KR100233690B1 - 극저탄소 냉간압연강판 제조 방법 - Google Patents

극저탄소 냉간압연강판 제조 방법 Download PDF

Info

Publication number
KR100233690B1
KR100233690B1 KR1019970001283A KR19970001283A KR100233690B1 KR 100233690 B1 KR100233690 B1 KR 100233690B1 KR 1019970001283 A KR1019970001283 A KR 1019970001283A KR 19970001283 A KR19970001283 A KR 19970001283A KR 100233690 B1 KR100233690 B1 KR 100233690B1
Authority
KR
South Korea
Prior art keywords
molten steel
alloy
metal
cold rolled
steel
Prior art date
Application number
KR1019970001283A
Other languages
English (en)
Other versions
KR970058805A (ko
Inventor
세이지 나베시마
하까루 나까또
겐이찌 소리마찌
Original Assignee
에모또 간지
가와사끼 세이데쓰 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에모또 간지, 가와사끼 세이데쓰 가부시키가이샤 filed Critical 에모또 간지
Publication of KR970058805A publication Critical patent/KR970058805A/ko
Application granted granted Critical
Publication of KR100233690B1 publication Critical patent/KR100233690B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/0025Charging or loading melting furnaces with material in the solid state
    • F27D3/0026Introducing additives into the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 Ti 함유 알루미길드강의 연속주조에서의 노즐 폐색이 없고, 또한 슬라브 잉곳의 표면결함이 없는 극저탄소 냉간압연강판의 유효한 제조방법에 관한 것으로서, 탈탄처리후의 용강중에 Al, Si, 또는 Al 과 Si를 첨가하여 반(半)탈산하고, 이어서 Ti 함유물질을 첨가하여 다시 탈산함으로써, 상기 용강중의 함유물의 주성분을 Ti 와 Al의 복합산화물, Ti 와 Si의 복합산화물, 또는 Ti, Al 및 Si를 복합산화물로 한 용강을 용제(溶製)하고, 이어서 이 용강을 연속주조, 열간압연 및 냉간압연을 거처 700℃~Ac3변태점의 온도범위에서 연속적으로 아닐링 하는 방법에 관한 것이다.

Description

극저 탄소 냉간압연강판 제조 방법
본 발명은 극저탄소 냉간압연강판의 제조방법에 관한 것으로서 알루미늄 킬드 용강의 연속주조시에 일어나는 턴디시의 상부노즐, 슬라이딩 노즐 및 이머션 노즐 (이하, 간단히 「노즐」이라 칭한다) 내면에의 Al2O3의 부착에 의한 노즐 폐색(閉塞)을 방지하고, 또한, 알루미늄 킬드에는 불가피적으로 발생하는 Al2O3크러스터에 기인하는 슬라브 잉곳의 표면결함 및 냉간압연판의 Al2O3에 기인한 결함을 방지하는 유효한 기술에 관한 제안이다.
종래, 극저탄소 냉간압연강판을 제조하는데 있어서는, 용제시에 강중의 C 및 N을 석출 고정하는 Ti 및 Nb의 비율을 높이기 위해, 나아가서는 연속주조에서 슬라브 잉곳표면에 발생하는 기공을 방지하기 위해, 탈탄처리후의 용강중에 Al을 첨가하여 용강중의 용존 산소농도를 저하시키는 것이 통례이다.
이와 같은 처리를 한 알루미늄 킬드강을 연속주조하면, 탈산시에 생성한 Al2O3계의 산화물이 턴디시의 노즐 내벽에 부착하여 노즐을 폐색함으로써 용강유로가 협소해져서, 원하는 용강유량을 얻을 수 없게 되는 문제 이외에, 노즐 내벽에 부착한 Al2O3의 일부가 벗겨져, 그것이 주형내의 응고셸(shell)에 포착되어 슬라브 잉곳표면의 결함이 된다는 문제도 있었다.
이와 같은 문제점에 대해서는 종래, 턴디시의 노즐로부터 Ar 등의 불활성가스를 불어넣어 Al2O3계의 산화물의 노즐 내벽에의 부착을 방지하는 방법으로 대처하였다. 그렇지만, 이 방법은, 불어넣은 불활성가스가 주형내의 응고셸에 포착되어, 슬라브 잉곳의 기포성결함이 된다는 새로운 문제를 초래하였다.
상기 이외에, 용강중에 Ca 또는 Ca - Si 등의 Ca 합금을 첨가하여 Al2O3계 개재물을 저융점의 CaO - Al2O3계 개재물로 하고, 노즐 내벽에의 Al2O3의 응집부착을 억제하는 다음과 같은 종래기술이 있었다.
① 특개소 58-154447호 공보에는, 레이들(ladel)내의 용강에 Ca 0.2~0.5 ㎏/t를 첨가하여 Al2O3계 개재물의 저융점화를 꾀하고, 융화한 Al2O3를 CaO - Al2O3의 형태로 하여 용강표면에 부상시켜, 이것을 레이들내에서 제거하는 방법이 개시되어 있다.
② 특개소 61-276756호 공보에는, 알루미늄 킬드 용강중에, 용제단계 또는 연속주조시에 Ca 또는 Ca 합금을 첨가함으로써, 강중에 2~40 ppm 의 Ca을 잔류시켜 CaO - Al2O3계 개재물을 생성시키는 방법이 개시되어 있다.
그런데, Ca 또는 Ca - Si 등의 Ca 합금을 첨가하는 상기의 각 방법은, 강중에 첨가된 Ca 가 CaS 및 CaO 가 되어, 강판에서의 녹의 발생 기점이 되는 문제가 있고, 특히 강재에서의 모든 Ca 량이 10 ppm 이상이 되면, 녹발생이 현저해진다.
또한 이들의 기술에 있어서는, Al 탈산시에 생성한 Al2O3가, 그 후 턴디시나 주형내에서 부상분리할 수 없고 응집하여 크러스터화함으로써, 슬라브 잉곳내에서 대형의 개재물이 되어, 이것이 슬라브 잉곳의 표면에 포착되어 냉간압연판에서 벗겨지는 등의 표면결함이 된다는 문제점도 있었다.
따라서, 본 발명의 목적은, Ti 함유 알루미늄 킬드강의 연속주조에서의 노즐 폐색이 없고, 또한 슬라브 잉곳의 표면결함이 없는 극저탄소 냉간압연강판의 유효한 제조방법을 제안하는데 있다.
또, 본 발명의 다른 목적은, 강중의 산화물계 개재물 종류를 조정함으로써, 연속주조시에서의 턴디시 노즐 폐색 및 슬라브 잉곳의 표면결함을 방지함과 동시에, 냉간압연강판을 700℃~Ac3변태점의 온도범위에서 연속적으로 아닐링(annealing) 함으로써, 큰 인발성 (deep drawability)에 뛰어난 냉간압연강판을 제조하는 데 있다.
상기 목적은, 아래에 나타난 요지 구성에 관련되는 제조방법의 채용에 의해 달성할 수 있다.
(1) C≤0.005 wt%, Mn≤1.0 wt%를 함유하는 탈탄처리후의 용강중에, Al 및/또는 Si를 첨가함으로써, 상기 용강중의 산소농도를 10~200 ppm 으로 한 반탈산 용강으로 하고, 이 용강중에 Ti 함유 물질을 첨가하여 다시 탈산하고, Al≤0.005wt%, Si≤0.20wt%, Ti : 0.01~0.10wt%를 함유하는 용강으로 함과 동시에, 상기 용강중의 개재물의 주성분을 Ti 와 Al 의 복합산화물, Ti 와 Si 의 복합산화물, 또는 Ti, Al 및 Si 의 복합산화물로 한 용강을 용제하고, 이어서 이 용강을 연속 주조하고, 그 후, 열간압연 및 냉간압연을 거친후, 얻어진 냉간압연강판을 700℃~Ac3변태점의 온도범위에서 연속적으로 아닐링 하는 것을 특징으로 하는 극저탄소 냉간압연강판의 제조방법.
극저탄소 냉간압연강판의 제조에 있어서는, 먼저 용제 단계의 처리로서, 전로로부터 레이들에 출강한 용강의 Mn 함유량을 1.0wt% 이하로 조정한 후, 진공처리에 의해 C : 0.005wt% 이하의 극저탄소범위로 성분조정하는 것으로부터 시작된다.
즉, Mn 은 재질 강화성분으로서 바람직하게는 0.05wt% 이상은 첨가하지만, 과잉첨가는 가공성, 화성처리성 및 탈탄을 저해하기 때문에 1.0wt% 이하로 한다.
또, C는 그 함유량이 0.005wt%를 넘으면, 재결정온도가 상승함과 동시에 연신율 (E1)의 저하, 큰 인발성 (r 값)을 저하시키는 단점을 초래하기 때문에, 0.005wt% 이하로 제한한다.
또한, 잔부는 철 및 불가피한 불순물의 조성으로 하고, 불가피한 불순물로서 P 및 S를 각각 0.030wt% 이하 및 0.020wt% 이하로 억제한다.
그런데, 상기와 같이 극저탄소범위까지 탈탄하면, 용강중의 용존산소 농도는 수 100ppm 으로 아주 높아지기 때문에, 종래에는, 0.010wt% 이상의 Al을 첨가함으로써 용존산소를 저감시켰다. 이 탈산처리에서는 Al 산화물 (Al2O3)이 생성되는데, 생성된Al2O3중 부상분리를 할 수 없었던 Al2O3가, 또, 용강이 재산화한 때에 생성하는 Al2O3가, 연속주조에서 턴디시의 노즐 폐색을 초래하고, 또, 크러스터화하여 수 100㎛의 크기로 되기 때문에, 슬라브 잉곳표면의 결함이 되거나, 냉간압연판에서의 벗겨짐등의 표면결함의 원인이 되는 것은 상술한 바와 같다.
따라서, 본 발명에서는 상기의 문제를 유발하는 Al2O3의 생성을 억제하기 위해, 용강중의 Al 량을 저하시킴으로써, 개재물의 형태를 종래의 Al 산화물 (Al2O3) 로부터 Ti 와 Al 의 복합산화물, Ti 와 Si 의 복합산화물, 또는 Ti, Al 및 Si 의 복합산화물로 하기로 (바람직하게는, Ti 산화물 = 30~95wt%, Al2O3≤30wt%로 하는 것이 요망됨) 하였다.
개재물의 형태를 상기와 같이 하면, Al2O3크러스터의 발생을 막고, 또한 턴디시의 노즐 폐색 및 냉간압연강판의 표면결함의 발생을 억제할 수 있게 된다.
발명자들의 연구에 의하면, 용강중의 Al 농도는 0.005wt%를 넘으면, 개재물중의 Al 산화물농도는 30wt%를 넘는다. 그 결과, 개재물은 크러스터화하기 쉬워져 100㎛ 이상으로 거대화되고, 슬라브의 표면결함, 냉간압연강판에서의 결함이 됨과 동시에, 노즐의 내벽에 부착하기 쉬워 노즐이 폐색되기 쉬운 것을 알았다.
이와 같은 식견에 근거하여 본 발명에서는, 용강중으로의 Al 첨가량을 억제하여 0.005wt% 이하를 첨가하여 용존 산소농도의 저하를 꾀한다. 한편, 부족분은 Ti 함유 합금을 첨가하여 Ti 탈산함으로써, 상기 용존산소량의 저감을 더욱 꾀한다. 이에 의해 개재물의 주성분은 Ti - Al 의 복합산화물이 된다. 따라서, 그 개재물은 거대한 크러스터로 성장하는 일이 없고, 슬라브의 표면결함이나 냉간압연강판에서의 결함을 초래하는 일이 없어진다. 게다가, 노즐 폐색의 방지를 실현할 수 있다.
또, 본 발명은 상기의 Ti 탈산전에 Si를 첨가한다. 이로써, 개재물은 Ti 와 Si 의 복합산화물, Ti, Al 및 Si 의 복합산화물이 되어, 개재물의 크러스터화에 의한 거대화, 노즐의 폐색은 더 한층 완화된다.
또한, 본 발명에 있어서, 형성되는 개재물의 조성은 Ti 산화물 = 30~95wt%, Al2O3≤30wt%의 조성의 것이 바람직하다. 이것은, Al2O3가 30wt%를 넘으면 거대 크러스터화하기가 쉽기 때문이다.
또, Ti 산화물도 95wt%를 넘으면 크러스터화하기 쉬운 경향이 있다. 단, Ti 산화물농도가 30wt% 미만에서는, Ti 의 탈산력이 약하고 용강중의 산소농도가 높아져 냉간압연강판에서의 표면품질에 악영향을 미치므로, Ti 산화물농도는 30wt% 이상으로 하는 것이 바람직하다.
제1도는 용강중의 Al량과 턴디시(tundish) 노즐의 Al2O3의 부착량(지수)의 관계를 나타내는 도면이다.
제2도는 용강중의 Al량과 냉간압연강판에서의 Al2O3크러스터(cluster)에 기인한 표면결함의 발생량(지수)의 관계를 나타내는 도면이다.
제3도는 용강중의 Ti량과 연속주조 슬라브 잉곳 표면상의 기공(blowhole) 발생량(지수) 의 관계를 나타내는 도면이다.
제4도는 용강중의 Ti량과 TiO2및 TiN 의 노즐 내벽에의 부착량 (지수) 의 관계를 나타내는 도면이다.
제5도는 용강중의 Si량과 냉간압연강판의 연신율과의 관계를 나타내는 도면이다.
용강중의 Al 량과 턴디시의 노즐 내벽의 Al2O3의 부착량과의 관계를 제1도에, 또 용강중의 Al 량과 Al2O3크러스터에 기인한 냉간압연강판에서의 표면결함의 발생량을 제2도에 각각 나타낸다. 또한, Al2O3의 부착량 및 표면결함의 발생량은, 노즐에의 Al2O3의 부착두께, 코일길이당의 결함개수의 지수로서 표시했다.
제1도 및 제2도로부터, Al 량을 0.005wt%이하로 함으로써, 노즐 폐색, 그리고 냉간압연강판에서의 표면결함이 크게 감소하는 것을 알았다.
상기의 처리에 있어서, Al 첨가량의 저감은 탈산부족을 초래하여 용강중의 용존산소량이 증가하여, 연속주조시에 슬라브 잉곳의 표면에 기공이 발생하는 원인이 된다. 따라서, 본 발명에서는, 기공의 발생을 방지하기 위해, Ti를 첨가하기로 한 것이다.
여기에서, 용강중의 Ti 량과 연속주조 슬라브 잉곳의 표면의 기공의 발생개수의 관계를 상기와 마찬가지로 지수를 이용하여 제3도에 나타낸다. 동 도면에 나타나는 바와 같이, 용강중의 Ti 량을 0.010wt% 이상으로 조정함으로써, 기공의 발생개수는 대폭적으로 감소하고, 냉간압연강판에서의 표면품질의 악화를 회피할 수 있다.
또, Ti 로 탈산함으로써, 개재물의 거대한 크러스터화에 의한 슬라브, 냉간압연강판에서의 표면결함의 방지, 노즐 폐색의 방지에 유효한 한편, Ti 첨가량이 너무 많으면 용강중에 TiN 이 생성되고, 이 TiN 이 노즐에 부착하여, 노즐을 통한 공기산화에 의해 노즐 내면에 Ti 산화물이 생성된다. 이에 의해, 노즐의 폐색이 급격하게 진행되는 문제가 발생한다.
즉, 제4도에, 용강중의 Ti 량과 턴디시의 노즐내벽에의 TiN 및 Ti 산화물의 부착량(지수)의 관계를 나타낸 바와 같이, Ti 량이 0.100wt%를 넘으면 노즐의 폐색이 급격히 진행하는 것을 알았다.
따라서, 용강중의 Ti 량은 0.01~0.10wt%의 범위로 조정할 필요가 있다.
Ti 합금량에 의한 탈산에 앞서, Al, Si 함유합금을 첨가하는 것은, 상술의 개재물 조성을 복합개재물로 하는 것 외에, Ti 탈산전의 용존산소농도를 저하시키는 목적이 있다. 탈탄처리후의 용강은 용존산소량이 수 100ppm으로 많고, Ti 에 의해 탈산을 행하면 Ti 의 수율이 저하하여 보다 많은 Ti 가 필요하게 되어 경제적으로 불리해질 뿐만 아니라, 생성되는 Ti 산화물량 및 탈산후의 산소농도가 높아져 냉간압연강판에서의 표면결함을 악화시킨다.
여기서, 탈산후의 Al 농도, Si 농도에 대해서는, 바람직하게는 Al≥0.001wt%, 또는 Si≥0.01wt%가 바람직하다.
한편, Si 의 과잉첨가는 냉간압연강판에서의 재료특성을 악화시키기 때문에 0.20wt%이하로 제한할 필요가 있다. 즉, 용강중의 Si 량과 냉간압연강판에서의 연신율과의 관계를 제5도에 나타내는데, Si 량을 0.20wt% 이하로 제한함으로써, 냉간압연강판에서의 연신율의 현저한 저하를 회피할 수 있다.
또, 냉간압연강판에 있어서의 프레스 성형성을 향상시키기 위해서는, 용강에서 C 및 N을 고정할 필요가 있다. 본 발명에서 대상으로 하는 성분조성은 저 Al 량의 약탈산강이기 때문에, 산소와의 친화력이 작은 Nb 로 C 및 N을 고정하는 것이 유효하게 된다. 이 Nb 의 첨가량은, 0.030wt%를 넘으면 NbC 등의 석출물이 증가하여 세립화되어 연신율(E1)이나 인발성(r 값)이 열화하여 경제적으로도 불리해지기 때문에, 0.030wt%을 상한으로서 첨가한다.
또, 가공취성의 개선을 목적으로 B를 첨가하는 것이 유효하다. 그러나, 이 B 의 첨가량이 너무 높으면 강의 재결정온도를 상승시켜, 강을 경질화하기 때문에, 0.002wt% 이하를 함유시키는 것이 바람직하다.
마찬가지로, 냉간압연강판의, 특히 큰 인발성을 향상시키기 위해서는 냉간압연강판을 700℃~Ac3변태점에서 1초 이상 연속적으로 아닐링하는 것이 유효하다. 즉, 700℃ 이상의 온도범위에서 1초 이상의 균열처리로 재결정화를 꾀하는 것이 큰 인발성의 향상에 유효하다. 한편, Ac3변태점(약 920℃)을 넘으면 큰 인발성이 급격히 악화하기 때문에, Ac3변태점 이하로 한다.
[실시예]
전로에서 280t 의 용선을 C : 0.02~0.1wt% 정도로 조탈탄하면서 Mn 량을 조정한 용강을 레이들에 출강하고, 이어서 RH 식 진공탈가스 장치에 의해 C : 0.005wt% 이하의 극저탄소 범위까지의 탈탄처리를 실시 하였다.
그 후, 용강중에 Al, Si, 이어서 Ti 의 순서로 첨가하여 단계적인 탈산처리를 행하여 표 1에 나타낸 각종 성분의 용강을 용제하였다. 마찬가지로, 추가로 Nb, (B)를 첨가한 용강도 용제하였다.
그 후, 턴디시내의 용강중량이 60t의 2 스트랜드 슬라브 연속주조기에 의해, 단면치수 220×1650㎜ 폭의 슬라브에, 용강가열도 15~30℃ 및 주조속도 2.5 m/min 으로 주조하였다. 또한, 턴디시 노즐의 내화물의 재질에는 Al2O3-흑연질의 것을 사용하였다.
연속주조후, 노즐 내화물내의 개재물의 부착상황을 조사하였다. 그 결과를 표 1에 병기한다.
그 후, 상기 연속주조 슬라브를 1200℃로 재가열한 후, 900℃에서 열간 마무리압연을 행하고, 600℃에서 코일링을 행하였다. 그 후, 산세하여 80%의 압하율로 냉간압연을 행하였다. 이어서, 그 냉간 압연강판을 700℃~900℃로 40초간 연속적으로 아닐링하고, 계속하여 0.5%의 조질(調質) 압연을 행하였다. 이렇게 하여 얻어진 냉간압연판에 용융아연 도금을 행한 후, 재료시험 및 표면조사에 이용하였다. 이들 시험 및 조사결과를 표 2에 나타낸다. 또한, 표면상태의 조사결과는 상기와 마찬가지로 지수로 표시하였다.
Figure kpo00002
Figure kpo00003
본 발명에 의한 방법은, 턴디시의 노즐 폐색이 없고, 또한 냉간압연강판의 표면결함의 발생이 아주 적고, 재료특성에도 뛰어난 것임을 알 수 있다.
이상 설명한 바와 같이, 본 발명에 의하면, 연속주조시에 턴디시의 노즐로부터의 가스 불어넣기를 행하지 않고서 노즐 폐색의 방지를 달성하고, 이렇게 얻어진 슬라브로부터는 표면결함이 없는 기계적특성에도 뛰어난 냉간압연강판을 제조할 수 있다.
본 발명의 극저탄소 냉간압연강판 제조 방법에 의하면, Al2O3의 생성을 억제하여 Al2O3크러스터의 발생을 막고, 또한 턴디시의 노즐 폐색 및 냉간압연강판의 표면결함의 발생을 억제하는 효과가 있다.

Claims (4)

  1. 극저탄소 냉간압연강판 제조방법에 있어서, C≤0.005wt%, Mn≤1.0wt%를 함유하는 탈탄처리후의 용강중에, Al, Si, 또는 Al 및 Si를 첨가하여 반탈산 용강으로 하고, 이 반탈산 용강중에 금속 Ti, Ti 합금, 또는 금속 Ti 및 Ti 합금을 첨가하여 다시 탈산함으로써 Al≤0.005wt%, Si≤0.20wt%, Ti : 0.01~0.10wt%를 함유하는 용강으로 함과 동시에, 상기 용강중의 개재물의 주성분을 Ti 와 Al 의 복합산화물, Ti 와 Si 의 복합산화물, 또는 Ti, Al 및 Si 의 복합산화물로 한 용강을 용제하고, 이어서 이 용강을 연속주조하고, 그 후, 열간압연 및 냉간압연을 거친후, 얻어진 냉간압연강판을 700℃~Ac3변태점의 온도범위에서 연속적으로 아닐링하는 것을 특징으로 하는 극저탄소 냉간압연강판 제조 방법.
  2. 제1항에 있어서, Ti 탈산용강중에 금속 Nb, Nb 합금, 또는 금속 Nb 및 Nb 합금을 첨가하고, 용강중의 Nb 함유량을 Nb≤0.03wt%로 하는 것을 특징으로 하는 극저탄소 냉간압연강판 제조 방법.
  3. 제1항에 있어서, Ti 탈산용강중에 금속 B, B 합금, 또는 금속 B 및 B 합금을 첨가하고, 용강중의 B 함유량을 B≤0.002wt%로 하는 것을 특징으로 하는 극저탄소 냉간압연강판 제조 방법.
  4. 제1항에 있어서, Ti 탈산용강중에 금속 Nb, Nb 합금, 또는 금속 Nb 및 Nb 합금과, 금속 B, B 합금, 또는 금속 B 및 B 합금을 첨가하고, 용강중의 Nb 함유량을 Nb≤0.03wt% 및 B 함유량을 B≤0.002wt%로 하는 것을 특징으로 하는 극저탄소 냉간압연강판 제조 방법.
KR1019970001283A 1996-01-19 1997-01-17 극저탄소 냉간압연강판 제조 방법 KR100233690B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP00777196A JP3422612B2 (ja) 1996-01-19 1996-01-19 極低炭素冷延鋼板の製造方法
JP96-007771 1996-01-19

Publications (2)

Publication Number Publication Date
KR970058805A KR970058805A (ko) 1997-08-12
KR100233690B1 true KR100233690B1 (ko) 1999-12-01

Family

ID=11674949

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970001283A KR100233690B1 (ko) 1996-01-19 1997-01-17 극저탄소 냉간압연강판 제조 방법

Country Status (8)

Country Link
US (1) US5879479A (ko)
EP (1) EP0785283A1 (ko)
JP (1) JP3422612B2 (ko)
KR (1) KR100233690B1 (ko)
CN (1) CN1048285C (ko)
BR (1) BR9700715A (ko)
CA (1) CA2195369A1 (ko)
TW (1) TW330213B (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW408184B (en) * 1997-09-29 2000-10-11 Kawasaki Steel Co Manufacturing method for producing Titanium killed steel with smooth surface texture
US6855213B2 (en) 1998-09-15 2005-02-15 Armco Inc. Non-ridging ferritic chromium alloyed steel
US5868875A (en) * 1997-12-19 1999-02-09 Armco Inc Non-ridging ferritic chromium alloyed steel and method of making
CA2287461C (en) 1998-02-17 2009-01-27 Nippon Steel Corporation Steel for steel sheets excellent in workability and method of deoxidizing same
EP1029938A3 (en) * 1999-02-18 2003-10-15 Nippon Steel Corporation Rolled steel having few inclusion defects
NL1013776C2 (nl) * 1999-06-04 2000-12-06 Corus Staal Bv Ultra Low Carbon staal en werkwijze voor de vervaardiging daarvan.
EP1342798B9 (en) * 2000-12-13 2008-02-27 JFE Steel Corporation Process for producing high-nitrogen ultralow-carbon steel
KR100743367B1 (ko) * 2001-07-04 2007-07-26 주식회사 포스코 저탄소, 저질소 타이타늄 안정화 스테인레스강의 정련 방법
KR100554142B1 (ko) * 2001-12-07 2006-02-20 주식회사 포스코 인바용강의 정련방법
FR2833970B1 (fr) * 2001-12-24 2004-10-15 Usinor Demi-produit siderurgique en acier au carbone et ses procedes de realisation, et produit siderurgique obtenu a partir de ce demi-produit, notamment destine a la galvanisation
FR2853668A3 (fr) * 2003-04-08 2004-10-15 Usinor Tole fine en acier bas carbone et tres bas aluminium, notamment pour emballage, et son procede d'obtention
CN100368577C (zh) * 2005-12-29 2008-02-13 攀枝花钢铁(集团)公司 细化型钢晶粒的生产方法
CN102174683B (zh) * 2011-01-30 2012-10-10 首钢总公司 一种通板力学性能均匀的冷轧低碳铝镇静钢的生产方法
TWI515301B (zh) * 2012-03-08 2016-01-01 杰富意鋼鐵股份有限公司 使用真空除氣系統製造超低碳鋼的方法
CN109304367B (zh) * 2018-11-08 2021-01-15 瓯锟科技温州有限公司 一种钛-钢-钛复合板材及其制备方法
CN111187874A (zh) * 2020-03-02 2020-05-22 马鞍山钢铁股份有限公司 一种降低c≤0.0030%的超低碳搪瓷钢铸坯气孔缺陷的生产方法
CN115803126A (zh) * 2020-07-08 2023-03-14 杰富意钢铁株式会社 极低碳钢制品的制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0572666A1 (en) * 1991-02-20 1993-12-08 Nippon Steel Corporation Cold-rolled steel sheet and galvanized cold-rolled steel sheet which are excellent in formability and baking hardenability, and production thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045689B2 (ja) * 1982-02-19 1985-10-11 川崎製鉄株式会社 プレス成形性にすぐれた冷延鋼板の製造方法
JPS6179745A (ja) * 1984-09-28 1986-04-23 Nippon Steel Corp 溶接継手熱影響部靭性のすぐれた鋼材の製造法
DE3528782A1 (de) * 1985-08-10 1987-02-19 Hoesch Stahl Ag Verfahren zum herstellen eines alterungsbestaendigen bandstahles mit hoher kaltumformbarkeit
US5053194A (en) * 1988-12-19 1991-10-01 Kawasaki Steel Corporation Formable thin steel sheets
JPH07268440A (ja) * 1994-03-28 1995-10-17 Nippon Steel Corp 溶鋼の脱酸方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0572666A1 (en) * 1991-02-20 1993-12-08 Nippon Steel Corporation Cold-rolled steel sheet and galvanized cold-rolled steel sheet which are excellent in formability and baking hardenability, and production thereof

Also Published As

Publication number Publication date
JP3422612B2 (ja) 2003-06-30
CA2195369A1 (en) 1997-07-20
CN1167157A (zh) 1997-12-10
EP0785283A1 (en) 1997-07-23
BR9700715A (pt) 1998-10-06
JPH09192804A (ja) 1997-07-29
KR970058805A (ko) 1997-08-12
TW330213B (en) 1998-04-21
CN1048285C (zh) 2000-01-12
US5879479A (en) 1999-03-09

Similar Documents

Publication Publication Date Title
KR100233690B1 (ko) 극저탄소 냉간압연강판 제조 방법
US4560423A (en) Process for producing a non-oriented electromagnetic steel sheet having excellent magnetic properties
US4073643A (en) Continuously cast steel slabs for steel sheets having excellent workabilities and method for production thereof
JP2000001741A (ja) 表面性状が良好で耐つまとび性に優れる深絞りほうろう用鋼板およびその製造方法
JP4051778B2 (ja) 表面性状が良好な3ピース缶に適した缶用鋼板
KR100361846B1 (ko) 가공성이 우수한 박판용 강 및 그 탈산방법
US3990887A (en) Cold working steel bar and wire rod produced by continuous casting
JP4998365B2 (ja) 極低炭素鋼板およびその製造方法
JP2007177303A (ja) 延性に優れた鋼及びその製造方法
CN109023021B (zh) 一种通过调控Al元素提高强韧性的钢板及其制造方法
JP2991796B2 (ja) マグネシウム脱酸による薄鋼板の溶製方法
JP3456295B2 (ja) 無方向性電磁鋼板用鋼の溶製方法
JP3757633B2 (ja) 加工性に極めて優れる缶用鋼板
JP4259097B2 (ja) 耐リジング性に優れたTi含有高加工性フェライト系クロム鋼板およびその製造方法
JP7261345B1 (ja) 耐酸化性に優れたオーステナイト系Ni-Cr-Fe合金とその製造方法
JP2004204252A (ja) 耐リジング性に優れたTi含有高加工性フェライト系クロム鋼板およびその製造方法
JP7158618B1 (ja) 耐酸化性に優れたオーステナイト系Fe-Ni-Cr合金およびその製造方法
JP2000001748A (ja) 表面性状が良好で伸びフランジ性に優れる深絞り用鋼板およびその製造方法
JP2000001745A (ja) 表面性状が良好で耐食性に優れた深絞り用鋼板およびその製造方法
JP6989000B2 (ja) 無方向性電磁鋼板の素材となるスラブ鋳片の製造方法
JP3653990B2 (ja) 超深絞り成形後の耐二次加工脆性が極めて良好な熱延鋼板
JP4055252B2 (ja) 含クロム鋼の溶製方法
JP2000001742A (ja) 表面性状が良好で焼付硬化性に優れる深絞り用鋼板およびその製造方法
JPS582263B2 (ja) 加工性および表面性状のすぐれた薄鋼板
JP3410069B2 (ja) 極低炭素鋼板

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120821

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20130822

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20140825

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20160818

Year of fee payment: 18

EXPY Expiration of term