KR20020089084A - 알킬옥시페닐옥시기가 치환된 폴리(p-페닐렌비닐렌)계전기발광고분자 및 이의 제조방법 - Google Patents

알킬옥시페닐옥시기가 치환된 폴리(p-페닐렌비닐렌)계전기발광고분자 및 이의 제조방법 Download PDF

Info

Publication number
KR20020089084A
KR20020089084A KR1020010028419A KR20010028419A KR20020089084A KR 20020089084 A KR20020089084 A KR 20020089084A KR 1020010028419 A KR1020010028419 A KR 1020010028419A KR 20010028419 A KR20010028419 A KR 20010028419A KR 20020089084 A KR20020089084 A KR 20020089084A
Authority
KR
South Korea
Prior art keywords
group
formula
integer
ppv
linear
Prior art date
Application number
KR1020010028419A
Other languages
English (en)
Inventor
문두경
이상필
조재억
진성호
염인숙
Original Assignee
한화석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화석유화학 주식회사 filed Critical 한화석유화학 주식회사
Priority to KR1020010028419A priority Critical patent/KR20020089084A/ko
Publication of KR20020089084A publication Critical patent/KR20020089084A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 알킬옥시페닐옥시기가 치환된 폴리(p-페닐렌비닐렌)(PPV)계 전기발광고분자 및 이의 제조방법에 관한 것으로, 좀 더 상세하게는 폴리(p-페닐렌비닐렌) 기본 골격에 입체적 장애가 큰 장사슬 지방족 알킬옥시페닐옥시기를 도입하여 발광색 조절이 가능하고, 전기광학적 특성이 우수한 폴리(p-페닐렌비닐렌)계 전기발광고분자 및 이의 제조방법에 관한 것이다. 본 발명은 입체적 장애를 유도할 수 있는 장쇄의 지방족 알콕시기를 PPV의 주쇄에 오르소(ortho)-, 메타(metha)- 또는 파라(para)-의 위치에 도입시켜 치환기의 위치에 따라 발광색을 조절할 수 있으며, 유기용매에 대한 용해성 및 전극과의 계면특성이 탁월하여, 광투과성, 내환경성, 기판에 대한 접착력, 박막형성 능력 및 전계에 대한 안정성 등이 우수한 전기발광고분자를 제공한다.

Description

알킬옥시페닐옥시기가 치환된 폴리(p-페닐렌비닐렌)계 전기발광고분자 및 이의 제조방법{Electroluminescent polymer of poly(p-phenylenevinylene) derivatives substituted by alkyloxyphenyloxy group and method for preparing the same}
본 발명은 알킬옥시페닐옥시기가 치환된 폴리(p-페닐렌비닐렌)계 전기발광고분자 및 이의 제조방법에 관한 것으로, 좀 더 상세하게는 폴리(p-페닐렌비닐렌)(PPV) 기본 골격에 입체적 장애가 큰 장사슬 지방족 알킬옥시페닐옥시기를 도입하여 발광색 조절이 가능하고, 전기광학적 특성이 우수한 폴리(p-페닐렌비닐렌)계 전기발광고분자 및 이의 제조방법에 관한 것이다.
21세기 초고속 정보화 및 멀티미디어 시대에 있어서 반도체 및 평판 디스플레이의 발전은 인류의 사회생활에 있어서 많은 변화를 가져왔다. 특히 최근 광통신과 멀티미디어 분야의 빠른 성장은 고도의 정보화 사회로의 발전을 가속화 시키고 있다. 이에 따라 광자(photon)와 전자(electron) 상호변환에 의한 물리적 현상을 이용하는 광전자 소자(opto-electronic devices)는 현대 정보전자 산업의 핵이 되고 있다. 반도체 광전자 소자는 크게 발광소자와 수광소자로 그리고 이들이 혼합된 소자로 분류할 수 있다. 대표적인 수광소자는 현재 TFT-LCD로 대표되는 액정표시소자(LCD)가 있지만 공정이 복잡하고 대형 표시소자로서 문제점을 내포하고 있다. 따라서 최근에 많은 연구가 진행중인 전기발광소자(electroluminance display)는 제조 공정이 간단할 뿐만 아니라 천연색 표시소자로의 응용성으로 인해 가장 연구가 활발히 이루어지고 있는 분야이다. 이러한 전기발광 현상은 GaN, ZnS및 SiC 등을 이용한 무기물 반도체에서 잘 개발되어 실제 옥외전광판 또는 자동차의 표시 소자 등으로 사용되고 있다. 그러나, 무기물로 이루어진 전기발광소자는 구동전압이 교류 200V이상 요구되며, 대형화가 어렵고 가격 또한 고가이어서 비경제적인 단점이 있다. 이러한 무기물소자 이외에 유기 및 고분자 소재를 이용한 전기발광 현상도 알려져 있다. 유기물질의 전기발광 현상은 1963년 포프(Pope) 등에 의해서 발표되었으며 1987년 이스트맨 코닥(Eastmann Kodak)사에서 탱(Tang)등에 의해서 Alq3라는 π-공액구조의 유기금속 색소로 제작된 ITO/TPD/Alq3/Al의 다층구조 소자로부터 10V 이하에서 양자효율이 1%, 휘도가 1000cd/m2인 발광 소자가 발표된 후 많은 연구가 진행되고 있다. 그러나 이들은 발광재료의 가공성이나 열적 안정성이 낮고, 또한 전압을 걸어 주었을 때 발광층 내의 줄(Joule) 열 발생에 의해 발광물질의 결정화에 의한 소자의 파괴 등으로 발광효율이나 소자의 수명을 단축시키는 문제점을 가지고 있었다.
영국의 캠브리지 대학 연구진에 의해 공액 이중결합을 갖는 고분자인 폴리(p-페닐렌비닐렌)을 이용한 전기발광소자가 1990년에 처음으로 발표된 후 유기 고분자를 이용한 연구가 활발히 진행되고 있다. 짧은 기간임에도 불구하고 유기 고분자의 경우 분자구조의 설계 및 합성이 용이하고 공액구조의 길이 변화를 조절하므로써 완전색상(full-color)의 구현에 필요한 적색, 녹색 및 청색의 삼원색의 발광색 조절이 가능하고 발광효율이 무기물 반도체에 의한 발광 다이오드(LED) 보다도 우수한 고분자 발광 다이오드가 개발되었지만, 발광고분자 정제기술, 저전압,고효율 및 장수명을 실현하기 위해서는 아직도 해결해야 될 문제점을 많이 내포하고 있다.
한국 등록특허 제217769호는 전기광학 발광특성을 용이하게 조절할 수 있고 가공성이 우수한 전기발광소자용 폴리티오펜 유도체의 제조방법을 개시하고 있지만, 안정성이나 효율면에서 다소 성능이 저하되는 단점이 있다.
한편, 대표적인 고분자 발광다이오드(PLED) 소자의 발광재료로서 폴리(p-페닐렌비닐렌)(PPV) 유도체는 중합반응 중에 중합용매에 완전히 용해된 발광고분자와 용해성의 저하로 인해서 침전물이 일부 생성되는 불균일한 상태의 발광고분자가 동시에 합성되므로 용해도 및 중합시간 및 제조공정 등에 많은 문제점을 내포하고 있으며 대량 생산에 한계점을 가지고 있다.
일반적인 PPV계 유기 전기발광(EL) 재료는 다음과 같은 문제점이 있다. PPV의 전구체인 술포늄 전구체(polysulfonium precursor)의 경우 매우 장시간의 중합시간이 소요되며 수율이 매우 낮고 비용이 많이 소모된다. 그리고 완전한 PPV 유도체를 만들기 위한 술포늄염의 완전제거가 어렵다. 저전압에서 구동하기 위해 박막(~100nm)을 형성해야 하지만, 이때 미반응의 술포늄염이 서서히 제거되면서 핀홀 등이 발생되어 막의 균일성이 저하되어 누설전류가 발생하면서 발광효율을 저하시키며, 전구체 방법에 의한 PPV의 제조 공정은 비환경친화적인 공정이다. 전구체 방법이 아닌 탈염수소화반응(Dehydrohalogenation reaction)에 의한 중합반응의 경우 과량의 염을 사용하므로써 부반응이 많이 발생되기 때문에 발광고분자의 골격에 삼중결합이 형성되어 발광효율을 저하시키는 요인이 되기도 한다.
한국 공개특허 제98-15978호는 전자 수송능이 우수한 옥사디아졸을 도입하므로써 우수한 광투과성, 내환경성 및 접착력을 갖는 폴리(p-페닐렌)계 전기발광고분자를 개시하고 있지만, 발광색상이 제한되는 단점이 있다.
대부분의 발광고분자의 경우 폴리(p-페닐렌비닐렌) 구조를 기본으로 하고 다양한 합성법에 의해서 발광고분자를 합성하지만 합성된 발광고분자가 합성뿐만 아니라 소자의 성능면에 있어서 재현성이 부족하고 대량생산과 발광고분자의 순도를 높이기 어려운 단점들이 있다. 또한 소자를 구동시킬때 줄열을 극복하기 위해서 Tg가 약 100oC 이상은 되어야 하며 고분자량의 물질을 사용하여 박막의 기계적 강도를 높여야만 된다.
상술한 문제점들을 해결하기 위하여, 본 발명자들이 연구를 거듭한 결과, 폴리(p-페닐렌비닐렌)(PPV) 기본 골격에 입체적 장애가 큰 장사슬 지방족 알킬옥시페닐옥시기가 도입된 비대칭 모노머를 개량된 글리치 중합(Gilch polymerization)을 통해서 발광색 조절이 가능하고, 전기광학적 특성이 우수한 신규한 전기발광고분자를 얻을 수 있었으며, 본 발명은 이에 기초하여 완성되었다.
따라서, 본 발명의 목적은 발광색 조절이 가능하고 유기용매에 대한 용해성이 높아 전기광학적 특성이 우수한 전기발광고분자 및 상기 고분자의 모노머와 종래의 공지된 2,5-비스(클로로메틸)-4-(2-에틸헥실옥시)아니솔의 공중합을 통해 각각의 고분자 단독보다도 우수한 발광고분자 특성을 나타내는 전기발광고분자를 제공하는데 있다.
본 발명의 다른 목적은 상기 전기발광고분자의 제조방법을 제공하는데 있다.
상기 목적을 달성하기 위한 본 발명의 전기발광고분자는 하기 화학식 1 또는 화학식 2로 표시된다.
상기 식에서, R은 탄소수 1 내지 21의 직쇄 또는 측쇄의 지방족 알킬기이고, n은 10∼1000의 정수이고, m은 10∼1000의 정수이다.
상기 다른 목적을 달성하기 위한 상기 화학식 1로 표시되는 전기발광고분자의 제조방법은 촉매의 존재하에서 메톡시페놀과 2-브로모-p-자이렌을 반응시켜 알코올기의 수소 자리에 1,4-디메틸벤젠을 도입한 후 메톡시기를 히드록시기로 치환시키는 단계; 촉매의 존재하에서 상기 반응생성물과 탄소수 1∼21의 직쇄 또는 측쇄의 알킬 브로마이드를 반응시켜 상기 히드록시기 자리에 지방족 알콕시기를 도입한 후, 이를 NBS(N-bromosuccinimide)와 반응시켜 주쇄의 1,4-자리에 브로모 메틸을 도입하는 단계; 및 상기 반응물을 포타슘 t-부톡사이드의 존재하에서 중합시키는 단계를 포함한다.
상기 다른 목적을 달성하기 위한 상기 화학식 2로 표시되는 전기발광고분자의 제조방법은 촉매의 존재하에서 메톡시페놀과 2-브로모-p-자이렌을 반응시켜 알코올기의 수소 자리에 1,4-디메틸벤젠을 도입한 후, 메톡시기를 히드록시기로 치환시키는 단계; 촉매의 존재하에서 상기 반응생성물과 탄소수 1∼21의 직쇄 또는 측쇄의 알킬 브로마이드를 반응시켜 상기 히드록시기 자리에 지방족 알콕시기를 도입한 후, 이를 NBS(N-bromosuccinimide)와 반응시켜 주쇄의 1,4-자리에 브로모 메틸을 도입하는 단계; 및 포타슘 t-부톡사이드의 존재하에서 상기 반응물과 2,5-비스(클로로메틸)-4-(2-에틸헥실옥시)아니솔을 공중합시키는 단계를 포함한다.
도 1는 본 발명의 실시예 8에 따른 박막의 UV-흡수 스펙트럼을 나타낸 그래프이다.
도 2는 본 발명의 실시예 9에 따른 공중합체의 PL(photoluminescence) 스펙트럼을 나타낸 그래프이다.
도 3은 본 발명의 실시예 10에 따른 전기발광소자의 구조를 나타낸 단면도이다.
도 4는 본 발명의 실시예 10에 따른 전기발광소자의 EL (electroluminescence) 스펙트럼을 나타낸 그래프이다.
도 5는 본 발명의 실시예 10에 따른 전기발광소자의 전압-전류 밀도 특성을 나타낸 그래프이다.
도 6은 본 발명의 비교예 1에 따른 전기발광소자의 EL 스펙트럼을 나타낸 그래프이다.
도 7은 본 발명의 비교예 1에 따른 전기발광소자의 전압-전류 밀도 특성을나타낸 그래프이다.
이하, 본 발명을 첨부된 도면을 참조하여 좀 더 구체적으로 살펴보면 다음과 같다.
전술한 바와 같이, 본 발명은 알킬옥시페닐옥시기가 치환된 폴리(p-페닐렌비닐렌)계 전기발광고분자 및 이의 제조방법에 관한 것으로, 좀 더 상세하게는 폴리(p-페닐렌비닐렌)(PPV) 기본 골격에 입체적 장애가 큰 장사슬 지방족 알킬옥시페닐옥시기가 도입된, 발광색 조절이 가능하고 전기광학적 특성이 우수한 폴리(p-페닐렌비닐렌)계 전기발광고분자 및 이의 제조방법에 관한 것이다.
본 발명에 따른 전기발광고분자는 하기 화학식 1로 표시된다:
화학식 1
상기 식에서, R은 탄소수 1 내지 21의 직쇄 또는 측쇄의 지방족 알킬기이고, n은 10∼1000의 정수이다.
상기 화학식 1로 표시되는 발광고분자의 합성은 PPV 주쇄에 합성하고자 하는 오르소(ortho)-, 메타(meta)- 또는 파라(para)- 치환에 따라 구아이아콜(guaiacol), 3-메톡시페놀 또는 4-메톡시페놀을 출발물질로 선택하여 촉매의 존재하에서 2-브로모-p-자이렌과 반응시켜 알코올기의 수소 자리에 1,4-디메틸벤젠을 도입한 후, 메톡시기를 히드록시기로 치환한다. 그 다음, 이를 촉매의 존재하에서 탄소수 1∼21의 직쇄 또는 측쇄의 알킬 브로마이드와 반응시켜 상기 히드록시기 자리에 지방족 알콕시기를 도입한 후, 이를 NBS(N-bromosuccinimide)와 반응시켜 주쇄의 1,4-자리에 브로모 메틸을 도입한다. 그 다음, 상기 반응으로부터 얻은 생성물을 포타슘 t-부톡사이드의 존재하에서 중합하여 상기 화학식 1로 표시되는 화합물을 얻는다. 이때, 상기 알킬기는 (CH2)pCH3또는 CH2(CH2)qCH(CH2)rCH3CH(CH3)2이 바람직하며, 여기서 p는 0∼12의 정수이고, q는 0∼5의 정수이며, r은 0∼10의 정수이다.
또한, 본 발명에 따른 또 다른 전기발광고분자는 하기 화학식 2로 표시된다:
화학식 2
상기 식에서, R은 탄소수 1 내지 21의 직쇄 또는 측쇄의 지방족 알킬기이고, n은 10∼1000의 정수이고, m은 10~1000의 정수이다.
상기 화학식 2로 표시되는 발광고분자의 합성은 PPV 주쇄에 합성하고자 하는 오르소-, 메타- 또는 파라- 치환에 따라 구아이아콜(guaiacol), 3-메톡시페놀 또는 4-메톡시페놀을 출발물질로 선택하여 촉매의 존재하에서 2-브로모-p-자이렌과 반응시켜 알코올기의 수소 자리에 1,4-디메틸벤젠을 도입한 후, 메톡시기를 히드록시기로 치환한다. 그 다음, 이를 촉매의 존재하에서 탄소수 1∼21의 직쇄 또는 측쇄의 알킬 브로마이드와 반응시켜 상기 히드록시기 자리에 지방족 알콕시기를 도입한 후, 이를 NBS(N-bromosuccinimide)와 반응시켜 주쇄의 1,4-자리에 브로모 메틸을 도입한다. 그 다음, 상기 반응생성물인 상기 화학식 1의 모노머와 2,5-비스(클로로메틸)-4-(2-에틸헥실옥시)아니솔을 포타슘 t-부톡사이드의 존재하에서 공중합하여 상기 화학식 2로 표시되는 화합물을 얻는다. 이때, 상기 모노머와 2,5-비스(클로로메틸)-4-(2-에틸헥실옥시)아니솔의 반응몰비는 1-X : X 이며, 여기서 X는 0.1∼0.9의 정수이다.
하기 반응식 1에 상기 화학식 1 및 화학식 2로 표시되는 전기발광고분자의 바람직한 일례에 따른 제조과정을 나타내었다.
본 발명에 따른 발광고분자는 고분자 주쇄에 장쇄의 알킬옥시페닐옥시 유도체를 도입하였기 때문에 전극과의 계면 특성이 매우 우수하며 박막형성 능력이 탁월하다. 또한, 종래의 PPV계 고분자에 비해 분자량이 매우 높고 유기용매에 쉽게용해되어 대면적의 발광면적을 형성할 수 있으며, ITO(indium-tin oxide) 표면과의 접착성 또한 우수하다. 본 발명에 따른 발광고분자들의 무게평균분자량(Mw)은 약 1만∼100만이며, 분자량 분포는 1.5 내지 8인 것이 바람직하다.
또한, 본 발명에 따른 발광고분자는 주쇄인 PPV의 오르소-, 메타- 또는 파라-의 위치에 도입된 치환기 각각의 위치에 따라 상기 주쇄와의 상호작용을 통한 유효공액 이중결합의 길이 조절이 가능하여 이에 따라 발광색을 조절할 수 있다.
도 3은 본 발명에 따른 발광고분자를 이용하여 제작된 전기발광소자의 구조를 나타낸 단면도이다. 상기 전기발광소자의 구조는 양극/발광층/음극 또는 양극/완충층/발광층/음극으로 이루어진다. 상기 완충층은 전도성 고분자인 폴리티오펜 또는 폴리아닐린 유도체가 바람직하다. 한편, 구동전압과 발광효율은 ITO의 표면의 균일성, 전극과 발광고분자 계면의 접착능 및 운반자(홀,전자)의 균형에 의해서 많은 영향을 받기 때문에, 전도성 고분자로서 폴리티오펜 유도체를 구멍주입층(hole injection layer) 및 전도성 완충층으로 스핀코팅한다. 이로부터 형성된 고분자 박막의 두께는 고분자 용액의 농도와 스핀속도에 따라 용이하게 조절할 수 있으며, 50~200nm가 바람직하다. 또한 절연층 및 금속 전극은 진공증착기(thermoevaporator)를 이용하여 증착시켜 형성한다.
상기 전기발광소자의 EL 및 전압-전류 밀도 특성을 측정하여 그 결과를 도 4 및 도 5에 각각 나타내었다. 상기 전기발광소자들은 모두 전형적인 정류다이오드 특성을 나타내며, 구동전압은 3∼6V에서 시작된다. 공중합체의 경우 DMOP-PPV보다호모(HOMO) 레벨은 높이고 루모(LUMO) 레벨은 낮추므로써 구동저압이 상대적으로 낮고, 최대 발광 휘도 뿐만 아니라 발광효율도 급격히 증가하여 소자의 안정성이 우수함을 알 수 있다. 상기 전기발광소자들은 수 차례 반복 구동 후에도 초기의 전압-전류 밀도 특성이 그대로 유지되어 매우 안정하다.
도 6 및 도 7은 본 발명에 따른 발광고분자와의 대조를 위해서 공지된 발광고분자인 MEH-PPV를 이용하여 제작된 전기발광소자의 EL 및 전압-전류 밀도 특성을 측정하여 그 결과를 나타낸 그래프이다. 상기 그래프에 나타낸 바와 같이, MEH-PPV를 이용하여 제작된 전기발광소자는 적색 영역에서 발광하며 턴온 전압 약 3V에서 서서히 전류가 흐름을 알 수 있으며, 본 발명에 따른 발광고분자는 턴온 전압이 3~6V이고 적색에서 녹색까지 색상 튜능이 가능하다.
이하 실시예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.
실시예 1
1,4-비스(브로모메틸)-2-(2'-(3'',7''-디메틸옥틸옥시)페닐옥시)벤젠의 제조
250㎖ 삼구 플라스크에 잘게 부순 KOH 8.98g(0.16mol)을 넣고 마그네틱 바로 교반하면서 여기에 구아이아콜(guaiacol) 20g(0.16mol)을 천천히 떨어뜨렸다. 이 반응은 발열 반응이므로 실온에서 실시하였다. 구아이아콜이 들어가면 반응물은 고체 상태가 되고 밝은 회색으로 변하였다. 구아이아콜이 완전첨가된 후, 반응 혼합물을 오일베스에서 150℃로 가열하면서 3~4시간동안 교반시켰다. 반응 후, 부생성물로 얻어지는 물을 제거하기 위해 150℃에서 감압하에 오버나잇하였다. 포타슘o-메톡시페녹사이드는 어두운 회색을 띠었다. 여기에 2-브로모-p-자이렌 20㎖(0.15mol)와 0.5㎖의 구아이아콜 및 촉매로 Cu를 1.0g 넣어 200℃에서 교반하면서 환류시켰다. 약 190℃에서 반응이 일어나고 그 상태는 액화되어 검은색으로 변하였다. 약 5시간 반응 후 혼합물을 냉각하고 물과 과량의 에테르로 추출하였다. 추출로 얻은 유기 용액을 무수 MgSO4로 건조, 여과하여 용매를 제거하였다. 이렇게 얻은 용액을 진공증류 하거나 또는 컬럼 크로마토그래피(실리카겔, 용리액: 헥산/에틸 아세테이트(10:1))로 정제하였다. 이로부터 2-(2'-메톡시페닐옥시)-1,4-디메틸벤젠을 70%의 수율로 얻었으며, 이의 구조는1H-NMR을 통해 확인했다.
1H-NMR (CDCl3): 2.25(s, 6H, 2(-CH3)), 3.9(s, 3H, -OCH3), 6.6~7.2(m, 7H, 환형 수소)
그 다음, 500㎖ 삼구 플라스크에 용매로 메틸렌 클로라이드(250㎖)를 넣고 상기 반응생성물 23g(0.1mol)을 첨가하였다. 아이스 배스에서 0℃로 냉각시키고 환류장치를 한 후 교반시켰다. 여기에 AlCl366g(0.5mol)을 넣고 S(CH3)238.6g(0.62mol)을 천천히 첨가한 후 0℃에서 약 2시간동안 환류시켰다. 반응이 종결되면 300g의 NH4Cl 수용액과 얼음을 담은 1L 비이커에 반응물을 넣고 물과 에테르로 추출하여 분리된 유기층을 받아서 무수 MgSO4을 넣어 건조, 여과 후, 용매를 제거하였다. 이렇게 얻어진 반응 혼합물을 TLC(용리액: 헥산/에틸 아세테이트(9:1))로 확인하고 컬럼 크로마토그래피(실리카겔, 용리액: 헥산/에틸 아세테이트(9:1))로 정제하여, 2-(2'-히드록시페녹시)-1,4-디메틸벤젠을 95% 이상의 수율로 얻었으며, 이의 구조는1H-NMR을 통해 확인했다.
1H-NMR(CDCl3): 2.2(s, 3H, -CH3), 2.25(s, 3H, -CH3), 5.7(s, H, -OH), 6.6~7.2(m, 7H, 환형 수소)
그 다음, 500ml 플라스크에 용매로 메틸렌 클로라이드 250㎖를 넣고 여기에 상기 반응생성물인 2-(2'-히드록시페녹시)-1,4-디메틸벤젠 19.5g(0.09mol)과 KOH 5.62g(0.1mol), 3,7-디메틸옥틸 브로마이드 24.21g(0.11mol) 및 촉매로 1.0g의 KI를 첨가하여 40℃에서 환류하면서 24시간동안 교반시켰다. 이 반응물을 물과 에테르로 추출해서 유기층을 받아 무수 MgSO4을 넣고 건조, 여과 후 용매를 진공 제거하였다. 상기 반응 혼합물은 진공증류와 컬럼 크로마토그래피(실리카겔, 용리액: 헥산/에틸 아세테이트(10:1))를 통해 정제하여 2-(2'-(3'',7''-디메틸옥틸옥시)페닐옥시)-1,4-디메틸벤젠을 70% 이상의 수율로 얻었으며, 이의 구조는1H-NMR을 통해 확인했다.
1H-NMR (CDCl3): 2.2(s, 3H, -CH3), 2.25(s, 3H, -CH3), 0.8~1.6(m, 19H, CH2CH(CH3)(CH2)3CH(CH3)2), 4.0(t, 2H, -OCH2-), 6.5~7.2(m, 7H, 환형 수소)
그 다음, 500㎖ 삼구 플라스크에 용매 CCl4200㎖에 상기 반응생성물인 2-(2'-(3'',7''-디메틸옥틸옥시)페닐옥시)-1,4-디메틸벤젠 22g(0.06mol)과 라디칼 개시제로서 0.5g의 BPO(벤조일 퍼옥사이드) 및 NBS(N-bromosuccinimide) 25g(0.14mol)을 넣고 77℃에서 환류하면서 약 6시간동안 교반시켰다. 이 때 흰색의 고체가 생성되며 이는 NBS의 부생성물인 숙신이미드(succinimide)이다. 반응 후 용액을 여과하여 상기 부생성물을 제거한 후, 물과 클로로포름으로 추출한다. 추출로부터 분리된 유기 용액을 무수 MgSO4로 건조, 여과 후 진공으로 용매를 제거하였다. 이로부터 농축된 혼합물을 컬럼 크로마토그래피(실리카겔, 용리액: 헥산/메틸렌 클로라이드(4:1))를 통해 정제하여 1,4-비스(브로모메틸)-2-(2'-(3'',7''-디메틸옥틸옥시)페닐옥시)벤젠을 25%의 수율로 얻었으며, 이의 구조는1H-NMR을 통해 확인했다.
1H-NMR (CDCl3): 0.8~1.6(m, 19H, -CH2CH(CH3)(CH2)3CH(CH3)2), 4.0(t, 2H, -OCH2-), 4.35(s, 2H, -CH2Br), 4.7(s, 2H, -CH2Br), 6.6~7.4(m, 7H, 환형 수소)
실시예 2
1,4-비스(브로모메틸)-2-(3'-(3'',7''-디메틸옥틸옥시)페닐옥시)벤젠의 제조
250ml 삼구 플라스크에 KOH 8.98g(0.16 mol)을 넣고 교반하면서 3-메톡시페놀 20g(0.16 mol)을 천천히 떨어뜨렸다. 이 반응은 발열 반응이므로 실온에서 수행하였다. 3-메톡시페놀을 완전첨가 후, 반응 혼합물을 오일 베스에서 120℃로 가열하여 3~4시간동안 교반시켰다. 반응 후 부생성물로 얻어지는 물을 제거하기 위해 150℃에서 감압하에 오버나잇하였다. 여기에 2-브로모-p-자이렌 20㎖(0.15mol)과 3-메톡시페놀 0.3ml 및 촉매로 Cu를 0.5g 넣어 200℃에서 교반하면서 환류시켰다. 약 5시간 반응 후 혼합물을 냉각하여 물과 과량의 에테르로 추출하였다. 추출로부터 얻은 유기 용액을 무수 MgSO4로 건조, 여과한 후 용매는 진공으로 제거하였다. 이렇게 얻어진 용액을 진공증류 하거나 또는 컬럼 크로마토그래피(실리카겔, 용리액: 헥산/에틸 아세테이트(10/1))로 정제하여, 30% 이상의 수율로 2-(3'-메톡시페닐옥시)-1,4-디메틸벤젠을 얻었으며, 이의 구조는1H-NMR을 통해 확인했다.
1H-NMR (CDCl3): 2.2(s, 3H, -CH3), 2.26(s, 3H, -CH3), 3.8(s, 3H, -OCH3), 6.4~7.2 (m, 7H, 환형 수소)
그 다음, 100㎖ 삼구 플라스크에 용매로 메틸렌 클로라이드(30㎖)를 넣고 상기 반응생성물 6g(0.028mol)을 첨가하였다. 아이스 베스에서 0℃로 냉각시키고 환류 장치를 한 후 교반시켰다. 여기에 AlCl317.9g(0.134mol)을 넣고 S(CH3)210.4g(0.168mol)을 천천히 첨가한 후 2시간동안 계속해서 0℃에서 환류하였다. 반응이 종결되면 100ml의 NH4Cl 수용액과 얼음을 담은 1L 비이커에 반응물을 첨가한 후, 이를 물과 에테르로 추출하여 유기층을 분리한 후 무수 MgSO4을 넣어 건조, 여과한 다음 용매는 진공으로 제거하였다. 이렇게 얻어진 반응물을 컬럼 크로마토그래피(실리카겔, 용리액: 헥산/에틸 아세테이트(10:1))로 정제하여, 95% 이상의 수율로 2-(3'-히드록시페닐옥시)-1,4-디메틸벤젠을 얻었으며, 이의 구조는1H-NMR을통해 확인했다.
1H-NMR (CDCl3): 2.2(s, 3H, -CH3), 2.25(s, 3H, -CH3), 4.7(s, H, -OH), 6.4~7.2(m, 7H, 환형 수소)
그 다음, 100㎖ 삼구 플라스크에 용매로 메탄올 50㎖를 넣고 여기에 상기 반응생성물인 2-(3'-히드록시페닐옥시)-1,4-디메틸벤젠 5.78g(0.027mol)과 KOH 1.67g(0.03mol), 3,7-디메틸옥틸 브로마이드 7.18g(0.03mol) 및 촉매로 0.3g의 KI를 첨가하여 40℃에서 환류하면서 24 시간 교반시켰다. 이 반응물을 물과 에테르로 추출해서 유기층을 MgSO4을 넣고 건조, 여과한 후 용매는 진공 증류하여 3,7-디메틸옥틸 브로마이드를 제거하고, 컬럼 크로마토그래피(실리카겔, 용리액: 헥산)로 정제하여 2-(3'-(3'',7''-디메틸옥틸옥시페닐옥시)-1,4-디메틸벤젠을 80% 이상의 수율로 얻었으며, 이의 구조는1H-NMR을 통해 확인했다.
1H-NMR (CDCl3): 2.2(s, 3H, -CH3), 2.25(s, 3H, -CH3), 0.8~1.6(m, 19H, -CH2CH(CH3)(CH2)3CH(CH3)2), 3.96(t, 2H, -OCH2-), 6.4~7.2(m, 7H, 환형 수소)
그 다음, 250㎖ 삼구 플라스크에 용매 CCl4100㎖와 상기 반응생성물인 2-(3'-(3'',7''-디메틸옥틸옥시페닐옥시)-1,4-디메틸벤젠 7.3g(0.021mol), 0.2g의 BPO 및 NBS 8.3g(0.046mol)을 넣고 77℃에서 환류하면서 약 3시간동안 교반시켰다. 반응 후 용액을 여과하여 숙신이미드를 제거하고 물과 클로로포름으로 추출하였다.추출로부터 얻은 유기 용액을 무수 MgSO4로 건조, 여과한 후 용매는 진공으로 제거하였다. 이로부터 농축된 혼합물을 컬럼 크로마토그래피(실리카겔, 용리액: 헥산)을 통해 정제하여 30% 이상의 수율로 1,4-비스(브로모메틸)-2-(3'-(3'',7''-디메틸옥틸옥시)페닐옥시)벤젠을 얻었으며, 이의 구조는1H-NMR을 통해 확인했다.
1H-NMR (CDCl3): 0.8~1.6(m, 19H, -CH2CH(CH3)(CH2)3CH(CH3)2), 3.96(t, 2H, -OCH2-), 4.35(s, 2H, -CH2Br), 4.6(s, 2H, -CH2Br), 6.4~7.4(m, 7H, 환형 수소)
실시예 3
1,4-비스(브로모메틸)-2-(4'-(3'',7''-디메틸옥틸옥시)페닐옥시)벤젠의 제조
250㎖ 삼구 플라스크에 KOH 8.98g (0.16mol)을 넣고 교반하면서 여기에 4-메톡시페놀 20g(0.16mol)을 천천히 떨어뜨렸다. 이 반응은 발열 반응이므로 실온에서 수행했다. 4-메톡시페놀을 완전첨가후 반응 혼합물을 오일 베스에서 160℃로 가열하여 4시간동안 교반시켰다. 반응 후 부생성물로 얻어지는 물을 제거하기 위해 150℃에서 감압하에 오버나잇했다. 여기에 2-브로모-p-자이렌 20㎖(0.15mol)과 4-메톡시페놀 0.3ml 및 촉매로 Cu를 0.5g 넣어 200℃에서 교반하면서 환류시켰다. 약 4시간동안 반응 후 혼합물을 식히고 물과 에테르로 추출했다. 추출로부터 얻은 유기 용액을 무수 MgSO4로 건조, 여과한 후 용매는 제거했다. 이렇게 얻어진 용액을 컬럼 크로마토그래피(실리카겔, 용리액: 헥산)로 정제하여, 70% 이상의 수율로 2-(4'-메톡시페닐옥시)-1,4-디메틸벤젠을 얻었으며, 이의 구조는1H-NMR을 통해 확인했다.
1H-NMR (CDCl3): 2.23(s, 6H, 2(-CH3)), 3.8(s, 3H, -OCH3), 6.6~7.2(m, 7H, 환형 수소)
그 다음, 500㎖ 삼구 플라스크에 용매로 메틸렌 클로라이드(250㎖)를 넣고 상기 반응생성물인 2-(4'-메톡시페닐옥시)-1,4-디메틸벤젠 20g(0.09mol)을 첨가했다. 아이스 베스에서 0℃로 냉각시키고 환류장치를 한 후 교반시켰다. 여기에 AlCl357g(0.42mol)을 넣고 S(CH3)232.8g(0.53mol)을 천천히 첨가 후 약 1시간동안 0℃에서 환류하면서 교반시켰다. 반응이 종결되면 100ml의 NH4Cl 수용액과 얼음을 담은 1L 비이커에 반응물을 넣고, 이를 물과 에테르로 추출하여 유기층을 받아서 MgSO4을 넣어 건조, 여과한 후 용매는 제거하였다. 이렇게 얻어진 반응 혼합물은 TLC로 확인하여 컬럼 크로마토그래피(실리카겔, 용리액: 헥산/에틸 아세테이트(10:1))로 정제하여, 90% 이상의 수율로 2-(4'-히드록시페녹시)-1,4-디메틸벤젠을 얻었으며, 이의 구조는1H-NMR을 통해 확인했다.
1H-NMR (CDCl3): 2.2(s, 3H, -CH3), 2.25(s, 3H, -CH3), 5.17(s, H, -OH), 6.6~7.3(m, 7H, 환형 수소)
그 다음, 500㎖ 플라스크에 용매로 메탄올 250㎖를 넣고 여기에 상기 반응생성물인 2-(4'-히드록시페녹시)-1,4-디메틸벤젠 14g(0.065mol), KOH4.03g(0.072mol), 3,7-디메틸옥틸 브로마이드 17.4g(0.078mol) 및 촉매로 0.3g의 KI를 첨가하여 40℃에서 환류하면서 24시간동안 교반시켰다. 이 반응물을 물과 에테르로 추출해서 유기층을 MgSO4을 넣고 건조, 여과한 후 진공증류를 통해 3,7-디메틸옥틸 브로마이드를 제거하고 플래시 컬럼 크로마토그래피(실리카겔, 용리액: 헥산)로 정제하여, 85% 이상의 수율로 2-(4'-(3'',7''-디메틸옥틸옥시)페닐옥시)-1,4-디메틸벤젠을 얻었으며, 이의 구조는1H-NMR을 통해 확인했다.
1H-NMR(CDCl3): 2.25(s, 6H, 2(-CH3)), 0.8~1.6(m, 19H, -CH2CH(CH3)(CH2)3CH(CH3)2), 3.98(t, 2H, -OCH2-), 6.6~7.2(m, 7H, 환형 수소)
그 다음, 500㎖ 삼구 플라스크에 용매 CCl4200㎖와 상기 반응생성물인 2-(4'-(3'',7''-디메틸옥틸옥시)페닐옥시)-1,4-디메틸벤젠 17g(0.048mol), 0.2g의 BPO 및 NBS 19.6g(0.11mol)을 넣고 환류하면서 약 5시간동안 교반시켰다. 반응 후 용액을 여과하여 숙신이미드를 제거하고 물과 클로로포름으로 추출하였다. 추출로부터 얻은 유기 용액을 무수 MgSO4로 건조, 여과한 후 진공으로 용매를 제거한 다음, 농축된 혼합물은 컬럼 크로마토그래피(실리카겔, 용리액: 헥산)을 통해 정제하여 1,4-비스(브로모메틸)-2-(4'-(3'',7''-디메틸옥틸옥시)페닐옥시)벤젠을 30% 이상의 수율로 얻었으며, 이의 구조는1H-NMR을 통해 확인했다.
1H-NMR (CDCl3): 0.8~1.6(m, 19H, -CH2CH(CH3)(CH2)3CH(CH3)2), 3.96(t, 2H, -OCH2-), 4.35(s, 2H, -CH2Br), 4.6(s, 2H, -CH2Br), 6.6~7.4 (m, 7H, 환형 수소)
실시예 4
폴리[2-((2'-(3'',7''-디메틸옥틸옥시)페닐옥시)-1,4-페닐렌비닐렌](오르소-DMOP-PPV)의 제조
100㎖ 중합용 플라스크을 마그네틱바로 교반하면서 감압한 후 질소분위기 하에서 환류하는 과정을 3번 반복하여 플라스크내의 수분을 완전제거했다. 수분이 제거된 후 상기 실시예 1에서 얻은 모노머 1,4-비스(브로모메틸)-2-(2'-(3'',7''-디메틸옥틸옥시)페닐옥시)벤젠 0.2g(0.39mmol)를 넣고 다시 감압한 후 질소분위기 하에서 환류하는 과정을 2번 반복한 다음 여기에 용매로 무수 THF 30㎖를 넣었다. 0℃에서 포타슘 t-부톡사이드(1.0M/THF) 2.34㎖를 교반하면서 시린지 펌프(syringe pumpe)를 이용해서 30분동안 천천히 첨가하고 실온에서 3시간 정도 교반 후 여기에 중합반응을 종결시키고 고분자 말단을 중화시키기 위해서 4-(t-부틸)벤질 브로마이드 0.5㎖를 넣고 약 1시간 정도 다시 교반시켰다. 이 반응물을 다량의 메탄올에 침전시켜서 팀플(timble)에 여과하고 메탄올로 쇽슬렛(soxhlet)하여 저분자량의 올리고머와 불순물을 제거하였다. 이를 또 다시 클로로포름으로 쇽슬렛해서 얻은 고분자 용액을 농축시킨 후 다시 한번 메탄올에 재침전시키고 여과한 후 진공으로 건조하여 60% 이상의 수율로 폴리[2-((2'-(3'',7''-디메틸옥틸옥시)페닐옥시)-1,4-페닐렌비닐렌]을 얻었으며, 이의 구조는1H-NMR을 통해 확인했다.
1H-NMR (CDCl3): 0.8~1.8(m, 19H, -CH2CH(CH3)(CH2)3CH(CH3)2), 3.95(t, 2H, -OCH2-), 6.6~7.4( m, 9H, 환형 수소 및 비닐 수소)
실시예 5
폴리[2-(3'-(3'',7''-디메틸옥틸옥시)페닐옥시)-1,4-페닐렌비닐렌](메타-DMOP-PPV)의 제조
100㎖ 중합용 플라스크를 마그네틱바로 교반하면서 감압한 후 질소분위기 하에서 환류하는 과정을 3번 반복하여 플라스크내의 수분을 완전제거했다. 수분이 제거된 후 상기 실시예 2에서 얻은 모노머 1,4-비스(브로모메틸)-2-(3'-(3'',7''-디메틸옥틸옥시)페닐옥시)벤젠 0.2g(0.39mmol)를 넣고 다시 감압한 후 질소분위기 하에서 환류하는 과정을 2번 실시한 다음 여기에 용매로 무수 THF 30㎖를 넣었다. 0℃에서 포타슘 t-부톡사이드(1.0M/THF) 2.34㎖를 교반하면서 시린지 펌프를 이용해서 30분동안 첨가후 실온에서 약 3시간동안 교반시키고 여기에 다시 4-(t-부틸)벤질 브로마이드 0.5㎖를 넣고 약 1시간동안 다시 교반시켜서 고분자 말단의 반응성을 제거하였다. 이 반응물을 다량의 메탄올에 침전시켜 팀플로 여과한 후 메탄올로 쇽슬렛하였다. 이를 또 다시 클로로포름으로 쇽슬렛해서 얻은 고분자 용액을 농축하고 마지막으로 다시 한번 메탄올에 재침전시켜 정제, 여과 및 진공건조하여 50% 이상의 수율로 폴리[2-(3'-(3'',7''-디메틸옥틸옥시)페닐옥시)-1,4-페닐렌비닐렌]을 얻었으며, 상기 고분자의 무게평균분자량은 63000이며 다분산도는 2.93이었다. 상기 고분자의 구조는1H-NMR을 통해 확인했다.
1H-NMR (CDCl3): 0.8~1.8(m, 19H, -CH2CH(CH3)(CH2)3CH(CH3)2), 3.95(t, 2H, -OCH2-), 6.6~7.4(m, 9H, 환형 수소 및 비닐 수소)
실시예 6
폴리[2-(4'-(3'',7''-디메틸옥틸옥시)페닐옥시)-1,4-페닐렌비닐렌](파라-DMOP-PPV)의 제조
100㎖ 중합용 플라스크를 마그네틱바로 교반하면서 감압시킨 후 질소분위기 하에서 환류하는 과정을 3번 반복하여 플라스크내의 수분을 완전제거했다. 수분이 제거된 후 실시예 3에서 얻은 1,4-비스(브로모메틸)-2-(4'-(3'',7''-디메틸옥틸옥시)페닐옥시)벤젠 모노머 0.2g(0.39mmol)을 넣고 다시 감압한 후 질소분위기 하에서 환류하는 과정을 2번 실시한 다음 여기에 용매로 무수 THF 30㎖를 넣었다. 0℃에서 포타슘 t-부톡사이드(1.0M/THF) 2.34㎖를 교반하면서 시린지 펌프를 이용해서 천천히 30분동안 첨가한 후 실온에서 3시간동안 교반시키고 여기에 다시 4-(t-부틸)벤질 브로마이드 0.5㎖를 넣고 약 1시간동안 다시 교반시켜 고분자 말단의 반응성을 제거하였다. 이 반응물을 다량의 메탄올에 침전시키고 팀플에 여과하여 메탄올로 쇽슬렛 추출하여 저분자량의 올리고머와 불순물을 제거하였다. 이를 또 다시 클로로포름으로 쇽슬렛으로 고분자를 추출하고 용매를 농축시킨 후 얻은 고분자를 마지막으로 다시 한번 메탄올에 재침전시켜 정제한 다음, 여과, 진공 및 건조하여60%이상의 수율로 폴리[2-(4'-(3'',7''-디메틸옥틸옥시)페닐옥시)-1,4-페닐렌비닐렌]를 얻었다. 상기 고분자의 무게평균 분자량은 82000이며 다분산도는 3.43이었다. 상기 고분자의 구조는1H-NMR을 통해 확인했다.
1H-NMR (CDCl3): 0.8~1.8(m, 19H, -CH2CH(CH3)(CH2)3CH(CH3)2), 3.95(t, 2H, -OCH2-), 6.6~7.4(m, 9H, 환형 수소 및 비닐 수소)
실시예 7
폴리(2-(4'-(3'',7''-디메틸옥틸옥시)페닐옥시)-폴리(1'-메톡시-4'-에틸헥실옥시)-1,4-페닐렌비닐렌) 공중합체[파라-DMOP-PPV-co-MEH-PPV]의 제조
실시예 3에서 얻은 1,4-비스(브로모메틸)-2-(4'-(3'',7''-디메틸옥틸옥시)페닐옥시)벤젠과 2,5-비스(클로로메틸)-4-(2-에틸헥실옥시)아니솔의 몰조성비를 7:3, 5:5 및 3:7로 조절하면서 수분이 제거된 THF에 용해시킨 후(모노머 농도: 1중량%), 0∼60℃의 중합온도에서 교반시키면서 포타슘 t-부톡사이드(1.0M THF 용액, 모노머에 대해 약 6당량)를 시린지 펌프를 이용하여 30분동안 천천히 적하시켰다. 포타슘 t-부톡사이드의 양이 1.5∼2.0 당량을 넘어가기 시작하면서 용액의 점도가 증가하며 적색의 형광색을 나타내기 시작하였다. 상기 중합온도에서 3시간동안 교반 후 중합 반응기에 4-t-부틸벤질 브로마이드를 0.1g 첨가하여 1시간동안 교반시켜 발광고분자 말단의 반응성을 제거하였다. 상기 중합혼합물을 다량의 메탄올 또는 이소프로판올에 재침전시켰다. 이로부터 얻은 고분자를 쇽슬렛 장치를 이용하여저분자량의 올리고머와 촉매를 제거한 후 메탄올에 재침전시킨 후 건조하여 70%의 수율로 폴리(2-(4'-(3'',7''-디메틸옥틸옥시)페닐옥시)-폴리(1'-메톡시-4'-에틸헥실옥시)-1,4-페닐렌비닐렌)공중합체를 얻었다. 상기 고분자의 무게평균 분자량은 약 3.0~8.5x105이며, 다분산도는 약 4.2~7.2이었다.상기 고분자의 구조 및 조성비는1H-NMR을 통해 확인하였다.
1H-NMR (CDCl3): d 0.8~2.0(m, 34H, alkyl protons), 3.8~4.1(m, 7H, -OCH2-와 OCH3), 6.8~7.4(m, 9H, 환형 수소 및 비닐 수소)
실시예 8
발광고분자를 이용한 필름의 UV-흡수 및 PL(photoluminescence) 특성
실시예 4, 5, 6 및 7에서 얻은 각각의 발광고분자 0.5~5중량%를 자이렌에 녹인 용액을 유리기판상에 스핀코팅하여 고분자 박막을 형성한 후, UV-흡수 스펙트럼을 측정하여, 그 결과를 도 1에 나타내었다. 오르소-DMOP-PPV, 메타-DMOP-PPV 및 파라- DMOP-PPV의 UV 최대 흡수 피크는 각각 456nm, 454nm 및 456nm에서 나타났으며, 이들 모두는 필름 상태에서 발광고분자 상호 작용이 증가하기 때문에 UV 흡수 피크가 브로드하게 나타나 거의 차이없이 비슷하게 나타났다. MEH-PPV와의 공중합체의 경우 각각의 조성비에 따라 453에서 497nm까지 최대 흡수 파장을 변화시킬 수 있었다. 발광고분자 각각의 UV 최대 흡수 파장을 여기 파장으로 하여 PL 스펙트럼을 측정한 결과 오르소-DMOP-PPV는 553nm에서 최대 PL 피크와 520nm에서쇼울더(shoulder)가 측정되었고 메타-DMOP-PPV는 563nm에서 PL 최대 피크가 나타나고 553nm에서 쇼울더가 측정되었다. 또한, 파라-DMOP-PPV의 경우, PL 최대 피크는 587nm, 쇼울더는 550nm에서 나타났다. 이는 오르소-DMOP-PPV에서 메타- 및 파라-DMOP-PPV로 갈수록 공액 이중결합의 길이가 증가하여 PL 최대 피크가 red-shift됨을 보여준다. MEH-PPV와의 공중합체에 있어서, MEH-PPV의 함량이 증가함에 따라 오르소-DMOP-PPV, 메타-DMOP-PPV 및 파라- DMOP-PPV의 단독 최대 발광 피크보다도 장파장으로 이동함을 알 수 있었다.
실시예 9
용액상에서 발광고분자의 UV-흡수 및 PL 특성
실시예 4, 5, 6 및 7에서 얻은 각각의 발광고분자 0.5~5중량%를 클로로포름에 녹여 용액 상태에서 UV 및 PL 스펙트럼을 측정하여, 그 결과를 도 2에 나타내었다. 측정된 UV 최대 흡수 파장을 보면, 오르소-DMOP-PPV는 445nm, 메타-DMOP-PPV는 437nm 그리고 파라-DMOP-PPV는 425nm로 약간씩 blue-shift됨을 보인다. 각각의 최대 UV 파장을 여기 파장으로 해서 PL 발광 피크를 관찰한 결과 오르소-DMOP-PPV는 496nm에서 최대 피크(쇼울더-535nm)를 나타내고 메타-DMOP-PPV는 490nm(쇼울더-527nm), 파라-DMOP-PPV는 493nm(쇼울더-524nm)에서 각각 최대의 PL 피크가 나타났으며, 치환기의 위치 변화에 대해서 오르소-DMOP-PPV, 메타-DMOP-PPV 및 파라- DMOP-PPV의 용액상의 각각의 PL 발광 파장은 거의 변화가 없었다. 그러나 MEH-PPV와의 공중합체에서는 MEH-PPV의 함량이 증가함에 따라 파라-DMOP-PPV의 493nm의 최대 PL 발광 피크를 550 nm까지 조절이 가능하였다.
실시예 10
전기발광소자의 제작
실시예 4, 5, 6 및 7에서 얻은 각각의 발광고분자 오르소-DMOP-PPV, 메타-DMOP-PPV, 파라-DMOP-PPV 및 공중합 발광고분자인 오르소-, 메타- 및 파라-DMOP-PPV-co-MEH-PPV를 이용하여 전기발광소자를 제작하였다. 제작된 전기발광소자의 구조를 도 3에 나타내었다. 상기 전기발광소자의 제작과정은 ITO(indium-tin oxide)를 유리 기판상에 코팅한 투명 전극 기판을 깨끗이 세정한 후, ITO 유리를 감광성 수지(photoresist resign)와 에천트를 이용하여 미세가공 공정을 이용하여 전극을 형성한 후 다시 깨끗이 세정하였다. 구동전압과 발광효율은 ITO의 표면의 균일성, 전극과 발광고분자의 계면접착 능력 및 운반자(홀,전자)의 균형에 의해서 많은 영향을 받는다. 따라서, 전도성 고분자인 폴리티오펜 유도체인 PEDOT를 구멍주입층 및 전도성 완충층의 역할로서 약 100Å의 두께로 코팅한 후 180oC에서 약 1시간동안 베이킹(baking)하였다. 클로로벤젠에 용해시켜 제조된 유기 발광고분자 용액을 스핀코팅(spin coating)하고 베이킹 처리 후, 진공오븐에서 용매를 완전히 제거하여 고분자 박막을 형성시켰다. 고분자 용액은 0.2㎛ 필터로 필터링하여 스핀코팅 하였으며, 고분자 박막의 두께는 고분자 용액의 농도와 스핀속도를 조절하므로써 자유롭게 조절할 수 있다. 발광고분자 두께는 50~200nm이었다. 또한, 절연층 및 메탈 전극은 진공증착기(thermoevaporator)를 이용하여 진공도를 4×10-6torr 이하로 유지하면서 증착시켜 형성하였다. 증착시 막두께 및 막의 성장속도는결정센서(crystal sensor)를 이용하여 조절하였으며, 발광면적은 4 ㎟이고 구동전압은 직류전압으로 포워드 바이어스 전압(forward bias voltage)을 사용하였다.
실시예 11
EL 스펙트럼 측정 및 전기적 특성 평가
상기 실시예 10에서 제작한 전기발광소자의 El 스펙트럼 및 전압-전류 밀도 특성 측정하여 각각 도 4 및 도 5에 나타내었다. 제작된 ITO/PEDOT/고분자/Al 구조의 단층형 전기발광소자들은 모두 전형적인 정류다이오드 특성을 보였다. 오르소-DMOP-PPV, 메타-DMOP-PPV, 파라-DMOP-PPV, 및 공중합 발광고분자인 오르소-, 메타- 및 파라-DMOP-PPV-co-MEH-PPV에서 구동전압은 약 3∼6V에서 시작되었으며, 전압이 증가함에 따라 주입되는 운반자의 양이 증가하므로써 전류 밀도도 기하급수적으로 증가함을 알 수 있었다. 공중합체의 경우 MEH-PPV가 도입되므로써 오르소-DMOP-PPV, 메타-DMOP-PPV 및 파라-DMOP-PPV보다도 HOMO 레벨은 높이고 LUMO 레벨은 낮추어 구동저압은 상대적으로 낮으며 최대 발광 휘도 뿐만 아니라 발광효율도 급격히 증가함을 알 수 있었으며, 또한 이로부터 소자의 안정성도 매우 우수함을 확인하였다. 제작된 전기발광소자들은 수 차례 반복 구동 후에도 초기의 전압-전류 밀도 특성을 그대로 유지하는 안정성을 보였다. 오르소- DMOP-PPV는 543nm, 메타-DMOP-PPV는 561nm, 그리고 파라-DMOP-PPV는 584nm에서 최대의 발광 스펙트럼을 나타내고, MEH-PPV와의 공중합체는 602nm에서 최대 발광 피크를 보였으며, 녹색에서 적색까지 발광색 조절이 가능함을 나타내고 있다.
비교예 1
MEH-PPV의 EL 스펙트럼 측정 및 전기적 특성 평가
공지된 MEH-PPV를 이용하여 제작한 전기발광소자의 El 스펙트럼 및 전압-전류 밀도 특성 측정하여 각각 도 6 및 도 7에 나타내었다. 도 6은 전압을 10V로 고정시킨 후 측정된 EL 스펙트럼(electroluminescence spectrum)이며, 적색 영역에서 발광함을 알 수 있다. 도 7에 나타난 바와 같이, 턴온 전압 약 3V에서 서서히 전류가 흐름을 알 수 있다.
전술한 바와 같이, 본 발명에 따른 전기발광고분자는 종래의 폴리(p-페닐렌비닐렌)계 고분자보다도 분자량이 매우 높고 유기용매에 용이하게 용해되어 대면적의 발광면적을 형성할 수 있으며, 또한 장사슬 알킬옥시페닐옥시 유도체가 도입되어 ITO 표면과의 접착성이 우수하다. 본 발명에 따른 모노머와 공지된 MEH-PPV 모노머의 공중합체의 조성비를 조절하므로써 발광고분자의 발광색 조절이 가능하다. 또한, 본 발명에 따른 전기발광고분자는 녹색 및 적색의 발광색을 안정적으로 나타내므로 전기광학 특성이 우수하며 색상 튜닝이 가능하여 전자재료로서 갖추어야 할 광투과성, 내환경성, 기판에 대한 접착력, 박막형성 능력 및 전계에 대한 안정성 등이 우수하다.

Claims (9)

  1. 하기 화학식 1로 표시되는 것을 특징으로 하는 전기발광고분자:
    화학식 1
    상기 식에서, R은 탄소수 1 내지 21의 직쇄 또는 측쇄의 지방족 알킬기이고, n은 10∼1000의 정수이다.
  2. 촉매의 존재하에서 메톡시페놀과 2-브로모-p-자이렌을 반응시켜 알코올기의 수소 자리에 1,4-디메틸벤젠을 도입한 후 메톡시기를 히드록시기로 치환시키는 단계;
    촉매의 존재하에서 상기 반응생성물과 탄소수 1∼21의 직쇄 또는 측쇄의 알킬 브로마이드를 반응시켜 상기 히드록시기 자리에 지방족 알콕시기를 도입한 후, 이를 NBS(N-bromosuccinimide)와 반응시켜 주쇄의 1,4-자리에 브로모 메틸을 도입하는 단계; 및
    상기 반응물을 포타슘 t-부톡사이드의 존재하에서 중합시키는 단계를 포함하는 것을 특징으로 하는 하기 화학식 1로 표시되는 전기발광고분자의 제조방법.
    화학식 1
    상기 식에서, R은 탄소수 1 내지 21의 직쇄 또는 측쇄의 지방족 알킬기이고, n은 10∼1000의 정수이다.
  3. 하기 화학식 2로 표시되는 것을 특징으로 하는 전기발광고분자:
    화학식 2
    상기 식에서, R은 탄소수 1 내지 21의 직쇄 또는 측쇄의 지방족 알킬기이고, n은 10∼1000의 정수이고, m은 10~1000의 정수이다.
  4. 촉매의 존재하에서 메톡시페놀과 2-브로모-p-자이렌을 반응시켜 알코올기의 수소 자리에 1,4-디메틸벤젠을 도입한 후, 메톡시기를 히드록시기로 치환시키는 단계;
    촉매의 존재하에서 상기 반응생성물과 탄소수 1∼21의 직쇄 또는 측쇄의 알킬 브로마이드를 반응시켜 상기 히드록시기 자리에 지방족 알콕시기를 도입한 후, 이를 NBS(N-bromosuccinimide)와 반응시켜 주쇄의 1,4-자리에 브로모 메틸을 도입하는 단계; 및
    포타슘 t-부톡사이드의 존재하에서 상기 반응물과 2,5-비스(클로로메틸)-4-(2-에틸헥실옥시)아니솔을 공중합시키는 단계를 포함하는 것을 특징으로 하는 하기 화학식 2로 표시되는 전기발광고분자의 제조방법.
    화학식 2
    상기 식에서, R은 탄소수 1 내지 21의 직쇄 또는 측쇄의 지방족 알킬기이고, n은 10∼1000의 정수이고, m은 10~1000의 정수이다.
  5. 제4항에 있어서, 상기 반응물과 2,5-비스(클로로메틸)-4-(2-에틸헥실옥시)아니솔의 반응몰비는 X : 1-X, 여기서 X는 0.1∼0.9인 것을 특징으로 하는 전기발광고분자의 제조방법.
  6. 제2항 또는 제4항에 있어서, 상기 전기발광고분자는 치환기의 위치를 오르소-, 메타- 또는 파라- 로 조절함에 따라 발광색이 조절되는 것을 특징으로 하는 전기발광고분자의 제조방법.
  7. 제1항 또는 제3항에 있어서, 상기 R은 (CH2)pCH3또는 CH2(CH2)qCH(CH2)rCH3CH(CH3)2이며, 여기서 p는 0∼12의 정수이고, q는 0∼5의 정수이며, r은 0∼10의 정수임을 특징으로 하는 전기발광고분자.
  8. 제1항 또는 제3항에 있어서, 상기 발광고분자의 무게평균분자량(Mw)은 1만 내지 100만이며, 분자량 분포는 1.5 내지 8임을 특징으로 하는 전기발광고분자.
  9. 제1항 또는 제3항에 따른 전기발광고분자를 포함하는 것을 특징으로 하는 전기발광소자.
KR1020010028419A 2001-05-23 2001-05-23 알킬옥시페닐옥시기가 치환된 폴리(p-페닐렌비닐렌)계전기발광고분자 및 이의 제조방법 KR20020089084A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010028419A KR20020089084A (ko) 2001-05-23 2001-05-23 알킬옥시페닐옥시기가 치환된 폴리(p-페닐렌비닐렌)계전기발광고분자 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010028419A KR20020089084A (ko) 2001-05-23 2001-05-23 알킬옥시페닐옥시기가 치환된 폴리(p-페닐렌비닐렌)계전기발광고분자 및 이의 제조방법

Publications (1)

Publication Number Publication Date
KR20020089084A true KR20020089084A (ko) 2002-11-29

Family

ID=27706142

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010028419A KR20020089084A (ko) 2001-05-23 2001-05-23 알킬옥시페닐옥시기가 치환된 폴리(p-페닐렌비닐렌)계전기발광고분자 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR20020089084A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510094B1 (ko) * 2002-09-12 2005-08-24 부산대학교 산학협력단 1,3,4-옥사디아졸 및 알콕시페닐옥시 치환기를 갖는폴리(1,4-페닐렌비닐렌)계 고효율 전기 발광 고분자 및고분자 전기발광 다이오드

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247460A (ja) * 1991-12-05 1993-09-24 Sumitomo Chem Co Ltd 有機エレクトロルミネッセンス素子
WO1997006223A1 (en) * 1995-08-03 1997-02-20 Philips Electronics N.V. Electroluminescent device
WO1999024526A1 (de) * 1997-11-05 1999-05-20 Axiva Gmbh Substituierte poly(arylenvinylene), verfahren zur herstellung und deren verwendung in elektrolumineszenzelementen
US6114490A (en) * 1995-03-20 2000-09-05 Hoechst Aktiengesellschaft Polymers comprising olig-p-phenylene units, a process for their preparation and their use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247460A (ja) * 1991-12-05 1993-09-24 Sumitomo Chem Co Ltd 有機エレクトロルミネッセンス素子
US6114490A (en) * 1995-03-20 2000-09-05 Hoechst Aktiengesellschaft Polymers comprising olig-p-phenylene units, a process for their preparation and their use
WO1997006223A1 (en) * 1995-08-03 1997-02-20 Philips Electronics N.V. Electroluminescent device
WO1999024526A1 (de) * 1997-11-05 1999-05-20 Axiva Gmbh Substituierte poly(arylenvinylene), verfahren zur herstellung und deren verwendung in elektrolumineszenzelementen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100510094B1 (ko) * 2002-09-12 2005-08-24 부산대학교 산학협력단 1,3,4-옥사디아졸 및 알콕시페닐옥시 치환기를 갖는폴리(1,4-페닐렌비닐렌)계 고효율 전기 발광 고분자 및고분자 전기발광 다이오드

Similar Documents

Publication Publication Date Title
US6124046A (en) Organic electroluminescent polymer for light emitting diode
US6653438B1 (en) Conjugated polymers containing special fluorene structural elements with improved properties
US6541602B1 (en) Conjugated polymers containing 2,7 fluorenyl units with improved properties
US5621131A (en) Conjugated polymers having spiro centers and their use as electroluminescence materials
US6361884B1 (en) Partially conjugated polymers with spiro centers and their use as electro-luminescent materials
KR100323606B1 (ko) 칼라 튜닝이 우수한 고효율의 전기발광 고분자
JP4155733B2 (ja) 電荷供給均衡性を高めた電界発光高分子及びそれを用いた電界発光素子
US20040038075A1 (en) Copolymers having tunable energy levels and color of emission
JP3939533B2 (ja) フルオレンが導入された電界発光高分子及びそれを用いた電界発光素子
Hwang et al. Syntheses and light-emitting properties of poly (9, 9-di-n-octylfluorenyl-2, 7-vinylene) and PPV copolymers
KR20020089084A (ko) 알킬옥시페닐옥시기가 치환된 폴리(p-페닐렌비닐렌)계전기발광고분자 및 이의 제조방법
CN108299481B (zh) 电致发光聚合单体、聚合物及其制备方法和应用
US8377570B2 (en) Poly(arylenevinylene) and poly(heteroarylenevinylene) light emitting polymer and polymer light-emitting devices
KR20070017733A (ko) 플루오렌 유도체, 이로부터 제조된 유기 전기발광고분자 및유기 전기발광소자
KR100510094B1 (ko) 1,3,4-옥사디아졸 및 알콕시페닐옥시 치환기를 갖는폴리(1,4-페닐렌비닐렌)계 고효율 전기 발광 고분자 및고분자 전기발광 다이오드
KR100394509B1 (ko) 네개의 치환체를 갖는 페닐렌기를 포함하는 고기능성전기발광고분자
KR20020042175A (ko) 플로레닐렌 비닐렌계 발광고분자 및 이를 이용한전기발광소자
Ahn Synthesis and Light-emitting Properties of Random Copolymers Composed of Phenylsilyl-and Alkoxy-Sustituted Phenylenevinylene
KR100226425B1 (ko) 고분자-고분자 블렌드를 이용한 발광 다이오드, 그의 제조방법 및 발광 다이오드의 발광효율 향상방법
KR100510057B1 (ko) 폴리(플로렌비닐렌-파라페닐렌비닐렌)계 공중합 전기발광고분자 및 이의 제조방법
KR100441200B1 (ko) 게르밀기가 치환된 폴리 페닐렌 비닐렌 중합체 및 그제조방법
KR20020028040A (ko) 폴리(스피로바이플로레닐렌 비닐렌) 유도체 및 이를이용한 전기발광소자
KR100284947B1 (ko) 고효율을 갖는 유기 전기발광 고분자 조성물 및 그 제조방법
KR20080104820A (ko) 옥사디아졸기를 포함하는 유기 전기발광고분자 및 이를이용한 유기 전기발광소자
KR20030032306A (ko) 플로렌-비닐렌계 공중합체, 이의 제조방법 및 이를 이용한전계발광소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application