 덴드리머-무기 입자 용액은 금속과 무기물 중에서 어느 한 성분을 포함한 염을 용매에 녹이고, 덴드리머를 첨가하여 이루어지는 것을 특징으로 하는 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재의 제조 방법.
  5. 제 1항 또는 제 4항에 있어서, 상기 금속 전구체는 Au, Pt, Pd, Cu, Ag, Co, Fe, Ni, Mn, Sm, Nd, Pr, Gd, Ti, Zr, Si, In 원소, 상기 원소의 금속간 화합물(intermetallic compound), 상기 원소의 2성분 합금, 상기 원소의 3성분 합금, 상기 원소 중 적어도 하나를 추가로 포함하면서 바륨페라이트 및 스트론튬 페라이트를 제외한 Fe의 산화물로 이루어진 군에서 선택된 금속염으로 적어도 1종인 것을 특징으로 하는 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재의 제조 방법.
  6. 제 1항에 있어서, 상기 덴드리머-금속 전구체 용액과 덴드리머-무기 입자 용액 중에서 어느 한 용액을 선택하여 무수화물 반응기가 형성된 매트릭스의 표면에패턴화하여 화학 반응시킴으로써, 패턴화된 필름을 제조할 수 있는 단계를 더 포함하는 것을 특징으로 하는 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재.
  7. 제 1항의 방법에 의하여 제조된 것을 특징으로 하는 덴드리머를 이용한 나노 입자가 표면에 부착된 무기-고분자 복합 소재.
KR10-2000-0072959A 2000-12-04 2000-12-04 덴드리머를 이용한 나노 입자가 표면에 부착된무기-고분자 복합 소재 및 그 제조 방법 KR100379248B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2000-0072959A KR100379248B1 (ko) 2000-12-04 2000-12-04 덴드리머를 이용한 나노 입자가 표면에 부착된무기-고분자 복합 소재 및 그 제조 방법
JP2001054992A JP3473846B2 (ja) 2000-12-04 2001-02-28 デンドリマーを用いたナノ粒子が表面に付着された無機−高分子複合素材及びその製造方法
US09/860,531 US6590056B2 (en) 2000-12-04 2001-05-21 Inorganic-organic hybrid polymers composed of nano-particles on the surface using dendrimers and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0072959A KR100379248B1 (ko) 2000-12-04 2000-12-04 덴드리머를 이용한 나노 입자가 표면에 부착된무기-고분자 복합 소재 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20020043829A KR20020043829A (ko) 2002-06-12
KR100379248B1 true KR100379248B1 (ko) 2003-04-08

Family

ID=19702639

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0072959A KR100379248B1 (ko) 2000-12-04 2000-12-04 덴드리머를 이용한 나노 입자가 표면에 부착된무기-고분자 복합 소재 및 그 제조 방법

Country Status (3)

Country Link
US (1) US6590056B2 (ko)
JP (1) JP3473846B2 (ko)
KR (1) KR100379248B1 (ko)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379250B1 (ko) * 2000-12-04 2003-04-08 한국과학기술연구원 나노 단위 크기의 금속 입자가 함유된 고분자 복합 소재및 그 제조 방법
KR100429905B1 (ko) * 2001-03-12 2004-05-03 학교법인 포항공과대학교 덴드론 혹은 덴드론 유도체로 안정화된 금속 나노 입자 및그 제조 방법
US6803106B2 (en) * 2002-04-16 2004-10-12 William Henry Campbell Multi-layered macromolecules and methods for their use
DE60211685T2 (de) * 2002-08-02 2007-05-10 Sony Deutschland Gmbh Verfahren zur Bindung hydophiler Substanzen an hydrophile Makromoleküle und Immobilisierung derselben auf hydrophoben Oberflächen
US7297298B2 (en) 2002-12-25 2007-11-20 Fujifilm Corporation Nano-particles and process for producing nano-particles
JPWO2004110930A1 (ja) * 2003-06-12 2006-07-20 松下電器産業株式会社 ナノ粒子含有複合多孔体およびその製造方法
US20050019572A1 (en) * 2003-07-22 2005-01-27 Shin-Hsin Chang Manufacturing method for polymer chips containing metal or metal oxide nanoparticles component
DE602005019898D1 (de) * 2004-08-30 2010-04-22 Nat Univ Corp Nagoya Inst Tech Mehrfach verzweigtes polyimid enthaltendes hybridmaterial
DE102004043908A1 (de) * 2004-09-10 2006-03-30 GRÄTER, Stefan Oberflächenstrukturierte polymere Substrate und ihre Herstellung
US20060090692A1 (en) * 2004-10-29 2006-05-04 Dominguez Juan E Generating nano-particles for chemical mechanical planarization
US7560520B1 (en) 2004-11-08 2009-07-14 The United States Of America As Represented By The Secretary Of The Army Interface-directed branched polymer transports and methods for producing same
KR100620615B1 (ko) * 2005-05-23 2006-09-06 한국생명공학연구원 가시광선 영역의 색을 갖는 금속 나노입자 혼합물이 코팅된 다색 콜로이드 입자 및 그 제조방법
KR100833062B1 (ko) * 2005-12-12 2008-05-27 주식회사 코오롱 방향족 폴리아미드 복합막의 제조방법
CN100373156C (zh) * 2005-09-28 2008-03-05 华东理工大学 纳米生物酶电极
WO2008060697A2 (en) * 2006-05-23 2008-05-22 The University Of Akron Dendron-tethered and templated quantum dots on carbon nanotubes
WO2008070199A2 (en) * 2006-05-23 2008-06-12 The University Of Akron Construction of quantum dots via a regioselective dendritic functionalized cellulose template
US9446953B2 (en) 2007-07-12 2016-09-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fabrication of metallic hollow nanoparticles
HUE055815T2 (hu) 2007-10-05 2021-12-28 Univ Wayne State Vegyületek nyújtott felszabadítására alkalmas dendrimerek
US20090226644A1 (en) * 2008-03-05 2009-09-10 Wylie Amy S Gel coat compositions from acrylate-modified aspartates
US9650259B2 (en) * 2008-05-02 2017-05-16 Arcelik Anonim Sirketi Photocatalytic nanocomposite material
JP5553516B2 (ja) * 2009-02-24 2014-07-16 ライオン株式会社 金属超微粒子分散体およびその製造方法
WO2010111741A1 (en) * 2009-03-31 2010-10-07 Curtin University Of Technology Nanomaterials and methods of preparation therefor
TWI401215B (zh) * 2009-11-20 2013-07-11 Nat Univ Kaohsiung Separation and recovery of metal ions
US8541520B1 (en) 2013-01-21 2013-09-24 King Fahd University Of Petroleum And Minerals Method of making high-density polyethylene with titania-iron nanofillers
CN103333333B (zh) * 2013-07-15 2015-06-03 河南大学 一种纳米铜—聚酰胺复合材料的制备方法
JP6302091B2 (ja) 2014-04-30 2018-03-28 ザ・ジョンズ・ホプキンス・ユニバーシティー デンドリマー組成物および眼の疾患の処置におけるその使用
JP6342575B2 (ja) 2014-08-13 2018-06-13 ザ・ジョンズ・ホプキンス・ユニバーシティー 脳腫瘍への選択的デンドリマー送達
US10207919B2 (en) 2015-06-12 2019-02-19 Rhodia Operations Hybrid nanoparticles containing dendrons, methods of producing such hybrid nanoparticles, and uses thereof
CN107243631B (zh) * 2017-06-06 2018-12-25 福州大学 一种改性金纳米棒@硫氧化钆及其制备方法
AU2020396561A1 (en) 2019-12-04 2022-07-14 Ashvattha Therapeutics, Inc. Dendrimer compositions and methods for drug delivery to the eye

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030604A1 (en) * 1997-01-13 1998-07-16 Dendritech, Inc. Nanocomposites of dendritic polymers
EP0928813A1 (en) * 1998-01-13 1999-07-14 Dow Corning Corporation Dendrimer-based nanoscopic sponges and metal composites
JPH11335429A (ja) * 1998-03-23 1999-12-07 Toyo Ink Mfg Co Ltd 硬化性樹脂組成物
US6093777A (en) * 1994-12-21 2000-07-25 Perstorp Ab Dendritic polyester macromolecule in thermosetting resin matrix
WO2000068331A1 (en) * 1999-05-05 2000-11-16 E.I. Du Pont De Nemours And Company Coating compositions containing highly structured macromolecules
KR20020043363A (ko) * 2000-12-04 2002-06-10 박호군 나노 단위 크기의 금속 입자가 함유된 고분자 복합 소재및 그 제조 방법
KR100356282B1 (ko) * 2000-07-24 2002-10-18 한국과학기술연구원 다(多)반응기를 갖고 있는 고분자 막 또는 필름 및 그제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011109A1 (en) * 1997-09-05 2001-08-02 Donald A. Tomalia Nanocomposites of dendritic polymers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093777A (en) * 1994-12-21 2000-07-25 Perstorp Ab Dendritic polyester macromolecule in thermosetting resin matrix
WO1998030604A1 (en) * 1997-01-13 1998-07-16 Dendritech, Inc. Nanocomposites of dendritic polymers
EP0928813A1 (en) * 1998-01-13 1999-07-14 Dow Corning Corporation Dendrimer-based nanoscopic sponges and metal composites
JPH11335429A (ja) * 1998-03-23 1999-12-07 Toyo Ink Mfg Co Ltd 硬化性樹脂組成物
WO2000068331A1 (en) * 1999-05-05 2000-11-16 E.I. Du Pont De Nemours And Company Coating compositions containing highly structured macromolecules
KR100356282B1 (ko) * 2000-07-24 2002-10-18 한국과학기술연구원 다(多)반응기를 갖고 있는 고분자 막 또는 필름 및 그제조 방법
KR20020043363A (ko) * 2000-12-04 2002-06-10 박호군 나노 단위 크기의 금속 입자가 함유된 고분자 복합 소재및 그 제조 방법

Also Published As

Publication number Publication date
JP3473846B2 (ja) 2003-12-08
US20020068795A1 (en) 2002-06-06
JP2002179820A (ja) 2002-06-26
KR20020043829A (ko) 2002-06-12
US6590056B2 (en) 2003-07-08

Similar Documents

Publication Publication Date Title
KR100379248B1 (ko) 덴드리머를 이용한 나노 입자가 표면에 부착된무기-고분자 복합 소재 및 그 제조 방법
Balogh et al. Formation of silver and gold dendrimer nanocomposites
KR100379250B1 (ko) 나노 단위 크기의 금속 입자가 함유된 고분자 복합 소재및 그 제조 방법
Shi et al. Polyelectrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials
Deng et al. Polydopamine based colloidal materials: synthesis and applications
Zhou et al. Versatile core–shell nanoparticle@ metal–organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration
Zhai et al. Superparamagnetic plasmonic nanohybrids: shape-controlled synthesis, TEM-induced structure evolution, and efficient sunlight-driven inactivation of bacteria
Venkateswarlu et al. Reversible fluorescence switching of metal–organic framework nanoparticles for use as security ink and detection of Pb2+ ions in aqueous media
Cao et al. In situ synthesis of catalytic active Au nanoparticles onto gibbsite–polydopamine core–shell nanoplates
Bronshtein et al. Nanostructured polymeric systems as nanoreactors for nanoparticle formation
JP2001508484A (ja) 樹枝状ポリマーのナノコンポジット
Sergeev et al. Encapsulation of small metal particles in solid organic matrices
AU2009244016A1 (en) Producing composite nanoparticles using nanoscale polymer templates
Wang et al. Silica− Metal Core− Shells and Metal Shells Synthesized by Porphyrin-Assisted Photocatalysis
Ali et al. Synthesis and characterization of Ag nanoparticles embedded in PVA via UV-photoreduction technique for synthesis of Prussian blue pigment
KR101087501B1 (ko) 고집적 나노패턴 형태의 금속 나노구조체의 제조방법 및 이에 의해 제조된 금속 나노구조체
CN114560975B (zh) 一种镧金属有机骨架、级联纳米聚合平台和分子印迹聚合物的制备方法
Nasrollahzadeh et al. Physicochemical characterization of biopolymer-based metal nanoparticles
Yuan et al. Template‐directed synthesis of hybrid nanowires and nanorods
Yang et al. Gold deposition on Fe3O4/(co) Poly (N‐octadecyl methacrylate) hybrid particles to obtain nanocomposites With ternary intrinsic features
Hotchkiss et al. Gold nanorods surface modified with poly (acrylic acid) as a template for the synthesis of metallic nanoparticles
Etemadi Silver nanoparticle-polymer nanocomposites
US8304502B2 (en) Copolymer coordination compound comprising heterogeneous complexes and gel using the same
Nazar Conductive photopolymers: In situ synthesis of metal nanoparticles
KR101400426B1 (ko) 다이아세틸렌을 이용한 무기나노입자의 패턴 형성방법 및 이의 용도

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080229

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee