KR100221518B1 - 영상 신호에 기초하여 촛점의 자동 정합을 행하는 오토 포커스 장치 - Google Patents

영상 신호에 기초하여 촛점의 자동 정합을 행하는 오토 포커스 장치 Download PDF

Info

Publication number
KR100221518B1
KR100221518B1 KR1019910003222A KR910003222A KR100221518B1 KR 100221518 B1 KR100221518 B1 KR 100221518B1 KR 1019910003222 A KR1019910003222 A KR 1019910003222A KR 910003222 A KR910003222 A KR 910003222A KR 100221518 B1 KR100221518 B1 KR 100221518B1
Authority
KR
South Korea
Prior art keywords
focus
evaluation value
relative position
focus evaluation
lens
Prior art date
Application number
KR1019910003222A
Other languages
English (en)
Other versions
KR920000194A (ko
Inventor
겐이찌 기꾸찌
도시노부 하루끼
Original Assignee
다카노 야스아키
산요 덴키 가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2047916A external-priority patent/JP2680715B2/ja
Priority claimed from JP2067521A external-priority patent/JP2517432B2/ja
Application filed by 다카노 야스아키, 산요 덴키 가부시기가이샤 filed Critical 다카노 야스아키
Publication of KR920000194A publication Critical patent/KR920000194A/ko
Application granted granted Critical
Publication of KR100221518B1 publication Critical patent/KR100221518B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

비디오 카메라의 오토 포커스 장치는 촬상 회로부터 얻어지는 영상 신호에 기초하여 초점의 자동 정합을 행한다. 오토 포커스 장치는 영상 신호의 고역 성분의 레벨을 검출하여 초점 정합 위치에서 최대치를 취하는 초점 평가치를 공급한다. 포커스 모터 제어 회로는 이 초점 평가치에 기초하여 등산 서보 방식에 의한 자동 포커스 동작을 실행한다. 자동 포커스 동작 개시시의 렌즈 이동 방향의 초기 설정, 복수의 영역 중에서 포커스 영역의 선택 및 자동 포커스 동작이 일단 완료된 후의 피사체 변화에 기인하는 자동 포커스 동작의 재기동을 퍼지추론을 이용하여 결정한다.

Description

영상 신호에 기초하여 초점의 자동 정합을 행하는 오토 포커스 장치
제1도는 종래의 오토 포커스 장치를 도시한 개략 블록도.
제2도는 제1도 중의 초점 평가치 발생 회로를 상세하게 도시한 블록도.
제3도는 제1도에 도시한 오토 포커스 장치에 따른 자동 포커스 동작에서의 포커스 렌즈 위치와 초점 평가치의 관계를 도시한 그래프.
제4도는 본 발명의 제1 실시예에 따른 오토 포커스 장치를 도시한 개략 블록도.
제5도는 제4도 중의 초점 평가치 발생 회로를 상세하게 도시한 블록도.
제6도는 촬상 화면 상의 영역 설정 상태를 설명하는 모식도.
제7도는 제4도 중의 상대비 산출 회로를 상세하게 도시한 블록도.
제8도는 제1 실시예에서의 초점 평가치와 포커스 렌즈 위치의 관계를 도시한 그래프.
제9도는 제1 실시예에서의 초점 평가치와 상대비와 피사체의 초점 정합 상태의 관계를 도시한 그래프.
제10도는 제9도에 도시한 단조(單調) 감소 특성 곡선을 렌즈 위치를 횡축으로 하여 도시한 그래프.
제11도는 제4도 중의 평균 휘도 검출 회로를 상세하게 도시한 그래프.
제12도는 제4도 중의 콘트라스트 검출 회로를 상세하게 도시한 블록도.
제13도는 촬상 화면 상의 영역(A)을 세분화한 상태를 도시한 모식도.
제14도는 본 발명의 제1 실시예에 의한 렌즈 이동 방향 판정 동작을 도시한 흐름도.
제15도는 본 발명의 제1 실시예의 룰(1)의 멤버십 함수를 도시한 그래프.
제16도는 본 발명의 제1 실시예의 룰(2)의 멤버십 함수를 도시한 그래프.
제17도는 본 발명의 제1 실시예의 룰(3)의 멤버십 함수를 도시한 그래프.
제18도는 본 발명의 제1 실시예에 의한 영역 선택 동작을 도시한 흐름도.
제19도는 본 발명의 제1 실시예에 의한 룰(4)의 멤버십 함수를 도시한 그래프.
제20도는 본 발명의 제1 실시예의 룰(5)의 멤버십 함수를 도시한 그래프.
제21도는 본 발명의 제1 실시예의 룰(6)의 멤버십 함수를 도시한 그래프.
제22도는 본 발명의 제2 실시예에 의한 오토 포커스 장치를 도시한 블록도.
제23도는 제22도 중의 변화량 검출 회로(81)를 상세하게 도시한 블록도.
제24도는 제22도 중의 변화량 검출 회로(87)를 상세하게 도시한 블록도.
제25도는 본 발명의 제2 실시예에 따른 포커스 모터 재기동 결정 처리를 도시한 흐름도.
제26도는 본 발명의 제2 실시예의 룰(7)의 멤버십 함수를 도시한 그래프.
제27도는 본 발명의 제2 실시예의 룰(8)의 멤버십 함수를 도시한 그래프.
제28도는 본 발명의 제2 실시예의 룰(9)의 멤버십 함수를 도시한 그래프.
제29도는 본 발명의 제2 실시예의 룰(10)의 멤버십 함수를 도시한 그래프.
* 도면의 주요 부분에 대한 부호의 설명
1 : 포커스 렌즈 2 : 포커스링
3 : 포커스 모터 4 : 촬상 회로
5 : 초점 평가치 발생 회로 6 : 최대치 메모리
7 : 초기치 메모리 9 : 비교기
10 : 포커스 모터 제어 회로 13 : 위치 메모리
30 : 모터 위치 검출 회로 63 : 감산기
66 : 콘트라스트 검출 회로 110, 80 : 감산 회로
본 발명은 오토 포커스 장치에 관한 것으로, 보다 상세하게는 자동 포커스 기능을 갖는 비디오 카메라 등의 찰상 장치에서 찰상 소자로부터 얻어지는 영상 신호에 기초하여 피사체에 대한 초점의 자동 정합을 행하는 개선된 오토 포커스 장치에 관한 것이다.
종래, 예를 들면 비디오 카메라 등의 찰상 장치에 이용되는 오토 포커스 장치에서는 촬상 소자로부터 얻어지는 영상 신호 자체를 포커스 제어 상태의 평가에 이용하는 방법이 개발되어 있다. 이와 같은 방법에서는 본질적으로 패럴럭스(시차 : parallax)가 존재하지 않고, 또 피사계 심도가 낮은 경우나 피사체가 먼 곳에 위치하는 경우에도 정확히 포커스가 정합되는 등의 여러 가지 우수한 특징을 가지고 있다. 특히, 이 방법에 따르면 자동 포커스용의 특별한 센서를 별도로 설치할 필요가 없어서 기구적으로 매우 간단하다.
이와 같은 영상 신호를 이용한 포커스 제어 방법의 일례로서 종래부터, 소위 등산 서보 방식이라는 제어 방법이 알려져 있다. 이 등산 서보 방식에 대해서는 미합중국 특허 제4,638,364호, 미합중국 특허 제4,614,975호, 일본국 특허 출원 공개 공보 (소) 제58-58505호, (소) 제60-103776호, 및 (소) 제60-215268호에 설명되어 있지만, 간단하게 설명하면 촬상 영상 신호의 고역 성분을 1 필드마다 초점 평가치로서 검출하고, 이 초점 평가치를 1 필드 전의 것과 항상 비교하여 초점 평가치가 항상 최대치를 취하도록 포커스 렌즈 위치를 계속해서 변화시키는 것이다.
제1도는 이와 같은 등산 서보 방식을 채용한 종래의 오토 포커스 장치를 도시한 개략 블록도이고, 제2도는 제1도 중의 초점 평가치 발생 회로를 상세하게 도시한 블록도이다.
제1도에 있어서, 비디오 카메라는 포커스 렌즈(1)를 진퇴(進退)시키는 포커스링(2), 이 포커스링(2)을 구동하는 스텝핑 모터인 포커스 모터(3), 및 CCD와 같은 촬상 소자(도시하지 않음)를 포함하는 촬상 회로(4)를 구비하고 있다. 포커스 렌즈(1)의 진퇴는 모터 대신에 압전 소자를 이용하여 행할 수 있고, 또 포커스 렌즈 대신에 CCD와 같은 촬상 소자 자체(도시하지 않음)를 진퇴시키도록 구성할 수도 있다.
포커스 렌즈(1)에 의해 촬상 소자 면상에 결상(結像)된 화상은 촬상 회로(4)에 의해 영상 신호롤 변환되어 초점 평가치 발생 회로(5)에 입력된다.
초점 평가치 발생 회로(5)를 상세히 도시한 제2도를 참조하면, 촬상 회로(4)에서 출력된 영상 신호 중의 휘도 신호 성분이 동기 분리 회로(5a) 및 고역 통과 필터(5c)에 제공된다. 이 고역 통과 필터(5c)에 의해 분리된 영상 신호(휘도 신호 성분)의 고역 성분은 검파 회로(5d)에 의해 진폭 검파되고, 이 검파 출력은 A/D 변환 회로(5e)에 제공된다. 이 A/D 변환 회로(5e)는 제공된 검파 출력을 디지털치로 변환하여 게이트 회로(5f)에 제공한다.
한편, 동기 분리 회로(5a)는 입력된 휘도 신호로부터 수직 동기 신호(VD) 및 수평 동기 신호(HD)를 분리하여 게이트 제어 회로(5b)에 제공한다. 게이트 제어 회로(5b)는 입력된 수직 동기 신호(VD) 및 수평 동기 신호(HD), 발진기(도시하지 않음)의 고정된 출력에 기초하여 화면의 중앙 부분에 장방형의 포커스 영역을 설정한다. 그리고, 게이트 제어 회로(5b)는 이 포커스 영역의 범위 내에서만 고역 성분의 A/D 변환치의 통과를 허용하도록 각 필드마다 게이트를 개폐시키는 신호를 게이트 회로(5f)에 제공한다. 또한, 이 게이트 회로(5f)는 후술하는 적산 회로(5g)의 전단이라면 어디에 설치해도 무방하다.
이 게이트 회로(5f)에 의해 각 필드마다 포커스 영역의 범위 내에 대응하는 고역 성분의 A/D 변환치만이 적산 회로(5g)에 제공된다. 적산 회로(5g)는 제공된 A/D 변환치를 각 필드마다 적분하여 현재 필드의 초점 평가치로서 공급한다.
다음에, 제3도는 제1도에 도시한 오토 포커스 장치에 의한 등산 서보 방식의 자동 포커스 동작에서 포커스 렌즈 위치와 초점 평가치의 관계를 도시한 그래프이다.
다음에, 제1도 내지 제3도를 참조하여 자동 포커스 제어 개시 직후의 자동 포커스 동작에 대해서 설명한다. 자동 포커스 동작 개시 직후에 초점 평가치 발생회로(5)에서 출력된 최초의 1 필드 분의 초점 평가치는 먼저 최대치 메모리(6) 및 초기치 메모리(7)에 제공되어 거기에 보관된다. 그 후, 포커스 모터 제어 회로(10)는 스텝핑 모터인 포커스 모터(3)를 소정의 방향으로 회전시켜 렌즈(1)를 광축 방향으로 변위시킨다. 그 후, 비교기(9)는 초기치 메모리(7)에 보존되어 있는 초기 초점 평가치와 포커스 평가 발생 회로(5)에서 출력된 현재의 초점 평가치를 비교하여 비교 신호를 발생시키고, 포커스 모터 제어 회로(10)는 이것에 따라서 포커스 모터(3)의 회전 방향의 초기 설정을 행한다.
즉, 포커스 모터 제어 회로(10)는 비교기(9)가 대 또는 소의 비교 출력을 발생할 때까지 상기 소정의 방향으로 포커스 모터(3)를 회전 시킨다. 그리고, 현재의 초점 평가치가 초기치 메모리(7)에 보존 되어 있는 초기 초점 평가치보다는 큰 비교 출력이 비교기(9)에서 출력된 경우는 포커스 모터 제어 회로(10)가 상기 소정의 회전 방향을 그대로 유지한다. 한편, 현재의 초점 평가치가 초기 초점 평가치보다도 작다는 비교 출력이 얻어진 경우에는 포커스 모터 제어 회로(10)가 포커스 모터(3)의 회전 방향을 역전시킨다.
상술한 바와 같이, 포커스 모터(3)의 회전 방향의 초기 설정은 완료되고, 포커스 모터 제어 회로(10)는 이후에 비교기(8)의 출력을 감시한다. 또한, 초점 평가치의 잡음에 따른 오동작을 방지하기 위해 초기 초점 평가치와 현재의 초점 평가치의 차가 소정의 임계치를 넘지 않는 사이에서는 비교기(9)는 대·소의 비교 출력을 발생하지 않도록 구성할 수 있다.
한편, 비교기(8)은 최대치 메모리(6)에 보존되어 있는 현재까지의 최대 초점 평가치와 초점 평가치 발생 회로(5)에서 출력된 현재의 초점 평가치를 비교하여 현재의 초점 평가치가 최대치 메모리(6)에 보존되어 있는 초점 평가치에 비해 크거나 (제1 모드), 또는 소정의 제1의 임계치(M)(제3도)를 초과하여 감소한 (제2 모드)의 2가지 비교 신호(S1, S2)를 출력한다. 여기에서, 현재의 초점 평가치가 최대치 메모리(6)의 내용보다 큰 경우에는 최대치 메모리(6)의 내용은 비교기(8)의 출력(S1)에 응답하여 갱신되고, 최대치 메모리(6)에는 현재 까지의 초점 평가치의 최대치가 항상 보존된다.
포커스 렌즈(1)를 지지하는 포커스링(2)의 위치에 응답하여 모터 위치 검출 회로(30)에서는 포커스링 위치 신호가 발생되고, 이 포커스링 위치 신호는 포커스링 위치 메모리(13)에 제공된다. 더욱 상세하게 말하면, 모터 위치 검출 회로(30)는 자동 포커스 동작의 개시 시점에서 리셋트되는 업다운(up down) 카운터로 구성된다. 이 업다운 카운터는 스텝핑 모터인 포커스 모터(3)의 스텝량을 근점(近点) 방향으로의 변화를 정(正)으로 하여 카운트 업하고, 또 원점(遠点) 방향으로의 변화를 부(負)로하여 카운트 다운하여, 그 카운트치를 포커스링 위치 신호로서 위치 메모리(13)에 공급한다. 이 포커스링 위치 메모리(13)는 비교기(8)의 출력(S1)에 기초하여 초점 평가치가 최대로 되었을 때의 포커스링 위치 신호를 항상 보존 하도록 갱신된다.
포커스 모터 제어 회로(10)는 전술한 바와 같이 비교기(9)의 출력에 기초하여 초기 설정된 방향으로 포커스 모터(3)를 회전시키면서 비교기(8)의 출력을 감시하고 있다. 그리고, 현재의 초점 평가치가 최대 초점 평가치에 비해 상기 제1 임계치(M)를 초과하여 감소하는 제2 모드의 비교 출력(S2)이 비교기(8)에서 얻어질 때 포커스 모터 제어 회로(10)는 포커스 모터(3)의 회전 방향을 역전시킨다(제3도). 이 역전으로 렌즈(1)의 이동 방향은 촬상 소자에 접근하는 방향에서 멀어지는 방향으로, 또는 역으로 촬상 소자에서 멀어지는 방향에서 접근하는 방향으로 변화한다. 또한, 소정의 제1 임계치(M)를 초과하여 감소한 때에 최초로 포커스 모터(3)의 회전 방향을 역전시키는 것은 초점 평가치의 잡음에 의한 오동작을 방지하기 위해서이다.
포커스 모터(3)의 회전 방향의 역전 후, 초점 평가치의 최대치에 대응하는 포커스링 위치 메모리(13)의 내용과 모터 위치 검출 회로(30)에서 발생되는 현재의 포커스링 위치 신호가 비교기(14)에서 비교된다. 그래서, 양자가 일치하면, 즉 초점 평가치가 최대로 되는 위치로 포커스링(2)이 회복될 때 포커스 모터 제어 회로(10)는 포커스 모터(3)의 회전을 정지시킨다(제3도). 이와 동시에, 포커스 모터 제어 회로(10)는 렌즈 정지 신호(LS)를 출력한다 이상으로 일련의 자동 포커스 동작이 완료한다.
메모리(11) 및 비교기(12)는 포커스 렌즈의 정지시에 초점 평가치가 소정의 제2 임계치 이상 변화한 때에는 포커스 모터 제어 회로(10)에 의한 자동 포커스 동작을 제어하기 위한 회로이다. 즉, 포커스 모터 제어 회로(10)에 의한 자동 포커스 동작이 종료하여 렌즈 정지 신호(LS)가 발생된 시점에서의 초점 평가치가 메모리(11)에 보존된다. 그래서, 비교기(12)에 의해 메모리(11)의 내용과 초점 평가치 발생 회로(5)에서의 출력되는 현재의 초점 평가치가 비교되고, 그 차가 소저의 제2 임계치보다도 크게 된 경우에는 피사체에 변화가 발생된 것으로 하여 피사체 변화 신호가 포커스 모터 제어 회로(10)에 제공된다. 이 결과, 포커스 모터 제어 회로(10)에 의한 자동 포커스 동작이 재개되어 피사체의 변화에 따른 자동 포커스 동작이 실현된다.
상술한 바와 같은 등산 서보 방식에 따른 종래의 오토 포커스 장치는 고정밀도의 초점 정합 동작을 실현할 수 있으며 다양한 피사체에 대한 대응성도 우수하지만, 한편으로는 후술하는 바와 같은 문제점이 있다.
즉, 휘도 신호의 고역 성분이 적분되어 초점 평가치로서 산출되는 영역, 즉 포커스 영역의 설정 방법이 문제가 된다. 예를 들면, 포커스를 크게 설정한 경우, 여기에 포함되는 배경 등의 영향으로 원하는 피사체에 대해서 포커스를 맞출 수 없는 경우가 발생한다. 이와 반대로 포커스 영역을 작게 설정한 경우, 충분한 콘트라스트, 즉 고역 성분을 갖는 피사체가 포커스 영역에서 없어지는 경우가 많아 자동 포커스 동작이 불안정하게 된다.
이와 같은 포커스 영역의 선택에 대한 문제점을 해소하는 방법이 일본국 특허 공개(평) 제 01-284181호에 기재되어 있다. 즉, 미리 화면내에 대·소 2개의 영역을 설정하고, 자동 포커스 동작의 상황에 따라, 예를 들면 양쪽 영역의 각각의 초점 평가치의 변동비에 기초하거나 또는 각각의 영역의 단위 면적당의 초점 평가치의 절대치에 기초하여 2개의 영역 중 어떤 한 영역을 포커스 영역으로서 선택하는 방법이 제안되어 있다.
이와 같이 초점 평가치의 변동비, 절대치 등 다수의 요소를 동시에 이용하면, 다양한 촬영 상황 및 다양한 피사체에 대해 고정밀도이며 안정한 자동 포커스 동작이 실현가능하다. 그러나, 이와 같은 자동 포커스 동작을 위해 취급하는 요소가 많아짐에 따라 불가피하게 오토 포커스 장치의 규모 증대를 초래하게 된다. 또한, 취급 요소 중 한 개의 요소에 대해서도 이 요소가 취할 수 있는 여러 가지 값 각각에 대해 별개의 결과를 준비할 필요가 있어 오토 포커스 장치의 규모가 더욱 커지게 된다.
한편, 자동 포커스 동작 개시 시점에서의 렌즈의 이동 방향 판정시 피사체가 변화하는 등의 초점 평가치의 변동 요인이 있는 경우에는 전술한 바와 같이 초점 평가치의 증감만으로 이동 방향을 정확히 판정하기는 곤란하다.
그래서, 이와 같은 방향 판정에 대한 문제점을 해소하기 위해 컷오프(cut off) 주파수가 서로 다른 2개의 고역 통과 필터으로부터 얻어지는 2 종류의 초점 평가치의 상대비가 초점 정합 위치에서의 정점을 갖는 산(山) 모양의 함수로 된다는 사실을 감안하여, 자동 포커스 동작 개시 시점에서의 렌즈의 미소한 이동에 수반하는 상대비의 변화에 기초하여 렌즈의 이동 방향을 판정하는 기술을 본 발명자는 제안하고 있지만, 아직까지 공개되지는 않았다. 그러나, 이와 같은 방법에서도 다양한 촬영 상황에서 피사체에 대해 고정밀도의 방향 판정을 행하기 위해서는 전술한 영역 선택의 경우와 동일한 이유로 오토 포커스 장치의 규모 증대를 초래할 수 밖에 없다.
한편, 전술한 일본 특허 공개(평) 제01-284181호에는 포커스 영역 선택에 관해서 대·소 2개의 영역 중 작은 쪽 영역의 초점 평가치가 일정치 이상이면 그 영역을 포커스 영역으로서 선택하고, 그 초점 평가치가 일정치 미만이면 포커스를 정합되어야 할 피사체가 작은 쪽의 영역에는 이미 존재하지 않는다고 판단하여 큰 쪽의 영역을 포커스 영역으로서 선택하는 기술이 기재되어 있다.
그러나, 이와 같이 단지 초점 평가치의 대·소로 포커스 영역을 선택하면, 포커스를 정합하여야 할 피사체가 포커스 영역 내에 존재하지 않는 상황과, 포커스 영역 내에 피사체가 존재하지만 크게 흐려져 있어서 초점 평가치가 작은 상태의 구별이 곤란하게 되고, 화면 중앙의 소망 피사체가 아닌 그 주변부에 포커스가 정합되는 문제가 발생하게 된다.
또한, 제1도에 도시한 종래의 오토 포커스 장치에서는 초점 정합 상태에서도 휘도 신호 중에 고역 성분이 발생하기 어려운 피사체, 예를 들면 모양이 없는 벽 등을 촬영할 때에는 정확한 자동 포커스 동작을 실행할 수 없다는 문제점이 있다.
보다 상세하게 설명하면, 전술한 것과 같은 피사체에 대한 자동 포커스 동작중에는 초점 평가치의 최대치에서 전술한 제1의 임계치(M)(제3도)를 초과하여 초점 평가치가 감소하는 것과 같은 상황은 발생하지 않으므로, 초점 평가치가 최대치를 취하는 렌즈의 위치가 언제나 초점 정합 위치라는 판정이 나오지는 않는다. 이 때문에, 렌즈는 무한 원점과 근점 사이의 전체 행정(行程)의 변위가 계속되어 포커스 모터는 그 사이에 정지할 수 없는 상태가 발생한다.
종래의 오토 포커스 장치에서는 이와 같은 경우에, 즉 렌즈가 무한 원점과 근점 사이의 전체 행정을 1회 주사한 경우에는 무조건 렌즈를 초점 평가치가 최대치를 취하는 위치로 회복하거나 또는 자동 포커스 동작이 개시한 초기 위치로 회복시킴으로써 포커스 모터를 정지시키도록 구성되어 있다. 즉, 이와 같은 종래의 오토 포커스 장치에서는 자동 포커스 동작 자체의 신뢰성보다도 포커스 모터의 정지를 중시하게 되고, 따라서 최종적으로 렌즈의 정지 위치가 초점 정합점의 위치일 확률은 충분히 큰 고역 성분을 갖는 피사체를 촬영한 경우의 그것에 비해 현저히 낮게 된다.
이와 같이 하여, 피사체가 상당히 흐린 상태에서 자동 포커스 동작이 완료된 경우에, 예를 들면 충분히 큰 콘트라스트를 갖는 피사체가 그 후 포커스 영역 내로 진입하여도 흐린 정도가 너무 크기 때문에, 휘도 신호의 고역 성분에 변화가 생기지 않고 따라서 초점 평가치가 전술한 제2의 임계치를 초과할 만큼 변화하지는 않는다. 따라서, 제1도의 비교기(12)는 그와 같은 피사체의 변화를 검출할 수 없어서 새로운 피사체에 대한 초점 정합 동작이 재개되지 않는 다는 문제점이 있었다.
본 발명의 목적은 시스템 규모의 증대를 초래하지 않고, 다양한 촬영 상황 및 여러 종류의 피사체에 대응하여 자동 포커스 동작을 고정밀도로 행할 수 있는 오토 포커스 장치를 제공하는 것이다.
본 발명의 다른 목적은 시스템 규모의 증대를 초래하지 않고, 자동 포커스 동작의 개시시에 렌즈의 이동 방향의 초기 설정을 고정밀도로 행할 수 있는 오토 포커스 장치를 제공하는 것이다.
본 발명의 또 다른 목적은 시스템 규모의 증대를 초래하지 않고, 복수의 영역 중에서 포커스 영역을 높은 정밀도로 행할 수 있는 오토 포커스 장치를 제공하는 것이다.
본 발명의 또 다른 목적은 시스템 규모의 증대를 초래하지 않고, 자동 포커스 동작이 일단 완료된 후의 자동 포커스 동작 재개의 결정을 고정밀도로 행할 수 있는 오토 포커스 장치를 제공하는 것이다.
본 발명은, 요약하면 포커스 렌즈와 촬상 소자를 갖는 촬상 회로부터 얻어지는 영상 신호에 기초하여 피사체에 대한 초점의 자동 정합을 행하는 오토 포커스 장치로서 상대 위치 변경 장치, 초점 평가치 발생 회로 및 포커스 모터 제어 회로를 구비하고 있다. 상대 위치 변경 장치는 촬상 소자에 대한 포커스 렌즈의 광축 방향의 상대적인 위치를 변이시킨다. 초점 평가치 발생 회로는 촬상 회로부터 얻어지는 영상 신호의 고역 성분의 레벨을 검출하여 피사체에 대한 초점 정합의 정도를 나타내는 초점 평가치로서 공급한다. 포커스 모터 제어 회로는 초점 평가치에 따라 포커스 렌즈의 상대적인 위치를 초점 정합 위치로 이동시키도록 상대 위치 변경 장치를 제어한다. 여기에서, 포커스 모터 제어 회로에 의한 상대 위치 변경 장치의 제어는 퍼지 추론을 이용하여 행해진다.
본 발명의 다른 국면에 따르며, 포커스 모터 제어 회로에 의한 상대 위치 변경 장치의 제어 개시시에 포커스 렌즈의 상대 위치의 이동 방향 판정은 퍼지 추론을 이용하여 행해진다.
본 발명의 또 다른 국면에 따르면, 촬상 화면 상에 설정된 다수의 영역 중에서 포커스 영역의 선택은 퍼지 추론을 이용하여 행해진다.
본 발명의 또 다른 국면에 따르면, 일단 초점 정합 동작이 완료된 후의 상대 위치 변경 장치의 재가동의 결정은 퍼지 추론을 이용하여 행해진다.
본 발명의 또 다른 국면에 따르면, 촬상 화면 상에 설정된 복수의 영역에서 포커스 영역의 선택은 복수의 영역 중 최소한 한 영역 내의 휘도차의 크기에 따라 행해진다.
본 발명의 또 다른 국면에 따르면, 초점 정합 동작이 일단 완료된 후의 초점 정합 동작의 재개는 소정 영역 내의 휘도차의 변화에 따라 결정된다.
따라서, 본 발명의 주된 장점은 영상 신호의 고역 성분을 초점 평가치로서 이용하는 오토 포커스 장치에 있어서, 렌즈의 이동 방향의 초기 설정 및 포커스 영역의 선택을 위해 미리 실험적으로 결정된 소수의 룰에 기초한 퍼지 추론을 이용하여 얻기 때문에, 다양한 촬영 상황 및 피사체에 대응한 상세한 조건 설정을 행할 필요가 없으며, 렌즈 이동 방향의 초기 설정 및 포커스 영역의 전환, 또 포커스 동작의 재개라는 복잡한 판단을 용이하게 행할 수 있는 것이다.
본 발명의 다른 장점은 촬상 화면 상의 소정 영역 내의 휘도차에 따라서 포커스 영역 내에 피사체가 존재하지 않는 상태와 피사체가 매우 흐리게 존재하는 상태의 식별이 가능하게 되어 피사체의 주변부에 포커스가 맞춰지는 상태를 방지할 수 있다.
본 발명의 또 다른 장점은 촬상 화면 상의 소정 영역 내의 휘도차에 따라서 초점 정합 동작 종료 후의 피사체의 변화를 그 초점 정합 상태에 관계없이 검출할 수 있어서 초점 정합 동작의 재기동을 적절히 결정할 수 있는 것이다.
이하 첨부 도면을 참조하여 본 발명의 실시예에 대하여 상세하게 설명한다.
제4도는 본 발명의 제1 실시예에 따른 오토 포커스 장치를 도시한 개략 블록도이고, 제5도는 제4도 중의 초점 평가치 발생 회로(50)를 상세하게 도시한 블록도이다.
제4도에 있어서, 비디오 카메라는 제1도의 종래예와 동일한 포커스 렌즈(1)를 진퇴시키는 포커스링(2), 이 포커스링(2)을 구동하는 스텝핑 모터인 포커스 모터(3), 및 CCD와 같은 촬상 소자(도시하지 않음)를 포함하는 촬상 회로(4)를 구비하고 있다. 포커스 렌즈(1)의 진퇴는 모터 대신 압전 소자를 이용하여 행할 수도 있고, 또 포커스 렌즈 대신에 CCD와 같은 촬상 소자 자체(도시하지 않음)를 진퇴시키도록 구성할 수도 있다.
포커스 렌즈(1)에 의해서 촬상 소자면상에 결상한 화상은 촬상 회로 (4)에 의해 영상 신호로 변환되어 초점 평가치 발생 회로(50)에 입력됨과 동시에 후술하는 평균 휘도 검출 회로(65) 및 콘트라스트 검출 회로(66)에 제공된다.
초점 평가치 발생 회로(50)를 상세히 도시한 제5도를 참조하면, 촬상 회로(4)에서 출력된 영상 신호 중 휘도 신호 성분이 동기 분리 회로(5a), 각각 200KHz및 600KHz라는 서로 다른 컷오프 주파수를 갖는 2개의 고역 통과 필터(HPF) (5c 및 50c)에 제공된다. HPF(5c 및 50c)에 의해 각각 분리된 영상 신호(휘도 신호 성분)의 고역 성분은 변환 회로(5h)에 제공한다.
한편, 동기 분리 회로(5a)는 입력된 휘도 신호에서 수직 동기 신호(VD) 및 수평 동기 신호(HD)를 분리하여 게이트 제어 회로(50b)에 제공함과 동시에, HPF(5c 및 50c)에서 출력되는 고역 성분을 1 필드마다 교대로 선택하기 위한 전환 제어 신호(SC)를 전환 회로(5h)에 제공한다. 전환 회로(5h)에 의해 선택된 휘도 신호의 고역 성분은 검파 회로(5d)에 의해 진폭 검파되고, 그 검파 출력은 A/D 변환 회로(5e)에 제공된다. 이 A/D 변환 회로(5e)는 제공된 검파 출력을 디지털치로 변환하여 게이트 회로(5f 및 50f)에 제공한다.
한편, 게이트 제어 회로(50b)는 동기 분리 회로(50a)에서 입력된 수직 동기 신호(VD) 및 수평 동기 신호(HD), 발진기(도시하지 않음)의 고정된 출력에 기초하여 제6도에 도시한 바와 같이 화면의 중앙 부분의 비교적 면적이 작은 장방형의 제1의 영역(A) 및 이 영역(A)을 포함하며 이 영역(A)보다 큰 면적을 갖는 장방형의 제2영역(B)를 설정한다. 그래서, 게이트 제어 회로(50b)는 제1영역(A)의 범위 내에서만 휘도 신호 A/D 변환치의 통과를 허용하도록 각 필드마다 게이트(5f)를 개폐시키는 제1의 게이트 개폐 신호를 게이트 회로(5f)에 제공하고, 또 제2영역(B)의 범위에서만 휘도 신호의 A/D 변환치의 통과를 허용하도록 각 필드마다 게이트 회로(50f)를 개폐시키는 제2의 게이트 개폐 신호를 게이트 회로(50f)에 제공한다.
이들 게이트 회로(5f 및 50f)에 의해서 각각의 필드마다 제1 및 제2의 영역(A 및 B)의 범위 내에 대응하는 휘도 신호의 고역 성분의 A/D 변환치가 각각 적분회로(5g 및 50g)에 제공된다. 적분 회로(5g)는 제공된 A/D 변환치를 각 필드분(分) 가산하여, 즉 디지털 적분을 행하여 제1의 초점 평가치(Va)로서 공급한다. 한편, 적분 회로(50g)는 제공된 A/D 변환치를 각각의 필드마다 디지털 적분하여 제2의 초점 평가치(Vb)로서 공급한다.
여기에서, 전술한 바와 같은 전환 회로(5h)는 동기 분리 회로(5a)로부터의 전환 제어 신호(SC)에 따라 HPF(5c 및 50c)의 출력 중의 한쪽을 1 필드마다 교대로 선택하도록 구성되어 있다. 따라서, 컷오프 주파수가 200KHz인 HPF(5c)의 출력이 선택되어 있는 필드에서는 적분 회로(5g)로부터는 제1영역(A) 내에서 휘도 신호의 200KHz 이상의 고역 성분 1필드분의 디지털 적분치(V1)가 제1초점 평가치(Va)로서 출력되고, 동시에 적분 회로(50g)로부터는 제2영역(B) 내에서 휘도신호의 200KHz 이상의 고역 성분 1 필드분의 디지털 적분치(V2)가 제2초점 평가치(Vb)로서 출력된다. 또한, 컷오프 주파수가 600KHz인 HPF(50c)의 출력이 선택되어 있는 다음 필드에서는 적분 회로(5g)로부터는 제1영역 내에서 휘도 신호의 600KHz 이상의 고역 성분 1 필드분의 디지털 적분치(V1')가 제1의 초점 평가치(Va)로서 출력되고, 동시에 적분 회로(50g)로부터는 제2영역(B) 내에서 휘도 신호 600KHz 이상의 고역 성분 1 필드분의 디지탈 적분치(V2')가 제2의 초점 평가치(Vb)로서 출력된다. 이후 동일한 동작이 반복된다.
상술한 바와 같이 행하여 얻어진 제1 및 제2의 초점 평가치(Va, Vb)는 각각 제4도의 분리 회로(51, 52)에 제공된다. 이들 분리 회로(51 및 52)는 모두 동기 분리 회로(5a)에서 공급되는 전술한 전환 제어 신호(SC)에 기초하여 신호 분리 타이밍을 제어한다. 즉, 분리 회로(51)는 전환 제어 신호(SC)에 응답하여 제1초점 평가치(Va)를 HPF(5c 및 50c)의 출력에 각각 대응하는 초점 평가치(V1 및 V1')로 분리되어 1 필드마다 교대로 출력한다. 이와 마찬가지로, 분리 회로(52)는 전환 제어 신호(SC)에 응답하여 제2초점 평가치(Vb)를 HPF(5c 및 50c)의 출력에 각각 대응하는 초점 평가치(V2 및 V2')로 분리되어 1 필드마다 교대로 출력한다. 이 결과, 각각의 초점 평가치(V1, V1', V2 및 V2')는 어떤 것이라도 2 필드마다 갱신되도록된다.
그 다음에, 분리 회로(51 및 52)에서 출력된 평가치(V1 및 V2)는 각각 초기치 메모리(7 및 57), 감산 회로(70 및 80), 메모리(24 및 58), 전환 회로(20) 및 포커스 모터 제어 회로(100)에 제공된다. 한편, 분리 회로(51 및 52)에서 출력된 평가치(V1' 및 V2')는 각각 상대비 산출 회로(25 및 59)에 제공된다.
초기치 메모리(7 및 57)는 각각 초점 정합 동작의 개시시 포커스 모터(3)가 소정의 초기 방향으로 회전된 시점에서 평가치(V1 및 V2)를 보존한다. 그래서, 포커스 모터(3)의 기동에서부터 2 필드 기간 경과한 시점에 평가치(V1 및 V2)가 갱신되고, 감산 회로(70 및 80)는 각각 새로운 평가치(V1 및 V2)로부터 초기치 메모리(7 및 57)에 보존되어 있는 2 필드마다의 평가치를 감산하여 변화치(△V1 및 △V2)로서 포커스 모터 제어 회로(100)로 출력한다.
한편, 메모리(24 및 58)는 각각 포커스 모터(3)의 기동후에 평가치(V1 및 V2)가 얻어질 때마다 이것을 2 필드 기간 보존하여 후단(後段)의 상대비 산출 회로(25 및 59)에 제공한다. 상대비 산출 회로(25 및 59)는 동일 구성을 갖고 있으며, 제7도에는 일례로서 상대비 산출 회로(25)의 구성이 도시되어 있다. 즉, 상대비 산출 회로(25)는 제산기(61), 메모리(62), 및 감산기(63)로 구성되고, 제산기(61)는 평가치(V1')가 갱신될 때마다 메모리(24)에 보존되어 있는 최신의 평가치(V1)와의 비(V1'/V1)를 상대비(r1)로서 산출한다. 또한, 상대비 산출 회로에서도 마찬가지로 V2'/V2가 상대비 (r2)로서 산출된다.
여기에서, 상대비(r1)는 HPF(5c)의 출력의 1필드분의 디지털 적분치(V1)와 HPH(50c)의 출력의 1 필드분의 디지털 적분치(V1')의 비이다. 제8도는 동일 피사체에 대한 이들 양쪽 적분치와 포커스 렌즈와의 위치 관계를 도시한 그래프이다. 즉, 컷오프 주파수가 높은 HPF(50c)의 출력의 적분치(V1')는 급격한 산 모양의 함수로 되고, 한편 컷오프 주파수가 낮은 HPF(5c)의 출력 적분치(V1)는 완만한 산 모양의 함수로 된다.
제9도는 이와 같은 양쪽 적분치(평가치)의 상대비와 피사체의 초점 정합 상태와의 관계를 도시한 그래프이다. 제9도에서, 횡축은 변한 정도(즉, 초점 정합 위치에서부터 렌즈의 이동량)를 나타내고 종축은 전술한 상대비를 나타낸다. 제9도에 도시한 바와 같이 상대비와 핀트가 벗어난 정도는 단조(單調) 감소 특성 곡선으로 나타난다.
여기에서, 전술한 상대비는 초점 평가치와 마찬가지로 피사체의 초점 정합 상태를 표현하는 함수로, 특히 비율로 나타내고 있기 때문에 일종의 정규화된 상태량이다. 따라서, 이와 같은 상대비는 피사체가 배치되어 있는 환경의 영향을 별로 받지 않고 초점 정합 상태를 정확히 나타낼 수 있다. 예를 들면, 피사체의 조도가 변화한 경우에는 초점 평가치의 절대치가 변화하지만, 전술한 바와 같이 상대비는 크게 변하지 않는다. 또한, 이와 같은 상대비 특유의 성질은 피사체의 종류에 따르는 것은 아니다. 따라서 본 발명에서는 초점 정합 상태, 즉 핀트가 변한 정도를 나타내는 별도의 파라미터로서 초점 평가치로 전술한 상대비를 사용하기로 한다.
제10도는 제9도에 도시한 단조 감소 특성 곡선을, 렌즈 위치를 횡축으로 하여 도시한 그래프이다. 즉, 제10도의 일점 쇄선으로 도시한 바와 같이 상대비는 렌즈의 초점 정합 위치를 정점으로서 근점측 및 무한 원점측에 거의 직선 형태로 변화하는 특성을 갖는다.
제7도를 다시 참조하면, 제산기(61)에 의해 산출된 상대비(r1)는 메모리(62) 및 감산기(63)에 제공된다. 메모리(62)는 제공된 상대비를 2 필드 기간 보존한 후 감산기(63)에 공급한다. 감산기(63)는 제산기(61)에서 공급되는 최신의 상대비로부터 메모리(62)에 의해서 2 필드기간 지연된 상대비를 감산하고, 그 결과 얻어진 값을 상대비(r1)의 변화분(△r1)으로서 포커스 모터 제어 회로(100)에 출력한다. 또한, 상대비 산출 회로(59)에서도 이와 마찬가지로 상대비(r2)의 변화분(△r2)이 산출되어 포커스 제어 회로(100)에 제공된다.
또한, 이들 변화분(△r1 및 △r2)은 포커스 모터의 초기 회전 방향이 초점 정합 방향과 반대인 경우에는 부의 값으로 얻는다.
전환 회로(20)는 포커스 모터 제어 회로(100)에서 출력되는 영역 전환 신호(Sa)에 따라서 초점 평가치(V1 및 V2) 중 어떤 한 값을 선택한다. 이들에 의해, 영역(A 및 B) 중의 어떤 한 영역이 자동 포커스 동작을 위해 이용되는 포커스 영역으로서 선택된다.
전환 회로(20)에 의해 선택된 초점 평가치(V1 또는 V2)는 최대치 메모리(6) 및 비교기(8)에 제공된다. 비교기(8)는 제1도의 종래예와 동일하게 최대치 메모리(6)에 보존되어 있는 현재까지의 최대 초점 평가치와 전환 회로(20)에서 출력된 최신의 초점 평가치를 비교하여 전술한 제1 모드 및 제2 모드의 비교 신호 (S1) 및 (S2)를 출력한다. 또한, 모터 위치 검출 회로(30)에서의 포커스링 위치 신호는 포커스링 위치 메모리(13)와 비교기(14)에 제공된다. 최대치 메모리(6), 비교기(8), 포커스링 위치 메모리(13), 비교기(14) 및 포커스 모터 제어 회로(100)는 제1도에 도시한 종래예와 동일한 형태로 등산 서보 방식에 따른 자동 포커스 동작을 실행한다. 또한, 전환 회로(20)에 의해 선택된 초점 평가치는 메모리(11) 및 비교기(12)에도 제공되며, 이들 메모리(11) 및 비교기(12)는 제1도의 종래예와 마찬가지로 자동 포커스 동작 완료 후의 피사체의 변화를 감시한다. 이들의 동작 내용은 제2도 및 제3도에 관련하여 이미 상세히 기술하였으므로 여기서는 그 설명을 생략한다.
다만, 전환 회로(20)에서 공급되는 초점 평가치(V1 또는 V2)는 모두 2 필드마다 갱신되는 것이기 때문에 등산 동작을 위한 초점 평가치의 비교 동작 등은 2 필드마다 행해진다는 점에서 제1의 실시예는 제1의 종래예와 다르다.
제4도의 줌(zoom) 위치 검출 회로(64)는 이 비디오 카메라에 탑재되어 있는 줌용 렌즈를 이용하는 공지된 줌 기구(도시하지 않음)의 현재의 줌 영역, 즉 광각 내지 망원(望遠)의 어느 영역에 따라 렌즈의 현재의 포커스 거리(Z)를 나타내는 신호를 발생하여 포커스 모터 제어 회로(100)에 제공한다.
또한, 제4도의 평균 휘도 검출 회로(65)는 제1도에 도시한 바와 같이 검파 회로(65a), A/D 변환 회로(65b), 및 적산 회로(65c)로 구성된다. 검파 회로(65a)는 촬상 회로(4)에서 화면 전체에 대응하는 휘도 신호를 수신하고 이것을 진폭 검파하여 A/D 변환 회로(65b)에 제공한다. A/D 변환 회로(65b)는 이 검파 출력을 디지털 신호로 변환하여 적산 회로(65c)에 제공한다. 적산 회로(65c)는 제공된 A/D 변환치를 각각의 필드마다 디지털 적분하고, 얻어진 적분치를 화면 전체의 평균 휘도(IRS)를 나타내는 신호로서 포커스 모터 제어 회로(100)에 제공한다.
그 다음에, 제4도의 콘트라스트 검출 회로(66)는 제1영역(A) 내의 수평 방향의 콘트라스트를 검출하는 회로로서 제12도에 도시한 바와 같이 구성되어 있다. 보다 상세하게 설명하면, 콘트라스트의 검출을 위해 제1영역(A)는 제13도에 도시한 바와 같이 수직 및 수평 방향으로 배열된 4열 x 4행 = 16개의 동일 면적의 소영역 (Nij)(i, j = 1 내지 4)로 세분화된다. 그래서, 제12도의 분리 회로(67)는 촬상 회로(4)에서의 휘도 신호를 상기 소영역 각각으로 분리하여, 16개의 소영역마다 대응하여 설치된 16개의 디지털 적분기(Kij)(i, j = 1 내지 4)에 제공한다.
디지털 적분기(Kij)의 각각은 제11도에 도시한 평균 휘도 검출 회로(65)와 동일 구성을 갖고 있으며, 각각의 소영역마다 대응하는 휘도 신호가 디지털 적분되어 적분치(Fij)(i, j = 1 내지 4)로서 공급된다. 이들의 적분치(Fij)는 수평 방향으로 늘어선 4개의 소영역의 적분치를 1조로 하여 전체 4조로 나누어져 있고, 각각 4개조의 적분치는 대응하는 최대-최소 산출 회로(Li)(i = 1 내지 4)에 제공된다. 즉, 적분치(F1j, F2j, F3j및 F4j)(J = 1 내지 4)는 각각 최대-최소 산출 회로(L1, L2, L3및 L4)에 제공된다.
각각의 최대-최소 산출 회로(L1)는 대응하는 소영역의 조(組)로부터의 4개의 적분치 중 최대치와 최소치를 선택하여 최대치-최소치의 감산을 행하고, 그 결과 얻어지는 감산치(Gi)(i = 1 내지 4)를 다음의 최대치 검출 회로(68)에 제공한다.
최대치 검출 회로(68)는 4행분의 감산치(Gi) 중 최대치를 선택하고 이것을 콘트라스트(△E1)를 나타내는 신호로서 출력하여 포커스 모터 제어 회로(100)에 제공한다. 즉, 콘트라스트(△E1)는 그 필드에서 제1영역(A) 내의 수평 방향의 휘도차가 가장 큰 행의 휘도차의 디지털치에 상당한다.
포커스 모터 제어 회로(100)는 전술한 바와 같이 비교기(8 및 14)의 출력에 기초하여 제1도의 종래예와 동일한 자동 포커스 동작을 실행하고, 비교기(12)의 출력에 기초하여 자동 포커스 동작 완료 후의 피사체의 변화를 감시한다. 또한, 포커스 모터 제어 회로(100)는 5가지 종류의 데이터, 즉 제1영역(A)에 대한 휘도치(V1), 감산 회로(70 및 80)에서 공급되는 평가치(V1 및 V2)의 초기치에서의 변화량(△V1 및 △V2), 상대비 산출 회로(25)에서 공급되는 제1영역(A)에 대한 상대비(r1)의 초기치에서의 변화량(△r1) 및 콘트라스트 검출 회로(66)에서 공급되는 제1영역(A)내의 휘도의 콘트라스트(△E1)에 기초하여 자동 포커스 동작 개시시에 초점 정합 방향의 판정을 퍼지 추론을 이용해서 결정한다.
또한, 포커스 모터 제어 회로(100)는 4종류의 데이터, 즉 제1영역(A)에 대한 평가치(V1), 평균 휘도 검출 회로(65)에서 공급되는 화면 전체의 평균 휘도(IRS), 줌 위치 검출 회로(64)에서 공급되는 현재의 포커스 거리(Z) 및 콘트라스트 검출 회로(66)에서 공급되는 콘트라스트(△E1)에 기초하여 포커스 영역의 선택을 퍼지 추론을 이용하여 결정한다.
그 다음에, 전술한 방향 판정 및 포커스 영역의 선택을 위한 처리에 대해 설명한다. 먼저, 방향 판정 처리는 제14도의 흐름도에 도시되어 있고, 이 방향 판정 처리에는 경계가 애매한 정보를 애매한 상태로 취급하는, 소위 퍼지 추론이 이용되고 있다. 이때, 이용되는 퍼지 추론에서는 평가치(V1), 변화량(△V1 및 △V2), 변화량(△r1) 및 콘트라스트(△E1)를 입력 변수로서 이용하여 결론부로서 0 내지 1의 수치인 파라미터(dI)를 이용하고 있다. 그래서, 결론부의 파라미터(dI)가 큰 때에 현재의 렌즈 진행 방향을 초점 정합 방향으로 판정하고, 작은 때에 역 방향이라고 판정한다. 이 퍼지 추론에는 이하의 룰이 사용된다.
[룰 1]
"만약, △V1이 크고, △r1이 크다면, d1= 1.0"
[룰 2]
"만약, △V1이 크고, △r1이 크지 않다면, d2= 0.7"
[룰 3]
"만약, △V1이 작고, △V2가 작으며, △E1이 작다면, d3= 0.2"
다음에 전술한 각 룰에 대해 설명한다.
[룰 1]은 제15(a)도 및 제15(b)도에 도시한 바와 같은 멤버십 함수로 정의되어 있다. 제15(a)도는 "△V1이 크다"는 룰 1의 제1 조건의 성립의 정도를 나타내는 입력 함수(△V1)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 변화량(△V1)이 크게 됨에 따라 멤버십치(u11)이 크게 되는 단조 증가 직선을 포함하는 함수이고, 이 함수에 의해 최신의 변화량(△V1)에 대응하는 멤버십치(u11)가 구해진다.
제15(b)도는 "△r1이 크다"는 룰 1의 제2 조건의 성립 정도를 나타내는 입력 변수(△r1)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 변화분(△r1)이 커짐에 따라 멤버십치(u12)가 커지는 단조 증가 직선을 포함하는 함수로, 이 함수에 의해 최신의 변화분 (△r1)에 대응하는 멤버십치(u12)가 구해진다.
제15도에 도시한 룰(1)은 제1영역(A) 내의 초점 평가치(V1) 및 상대비(r1)가 함께 증가한 경우를 고려하여 설정된 것이다. 즉, 이와 같은 경우에는 렌즈(1)의 현재의 이동 방향에 초점 정합점 위치가 있을 가능성이 높으므로, 렌즈(1)의 현재의 이동 방향을 그대로 유지하도록 결론부 d1은 d1= 1로 설정된다.
[룰 2]는 제16(a)도 및 제16(b)도에 도시한 바와 같은 멤버십 함수로 정의되어 있다. 제16(a)도는 "△V1"이 크다"는 룰2의 제1조건의 성립 정도를 나타내는 입력 변수(△V1)에 대한 멤버쉽 함수이다. 즉, 이 멤버쉽 함수로 최신의 변화량(△V1)에 대응하는 멤버십치(u21)가 구해진다.
제16(b)도는 "△r1이 크지 않다"는 룰(2)의 제 2 조건의 성립 정도를 나타내는 입력 변수(△r1)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 변화분(△r1)이 크게 됨에 따라 멤버십치(u22)가 작아지는 단조 감소 직선을 포함하는 함수로, 이 함수에 의해 최신의 변화분(△r1)에 대응하는 멤버십치(u22)가 구해진다.
제16도에 도시한 룰(2)은 초점 평가치(V1) 및 상대비(r1)의 변동 경향이 서로 다른 경우를 고려해 설정된 것이다. 즉, 이와 같은 경우에는 초점 정합점 위치가 렌즈의 현재의 이동 방향과는 반대 방향에 있을 가능성도 있어서 결론부(d2)는 전술한 룰(1)의 결론부(d1)보다도 약간 작은 d2= 0.7로 설정되어 있다.
[룰 3]은 제17(a)도, 제17(b)도 및 제17(c)도에 도시한 바와 같은 멤버십 함수로 정의되어 있다. 제17(a)도는 "V1이 작다"라는 룰(3)의 제1의 조건의 성립 정도를 나타내는 입력 변수(V1)에 대한 멤버십 함수이다. 즉, 멤버십 함수는 평가치(V1)가 커짐에 따라 멤버십치(u31)가 작아지는 단조 감소 직선을 포함하는 함수로, 이 함수에 의해 최신의 평가치(V1)에 대응하는 멤버십치(u31)가 구해진다.
제17(b)도는 "△V2가 작다"는 룰 (3)의 제2의 조건 성립 정도를 나타내는 입력 변수(△V2)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 변화량(△V2)이 커짐에 따라 멤버십치(u32)가 작아지는 단조 감소 직선을 포함하는 함수로, 이 함수에 의해 최신의 평가치(V2)에 대응하는 멤버십치(u32)가 구해진다.
제17(c)도는 "△E1이 작다"라는 룰 (3)의 제3의 조건의 성립 정도를 나타내는 입력 변수(△E1)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 콘트라스트(△E1)가 커짐에 따라 멤버십치(u33)가 작아지는 단조 감소 직선을 포함하는 함수로, 이 함수에 의해 최신의 콘트라스트(△E1)에 대응하는 멤버십치(u33)가 구해진다.
제17도에 도시한 룰(3)은 제1영역(A) 내의 초점 평가치가 작아서 그 변화를 취할 수 없는 경우를 고려하여 설정된 것이다. 즉, 이와 같은 경우, 제1영역(A)의 콘트라스트가 작으면 제1영역(A) 내에는 초점 정합의 대상으로 되어야할 피사체가 존재하지 않는다고 판단하여, 제2영역(B)의 초점 정합 평가치의 변화에 따라 방향을 판정하는 것이다. 그래서, 제2영역(B)의 초점 평가치의 변화량이 부인 경우에는 초점 정합점 위치가 렌즈의 현재의 이동 방향과는 반대 방향에 있을 가능성이 높으므로, 렌즈의 이동 방향을 역전시키기 쉽도록 결론부 d3는 d3=0.2로 작게 설정되어 있다.
그 다음에, 전술한 룰(1) 내지 룰(3)에 기초하여 렌즈의 이동 방향 판정을 위해 파라미터(D)를 산출하고, 또 이 파라미터(D)에 기초하여 렌즈의 이동 방향을 결정하는 방향 판정의 처리에 대해 제14도의 흐름도를 참조하여 설명한다.
먼저, 스텝(S100)에서, 전술한 바와 같은 멤버십치(UIJ)(I, J : 정수)가 각각의 입력 변수에 대응하여 구해지면, 다음에 스텝 (S101)에서, 각 룰마다에 멤버십치 중 최소치(uIJ)가 각 룰의 성립도(UI)로서 산출된다. 예를 들어, 룰(1)에 대해 살펴보면, 제15도에서 u11> u12이기 때문에 성립도(U1)는 U1= u12로 된다. 또한, 룰(2)에 대해서는 제16도에서 u21> u22이기 때문에 성립도(U2) U2= u22로 된다. 또한, 룰(3)에 대해서는 제17도로부터 u31< u33< u32이기 때문에 성립도(U3)는 U3= u31이 된다.
그 다음에, 스텝(S102)에서, 이와 같이 해서 얻어진 각 룰의 성립도(U1)에 기초하여 방향 판정용의 파라미터(D)가 다음 식(1)에 의해 산출된다.
Figure kpo00002
이 식(1)은 각각의 룰 성립도로 결론부를 가중 평균하는 것을 의미하고 있다.
그 다음에, 스텝(S103)에서는, 전술한 식(1)에서 얻어진 파라미터(D)에 기초하여 렌즈의 이동 방향이 결정된다. 구체적으로는, D ≥ 0.5라면 포커스 모터 제어회로(100)는 렌즈의 현재의 이동 방향에 초점 정합점 위치가 있다고 판단하고, 현재의 이동 방향을 유지하도록 모터(3)의 구동을 제어하는 제어 신호를 발생하여 포커스 모터 구동 회로(31)에 제공한다. 한편, D < 0.5라면, 포커스 모터 제어 회로(100)는 현재의 이동 방향과는 역의 방향에 초점 정합점 위치가 있다고 판단하고, 즉시 포커스 모터(3)의 회전 방향을 반전시키는 제어 지령을 발생하여 포커스 모터구동 회로(31)에 제공한다. 이와 같이 하여, 상기 5가지의 요인(데이타)을 고려하여 포커스 렌즈의 이동 방향의 초기 설정이 고정밀도로 이루어지고, 이 설정된 방향으로 포커스 모터(3)를 회전시켜서 렌즈를 이동시키면서 전술한 등산 자동 포커스 동작이 실행된다.
그 다음에, 영역 선택 처리는 제18도의 흐름도에 도시한 바와 같고, 이때 이용되는 퍼지 추론에서는 평가치(V1), 콘트라스트(△E1), 포커스 거리(Z), 및 평균 휘도(IRS)를 입력 변수로서 이용하고, 결론부로서 0 내지 1의 수치인 멤버십치(aI)를 이용하고 있다. 그래서, 결론부의 멤버십치(aI) 는 작을 때에는 제1영역(A)을, 클 때에는 제2영역(B)를 포커스 영역으로서 이용하는 것을 의미하도록 설정되어 있다. 이 퍼지 추론에는 하기의 룰이 이용된다.
[룰 4]
"만약, V1이 크다면, a4= 0.0"
[룰 5]
"만약, V1이 중간 정도이고, IRS가 작다면, a5=0.8"
[룰 6]
"만약, V1이 작고, △E1이 크며, Z가 작지 않으면, a6= 0.3"
다음에 전술한 각 룰에 대해 설명한다.
[룰 4]는 제19도에 도시한 바와 같이 멤버십 함수로 정의되어 있다. 제19도는 "V1이 크다"는 룰 4의 조건의 성립 정도를 나타내는 입력 변수(V1)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 평가치(V1)가 커짐에 따라 멤버십치(u41)가 커지는 단조 증가 직선을 포함하는 함수로, 이 함수에 의해 최신의 평가치(V1)에 대응하는 멤버십치(u41)가 구해진다.
제19도에 도시한 룰(4)에서는 초점 평가치(V1)가 큰 경우에는 제1영역(A)에 피사체가 존재할 가능성이 높은 것을 감안하여, 영역(A)을 포커스 영역으로서 우선적으로 선택하도록 결론부(a4)는 a4= 0.0으로 설정된다.
[룰 5]는 제20(a)도 및 제20(b)도에 도시한 바와 같은 멤버십 함수로 정의되어 있다. 제(20a)도는 "V1이 중간 정도"라는 룰(5)의 제1 조건의 성립 정도를 나타내는 입력 변수(V1)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 소정의 입력 변수(V1)에 대해 멤버십치가 최대로 되는 곡선의 함수로, 이 함수에 의해 최신의 평가치(V1)에 대응하는 멤버십치(u51)가 구해진다.
제20(b)도는 "IRS가 작다"는 룰 5의 제2 조건의 성립 정도를 나타내는 입력 변수 IRS에 대한 멤버십 함수이다. 즉 이 멤버십 함수는 평균 휘도(IRS)가 커짐에 따라 멤버십치(u52)가 작아지는 단조 감소 직선을 포함하는 함수로, 이 함수에 의해 최신의 평균 휘도(IRS)에 대응하는 멤버십치(u52)가 구해진다.
제20도에 도시한 룰(5)은 제1영역(A)에서의 초점 평가치(V1)가 별로 크지 않고, 또 화면의 평균 휘도가 어두운 경우를 고려하여 설정된 것이다 즉, 이와 같은 경우에는 영상 신호의 S/N 비가 나빠지고 초점 평가치의 신뢰성이 낮아서 보다 많은 정보를 자동 포커스 동작을 위해 취할 필요가 있는 것에 감안하여, 포커스 영역으로서 제2영역(B)가 우선적으로 선택되기 쉽도록 결론부(a5)는 a5= 0.8로 설정되어 있다.
[룰 6]은 제21(a)도, 제20(b)도 및 제20(c)도에 도시한 바와 같은 멤버십 함수로 정의된다. 제21(a)도는 "V1이 작다"는 룰(6)의 제1 조건의 성립 정도를 나타내는 입력 변수(V1)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 평가치(V1)가 커짐에 따라 멤버십치(u61)가 감소하는 단조 평균 직선을 포함하는 함수로, 이 함수에 의해 최신의 평가치(V1)에 대응하는 멤버십치(u61)가 구해진다.
제21(b)도는 "△E1이 크다"는 룰(6)의 제2의 조건의 성립 정도를 나타내는 멤버십 함수이다 즉, 이 멤버십 함수는 콘트라스트(△E1)가 커짐에 따라 멤버십치(u62)가 커지는 단조 증가 직선을 포함하는 함수로, 이 함수에 의해 콘트라스트( E1)에 대응하는 멤버십치(u62)가 구해진다.
제21(c)도는 "Z가 작지 않다"는 룰(6)의 제3 조건의 성립 정도를 나타내는 입력 변수(Z)에 대한 멤버십 함수이다. 이 멤버십 함수는 포커스 거리(Z)가 커짐에 따라 멤버십치(u63)가 커지는 단조 증가 직선을 포함하는 함수로, 이 함수에 의해 최신의 포커스 거리(Z)에 대응하는 멤버십치(u63)가 구해진다.
제21도에 도시한 룰(6)은 제1영역(A)의 초점 평가치가 작지만, 제1영역(A) 내의 콘트라스트가 높은 경우를 고려해서 설정된 것이다. 즉, 이와 같은 경우에는 포커스 거리가 짧고 피사계 심도가 깊은 경우를 제외하고, 제1영역(A) 내에는 흐려있든가 또는 어떤 피사체가 존재하는 것으로 판단하여 제1영역(A)가 비교적 우선적으로 포커스 영역으로서 선택되기 쉽도록 결론부(a6)는 a6= 0.3으로 설정되어 있다.
다음에 전술한 룰(4) 내지 룰(6)에 기초하여 영역 선택을 위한 파라미터(Y)를 산출하고, 또 이 파라미터(Y)에 기초하여 포커스 영역을 선택하는 영역 선택 처리에 대해 제18도의 흐름도를 참조하여 설명한다.
먼저, 스텝(S200)에서, 전술한 바와 같은 멤버십치(UIJ)(I, J : 정수)가 각각의 입력 변수에 대해 구해지면, 다음에 스텝(S201)에 있어서, 각 룰마다에 멤버십치들 중 최소치(UIJ)가 각각의 룰의 성립도(U1)로서 산출된다. 예를 들어, 룰(4)에 대해 살펴보면 성립도(U4)는 U4 =u41로 된다. 또한, 룰(5)에 대해서는 제20도에서 u51< u52이기 때문에 성립도(U5)는 U5= u51로 된다. 또한, 룰(6)에 대해서는 제21도에서 u61< u62< u63이기 때문에 성립도(U6)는 U6= u61로 된다.
그 다음에, 스텝(S202)에서, 이와 같이 하여 얻어진 각 룰의 성립도(U1)에 기초하여 포커스 영역 선택용의 파라미터(Y)가 다음 식(2)에 기초하여 산출된다.
Figure kpo00003
이 식(2)은 각각의 룰의 성립도에서 결론부를 가중 평균하는 것을 의미한다.
그 다음에, 스텝(S203)에서는, 전술한 식(2)에서 얻어진 파라미터(Y)에 기초하여 포커스 영역이 선택된다. 구체적으로는, Y ≥ 0.5이면 포커스 모터 제어 회로(100)는 포커스 영역으로서 제2영역(B)를 선택하고, Y < 0.5이면 제1영역(A)가 선택된다.
이와 같이 하여 전술한 4개의 요인(데이타)을 고려하여 포커스 모터 제어 회로(100)에 의해 높은 정밀도로 포커스 영역이 선택되고, 포커스 모터 제어 회로(100)에서의 영역 선택 신호(Sa)에 기초 하여 전환 회로(20)는 초점 평가치(V1 또는 V2)를 선택한다. 이들에 의해 선택된 포커스 영역의 초점 평가치에 기초하여 자동 포커스 동작이 실행된다.
또한, 전술한 영역 전환 처리는 자동 포커스 동작 등만 아니라, 자동 포커스 동작 완료 후의 피사체 변화의 감시 동작 중에도 실행된다. 또한, 실제로 영역의 전환이 이루어진 직후에는 전환 회로(20)으로부터 얻어지는 초점 평가치에 일시적으로 큰 변동이 발생한다. 따라서, 이 변동에 의한 오동작을 방지하기 위해 등산의 자동 포커스 동작 및 피사체 변화의 감시 동작시에는 비교기(8 및 12)는 동일 비교 결과가 연속해서 3회 얻어진 때에만 이 비교 결과를 유효한 데이터로 출력하도록 구성되어 있다.
상술한 바와 같이, 본 발명의 제1 실시예에 따르면 영상 신호의 고역 성분을 초점 평가치로서 이용하는 오토 포커스 장치에 있어서, 렌즈의 이동 방향의 초기 설정 및 포커스 영역의 선택을 위해 이미 실험적으로 결정된 소수의 룰에 기초하는 퍼지 추론을 이용하므로 포커스 모터에 관해 다양한 촬영 상황 및 여러 가지 피사체에 대응하는 상세한 조건을 설정할 필요없이 방향 판정 및 초점 정합 대상 영역의 전환이라는 복잡한 판단을 행할 수 있다.
또한, 본 발명의 제1의 실시예에 따르면, 소정 영역 내의 휘도차에 따라서 포커스 영역 내에 피사체가 존재하지 않는 상태 및 존재하지만 대단히 흐려 있는 상태의 식별이 가능하게 되어 피사체 주변부에 포커스가 정합되는 상태를 방지할 수 있다.
그 다음에, 제22도는 본 발명의 제2 실시예에 따른 오토 포커스 장치를 도시한 개략 블록도이다. 이 제2 실시예에서는 이하의 점을 제외하고 제4도에 도시한 제1 실시예와 동일하다. 즉, 차이점으로는 자동 포커스 동작의 완료 후의 평가치(V1 및 V2) 변화량을 산출하는 변화량 검출 회로(81) 및 자동 포커스 동작의 완료 후의 콘트라스트(△E1) 변화량을 산출하는 변화량 검출 회로(87)가 설치되어 있다는 점이다.
먼저, 변화량 검출 회로(81)는 제23도에 도시한 바와 같이 메모리(82 및 83), 감산기(84 및 85) 및 선택 회로(86)를 구비하고 있다. 메모리(82)는 자동 포커스 제어 회로(100)에서의 렌즈 정지 신호(LS)를 수신하자마자 그 때의 평가치(V1)를 자동 포커스 동작 완료 직후의 평가치(W1)로서 기억한다. 이와 마찬가지로, 메모리(83)는 렌즈 정지 신호(LS)가 발생된 시점에서의 평가치(V2)를 자동 포커스 동작 완료 직후의 평가치(W1)로서 기억한다.
감산기(84)는 최신의 평가치(V1) 및 메모리(82)에 보존되어 있는 데이터(W1)를 수신하여 V1-W1의 감산을 하고 그 결과를 자동 포커스 동작 완료 직후부터의 평가치(V1)의 변화량(△W1)으로서 후단의 선택 회로(86)에 공급한다. 이와 마찬가지로, 감산기(85)는 최신의 평가치(V2), 및 메모리(83)에 보존되어 있는 데이터(W2)를 수신하여 V2-W2의 감산을 하고 그 결과를 자동 포커스 동작 완료 직후부터의 평가치(V2)의 변화량(△W2)으로서 후단의 선택회로(86)에 공급한다. 또한 평가치(V1 및 V2) 어느 것도 2 필드마다 갱신되므로 상기 변화량 (△W1 및 △W2)도 2 필드마다 변화한다.
선택 회로(86)는 자동 포커스 모터 제어 회로(100)로부터의 영역 전환 신호(Sa)에 따라서 변화량(△W1 및 △W2) 중 어느 한 변화량을 선택하여 포커스 모터 제어 회로(100)에 공급한다. 따라서, 자동 포커스 동작중에 포커스 영역으로서 제1영역(A)가 선택된 때에는 변화량(△W1)이, 제 2의 영역(B)가 선택된 때에는 변화량(△W2)이 선택되어 포커스 모터 제어 회로(100)에 공급된다.
그 다음에, 변화량 검출 회로(87)는 제24도에 도시한 바와 같이 메모리(88) 및 감산기(89)를 구비하고 있다. 메모리(88)는 포커스 모터 제어 회로(100)로부터의 렌즈 정지 신호(LS)를 수신하면, 즉시 그 때의 콘트라스트(△E1)를 자동 포커스 동작 완료 직후의 콘트라스트(EE)로서 기억한다. 감산기(89)는 1 필드마다 얻어지는 최신의 콘트라스트(△E1)와 메모리(88)에 보존되어 있는 데이터(EE)를 수신하여 △E1-EE 감산을 행하고, 그 결과를 자동 포커스 동작 완료 직후부터의 제1영역(A) 내의 휘도 콘트라스트의 변화량[△(△E1)]으로서 포커스 모터 제어 회로(100)에 공급한다.
포커스 모터 제어 회로(100)는 제4도의 제1 실시예와 관련하여 설명한 각종의 동작 외에 3종류의 데이터, 즉 콘트라스트의 변화량[△(△E1)], 초점 정합후의 초점 평가치의 변화량(△Wk) (k = 1 또는 2), 포커스 거리(Z)에 기초하여 자동 포커스 동작 완료 후의 피사체 변화의 확인 및 이에 따른 포커스 모터의 재기동 결정을 퍼지 추론을 이용하여 행하고 있다.
지금부터, 피사체 변화의 확인 및 포커스 모터 재기동의 결정을 위한 처리에 대해 제25도의 흐름도를 참조하여 설명한다.
여기에서 이용하는 퍼지 추론에서는 변화량[△(△E1)], 변화량(△Wk), 및 포커스 거리(Z)를 입력 변수로 이용하고, 결론부로서 0 내지 1의 수치인 파라미터(hI)를 이용하고 있다. 그래서, 결론부의 파라미터(hI)는 그것이 클 때에 화면이 변화했다고 판정하여 포커스 모터를 재기동하고, 작을 때에는 화면이 변화하지 않았다고 판정하여 포커스 모터를 정지 상태로 유지하는 것이다. 이 퍼지 추론에는 하기의 룰이 사용된다.
[룰 7]
"만약, △(△E1)가 정방향으로 크고, Z가 작지 않다면, h7= 0.8"
[룰 8]
"만약, △(△E1)이 정방향으로 크지 않고, 포커스 영역의 △Wk의 절대치가 작지 않다면, h8= 0.8"
[룰 9]
"만약, △(△E1)의 절대치가 크지 않고, 포커스 영역의 △Wk의 절대치가 작다면, h9= 0.0"
[룰 10]
"만약, △(△E1)이 정방향으로 크고, 포커스 영역의 △Wk의 절대치가 작지 않다면, h10= 1.0"
그 다음에, 전술한 각 룰에 대해 설명한다.
[룰 7]은 제26(a)도 및 제26(b)도에 도시한 바와 같은 멤버십 함수로 정의되어 있다. 제26(a)도는 "△(△E1)이 정방향으로 크다"는 룰 (7)의 제1의 조건의 성립 정도를 나타내는 입력 변수 △(△E1)에 대한 멤버십 함수이다. 이 멤버십 함수는 변화량 △(△E1)이 정방향으로 커짐에 따라 멤버십치(u71)가 커지는 단조 증가 직선을 포함하는 함수로, 이 함수에 의해 최신의 변화량 △(△E1)에 대응하는 멤버십치(u71)가 구해진다.
제26(b)도는 "Z가 작지 않다"는 룰(7)의 제2 조건의 성립 정도를 나타내는 입력 변수(Z)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 포커스 거리(Z)가 커짐(즉, 줌 영역이 TELE 방향으로 이동)에 따라 멤버십치(u72)가 크게 되는 단조 증가 직선을 포함하는 함수로, 이 함수에 의해 최신의 포커스 거리(Z)에 대응하는 멤버십치(u72)가 구해진다.
제26도에 도시한 룰(7)에 따르면 제1영역(A)의 휘도 콘트라스트가 초점 정합시보다 크게 되고, 또 포커스 거리가 길고 포커스 심도가 낮은 경우에는 제1영역(A)로 피사체가 진입될 가능성이 매우 높다는 것에 감안하여 이와 같은 경우에 포커스 모터가 재기동하기 쉽도록 결론부(h7)는 h7= 0.8로 설정되어 있다.
[룰 8]은 제27(a)도 및 제27(b)도에 도시한 바와 같은 멤버십 함수로 정의되어 있다. 제27(a)도는 "△(△E1)이 정방향으로 크지 않다"는 룰(8)의 제1의 조건의 성립 정도를 나타내는 입력 변수 △(△E1)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수에 의해 최신의 변화량 △(△E1)에 대한 멤버십치(u81)가 구해진다.
제27(b)도는 "포커스 영역의 △Wk의 절대치가 작지 않다"는 룰(8)의 제2의 조건의 성립 정도를 나타내는 입력 변수(△Wk)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 제1 및 제2영역(A 및 B) 가운데 포커스 영역으로서 선택되어 있는 영역의 초점 평가치의 변화량 Wk(k = 1 또는 2)의 절대치가 커짐에 따라 멤버십치(u82)가 커지는 곡(谷)형 함수로, 이 함수에 의해 최신의 변화량(△Wk)에 대응하는 멤버십치(u82)가 구해진다.
제27도에 도시한 룰(8)은 제1영역의 휘도 콘트라스트가 증가되어 있지 않지만, 포커스 영역의 초점 평가치에 변화가 있었을 경우를 고려하여 설정된 것이다. 즉, 이와 같은 경우에는 피사체의 변화에 착안하면 피사체의 변화가 생길 확률이 높으므로 포커스 모터가 재기동하기 쉽도록 결론부(h8)는 약간 높게 h8= 0.8로 설정되어 있다.
[룰 9]는 제28(a)도 및 제28(b)도에 도시한 바와 같은 멤버십 함수로 정의되어 있다. 제28(a)도는 "△(△E1)의 절대치가 크다"는 룰(9)의 제1의 조건의 성립 정도를 나타내는 입력 변수[△(△E1)]에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 변화량 [△(△E1)]이 0에 가까워짐에 따라 멤버십치(u91)가 커지는 산형의 함수로, 이 함수에 의해 최신의 변화량[△(△E1)]에 대응하는 멤버십치(u91)가 구해진다.
제28(b)도는 "포커스 영역의 △Wk의 절대치가 작다"는 룰(9)의 제2의 조건의 성립 정도를 나타내는 입력 변수(△Wk)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 제1 및 제2영역(A 및 B) 가운데 포커스 영역으로서 선택되어 있는 영역의 변화량(△Wk)(k = 1 또는 2)의 절대치가 작아짐에 따라 멤버십치(u92)가 커지는 산형 함수로, 이 함수에 의해 최신의 변화량(△Wk)에 대응하는 멤버십치(u92)가 구해진다.
제28도에 도시한 룰(9)은 제1영역(A)의 휘도의 콘트라스트와 포커스 영역의 초점 평가치가 모두 자동 포커스 동작 완료시부터 별로 변화하지 않은 경우를 고려하여 설정된 것이다. 즉, 이와 같은 경우에는 피사체에 변화가 생길 가능성이 적으므로 포커스 모터의 정지를 유지하기 쉽도록 결론부(h9)는 h9= 0.0으로 설정되어 있다.
[룰 10]은 제29(a)도 및 제29(b)도에 도시한 바와 같은 멤버십 함수로 정의되어 있다. 제29(a)도 "△(△E1)이 정방향으로 크다"는 룰(10)의 제1의 조건의 성립 정도를 나타내는 입력 변수 [ ( E1)]에 대한 멤버십 함수이다. 즉, 이 멤버십 함수에 의해 최신의 변화량[△(△E1)]에 대응하는 멤버십치(u101)가 구해진다.
제29(b)도는 "포커스 영역의 Wk의 절대치가 작지 않다"는 룰(10)의 제2의 조건의 성립 정도를 나타내는 입력 변수(△Wk)(k =1 또는 2)에 대한 멤버십 함수이다. 즉, 이 멤버십 함수는 제1 및 제2의 영역(A 및 B) 가운데 포커스 영역으로서 선택되어 있는 영역의 변화량(△Wk)의 절대치가 커짐에 따라 멤버십치(u102)가 커지는 곡형 함수로, 이 함수에 의해 최신의 변화량(△Wk)에 대응하는 멤버십치(u102)가 구해진다.
제29도에 도시한 룰(10)은 제1영역(A)의 휘도 콘트라스트가 증가하고, 또 포커스 영역의 초점 평가치에 변화가 있었던 경우를 고려하여 설정된 것이다. 즉, 이 경우에는 룰(8)에 비해 콘트라스트가 커진만큼 피사체에 변화가 생길 확률이 높기 때문에 포커스 모터가 재기동하기 쉽도록 결론부(h10)는 약간 높게 h10= 1.0으로 설정되어 있다.
그 다음에, 전술한 각 룰(7 내지 10)에 기초하여 포커스 모터의 재기동 결정을 위한 파라미터(H)를 산출하고, 이 파라미터(H)에 기초하여 포커스 모터를 재기동할 것인지의 여부의 결정을 하는 처리에 대해 제25도의 흐름도를 참조하여 설명한다.
먼저, 스텝(S300)에서, 전술한 바와 멤버십치(UIJ)(I, J : 정수)가 각각의 입력 변수에 대해 구해지면, 다음에 스텝(S301)에 있어서 각각의 룰마다 각각의 멤버십치 중 최소치(UIJ)가 각각의 룰의 성립도(UI)로서 산출된다. 예를 들어, 룰(7)에 대해 보면, 제26도에서 u71< u72이기 때문에, 성립도(u7)는 U7= u71로 된다. 또한, 룰(8)에 대해서는 제27도에서 u81> u82이기 때문에 성립도(U8)는 U8= u82로 된다. 또한, 룰(9)에 대해서는 제28도에서 u91<u92이기 때문에, 성립도(U9)는 U9=u91로 된다. 또한 룰(10)에 대해서는 제29도에서 u101> u102이기 때문에 성립도(U10)는 U10= u102로 된다.
그 다음에, 스텝(S302)에 대해 이와 같이 하여 얻어진 각각의 룰의 성립도(U1)에 기초하여 포커스 모터의 재기동 결정용의 파라미터(H)가 다음 식을 기초로 산출된다.
Figure kpo00004
이 식(3)은 각각의 룰의 성립도에서 결론부를 가중 평균하는 것을 의미한다.
그 다음에, 스텝(S303)에서는 전술한 식(3)에서 얻어진 파라미터(H)에 기초하여 포커스 모터를 재기동할 것인지의 여부가 결정된다. 구체적으로는 H ≥ 0.5이면, 포커스 모터 제어 회로(100)는 화면의 변화가 있었다고 판단하여 각종의 제어 신호를 발생하고, 이들에 의해 초기치 메모리(7 및 57), 최대치 메모리(6) 및 링 위치 메모리(13)를 리셋트하고, 일련의 등산 자동 포커스 동작을 최초부터 수정한다. 한편, H < 0.5이면, 포커스 모터 제어 회로(100)는 피사체에 변화가 없다고 판단하여 포커스 모터(3)의 정지 상태를 유지한다. 이와 같이 하여 상기 3가지 요인(데이타)을 고려하여 포커스 모터 제어 회로(100)에 의해 포커스 모터의 재기동에 관한 결정이 고정밀도로 행해지고, 따라서 피사체의 변화에 신속히 추종하는 자동 포커스 동작이 가능하게 된다.
상술한 바와 같이, 본 발명의 제2 실시예에 따르면, 소정의 영역 내의 휘도차에 따라서 자동 포커스 동작 완료 후의 피사체 변화를 그 초점 정합 상태에 관계없이 검출할 수 있으므로 자동 포커스 동작의 재기동을 적절히 결정할 수 있게 된다.
또한, 전술한 제1 및 제2의 실시예에 있어서, 촬상 화면 상의 영역 분할 형태와 각 퍼지 추론에 이용되는 룰 등은 예를 든 것으로 이것에 한정되는 것은 아니다. 또 이들 실시예의 동작은 마이크로 컴퓨터를 이용하여 소프트웨어적으로 실행할 수 있는 것은 물론이다.
본 발명은 상술한 실시예에 제한되는 것이 아니라, 첨부된 특허 청구의 범위 내에서 여러 가지로 변경 및 변화시킬 수 있다. 그러므로, 본 발명은 첨부된 특허 청구의 범위 내에서만 제한된다.

Claims (9)

  1. 포커스 렌즈(1)와 촬상 소자를 갖고 있는 촬상 수단으로부터 얻어지는 영상 신호에 기초하여, 피사체에 대한 초점의 자동 정합을 행하는 오토 포커스 장치에 있어서, 상기 촬상 소자에 대한 상기 포커스 렌즈의 광축 방향의 상대적인 위치를 변화시키는 상대 위치 변경 수단(2, 3), 상기 촬상 수단으로부터 얻어지는 영상 신호의 고역 성분 레벨을 검출하여 상기 피사체에 대한 초점 정합의 정도를 나타내는 초점 평가치로서 공급하는 초점 평가치 검출 수단(50), 및 상기 초점 평가치에 따라서 상기 포커스 렌즈의 상대적인 위치를 초점 정합 위치롤 이동시키도록 상기 상대 위치 변경 수단을 제어하는 제어 수단(100)을 포함하며, 상기 제어 수단에 의한 상기 상대 위치 변경 수단의 제어는 퍼지 추론을 이용하여 행해지며, 상기 초점 평가치 검출 수단이, 촬상 화면 상에 포커스 영역을 설정하는 수단, 및 상기 포커스 영역 내의 상기 영상 신호의 고역 성분을 추출하는 수단을 포함하는 것을 특징으로 하는 오토 포커스 장치.
  2. 제1항에 있어서, 상기 초점 평가치는 상기 포커스 렌즈의 상대 위치가 초점 정합 위치에 있을 때에 최대치를 취하는 초점 평가치인 것을 특징으로 하는 오토 포커스 장치.
  3. 제2항에 있어서, 상기 제어 수단은, 상기 초점 평가치가 최대치로 되는 위치에 상기 포커스 렌즈의 상대 위치를 일단 정지하도록 상기 상대 위치 변경 수단을 제어하는 수단(100), 상기 상대 위치의 정지 후 상기 초점 평가치의 변화에 기초하여 상기 피사체의 변화를 검출하는 피사체 변화 검출 수단(11, 12), 및 상기 피사체 변화 검출 수단에 의한 상기 피사체 변화의 검출에 따라 상기 상대 위치 변경 수단의 제어를 재개하는 수단(100)을 포함하는 것을 특징으로 하는 오토 포커스 장치.
  4. 포커스 렌즈(1)와 촬상 소자를 갖고 있는 촬상 수단으로부터 얻어지는 영상 신호에 기초하여 피사체에 대한 초점의 자동 정합을 행하는 오토 포커스 장치에 있어서, 상기 촬상 소자에 대한 상기 포커스 렌즈의 광축 방향의 상대적인 위치를 변화시키는 상대 위치 변경 수단(2, 3), 상기 촬상 수단으로부터 얻어지는 영상 신호의 고역 성분 레벨을 검출하여 상기 피사체에 대한 초점 정합의 정도를 나타내는 초점 평가치로서 공급하는 초점 평가치 검출 수단(50), 및 상기 초점 평가치에 따라 상기 포커스 렌즈의 상대적인 위치를 초점 정합 위치로 이동시키도록 상기 상대 위치 변경 수단을 제어하는 제어 수단(100)을 포함하며, 상기 제어 수단에 의한 상기 상대 위치 변경 수단의 제어 개시시의 상기 포커스 렌즈의 상대 위치의 이동 방향 판정은 퍼지 추론을 이용하여 행해지고, 상기 초점 평가치 검출 수단이, 촬상 화면 상에 복수의 영역을 설정하는 수단(5a, 50b, 5f, 50f), 및 상기 복수의 영역 각각에서의 상기 영상 신호의 고역 성분을 추출하여 복수의 초점 평가치를 공급하는 수단(5c, 50c, 5h, 5d, 5e, 50g)을 포함하며, 상기 제어 수단은 상기 복수의 초점 평가치들 중 어느 한 평가치에 따라 상기 상대 위치 변경 수단을 제어하며, 상기 포커스 렌즈의 상대 위치의 이동 방향의 판정은 적어도 상기 복수의 초점 평가치를 입력 변수로 하고, 또 상기 이동 방향을 결론부로 하여 퍼지 추론을 행함으로써 이루어지는 것을 특징으로 하는 오토 포커스 장치.
  5. 제4항에 있어서, 상기 퍼지 추론은 상기 복수의 초점 평가치 각각의 제어 수단에 의한 제어 개시시의 초기치로부터의 변화량을 입력 변수로서 이용하는 것을 특징으로 하는 오토 포커스 장치.
  6. 포커스 렌즈(1)와 촬상 소자를 갖고 있는 촬상 수단으로부터 얻어지는 영상 신호에 기초하여 피사체에 대한 초점의 자동 정합을 행하는 오토 포커스 장치에 있어서, 상기 촬상 소자에 대한 상기 포커스 렌즈의 광축 방향의 상대적인 위치를 변화시키는 상대 위치 변경 수단(2, 3), 상기 촬상 수단으로부터 얻어지는 영상 신호의 고역 성분 레벨을 검출하여 상기 피사체에 대한 초점 정합의 정도를 나타내는 초점 평가치로서 공급하는 초점 평가치 검출 수단(50), 및 상기 초점 평가치에 따라 상기 포커스 렌즈의 상대적인 위치를 초점 정합 위치로 이동시키도록 상기 상대 위치 변경 수단을 제어하는 제어 수단(100)을 포함하며, 상기 제어 수단에 의한 상기 상대 위치 변경 수단의 제어 개시시의 상기 포커스 렌즈의 상대 위치의 이동 방향의 판정은 퍼지 추론을 이용하여 행해지고, 상기 초점 평가치 검출 수단이, 촬상 화면 상에 복수의 영역을 설정하는 수단(5a, 50b, 5f, 50f), 상기 복수의 영역 각각에서의, 상기 영상 신호 중의 제1 고역 성분 레벨을 검출하여 상기 포커스 렌즈의 상대 위치에 대해 완만한 변화를 나타내는 복수의 제1초점 평가치로서 공급하는 수단(5c, 5h, 5d, 5e, 5f, 50f, 5g, 50g), 상기 복수의 영역 각각에서의, 상기 영상 신호 중의 상기 제1 고역 성분 레벨보다도 고역의 성분으로 이루어지는 제2 고역 성분 레벨을 검출하여 상기 포커스 렌즈의 상대 위치에 대해 급격한 변화를 나타내는 복수의 제2초점 평가치로서 공급하는 수단(50c, 5h, 5d, 5e, 5f, 50f, 5g, 50g)을 포함하며, 상기 영역 각각에서의 상기 제1 및 제2초점 평가치의 상대비를 산출하는 수단(25, 59)을 더 구비하며, 상기 포커스 렌즈의 위치의 이동 방향의 판정은, 상기 상대비의 어느 것을 입력 변수로 하고, 또 상기 이동 방향을 결론부로 하여 퍼지 추론을 행함으로써 이루어지는 것을 특징으로 하는 오토 포커스 장치.
  7. 포커스 렌즈(1)와 촬상 소자를 갖고 있는 촬상 수단으로부터 얻어지는 영상 신호에 기초하여 피사체에 대한 초점의 자동 정합을 행하는 오토 포커스 장치에 있어서, 상기 촬상 소자에 대한 상기 포커스 렌즈의 광축 방향의 상대적인 위치를 변화시키는 상대 위치 변경 수단(2, 3), 상기 촬상 소자 수단으로부터 얻어지는 영상 신호의 고역 성분 레벨을 검출하여 상기 피사체에 대한 초점 정합의 정도를 나타내는 초점 평가치로서 공급하는 초점 평가치 검출 수단(50), 및 상기 초점 평가치에 따라 상기 포커스 렌즈의 상대적인 위치를 초점 정합 위치로 이동시키도록 상기 상대 위치 변경 수단을 제어하는 제어 수단(100)을 포함하며, 상기 제어 수단에 의한 상기 상대 위치 변경 수단의 제어 개시시의 상기 포커스 렌즈의 상대 위치의 이동 방향의 판정은 퍼지 추론을 이용하여 행해지고, 상기 초점 평가치 검출 수단이, 촬상 화면 상에 복수의 영역을 설정하는 수단(5a, 50b, 5f, 50f) 및 상기 복수의 영역 각각에서의 상기 영상 신호의 고역 성분을 추출하여 복수의 초점 평가치를 공급하는 수단(5c, 50c, 5h, 5d, 5e, 5g, 50g)을 포함하며, 상기 복수의 영역들 중의 어느 영역에서의 휘도의 콘트라스트를 검출하는 수단(66)을 더 구비하며, 상기 포커스 렌즈의 상대 위치의 이동 방향 판정은 상기 콘트라스트를 입력 변수로 하고, 또 상기 이동 방향을 결론부로 하여 퍼지 추론을 행함으로써 이루어지는 것을 특징으로 하는 오토 포커스 장치.
  8. 포커스 렌즈(1)와 촬상 소자를 갖고 있는 촬상 수단으로부터 얻어지는 영상 신호에 기초하여 피사체에 대한 초점의 자동 정합을 행하는 오토 포커스 장치에 있어서, 상기 촬상 소자에 대한 상기 포커스 렌즈의 광축 방향의 상대적인 위치를 변화시키는 상대 위치 변경 수단(2, 3), 촬상 화면 상에 복수의 영역을 설정하고, 각각의 영역에서의 상기 영상 신호의 고역 성분의 레벨을 검출하여 상기 피사체에 대한 초점 정합의 정도를 나타내는 복수의 초점 평가치로서 공급하는 초점 평가치 검출 수단(50), 상기 복수의 영역들 중 어느 하나를 포커스 영역으로서 선택하는 수단(20, 100), 및 상기 선택된 포커스 영역의 초점 평가치에 따라 전술한 포커스 렌즈의 상대적인 위치를 초점 정합 위치로 이동시키도록 상기 상대 위치 변경 수단을 제어하는 제어 수단(100)을 포함하며, 상기 복수의 영역들 중의 어느 영역에서 휘도의 콘트라스트를 검출하는 수단(66)을 더 구비하며, 상기 선택 수단에 의한 포커스 영역의 선택은 상기 콘트라스트를 입력 변수로 하고, 또 포커스 영역을 결론부로 하여 퍼지 추론을 행함으로써 이루어지는 것을 특징으로 하는 오토 포커스 장치.
  9. 포커스 렌즈(1)와 촬상 소자를 갖고 있는 촬상 수단으로부터 얻어지는 영상 신호에 기초하여 피사체에 대한 초점의 자동 정합을 행하는 오토 포커스 장치에 있어서, 상기 촬상 소자에 대한 상기 포커스 렌즈의 광축 방향의 상대적인 위치를 변화시키는 상대 위치 변경 수단(2, 3), 촬상 화면 상에 복수의 영역을 설정하고, 각각의 영역에서의 상기 영상 신호의 고역 성분의 레벨을 검출하여 상기 피사체에 대한 초점 정합의 정도를 나타내는 복수의 초점 평가치로서 공급하는 초점 평가치 검출 수단(50), 상기 복수의 영역들 중 어느 하나를 포커스 영역으로서 선택하는 수단(20, 100), 및 상기 선택된 포커스 영역의 초점 평가치에 따라 전술한 포커스 렌즈의 상대적인 위치를 초점 정합 위치로 이동시키도록 상기 상대 위치 변경 수단을 제어하는 제어 수단(100)을 포함하며, 상기 촬상 화면 전체의 평균 휘도를 검출하는 수단(65)을 더 구비하며, 상기 선택 수단에 의한 포커스 영역의 선택은, 상기 평균 휘도를 입력 변수로 하고, 또 포커스 영역을 결론부로 하여 퍼지 추론을 행함으로써 이루어지는 것을 특징으로 하는 오토 포커스 장치.
KR1019910003222A 1990-02-28 1991-02-27 영상 신호에 기초하여 촛점의 자동 정합을 행하는 오토 포커스 장치 KR100221518B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2-47916 1990-02-28
JP2047916A JP2680715B2 (ja) 1990-02-28 1990-02-28 オートフォーカスカメラ
JP2-67521 1990-03-16
JP2067521A JP2517432B2 (ja) 1990-03-16 1990-03-16 オ―トフォ―カス装置

Publications (2)

Publication Number Publication Date
KR920000194A KR920000194A (ko) 1992-01-10
KR100221518B1 true KR100221518B1 (ko) 1999-09-15

Family

ID=26388123

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910003222A KR100221518B1 (ko) 1990-02-28 1991-02-27 영상 신호에 기초하여 촛점의 자동 정합을 행하는 오토 포커스 장치

Country Status (4)

Country Link
US (2) US5319462A (ko)
EP (1) EP0444600B1 (ko)
KR (1) KR100221518B1 (ko)
DE (1) DE69127112T2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442615B1 (ko) 2008-07-31 2014-09-23 삼성전자주식회사 포커스 렌즈의 제어 방법, 상기 방법에 따라 작동하는포커스 렌즈의 제어 장치, 및 상기 방법을 기록한 기록매체
KR101593995B1 (ko) 2009-09-22 2016-02-15 삼성전자주식회사 자동 초점 조절 방법, 상기 방법을 기록한 기록 매체, 및 상기 방법을 실행하는 자동 초점 조절 장치

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432332A (en) * 1992-04-28 1995-07-11 Fuji Photo Optical Co., Ltd. Method of auto-focussing and system therefor
US6222588B1 (en) * 1993-05-28 2001-04-24 Canon Kabushiki Kaisha Automatic focus adjusting device with driving direction control
US6163340A (en) * 1995-03-27 2000-12-19 Canon Kabushiki Kaisha Automatic focus adjusting device
US6222587B1 (en) * 1995-06-14 2001-04-24 Sony Corporation Focus control method and video camera
US6005612A (en) * 1995-11-17 1999-12-21 Sanyo Electric Co., Ltd. Video camera with high speed mode
WO1997025812A1 (fr) * 1996-01-11 1997-07-17 Sony Corporation Dispositif et procede de reglage de la nettete
JP4149528B2 (ja) * 1996-01-17 2008-09-10 オリンパス株式会社 自動焦点検出装置
US6786420B1 (en) 1997-07-15 2004-09-07 Silverbrook Research Pty. Ltd. Data distribution mechanism in the form of ink dots on cards
US6618117B2 (en) 1997-07-12 2003-09-09 Silverbrook Research Pty Ltd Image sensing apparatus including a microcontroller
US6690419B1 (en) 1997-07-15 2004-02-10 Silverbrook Research Pty Ltd Utilising eye detection methods for image processing in a digital image camera
US6624848B1 (en) 1997-07-15 2003-09-23 Silverbrook Research Pty Ltd Cascading image modification using multiple digital cameras incorporating image processing
US7110024B1 (en) 1997-07-15 2006-09-19 Silverbrook Research Pty Ltd Digital camera system having motion deblurring means
US6879341B1 (en) 1997-07-15 2005-04-12 Silverbrook Research Pty Ltd Digital camera system containing a VLIW vector processor
US20040119829A1 (en) 1997-07-15 2004-06-24 Silverbrook Research Pty Ltd Printhead assembly for a print on demand digital camera system
US6657668B1 (en) * 1997-11-19 2003-12-02 Ricoh Company, Ltd. Method, system, and computer readable medium for controlling automatic focusing of a digital camera
AUPP702098A0 (en) 1998-11-09 1998-12-03 Silverbrook Research Pty Ltd Image creation method and apparatus (ART73)
JP2000292681A (ja) * 1999-04-06 2000-10-20 Canon Inc 焦点検出装置
AUPQ056099A0 (en) 1999-05-25 1999-06-17 Silverbrook Research Pty Ltd A method and apparatus (pprint01)
JP2001227914A (ja) * 2000-02-15 2001-08-24 Matsushita Electric Ind Co Ltd 物体監視装置
JP3666429B2 (ja) * 2001-09-03 2005-06-29 コニカミノルタフォトイメージング株式会社 オートフォーカス装置及び方法、並びにカメラ
US7184090B2 (en) * 2001-09-28 2007-02-27 Nikon Corporation Camera
JP4251312B2 (ja) * 2002-03-08 2009-04-08 日本電気株式会社 画像入力装置
KR101022476B1 (ko) * 2004-08-06 2011-03-15 삼성전자주식회사 디지털 촬영 장치에서의 자동 포커싱 방법, 및 이 방법을채용한 디지털 촬영 장치
JP4419085B2 (ja) * 2005-04-15 2010-02-24 ソニー株式会社 制御装置および方法、並びにプログラム
TWI285500B (en) * 2005-11-11 2007-08-11 Primax Electronics Ltd Auto focus method for digital camera
US8125560B1 (en) 2007-08-13 2012-02-28 Ambarella, Inc. System for topology based automatic focus
JP6278741B2 (ja) * 2014-02-27 2018-02-14 株式会社キーエンス 画像測定器
JP6290651B2 (ja) * 2014-02-27 2018-03-07 株式会社キーエンス 画像測定器
US9918004B2 (en) * 2015-02-06 2018-03-13 Panasonic Intellectual Property Management Co., Ltd. Camera body capable of driving an image sensor along an optical axis in response to a change in an optical state of an object image

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858505A (ja) * 1981-10-05 1983-04-07 Hitachi Ltd ビデオカメラのオ−トフオ−カス装置
US4531158A (en) * 1982-01-27 1985-07-23 Hitachi, Ltd. Automatic focusing system for video cameras
JPS59216380A (ja) * 1983-05-25 1984-12-06 Sony Corp ビデオカメラ
US4860243A (en) * 1984-03-23 1989-08-22 Omron Tateisi Electronics Co. Fuzzy logic semifinished integrated circuit
JPH028456Y2 (ko) * 1984-10-26 1990-02-28
JPS61105978A (ja) * 1984-10-30 1986-05-24 Sanyo Electric Co Ltd オ−トフオ−カス回路
JPH0771209B2 (ja) * 1986-06-13 1995-07-31 三洋電機株式会社 オ−トフォ−カス回路
JP2535845B2 (ja) * 1986-10-08 1996-09-18 キヤノン株式会社 自動合焦装置
US4841370A (en) * 1986-11-17 1989-06-20 Sanyo Electric Co., Ltd. Automatic focusing circuit for automatically matching focus in response to video signal
US4843476A (en) * 1986-11-25 1989-06-27 Matsushita Electric Industrial Co., Ltd. System for controlling the amount of light reaching an image pick-up apparatus based on a brightness/darkness ratio weighing
JPH0644806B2 (ja) * 1987-02-18 1994-06-08 三洋電機株式会社 オ−トフオ−カス回路
KR940011885B1 (ko) * 1987-02-18 1994-12-27 상요덴기 가부시기가이샤 영상 신호에 기인해서 초점의 자동 정합을 행하는 오토포커스 회로
GB8711094D0 (en) * 1987-05-11 1987-06-17 Ecc Int Ltd Natural calcium carbonate ores
US4922346A (en) * 1987-06-30 1990-05-01 Sanyo Electric Co., Ltd. Automatic focusing apparatus having a variable focusing speed and particularly suited for use with interlaced scanning
JPS6444430A (en) * 1987-08-12 1989-02-16 Canon Kk Image inputting device
US4833541A (en) * 1987-09-07 1989-05-23 Sanyo Electric Co., Ltd. Image sensing apparatus having function of automatically matching focus and exposure in response to video signal
GB2211324B (en) * 1987-10-16 1992-01-15 Mitsubishi Electric Corp Fuzzy inference apparatus
DE68914712T2 (de) * 1988-05-11 1994-10-13 Sanyo Electric Co Bildsensorapparat mit einer automatischen Fokussiereinrichtung für automatische Fokusanpassung in Abhängigkeit von Videosignalen.
EP0341695B1 (en) * 1988-05-11 1994-03-23 Sanyo Electric Co., Ltd. Image sensing apparatus having automatic focusing function of automatically matching focus in response to video signal
US4969045A (en) * 1988-05-20 1990-11-06 Sanyo Electric Co., Ltd. Image sensing apparatus having automatic iris function of automatically adjusting exposure in response to video signal
US4920420A (en) * 1988-11-10 1990-04-24 Hitachi, Ltd. Automatic focusing system
US5083150A (en) * 1989-03-03 1992-01-21 Olympus Optical Co., Ltd. Automatic focusing apparatus
JP2774819B2 (ja) * 1989-06-15 1998-07-09 オリンパス光学工業株式会社 カメラ
DE69030345T2 (de) * 1989-09-10 1997-08-21 Canon Kk Automatisches Fokussierungsverfahren
JP2974339B2 (ja) * 1989-09-20 1999-11-10 キヤノン株式会社 自動焦点調節装置
US5084754A (en) * 1989-09-20 1992-01-28 Sony Corporation Method and apparatus for effecting fuzzy control of an imaging device
US5223921A (en) * 1990-04-27 1993-06-29 Sanyo Electric Co., Ltd. White balance adjusting apparatus for automatically adjusting white balance on the basis of a color information signal obtained from an image-sensing device
JP3204664B2 (ja) * 1990-09-17 2001-09-04 オリンパス光学工業株式会社 モータの駆動制御装置
JP2728317B2 (ja) * 1991-02-07 1998-03-18 キヤノン株式会社 レンズ位置調整装置を有する光学機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442615B1 (ko) 2008-07-31 2014-09-23 삼성전자주식회사 포커스 렌즈의 제어 방법, 상기 방법에 따라 작동하는포커스 렌즈의 제어 장치, 및 상기 방법을 기록한 기록매체
KR101593995B1 (ko) 2009-09-22 2016-02-15 삼성전자주식회사 자동 초점 조절 방법, 상기 방법을 기록한 기록 매체, 및 상기 방법을 실행하는 자동 초점 조절 장치

Also Published As

Publication number Publication date
DE69127112D1 (de) 1997-09-11
EP0444600B1 (en) 1997-08-06
US5361095A (en) 1994-11-01
EP0444600A3 (en) 1992-07-29
KR920000194A (ko) 1992-01-10
DE69127112T2 (de) 1998-03-05
US5319462A (en) 1994-06-07
EP0444600A2 (en) 1991-09-04

Similar Documents

Publication Publication Date Title
KR100221518B1 (ko) 영상 신호에 기초하여 촛점의 자동 정합을 행하는 오토 포커스 장치
US6236431B1 (en) Video camera apparatus with distance measurement area adjusted based on electronic magnification
EP0630153B1 (en) Automatic focusing apparatus for automatically matching focus in response to video signal
EP0447913B1 (en) Lens control system
JPH06201973A (ja) 自動ズーミングによる被写体追跡方法及びその装置
US8502912B2 (en) Focusing apparatus and method for controlling the same
US6721013B1 (en) Automatic focusing apparatus
CN106470317B (zh) 摄像设备及其控制方法
JP2963006B2 (ja) カメラ装置
EP0434981B1 (en) Automatic focusing apparatus for automatically matching focus in response to video signal
US4833541A (en) Image sensing apparatus having function of automatically matching focus and exposure in response to video signal
US20090273703A1 (en) Auto-focusing device
US5402175A (en) Automatic focusing device wherein lens movement is controlled in accordance with lens hunting
JP3535603B2 (ja) 自動焦点調節装置
JP2708924B2 (ja) オートフォーカスビデオカメラ
JP3096828B2 (ja) カメラ
JP3513180B2 (ja) 撮像装置
JP2517432B2 (ja) オ―トフォ―カス装置
JP2680715B2 (ja) オートフォーカスカメラ
JP2648046B2 (ja) オートフォーカスカメラ
JPH0746455A (ja) ビデオカメラ
JPH06339059A (ja) 自動焦点調節装置
JP3213477B2 (ja) オートフォーカスビデオカメラ
JP3191885B2 (ja) 自動合焦装置
JP2834784B2 (ja) オートフォーカスカメラ

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090623

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee