KR100323606B1 - 칼라 튜닝이 우수한 고효율의 전기발광 고분자 - Google Patents

칼라 튜닝이 우수한 고효율의 전기발광 고분자 Download PDF

Info

Publication number
KR100323606B1
KR100323606B1 KR1019990035040A KR19990035040A KR100323606B1 KR 100323606 B1 KR100323606 B1 KR 100323606B1 KR 1019990035040 A KR1019990035040 A KR 1019990035040A KR 19990035040 A KR19990035040 A KR 19990035040A KR 100323606 B1 KR100323606 B1 KR 100323606B1
Authority
KR
South Korea
Prior art keywords
light emitting
polymer
integer
alkyl
layer
Prior art date
Application number
KR1019990035040A
Other languages
English (en)
Other versions
KR20010018900A (ko
Inventor
진성호
이지훈
Original Assignee
김순택
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이 주식회사 filed Critical 김순택
Priority to KR1019990035040A priority Critical patent/KR100323606B1/ko
Priority to JP2000251531A priority patent/JP3188885B2/ja
Priority to US09/644,242 priority patent/US6368732B1/en
Publication of KR20010018900A publication Critical patent/KR20010018900A/ko
Application granted granted Critical
Publication of KR100323606B1 publication Critical patent/KR100323606B1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Abstract

본 발명의 칼라 튜닝이 우수한 전기발광 고분자는 폴리(p-페닐렌비닐렌) (PPV)을 주쇄로 하고, 긴 사슬(long chain)의 알킬기가 치환된 페닐실리콘이 측쇄로 도입되는 구조로 이루어지며, 하기 화학식(1)으로 표시된다:
화학식(1)
상기식에서 R1, R2및 R3은 각각 독립적으로 긴 사슬의 지방족 알킬(aliphatic alkyl), 가지난 알킬(branched alkyl) 또는 플루오로화 알킬(fluorinated alkyl)이고, 상기 지방족 알킬은 (CH2)nCH3(n은 0 내지 12의 정수)이고, 상기 가지난 알킬은 CH2(CH2)aCH(CH2)bCH3CH(CH3)2(a는 0 내지 5의 정수, b는 0 내지 10의 정수)이고, 그리고 상기 플루오로화 알킬은 CH2(CF2)nCF3(n은 0 내지 12의 정수)이다.

Description

칼라 튜닝이 우수한 고효율의 전기발광 고분자 {Light Emitting Polymers having High Efficiency and Color Tunable Properties}
발명의 분야
본 발명은 전기발광 고분자에 관한 것이다. 보다 구체적으로 본 발명은 발광 효율이 향상된 전기발광 고분자에 관한 것으로, 페닐렌비닐렌기를 주쇄로 하고, 지방족 알킬기가 도입된 페닐실리콘을 측쇄에 함유하는 칼라 튜닝(color tuning)이 우수한 전기발광 고분자에 관한 것이다.
발명의 배경
실리콘이 반도체 재료로 사용된 이래 눈부신 발전을 거듭해온 전자 기술은 인류의 문화생활을 크게 향상시켰다. 특히, 최근 광통신과 멀티미디어 분야의 빠른 성장은 고도의 정보화 사회로의 발전을 가속화시키고 있다. 이에 따라, 광자(photon)의 전자(electron)로의 변환, 또는 전자의 광자로의 변환을 이용하는 광전자 소자(optoelectronic device)는 현대 정보 전자 산업의 핵이 되고 있다. 이러한 반도체 광전자 소자는 크게 전기발광 소자, 수광 소자, 및 이것들이 결합된 소자로 분류할 수 있다. 이제까지 대부분의 디스플레이는 수광형인데 반해, 자기 발광형인 전기발광 디스플레이(electro luminescence display: ELD)는 응답속도가 빠르고 배면광(backlight)이 필요 없으며, 휘도가 뛰어나는 등 여러 가지 장점을 가지고 있어 전기발광 소자의 개발은 미래형 천연색 표시소자에의 응용성으로 인하여 최근 가장 연구가 활발히 이루어지고 있는 분야이다. 이러한 전기발광 현상은 GaN, ZnS, 및 SiC 등을 이용한 무기물 반도체에서 잘 개발되어 실제적인 표시소자로 사용되고 있다. 그러나, 무기물로 이루어진 전기발광(EL) 소자의 경우 구동전압이 교류 200V 이상 필요하고, 소자의 제작방법이 진공 증착으로 이루어지므로 대형화가 어렵고 가격 또한 고가인 단점이 있다. 무기 소자 이외에 유기 및 고분자 소재를 이용한 전기발광 현상도 알려져 있는데, 1963년 Pope 등에 의하여 유기물질의 전기발광 현상이 발표되었으며, 1987년 이스트만 코닥(Eastmann Kodak)에서 Tang 등에 의하여 알루미나-퀴논(alumina-quinone, Alq3)이라는 π-공액 구조의 색소로 제작된 소자로서 10V 이하에서 양자효율이 1%, 휘도가 1000 cd/㎡의 다층구조를 갖는 발광 소자가 발표된 이후 많은 연구가 진행되고 있다. 이들은 합성 경로가 간단하여 다양한 형태의 물질 합성이 용이하며 칼라 튜닝(color tuning)이 가능한 장점이 있다. 그러나 가공성이나 열안정성이 낮고 또한 전압을 걸어주었을 때 발광층 내에서 줄(Joule)열이 발생하여 분자가 재배열함에 따라 소자가 파괴되어 발광효율이나 소자의 수명에 문제를 야기하므로 이를 보완한 고분자 구조를 갖는 유기 전기발광 소자로 대체가 진행되고 있다. 고분자 주쇄에 있는 π-전자 파동함수의 중첩에 의해 에너지 준위가 전도대와 가전도대로 분리되고 그 에너지 차이에 해당하는 밴드 간격(band gap) 에너지에 의하여 고분자의 반도체적인 성질이 결정되며 그 밴드간격의 조절에 의해 완전 색상(full color)의 구현이 가능하다. 이러한 고분자를 'π-전자 공액 고분자(π-conjugated polymer)' 라고 한다.
1990년에 영국의 캠브리지 대학 연구진에 의하여 공액 이중결합을 갖는 고분자인 폴리(p-페닐렌비닐렌)(poly(p-phenylenevinylene): PPV)을 이용한 전기발광 소자가 처음 발표된 후 유기 고분자를 이용한 연구가 활발히 진행되고 있다. 즉, 짧은 기간임에도 불구하고 가시광 영역에서의 효율이 기존의 무기물 반도체로 만들어진 ELD를 능가하는 고분자 ELD가 개발되었을 뿐만 아니라 완전 색상화에 필요한 red, green 및 blue의 발광 고분자도 개발되었다. 그러나, 완전 색상화를 실현하기 위해서는 발광효율, 구동전압 등에서 해결해야될 많은 문제점이 있다.
대표적인 유기 전기발광 소자의 재료로 사용되는 π-전자 공액 고분자 유도체인 폴리(p-페닐렌비닐렌)(PPV)의 경우, 고분자 합성 및 소자(device)의 재현성이 부족하고, 고분자의 정제(purification), 유기용매에 대한 용해도, 고분중합시간,제조공정 등의 문제점으로 대량 생산의 한계점이 존재한다. 또한 소자 구동시 줄(joule) 열을 극복하기 위해 Tg 및 분자량이 매우 높아야 한다.
일반적으로 PPV계 유기 전기발광 재료는 다음과 같은 문제점이 있다. 첫째, PPV의 전구체인 술포늄 전구체(polysulfonium precursor)는 중합시간이 매우 장시간 소요되며, 수율이 낮고 비용이 많이 든다. 둘째, 완전한 PPV 유도체를 만들기 위해서 술포늄염을 완전히 제거하여야 하는데 완전히 제거하기가 힘들다. 셋째, 박막(600Å)을 형성할 경우 미반응된 술포늄염이 서서히 제거되면서 핀홀(pin hole)이 생겨 막의 균일성이 좋지 않다. 넷째, 가용성의 PPV를 합성할 수 있지만, 합성 및 중합조건이 까다롭다. 다섯째, PPV의 제조 공정이 환경에 매우 유해하다는 것이다.
이에 본 발명자들은 기존에 널리 알려진 PPV계 발광 고분자의 단점을 극복하기 위하여, 페닐렌비닐렌기를 주쇄로 하면서 긴 사슬의 지방족 알킬기가 도입된 실리콘을 함유하는 페닐기를 측쇄에 도입함으로써, 발광효율이 더욱 향상되고, 특히 칼라 튜닝이 우수한 전기발광 고분자를 개발하기에 이른 것이다.
본 발명의 목적은 폴리(p-페닐렌비닐렌기)(PPV)를 주쇄로 하고, 지방족 알킬기가 도입된 페닐실리콘을 측쇄에 함유함으로써 발광효율이 우수한 전기발광 고분자를 제공하기 위한 것이다.
본 발명의 다른 목적은 페닐실리콘 유도체를 도입함으로써 유기용매에 대한용해성이 우수한 전기발광 고분자를 제공하기 위한 것이다.
본 발명의 또 다른 목적은 폴리(p-페닐렌비닐렌) 고분자 주쇄에 치환기가 도입된 페닐실리콘을 도입하여 전극과의 계면특성이 우수하고 박막 형성능력이 뛰어난 전기발광 고분자를 제공하기 위한 것이다.
본 발명의 또 다른 목적은 PPV를 주쇄로 하고 페닐실리콘 유도체가 측쇄로 도입된 전기발광 고분자와 MEH-PPV(methoxy ethylhexyloxy-PPV)를 공중합함으로써 칼라 튜닝이 우수한 전기발광 고분자를 제공하기 위한 것이다.
본 발명의 상기의 목적 및 기타의 목적들은 하기 설명되는 바에 의하여 모두 달성될 수 있다.
도 1은 본 발명의 전기발광 고분자 다이오드용 모노머 및 발광 고분자의 제조공정을 나타내는 공정도이다.
도 2는 본 발명의 한 구체예인 폴리{2-(4'-디메틸도데실실릴페닐)-1,4-페닐렌 비닐렌} (p-SiPhPPV)의 1H-NMR 스펙트럼이다.
도 3은 본 발명의 다른 구체예인 폴리{2-(3'-디메틸도데실실릴페닐)-1,4-페닐렌 비닐렌} (m-SiPhPPV)의 1H-NMR 스펙트럼이다.
도 4는 본 발명의 또 다른 구체예인 폴리 [{2-(3'-디메틸도데실실릴페닐)-co-(1'-메톡시-4'-에틸헥실옥시)}-1,4-페닐렌 비닐렌] (m-SiPhPPV- co-MEH-PPV)의 1H-NMR 스펙트럼이다.
도 5는 본 발명에 따른 발광 고분자를 사용한 EL device의 단면도이다.
도 6은 본 발명에 따른 발광 고분자인 p-SiPhPPV의 UV-VIS 스펙트럼이다.
도 7은 본 발명에 따른 발광 고분자인 m-SiPhPPV의 UV-VIS 스펙트럼이다.
도 8은 본 발명에 따른 발광 고분자인 p-SiPhPPV의 PL 스펙트럼이다.
도 9는 본 발명에 따른 발광 고분자인 m-SiPhPPV의 PL 스펙트럼이다.
도 10은 본 발명에 따른 공중합 발광 고분자인 m-SiPhPPV-co- MEH-PPV의 PL 스펙트럼이다.
도 11은 본 발명의 발광 고분자인 p-SiPhPPV를 이용하여 제조된 EL device로부터 측정된 EL 스펙트럼이다.
도 12는 본 발명의 발광 고분자인 m-SiPhPPV를 이용하여 제조된 EL device로부터 측정된 EL 스펙트럼이다.
도 13은 본 발명의 공중합 발광 고분자인 m-SiPhPPV- co-MEH-PPV를 이용하여 제조된 [ITO/PEDOT/발광고분자/Al:Li] 다이오드 구조의 EL 스펙트럼이다.
도 14는 본 발명의 p-SiPhPPV를 이용하여 제조된 [ITO/PEDOT/발광고분자/LiF/Al] 다이오드 구조의 I-V 스펙트럼이다.
도 15는 본 발명의 m-SiPhPPV를 이용하여 제조된 [ITO/PEDOT/발광고분자/LiF/Al] 다이오드 구조의 I-V 스펙트럼이다.
도 16은 본 발명의 m-SiPhPPV-co-MEH-PPV를 이용하여 제조된 [ITO/PEDOT/발광고분자/Al:Li] 다이오드 구조의 I-V 스펙트럼이다.
도 17은 본 발명의 p-SiPhPPV를 이용하여 제조된 [ITO/PEDOT/발광고분자/LiF/Al] 다이오드 구조의 L-V 스펙트럼이다.
도 18은 본 발명의 m-SiPhPPV를 이용하여 제조된 [ITO/PEDOT/발광고분자/LiF/Al] 다이오드 구조의 L-V 스펙트럼이다.
도 19는 본 발명의 m-SiPhPPV-co-MEH-PPV를 이용하여 제조된 [ITO/PEDOT/발광고분자/Al:Li] 다이오드 구조의 L-V 스펙트럼이다.
도 20은 실시예 1, 2 및 4에서 각각 제조된 발광 고분자를 사용한 [ITO/ PEDOT/발광고분자/(LiF)/Al] 다이오드 구조의 I-V 스펙트럼이다.
도 21은 실시예 1, 2 및 4에서 각각 제조된 발광 고분자를 사용한 [ITO/PEDOT/발광고분자/(LiF)/Al] 다이오드 구조의 L-I 스펙트럼이다.
도 22는 비교실시예에서 제조한 MEH-PPV 발광 고분자를 이용한 다이오드 구조의 EL 스펙트럼이다.
도 23은 비교실시예에서 제조한 MEH-PPV 발광 고분자를 이용한 다이오드 구조의 I-V 스펙트럼이다.
유기 발광 고분자에서 구동전압을 지배하는 것은 정공의 이동이며, 발광효율을 지배하는 것은 전자란 것은 이미 널리 알려져 있다. 발광 고분자 내에서 정공의 유입은 쉬운 반면 전자의 유입은 힘들다.
일반적인 발광 고분자의 발광 메카니즘(mechanism)은 다음과 같다: 양극(anode)에서 정공(hole)이 주입되고, 음극(cathode)에서는 전자(electron)가 주입되어, 상기 정공과 전자가 발광 고분자 층에서 만나 재결합(recombination)에 의해 여기자 (singlet exiton)를 형성하고, 이 여기자가 방사붕괴(radiative decay)되면서 물질의 밴드 갭(band gab)에 해당하는 파장의 빛이 방출되는 것이다. 또한 이때 발광효율도 결정된다. 즉, 유입된 정공의 양과 전자의 양이 서로 균형을 이룰 때 최대의 발광효율을 나타낼 수 있다.
따라서 운반자의 수송이 비슷하게 이루어지려면 주입된 정공과 전자의 이동도가 균형을 이루어야 한다. 그러나 일반적으로 정공의 수송이 훨씬 유리하여 운반자간의 불균형이 발생하고 효율을 저하시키는 요인으로 작용한다. 특히 π-전자 공액 고분자에서는 정공의 이동이 훨씬 크기 때문에 이를 보완해 주기 위해 전자의 이동도가 좋은 전자 전달층(electron transport layer)을 도입한 다층막 형태의 소자를 제작한다.
유기 전기발광 물질의 발광효율을 높이는 방법 가운데에 가장 대표적인 것으로서 음극을 일함수(work function)가 작은 것을 사용하거나 혹은 고분자를 전자친화력이 큰 물질을 사용하여 전자가 통과해야 할 에너지 장벽(energy barrier)의 높이를 낮추는 방법이 있다. 고분자 물질의 전자친화력을 크게 만드는 방법은 공액 고분자 사슬에 전자 친화도 성질이 있는 치환기를 치환시켜 발광 고분자의 진공하에서의 LUMO(lowest unoccupied molecular orbital) 및 HOMO(highest occupied molecular orbital)의 높이를 낮추어 유입되는 전자가 넘어야할 에너지 장벽의 높이를 줄이는 것이다. 현재까지 발표된 전자 친화도 치환기로는 -CF3, -CN 등이 있다.
본 발명의 전기발광 고분자는 폴리(p-페닐렌비닐렌)(PPV)을 주쇄로 하고, 긴 사슬(long chain)의 지방족 알킬기 또는 플루오로화 알킬기가 도입된 실리콘을 함유하는 페닐기가 상기 페닐렌 링에 측쇄로 도입되는 구조를 갖는다. 본 발명의 전기발광 고분자는 하기 화학식(1)으로 표시된다:
상기식에서 R1, R2및 R3은 각각 독립적으로 긴 사슬의 지방족 알킬(aliphatic alkyl), 가지난 알킬(branched alkyl) 또는 플루오로화 알킬(fluorinated alkyl)이고, 상기 지방족 알킬은 (CH2)nCH3(n은 0 내지 12의 정수)이고, 상기 가지난 알킬은 CH2(CH2)aCH(CH2)bCH3CH(CH3)2(a는 0 내지 5의 정수, b는 0 내지 10의 정수)이고, 그리고 상기 플루오로화 알킬은 CH2(CF2)nCF3(n은 0 내지 12의 정수)이다.
상기 발광 고분자는 상기 알킬기가 도입된 실리콘이 상기 페닐기의 meta- 위치에 연결된 폴리{2-(3'-디메틸알킬실릴페닐)-1,4-페닐렌비닐렌}(m-SiPhPPV) 또는 para- 위치에 연결된 폴리{2-(4'-디메틸알킬실릴페닐)-1,4-페닐렌비닐렌}(p-SiPhPPV)으로서, 일반적인 유기용매에 대한 용해도가 증가되고, 전극과의 계면특성이 향상되어 defect가 없는 우수한 박막을 형성할 수 있다. 페닐실리콘이 도입된 상기 발광 고분자는 구동전압이 약 5∼7 V 이고 green의 색을 발하는 발광 디스플레이를 제작할 수 있으며 전기광학 특성이 우수하다.
또한 상기 화학식(1)으로 표시되는 본 발명의 전기발광 고분자와 기존의 발광 고분자인 MEH-PPV를 공중합하여, 폴리[{2-(3'-디메틸도데실실릴페닐)-co-(1'-메톡시-4'-에틸헥실옥시)}-1,4-페닐렌 비닐렌] (m-SiPhPPV -co-MEH-PPV) 또는 폴리[{2-(4'-디메틸도데실실릴페닐)-co-(1'-메톡시-4'-에틸헥실옥시)}-1,4-페닐렌 비닐렌] (p-SiPhPPV-co-MEH-PPV)을 제조할 수 있으며, 상기 공중합 전기발광 고분자는 하기 화학식(2)으로 표시된다:
상기식에서 R1, R2및 R3은 각각 독립적으로 긴 사슬의 지방족 알킬(aliphatic alkyl), 가지난 알킬(branched alkyl) 또는 플루오로화 알킬(fluorinated alkyl)이고, 상기 지방족 알킬은 (CH2)nCH3(n은 0 내지 12의 정수)이고, 상기 가지난 알킬은 CH2(CH2)aCH(CH2)bCH3CH(CH3)2(a는 0 내지 5의 정수, b는 0 내지 10의 정수)이고, 상기 플루오로화 알킬은 CH2(CF2)nCF3(n은 0 내지 12의 정수)이며, 그리고 x는 0.1∼0.9이고, y는 0.9∼0.1이다.
상기 공중합 전기발광 고분자는 상기 화학식(1)의 발광 고분자와 MEH-PPV의 모노머와의 공중합을 통해 합성되며, 구동전압은 3.9 V이고 최대 발광효율은 약 2.2 lm/w이며 최대 발광휘도는 약 11000 cd/㎡인 발광 디스플레이를 제작할 수 있으며, 소자 제조시 MEH-PPV의 함량에 따라 green에서 yellow까지의 칼라 튜닝(color tuning)이 가능하다.
본 발명의 전기발광 고분자는 종래의 위티그(Wittig) 축합중합법에 의해 합성된 발광 고분자의 분자량이 약 1만 정도인 것에 비해, 고분자량을 얻을 수 있는 길치(Gilch) 중합법을 이용했고 그 수평균분자량(Mn)이 약 1만 내지 100만 정도이며, 분자량 분포는 1.5 내지 5.0이다.
본 발명의 PPV를 주쇄로 하고, 알킬기가 도입된 페닐실리콘이 상기 페닐렌링에 치환된 전기발광 고분자를 발광층으로 하여 발광 다이오드(EL diode)를 제작한다. 또한 본 발명에서 제조된 상기 고분자의 단량체와 기존에 알려진 발광 고분자인 폴리{2-메톡시-5-(2'-에틸헥실옥시)-1,4-페닐렌 비닐렌} (poly{2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene}) (MEH-PPV)의 단량체를 공중합하여, 이를 발광층으로 하는 발광 다이오드를 제작하고 이들의 전기 광학적 특성을 측정한다.
상기 발광 다이오드는 양극/발광층/음극, 양극/버퍼층/발광층/음극, 양극/버퍼층/정공전달층/발광층/음극, 양극/버퍼층/정공전달층/발광층/전자전달층/음극 또는 양극/버퍼층/정공전달층/발광층/정공차단층/음극으로 이루어진 구조를 갖는다. 상기 버퍼충은 폴리티오펜(polythiophene), 폴리아닐린(polyaniline), 폴리아세틸렌(polyacetylene), 폴리피롤(polypyrrole) 또는 폴리페닐렌비닐렌 유도체인 것이 바람직하며, 상기 정공차단층은 LiF 또는 MgF2이다.
본 발명은 알킬 치환기를 갖는 페닐실리콘 함유 고분자와 MEH-PPV와의 공중합을 통해, 구동전압은 낮고 최대 휘도 및 최대 발광효율은 증가하며 green에서 yellow까지 칼라 튜닝이 가능한 전기 발광 고분자를 제공한다.
본 발명은 하기의 실시예에 의해서 상세히 설명되나, 하기 실시예는 본 발명의 구체적인 실시 양태를 예시한 것일 뿐으로 본 발명의 보호범위를 제한하거나 한정하고자 하는 것은 아니다.
실시예
실시예 1. 전기발광 고분자(1)의 제조
(1) 1-브로모-4-(디메틸도데실실릴)벤젠 (1-bromo-4-(dimethyl dodecyl silyl)benzene)의 제조
질소분위기에서 Schlenk 플라스크에 약 100 mL의 무수 THF와 8.5 g(0.036mol)의 1,4-디브로모벤젠(1,4-dibromobenzene)을 함께 넣고 교반시켰다. 이때 온도는 아세톤/드라이아이스를 이용하여 약 -78℃를 유지하였다. 1.6M n-헥산 용액에 n-BuLi 22.6 mL(0.036 mol)를 천천히 약 10분에 걸쳐 적하시켰다. 몇 분 후 흰색 염이 생성되기 시작하였다. n-BuLi의 적하가 모두 끝나면 약 1시간을 더 교반하고 약 20 mL THF에 용해되어 있는 디메틸도데실-실릴클로라이드(dimethyldodecyl-silylchloride) 10 g을 천천히 위 용액에 떨어뜨리면 용액이 점점 맑아진다. 약 3시간 후 용액을 물 300 mL에 붓고 에틸아세테이트로 추출하였다. 무수 MgSO4로 건조시키고 여과한 후 용매를 증발시켰다. 얻어진 오일을 진공에서 증류(bp 160-170℃ / 1.5 ㎜Hg)하거나, 실리카겔 칼럼 크로마토그래피(eluent : n-헥산)를 이용하여 정제하였다. 1-브로모-4-(디메틸도데실실릴)벤젠을 90 % 이상의 수율로 얻었으며, 구조는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.24 (s, 6H, Si(CH3)2), 0.72 (t, 2H, SiCH2), 0.89 (t, 3H, -CH3), 1.27 (m, 20H, (CH2)10), 7.37과 7.49 (d, 4H, Aromatic protons).
(2) 2-브로모-p-크실렌 (2-bromo-p-xylene)의 제조
일반적인 그리나드(grignard) 반응에 의해 제조하였다. 용매는 무수 THF를 사용하였고 약 2-3시간 가량 환류(reflux)시킨 후 사용하였다.
(3) 1,4-디메틸-2-(4'-디메틸도데실실릴페닐)벤젠 (1,4-dimethyl-2- (4'-dimethyldodecylsilylphenyl)benzene)의 제조
250 mL의 Schlenk 플라스크에 실시예 1에서 제조한 1-브로모-4-(디메틸도데실실릴)벤젠 12.45 g (0.0325 mol) 및 NiCl2(dppp) 0.11 g (0.5 mol%)를 약 60-70 mL의 무수 THF에 부가한 뒤 실시예 2에서 제조된 그리나드 시약을 이용하여 상기 플라스크로 옮긴다. 상기 혼합물을 밤새도록 환류시켰다. 위 용액을 물 300 mL에 붓고 에틸아세테이트로 추출하였다. 이 유기용액을 무수 MgSO4로 건조, 여과, 증발시켰다. 얻어진 오일을 실리카겔 칼럼 크로마토그래피(eluent : n-헥산)를 이용하여 정제하였다. 수율은 80 %이상이며 구조는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.27 (s, 6H, Si(CH3)2, 0.77 (t, 2H, SiCH2), 0.88 (t, 3H, -CH3), 1.26 (m, 20H, (CH2)10), 2.24와 2.34 (s, 6H, 2CH3on Benzene ring) 7.05-7.55 (m, 7H, Aromatic protons)
(4) 1,4-비스(브로모메틸)-2-(4'-디메틸도데실실릴페닐)벤젠 (1,4-bis (bromomethyl)-2-(4'-dimethyldodecylsilylphenyl) benzene)의 제조
250 mL의 Schlenk 플라스크에 상기 (3)의 1,4-디메틸-2-(4'-디메틸도데실실릴페닐)벤젠 10.0 g (0.0245 mol), N-브로모숙신이미드 8.87 g (98% 함량) (0.049 mol) 및 촉매로서 벤조일퍼옥시드(BPO)를 약 200 mL의 무수 CCl4에 부가한 뒤 약 12시간동안 가열하였다. 생성된 하얀 고체인 숙신이미드를 제거하기 위해 뜨거운 상태에서 이 용액을 여과하였다. 여과된 CCl4용액을 증발건조기를 이용하여 농축시킨 후 실리카겔 칼럼 크로마토그래피(eluent : n-헥산)를 이용하여 정제하였다. 수율은 40-50 %이며 구조는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.29 (s, 6H, Si(CH3)2, 0.79 (t, 2H, SiCH2), 0.88 (t, 3H, -CH3), 1.26 (m, 20H, (CH2)10), 4.45와 4.50 (s, 4H, 2-CH2Br), 7.29-7.62 (d, 7H, Aromatic protons).
(5) 폴리{2-(4'-디메틸도데실실릴페닐)-1,4-페닐렌 비닐렌} (poly{2- (4'-dimethyldodecylsilylphenyl)-1,4-phenylene vinylene})(p-SiPhPPV)의 제조
상기(4)에서 제조된 단량체인 1,4-비스(브로모메틸)-2-(4'-디메틸도데실실릴페닐)벤젠을 무수 THF에 용해시키고(단량체 농도: 1 wt%), 0 ℃에서 그 용액을 교반하면서 Syringe에 담겨져 있는 칼륨 tert-부톡시드(1.0 M THF 용액, 단량체에 대해 약 3 당량)를 캐뉼라를 통해 천천히 30분동안 적하시켰다. 칼륨 tert-부톡시드의 양이 1.5-2.0 당량을 넘어가기 시작하면서 용액이 점점 점착성을 띄기 시작하였다. 약 3시간동안 교반 후 이 혼합물을 다량의 MeOH 또는 이소프로필알콜에 침전시켰다. 얻어진 고분자를 속슬레 추출기(Soxhlet) 장치를 이용하여 정제, 재침전 및 건조를 통해 최종 고분자를 얻었다(Yield 약 80%). 얻어진 고분자의 수평균분자량은 대략적으로 300,000 내지 600,000 정도였다. 구조는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.30 (s, 6H, Si(CH3)2, 0.70-0.98 (m, 5H, SiCH2와 -CH3), 1.10-1.52 (m, 20H, (CH2)10), 7.10-7.80 (br, 9H, Aromatic protons와 vinyl protons).
실시예 2. 전기발광 고분자(2)의 제조
(1) 1-브로모-3-(디메틸도데실실릴)벤젠 (1-bromo-3-(dimethyl dodecyl silyl)benzene)의 제조
질소분위기에서 Schlenk 플라스크에 약 100 mL의 무수 THF와 1,3-디브로모벤젠 0.019 mol(4.62 g)을 함께 넣고 교반시켰다. 이때 온도는 아세톤/드라이아이스를 이용하여 약 -78℃를 유지하였다. 1.6M n-헥산 용액에 n-BuLi 0.019 mol(11.875 mL)을 천천히 약 10분에 걸쳐 적하시켰다. 몇 분 후 흰색 염이 생성되기 시작하였다. n-BuLi의 적하가 모두 끝난 뒤 약 1시간을 더 교반하고 디메틸도데실-실릴클로라이드 0.019 mol(5 g)을 천천히 위 용액에 떨어뜨린다. -78 ℃를 약 1시간 유지시킨 후 서서히 상온으로 온도를 올리면 용액이 점점 맑아진다. 약 3시간 후 용액을 물 300 mL에 붓고 에틸아세테이트로 추출하였다. 그 유기용액을 무수 MgSO4로 건조시키고 여과한 후 용매를 증발시켰다. 얻어진 오일을 진공에서 증류(bp 160 ℃ / 1 mmHg)하거나 실리카겔 칼럼 크로마토그래피(eluent : n-헥산)를 이용하여 정제하였다. 1-브로모-3-(디메틸도데실실릴)벤젠을 70 % 이상의 수율로 얻었으며, 구조는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.28 (s, 6H, Si(CH3)2), 0.9 (t, 2H, SiCH2), 1.2 (t, 3H, -CH3), 1.5 (m, 20H, (CH2)10), 7.2-7.62 (d, 4H, Aromatic protons).
(2) 2-브로모-p-크실렌 (2-bromo-p-xylene)의 제조
실시예 1과 동일하게 제조하였다.
(3) 1,4-디메틸-2-(3'-디메틸도데실실릴페닐)벤젠 (1,4-dimethyl-2- (3'-dimethyldodecylsilylphenyl)benzene)의 제조
250 mL의 Schlen 플라스크에 실시예 2의 1-브로모-3-(디메틸도데실실릴)벤젠 12.45 g (0.0325 mol) 및 NiCl2(dppp) 0.006 g(0.001 mol%)를 약 60-70 mL의 무수 THF에 녹인 뒤 실시예 3에서 제조된 그리나드 시약을 캐뉼러를 이용하여 dropping funnel로 옮겨서 천천히 적하시키면 반응물이 서서히 환류되고 약 80 ℃를 유지하면서 overnight시켰다. 위 용액을 물 300 mL에 붓고 에틸아세테이트로 추출하였다. 그 유기용액을 무수 MgSO4로 건조, 여과 및 증발시킨다. 얻어진 오일을 실리카겔 칼럼 크로마토그래피 (eluent : n-헥산)를 이용하여 정제하였다. 수율은 약 70 % 정도이며 구조는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.3 (s, 6H, Si(CH3)2, 0.77 (t, 2H, SiCH2), 0.82 (t, 3H, -CH3), 1.26 (m, 20H, (CH2)10), 2.4와 2.6 (s, 6H, 2CH3on Benzene ring) 6.9-7.7 (m, 7H, Aromatic protons).
(4) 1,4-비스(브로모메틸)-2-(3'-디메틸도데실실릴페닐)벤젠 (1,4-bis (bromomethyl)-2-(3'-dimethyldodecylsilylphenyl) benzene)의 제조
250 mL의 Schlenk 플라스크에 상기(3)의 1,4-디메틸-2-(3'-디메틸도데실실릴페닐)벤젠 7 g (0.0192 mol), N-브로모숙신이미드 7.9 g (98 % 함량)(0.0442 mol), 및 촉매양의 벤조일퍼옥시드(BPO)를 약 200 mL의 무수 CCl4에 부가한 뒤 약 3시간동안 환류시켰다. 생성된 하얀 고체인 숙신이미드를 제거하기 위해 뜨거운 상태에서 이 용액을 여과하였다. 여과된 CCl4용액을 증발건조기를 이용하여 농축시킨 뒤 실리카겔 칼럼 크로마토그래피 (eluent : n-헥산)를 이용하여 분리 정제하였다. 수율은 25 %이며 구조는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.29 (s, 6H, Si(CH3), 0.79 (t, 2H, SiCH2), 0.88 (t, 3H, -CH3), 1.5 (m, 20H, (CH2)10), 4.2와 4.50 (s, 4H, 2-CH2Br), 7.2-7.62 (d, 7H, Aromatic protons).
(5) 폴리{2-(3'-디메틸도데실실릴페닐)-1,4-페닐렌 비닐렌} (poly{2- (3'-dimethyldodecylsilylphenyl)-1,4-phenylene vinylene}) (m-SiPhPPV)의 제조
상기에서 제조된 단량체 1,4-비스(브로모메틸)-2-(3'-디메틸도데실실릴페닐)벤젠을 무수 THF에 용해시키고(단량체 농도: 1 wt%), 0 ℃에서 그 용액을 교반시키면서 Syringe에 담겨져 있는 칼륨 tert-부톡시드 (1.0 M THF 용액, 단량체에 대해 약 6 당량)를 시린지 펌프(syringe pump)를 이용하여 1시간동안 천천히 적하시켰다. 칼륨 tert-부톡시드의 양이 1.5-2.0 당량을 넘어가기 시작하면서 용액이 점점 점착성을 띄기 시작하였다. 2시간동안 교반 후 그 혼합물을 다량의 MeOH 또는 이소프로필알콜에 침전시킨다. 얻어진 고분자를 속슬레(Soxhlet) 장치를 이용하여 저분자량의 올리고머와 촉매를 제거한 후 MeOH에 재침전시키고 건조를 통해 최종 고분자를 얻었다(Yield 약 80%). 약 8만 미만의 고분자를 제거하기 위해서 스펙트럼사의 Dialysis Membranes을 통하여 저분자량을 제거하였다. 얻어진 고분자의 수평균분자량은 대략적으로 300,000 정도이며 다분산성은 2 정도이다. 구조는 1H-NMR을 통해 확인하였다. 1H-NMR(CDCl3): δ 0.30 (s, 6H, Si(CH3)2, 0.70-0.98 (m, 5H, SiCH2와 -CH3), 1.10-1.52 (m, 20H, (CH2)10), 7.10-7.80 (br, 9H, Aromatic protons와 vinyl protons).
실시예 3. 전기발광 고분자(3)의 제조
(1) 1-브로모-4-(퍼플루오로옥틸디메틸실릴)벤젠 (1-bromo-4-(1H, 1H,2H,2H-perfluorooctyldimethylsilyl)benzene)의 제조
질소분위기에서 Schlenk 플라스크에 약 100 mL의 무수 THF와 1,4-디브로모벤젠 0.055 mol(12.98 g)을 함께 넣고 교반시켰다. 이때 온도는 아세톤/드라이아이스를 이용하여 약 -78℃를 유지하였다. 2.0M n-펜탄 용액에 n-BuLi 0.055 mol(27.5 mL)을 천천히 약 15분에 걸쳐 적하시켰다. 수분 뒤 흰색 염이 생성되기 시작하였다. n-BuLi의 적하가 모두 끝난 뒤 -10℃에서 약 1시간을 더 교반하고1H,1H,2H,2H-퍼플루오로옥틸디메틸클로라이드실란 (1H,1H,2H,2H-perfluoro octyldimethylchlorosilane) 0.055 mol(24.25 g)을 천천히 위 용액에 떨어뜨리면 용액이 점점 맑아진다. 약 3시간 후 용액을 물 300 mL에 붓고 클로로포름으로 추출하였다. 그 유기용액을 무수 MgSO4로 건조시키고 여과한 후 용매를 증발시켰다. 얻어진 오일을 실리카겔 칼럼 크로마토그래피(eluent : n-헥산)를 이용하여 정제하였다. 1-브로모-4-(퍼플루오로옥틸디메틸실릴)벤젠을 70 % 이상의 수율로 얻었으며, 구조는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.34 (s, 6H, Si(CH3)2), 1.01 (m, 2H, SiCH2), 2.00 (m, 3H, -CHcCF2), 7.38과 7.54 (d, 4H, Aromatic protons).
(2) 2-브로모-p-크실렌 (2-bromo-p-xylene)의 제조
실시예 1과 동일하게 제조하였다.
(3) 1,4-디메틸-2-(4'-1H,1H,2H,2H-퍼플루오로옥틸디메틸실릴 페닐)벤젠 (1,4-dimethyl-2-(4'-1H,1H,2H,2H-perfluorooctyldimethylsilyl phenyl) benzene)의 제조
250 mL의 Schlenk 플라스크에 1-브로모-4-(1H,1H,2H,2H-퍼플루오로옥틸디메틸실릴)벤젠 16.16 g (0.0288 mol) 및 NiCl2(dppp) 0.11 g(0.5 mol%)를 약 60-70 mL의 무수 THF에 부가하고 일반적인 방법으로 제조된 그리나드 시약, p-크실렌-2-마그네슘 브로마이드를 위 플라스크로 옮긴다. 이 혼합물을 밤새도록 환류시켰다. 위 용액을 물 300 mL에 붓고 에틸아세테이트로 추출하였다. 이 유기용액을 무수 MgSO4로 건조, 여과 및 증발시켰다. 얻어진 오일을 실리카겔 칼럼 크로마토그래피(eluent : n-헥산)를 이용 정제하였다. 수율은 63 % 이상이며 구조는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.51 (s, 6H, Si(CH3), 1.17 (m, 2H, SiCH2-), 2.17 (m, 3H, -CHCF2-), 2.37과 2.27 (s, 6H, 2CH3of xylene moiety), 7.20-7.31 (m, aromatic protons of xylene moiety), 7.49과 7.66 (d, 4H, aromatic protons)
(4) 1,4-비스(브로모메틸)-2-(4'-1H,1H,2H,2H-퍼플루오로옥틸 디메틸실릴페닐)벤젠 (1,4-bis(bromomethyl)-2-(4'-1H,1H,2H,2H-perfluorooctyl dimethylsilylphenyl) benzene)의 제조
250 mL의 Schlenk 플라스크에 1,4-디메틸-2-(4'-1H,1H,2H,2H-퍼플루오로옥틸 디메틸실릴페닐)벤젠 10.5 g (0.0181 mol), N-브로모숙신이미드 6.43 g (98 % 함량)(0.0362 mol)와 촉매양의 벤조일퍼옥시드(BPO)를 약 200 mL의 무수 CCl4에 부가한 뒤 약 12시간동안 가열하였다. 생성된 하얀 고체인 숙신이미드를 제거하기 위해 뜨거운 상태에서 이 용액을 여과하였다. 여과된 CCl4용액을 증발건조기를 이용 농축시킨 뒤 실리카겔 칼럼 크로마토그래피(eluent : n-헥산)를 이용 정제하였다.수율은 35-40 %이며 구조는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.38 (s, 6H, Si(CH3)2, 1.04 (m, 2H, SiCH2-), 2.06 (m, 3H, -CH2CF2-), 4.44와 4.50 (s, 4H, 2-CH2Br), 7.26-7.60 (m, 7H, aromatic protons).
(5) 폴리{2-(4'-1H,1H,2H,2H-퍼플루오로옥틸 디메틸실릴페닐)-1,4-페닐렌 비닐렌} (poly{2-(4'-1H,1H,2H,2H-perfluorooctyl dimethylsilylphenyl) -1,4-phenylene vinylene}) (p-SiRfPhPPV)의 제조
단량체를 무수 THF에 용해시켜(단량체 농도 0.016-0.032 M), 0 ℃에서 그 용액을 교반시키면서 다른 플라스크에 담겨져 있는 칼륨 tert-부톡시드(1.0 M THF 용액, 단량체에 대해 약 3 당량)를 캐뉼라를 통해 천천히 30분동안 적하시켰다. 칼륨 tert-부톡시드의 양이 1.5-2.0 당량을 넘어가기 시작하면서 용액이 점점 점착성을 띄기 시작하였다. 약 3시간동안 교반 후 그 혼합물을 다량의 MeOH에 침전시킨다. 얻어진 고분자를 속슬레(Soxhlet) 장치를 이용하여 정제 후 재침전, 건조를 통해 최종 고분자를 얻었다(Yield 약 70%). 얻어진 고분자의 수평균분자량은 대략적으로 110000 정도였다. 구조는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.38 (br, 6H, Si(CH3)2, 0.92 (br, 2H, SiCH2-), 2.04 (br, 3H, -CHcCF2-), 7.08-7.70 (m, 9H, aromatic protons 및 vinyl protons).
실시예 4. 공중합 전기발광 고분자(4)의 제조
(1) One-Pot 제조
실시예 2에서 제조된 단량체 1,4-비스(브로모메틸)-2-(3'-디메틸도데실실릴페닐)벤젠 및 2,5-비스(클로로메틸)-4-(2-에틸헥실옥시)아니솔(2,5-bis (chlorormethyl)-4-(2-ethylhexyloxy)anisole)을 여러 가지 몰조성비로 조절하면서 무수 THF에 용해시켜 (단량체 농도: 1 wt%) 0 ℃에서 그 용액을 교반시키면서 Syringe에 담겨져 있는 칼륨 tert-부톡시드(1.0 M THF 용액, 단량체에 대해 약 6 당량)를 시린지 펌프(syringe pump)를 이용하여 1시간동안 천천히 적하시켰다. 칼륨 tert-부톡시드의 양이 1.5-2.0 당량을 넘어가기 시작하면서 용액이 점점 점착성을 띄기 시작하였다. 0℃에서 2시간동안 교반 후 그 혼합물을 다량의 MeOH 또는 이소프로필알콜에 재침전시켰다. 얻어진 고분자를 속슬레(Soxhlet) 장치를 이용하여 저분자량의 올리고머와 촉매를 제거한 후 MeOH에 재침전시키고 건조를 통해 최종 발광 공중합 고분자인 폴리 [{2-(3'-디메틸도데실실릴페닐)-co-(1'-메톡시-4'- 에틸헥실옥시)}-1,4-페닐렌 비닐렌] (poly[{2-(3'-dimethyldodecylsilylphenyl)-co- (1'-methoxy-4'-ethylhexyloxy)}-1,4-phenylene vinylene]) (m-SiPhPPV- co-MEH-PPV)를 얻었다(Yield 약 70%). 8만 미만의 공중합 발광 고분자를 제거하기 위해서 스펙트럼사의 Dialysis Membranes을 통하여 저분자량을 제거하였다. 얻어진 고분자의 수평균분자량은 대략적으로 3.0×106∼6.6×106정도이며 다분산성은 2.3 정도이다. 구조와 조성비는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.30(s, 6H, Si(CH3)2, 0.70-0.98 (m, 5H, SiCH2와 -CH3), 1.10-1.52 (m, 20H, (CH2)10), 7.10-7.80 (br, 9H, Aromatic protons와 vinyl protons).
(2) 단계적 제조
실시예 2에서 제조된 단량체 1,4-비스(브로모메틸)-2-(3'-디메틸도데실실릴페닐)벤젠과 공단량체인 2,5-비스(클로로메틸)-4-(2-에틸헥실옥시)아니솔과의 반응성이 매우 차이가 나기 때문에 2,5-비스(클로로메틸)-4-(2-에틸헥실옥시)아니솔을 먼저 일부분 중합시킨 후 단량체 1,4-비스(브로모메틸)-2-(3'-디메틸도데실실릴페닐)벤젠을 부가하여 공중합체를 합성하였다. 먼저 여러 가지 몰조성비로 조절하면서 상기 단량체를 무수 THF에 용해시키고(단량체 농도: 1 wt%), 상기 용액을 0 ℃에서 교반시키면서 시린지(syringe)에 담겨져 있는 칼륨 tert-부톡시드 (1.0 M THF 용액, 단량체에 대해 약 6 당량)를 시린지 펌프(syringe pump)를 이용하여 20분동안 약 2당량 정도의 칼륨 tert-부톡시드를 천천히 적하시켰다. 어느 정도 중합반응이 진행되면 두 번째 부가 단량체를 부가한 후 나머지의 칼륨 tert-부톡시드를 첨가하면 중합 반응물이 점점 점착성을 띄기 시작하였다. 0℃에서 2시간동안 교반 후 그 혼합물을 다량의 MeOH 또는 이소프로필알콜에 재침전시킨다. 얻어진 공중합 발광 고분자를 속슬레(Soxhlet) 장치를 이용하여 저분자량의 올리고머와 촉매를 제거한 후 MeOH에 재침전시키고 건조를 통해 최종 발광 공중합 고분자인 m-SiPhPPV-co-MEH-PPV를 얻었다(Yield 약 70%). 분자량 8만 미만의 공중합 발광 고분자를 제거하기 위해서 스펙트럼사의 Dialysis Membranes을 통하여 저분자량을 제거하였다. 얻어진 고분자의 수평균분자량은 대략적으로 2.0×106내지 8.0×106정도이며, 다분산성은 2.3 정도이다. 구조와 조성비는 1H-NMR을 통해 확인하였다. 1H-NMR (CDCl3): δ 0.30 (s, 6H, Si(CH3)2, 0.70-0.98 (m, 5H, SiCH2와 -CH3), 1.10-1.52 (m, 20H, (CH2)10), 7.10-7.80 (br, 9H, Aromatic protons와 vinyl protons).
<EL device 제작>
실시예 1과 실시예 2에서 각각 제조된 발광 고분자 p-SiPhPPV와 m-SiPhPPV 및 실시예 4에서 제조된 공중합 발광 고분자인 m-SiPhPPV-co-MEH-PPV를 이용하여 전기발광 소자(device)를 제작하였다. 제작된 EL 소자의 구조는 도 5와 같다. EL 소자의 제작과정은 ITO(indium-tin oxide)를 유리기판 위에 코팅한 투명 전극 기판을 깨끗이 세정한 후, 원하는 모양으로 ITO를 감광성 수지(photoresist resin)와 에천트를 이용하여 패터닝(patterning)하고 다시 깨끗이 세정하였다. 그 위에 전도성 있는 버퍼층으로 Bayer사의 Batron P 4083을 약 500Å의 두께로 코팅한 후 180℃에서 약 1시간 베이킹(baking)하였다. 클로로벤젠에 용해시켜 제조된 유기 전기발광 고분자 용액을 스핀 코팅(spin coating)하고 베이킹 처리 후에 진공 오븐내에서 용매를 완전히 제거하여 고분자 박막을 형성시켰다. 고분자 용액은 0.2 ㎛ 필터로 필터링하여 스핀 코팅 하였으며, 고분자 박막 두께는 고분자 용액의 농도와 스핀 속도를 조절함으로써 자유롭게 조절할 수 있다. 발광 고분자 두께는 약50∼200 ㎚ 정도이다. 그리고 절연층 및 메탈 전극은 진공증착기(열증발건조기)를 이용하여 진공도를 4×10-6torr 이하로 유지하면서 증착시켜 형성하였다. 증착시 막두께 및 막의 성장속도는 크리스탈 센서(crystal sensor)를 이용하여 조절하였고 발광면적은 4 ㎟이고 구동전압은 직류전압으로 순방향 바이어스 전압(forward bias voltage)을 사용하였다.
<광학적 특성 평가>
실시예 1, 2 및 4에서 제조된 발광 고분자 용액들을 유기기판 위에 스핀 코팅하여 고분자 박막을 형성한 후, UV 흡수 피크와 PL(photoluminescence)을 측정하였다. 형성된 박막은 핀홀(pin hole)이 없이 균일하였으며 기판에 대한 접착성이 매우 우수하였다. 각각의 시료에 대한 UV 및 PL 스펙트럼의 측정 결과를 도 6 내지 도 10에 나타내었다.
m-SiPhPPV의 경우 UV 최대 흡수 피크는 435 ㎚이었고 여기파장을 435 ㎚로 하여 측정한 PL 스펙트럼에서의 PL 최대 피크는 527 ㎚이며, 어깨(shoulder) 피크가 558 ㎚에서 보였다. p-SiPhPPV의 경우 최대 흡수 피크는 427 ㎚, PL 최대 피크는 524 ㎚인 것으로 나타났다.
실시예 4에서 제조된 공중합체 m-SiPhPPV-co-MEH-PPV의 경우에는 UV 최대 흡수 피크가 465 ㎚이었고 여기파장을 465 ㎚로 하여 측정한 PL 스펙트럼에서의 PL 최대 피크는 592 ㎚로 측정되었다. 상기 공중합체는 전자 주개(electron-donating) 효과가 우수한 오렌지색을 띄는 빨간색을 발광하는 MEH-PPV가 도입됨으로 인해서, m-SiPhPPV 또는 p-SiPhPPV 보다도 빨간색 영역으로 이동(red-shift)한 스펙트럼이 관측되었다.
<전기적 특성 평가>
실시예 1, 2 및 4에서 제조된 발광 고분자를 이용하여 제작된 EL device로부터 전기발광 특성을 평가하여 도 11, 12 및 13에 나타내었다. 제작된 ITO/PEDOT/고분자/(LiF)/Al 구조의 단층형 EL 소자들은 모두 전형적인 정류 다이오드(rectifying diode) 특성을 보였다. m-SiPhPPV의 경우 구동전압(turn-on voltage)은 도 15에서 보듯이 약 11V에서 시작되었으며, 최대 휘도는 도 18에서 보듯이 250 cd/㎡이며 소자의 최대효율은 0.0490 lm/W 이었다(ITO/PEDOT/고분자/Ca/Al구조의 경우: 구동전압은 약 6.6V, 최대휘도는 2153 cd/㎡, 소자의 최대효율은 0.657 lm/W로 측정되었다). 한편, p-SiPhPPV의 경우 ITO/PEDOT/고분자/LiF/Al 소자 구조에서 구동전압은 7.2 V(도 14)에서 시작되었고, 최대 휘도는 910 cd/㎡(도 17)이며, 최대 발광효율은 0.1718 lm/W이었다(ITO/PEDOT/고분자/Ca/Al구조의 경우: 구동전압은 약 6.7V, 최대휘도는 5890 cd/㎡, 소자의 최대효율은 0.251 lm/W로 측정되었다). 그리고 공중합체인 m-SiPhPPV- co-MEH-PPV의 구동전압은 약 3.9 V이며 최대휘도는 약 11000 cd/㎡이며 최대 발광효율은 2.1983 m/W이었다. 공중합체의 경우 MEH-PPV가 도입됨으로 인해서 m-SiPhPPV 또는 p-SiPhPPV 보다도 HOMO level은 높여주고 LUMO level은 낮추어 줌으로써 구동전압은 상대적으로 낮으며 최대 발광 휘도 뿐만 아니라 발광효율도 급격히 증가함을 알 수 있었고, 그 결과 소자의 안정성도 매우 우수함을 확인하였다. 공중합체 m-SiPhPPV-co-MEH- PPV의 경우 m-SiPhPPV 또는 p-SiPhPPV 보다도 우수한 전류-전압(도 16) 및 광도-전압 특성을 나타내었다(도 19). 제작된 EL 소자들은 수 차례 반복 구동 후에도 초기의 전압-전류 밀도 특성을 그대로 유지하는 안정성을 보였다.
비교실시예
비교실시예에서는 MEH-PPV를 사용한 경우의 전기광학 특성을 비교하였다. 전압을 10 V로 고정시키고 측정한 EL 스펙트럼을 도 22에 나타내었으며, 청색 영역에서 발광함을 알 수 있다. MEH-PPV를 발광층으로 사용한 경우의 I-V 스펙트럼을 도 23에 나타내었으며, 구동전압이 7 V 정도에서 서서히 전류가 흐름을 알 수 있다.
본 발명은 기존의 발광 고분자인 폴리(p-페닐렌비닐렌기)(PPV)를 주쇄로 하고, 지방족 알킬기가 도입된 실리콘 원자를 함유하는 페닐기를 측쇄로 함유함으로써 유기용매에 대한 용해성이 우수하고, 발광효율, 전극과의 계면특성 및 박막 형성능력이 우수한 전기발광 고분자를 제공하며, 또한 상기 전기발광 고분자와 MEH-PPV를 공중합함으로써 특히 칼라 튜닝이 뛰어나며 우수한 디스플레이 특성을 갖는 공중합 전기발광 고분자를 제공하는 효과를 갖는다.
본 발명의 단순한 변형 내지 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (7)

  1. 폴리(p-페닐렌비닐렌)(PPV)을 주쇄로 하고, 긴 사슬(long chain)의 알킬기가 도입된 페닐실리콘이 측쇄로 도입되는 하기 화학식(1)으로 표시되는 것을 특징으로 하는 칼라 튜닝이 우수한 전기발광 고분자:
    화학식(1)
    상기식에서 R1, R2및 R3은 각각 독립적으로 긴 사슬의 지방족 알킬(aliphatic alkyl), 가지난 알킬(branched alkyl) 또는 플루오로화 알킬(fluorinated alkyl)이고, 상기 지방족 알킬은 (CH2)nCH3(n은 0 내지 12의 정수)이고, 상기 가지난 알킬은 CH2(CH2)aCH(CH2)bCH3CH(CH3)2(a는 0 내지 5의 정수, b는 0 내지 10의 정수)이고, 그리고 상기 플루오로화 알킬은 CH2(CF2)nCF3(n은 0 내지 12의 정수)임.
  2. 제1항의 전기발광 고분자의 단량체 및 MEH-PPV의 단량체와의 공중합으로 이루어지며, 하기 화학식(2)으로 표시되는 것을 특징으로 하는 칼라 튜닝이 우수한 전기발광 고분자:
    화학식(2)
    상기식에서 R1, R2및 R3은 각각 독립적으로 긴 사슬의 지방족 알킬(aliphatic alkyl), 가지난 알킬(branched alkyl) 또는 플루오로화 알킬(fluorinated alkyl)이고, 상기 지방족 알킬은 (CH2)nCH3(n은 0 내지 12의 정수)이고, 상기 가지난 알킬은 CH2(CH2)aCH(CH2)bCH3CH(CH3)2(a는 0 내지 5의 정수, b는 0 내지 10의 정수)이고, 상기 플루오로화 알킬은 CH2(CF2)nCF3(n은 0 내지 12의 정수)이며, 그리고 x는 0.9∼0.1이고, y는 0.1∼0.9임.
  3. 제1항 또는 제2항에 있어서, 상기 알킬기를 갖는 실리콘은 상기 페닐기의 meta- 또는 para- 위치에 결합되는 것을 특징으로 하는 칼라 튜닝이 우수한 전기발광 고분자.
  4. 제1항 내지 제3항의 어느 한 항에 있어서, 상기 발광 고분자의 분자량 분포(Mw)가 약 1만 내지 100만이고, 그리고 분자량 분포는 약 1.5 내지 5 인 것을 특징으로 하는 칼라 튜닝이 우수한 전기발광 고분자.
  5. 발광층이 제1항 또는 제2항의 상기 전기발광 고분자로 이루어지며, 양극/발광층/음극, 양극/버퍼층/발광층/음극, 양극/버퍼층/정공전달층/발광층/음극, 양극/버퍼층/정공전달층/발광층/전자전달층/음극, 및 양극/버퍼층/정공전달층/발광층/정공차단층/음극으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 유기 전기발광 고분자 다이오드.
  6. 제5항에 있어서, 상기 버퍼충은 폴리티오펜(polythiophene), 폴리아닐린(polyaniline), 폴리아세틸렌(polyacetylene), 폴리피롤(polypyrrole) 또는 폴리페닐렌비닐렌 유도체인 것을 특징으로 하는 유기 전기발광 고분자 다이오드.
  7. 제5항에 있어서, 상기 정공차단층은 LiF 또는 MgF2인 것을 특징으로 하는 유기 전기발광 고분자 다이오드.
KR1019990035040A 1999-08-23 1999-08-23 칼라 튜닝이 우수한 고효율의 전기발광 고분자 KR100323606B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019990035040A KR100323606B1 (ko) 1999-08-23 1999-08-23 칼라 튜닝이 우수한 고효율의 전기발광 고분자
JP2000251531A JP3188885B2 (ja) 1999-08-23 2000-08-22 カラーチューニングが優れる高効率の電気発光高分子
US09/644,242 US6368732B1 (en) 1999-08-23 2000-08-23 Light-emitting polymers having high efficiency and color tunable properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990035040A KR100323606B1 (ko) 1999-08-23 1999-08-23 칼라 튜닝이 우수한 고효율의 전기발광 고분자

Publications (2)

Publication Number Publication Date
KR20010018900A KR20010018900A (ko) 2001-03-15
KR100323606B1 true KR100323606B1 (ko) 2002-02-19

Family

ID=19608369

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990035040A KR100323606B1 (ko) 1999-08-23 1999-08-23 칼라 튜닝이 우수한 고효율의 전기발광 고분자

Country Status (3)

Country Link
US (1) US6368732B1 (ko)
JP (1) JP3188885B2 (ko)
KR (1) KR100323606B1 (ko)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379810B1 (ko) * 2000-11-07 2003-04-11 삼성에스디아이 주식회사 전하공급 균형을 높인 전기발광 고분자 및 그를 이용한전기발광 소자
EP1220341B1 (en) * 2000-12-28 2008-07-02 Kabushiki Kaisha Toshiba Organic electroluminescent device and display apparatus
SG118077A1 (en) 2001-06-21 2006-01-27 Univ Singapore Light emitting polymers and polymer light emittingdiodes
KR100441282B1 (ko) * 2001-07-23 2004-07-22 일진다이아몬드(주) 시클로헥실 또는 페닐이 치환된 실릴기를 측쇄로 구비하는폴리(p-페닐렌비닐렌)유도체, 이를 포함한 전기발광소자및 동 유도체의 제조방법
EP1419536A1 (en) * 2001-07-27 2004-05-19 The Ohio State University Methods for producing electroluminescent devices by screen printing
US6603150B2 (en) * 2001-09-28 2003-08-05 Eastman Kodak Company Organic light-emitting diode having an interface layer between the hole-transporting layer and the light-emitting layer
WO2004000970A1 (en) * 2002-06-21 2003-12-31 Case Western Reserve University Color tunable photoluminescent blends
KR100505962B1 (ko) * 2002-09-09 2005-08-05 한국과학기술원 폴리페닐렌비닐렌계 고분자 발광물질 및 이를 포함하는전기발광소자
KR100510057B1 (ko) * 2002-10-21 2005-08-25 한국과학기술연구원 폴리(플로렌비닐렌-파라페닐렌비닐렌)계 공중합 전기발광고분자 및 이의 제조방법
KR100518419B1 (ko) * 2002-11-06 2005-09-29 엘지.필립스 엘시디 주식회사 유기전계발광소자
US7379720B2 (en) * 2003-02-20 2008-05-27 Sony Ericsson Mobile Communications Ab Keypad lighting using polymer light emitting devices
US7234498B2 (en) * 2004-04-06 2007-06-26 The Goodyear Tire & Rubber Company Self-luminescent pneumatic tire
JP5150258B2 (ja) * 2004-11-01 2013-02-20 エージェンシー フォー サイエンス、テクノロジー アンド リサーチ ポリ(アリーレンビニレン)およびポリ(ヘテロアリーレンビニレン)発光ポリマーならびにポリマー発光デバイス
KR101223719B1 (ko) * 2006-05-23 2013-01-18 삼성디스플레이 주식회사 백색 유기 발광 소자 및 이의 제조방법
TW200811266A (en) * 2006-08-22 2008-03-01 Univ Nat Chiao Tung Electroluminescence polymer
KR100886949B1 (ko) 2007-05-17 2009-03-09 제일모직주식회사 실리콘 또는/및 주석을 포함하는 비닐단위를 기본으로 하는oled 유기막용 고분자 중합체 및 이를 이용한 유기전계 발광 소자
US10038143B2 (en) 2012-09-14 2018-07-31 Idemitsu Kosan Co., Ltd. Polymer compound, material for electronic elements, material for organic electroluminescent elements, and organic electroluminescent element
US9045596B2 (en) * 2013-02-05 2015-06-02 Phillips 66 Company Method of purifying conjugated polymers
JP6782418B2 (ja) * 2015-09-10 2020-11-11 昭和電工マテリアルズ株式会社 有機エレクトロニクス材料及びその利用
US10312448B2 (en) 2015-10-01 2019-06-04 Phillips 66 Company Process of manufacturing an electron transport material
US10418555B2 (en) 2015-10-01 2019-09-17 Phillips 66 Company Formation of films for organic photovoltaics
US10099963B2 (en) 2015-10-01 2018-10-16 Phillips 66 Company Formation of films for organic photovoltaics
US9905769B2 (en) 2015-10-01 2018-02-27 Phillips 66 Company Process of manufacturing an electron transport material
US9911919B2 (en) 2015-10-01 2018-03-06 Phillips 66 Company Process of manufacturing an electron transport material
JP3203776U (ja) * 2016-02-05 2016-04-14 坪田 正雄 面ファスナーによる2つの部品の係脱構造
US11187933B2 (en) * 2018-08-08 2021-11-30 Omnivision Technologies, Inc. LCOS display panel having UV cut filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000032068A (ko) * 1998-11-12 2000-06-05 김순택 발광 화합물 및 이를 발색재료로서 채용하고있는 표시소자

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0155863B1 (ko) * 1995-07-31 1998-11-16 김광호 청색 발광성 고분자 및 이를 채용한 발광 다이오드
KR100254536B1 (ko) * 1997-09-29 2000-05-01 정선종 두개의실릴기를갖는용해가능한피피브이유도체의합성방법및이를이용한전기발광소자
JP3847483B2 (ja) * 1998-04-30 2006-11-22 富士写真フイルム株式会社 特定のビニルシラン化合物およびそれを含有する有機発光素子、および、ビニルシラン化合物の製造方法。

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000032068A (ko) * 1998-11-12 2000-06-05 김순택 발광 화합물 및 이를 발색재료로서 채용하고있는 표시소자

Also Published As

Publication number Publication date
JP3188885B2 (ja) 2001-07-16
JP2001114873A (ja) 2001-04-24
US6368732B1 (en) 2002-04-09
KR20010018900A (ko) 2001-03-15

Similar Documents

Publication Publication Date Title
KR100323606B1 (ko) 칼라 튜닝이 우수한 고효율의 전기발광 고분자
KR0176336B1 (ko) 아세틸렌기를 함유한 플로렌계 교대 공중합체 및 이를 이용한 전계발광소자
KR101041766B1 (ko) 카르바졸을 함유하는 공액 중합체 및 배합물, 그의제조방법 및 용도
US8361636B2 (en) Luminescent polymer
KR100480769B1 (ko) 백색 전계발광 고분자 및 이를 이용한 유기 전계발광 소자
JP4959100B2 (ja) 置換フルオレンポリマー及びその製造方法
KR100903247B1 (ko) 디아릴안트라센 중합체를 갖는 전기발광 장치
JP5197687B2 (ja) ポリマー及びその製造方法
KR101170168B1 (ko) 9,9-디(플루오레닐)-2,7-플루오레닐 단위를 함유하는 유기전기발광고분자 및 이를 이용한 전기발광소자
US20050064231A1 (en) Luminescent polymer
JP4155733B2 (ja) 電荷供給均衡性を高めた電界発光高分子及びそれを用いた電界発光素子
CA2554940A1 (en) Organic electroluminescent polymer having 9,9-di(fluorenyl)-2,7-fluorenyl unit and organic electroluminescent device manufactured using the same
JP3939533B2 (ja) フルオレンが導入された電界発光高分子及びそれを用いた電界発光素子
JP2004532314A5 (ko)
US6841268B2 (en) Blue electroluminescent polymer and organic electroluminescence device using the same
Hwang et al. Syntheses and light-emitting properties of poly (9, 9-di-n-octylfluorenyl-2, 7-vinylene) and PPV copolymers
JP5196747B2 (ja) ルミネッセンス用高分子
US20030096137A1 (en) Blue electroluminescent polymer and organic electroluminescence device using the same
KR100394509B1 (ko) 네개의 치환체를 갖는 페닐렌기를 포함하는 고기능성전기발광고분자
KR100451440B1 (ko) 주석계 전기발광 고분자
Ahn Synthesis and Light-emitting Properties of Random Copolymers Composed of Phenylsilyl-and Alkoxy-Sustituted Phenylenevinylene
KR100258593B1 (ko) 저구동전압에서 작동하는 실리콘계 전기 발광 고분자 화합물 및그 제조방법
JP2004288623A (ja) 有機エレクトロルミネッセンス素子
KR20020089084A (ko) 알킬옥시페닐옥시기가 치환된 폴리(p-페닐렌비닐렌)계전기발광고분자 및 이의 제조방법
KR20080107840A (ko) 신규한 백색 발광 고분자, 그 제조 방법 및 이를 이용한전기 발광 소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140102

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20141231

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 17

LAPS Lapse due to unpaid annual fee