JPWO2021243928A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2021243928A5
JPWO2021243928A5 JP2022521167A JP2022521167A JPWO2021243928A5 JP WO2021243928 A5 JPWO2021243928 A5 JP WO2021243928A5 JP 2022521167 A JP2022521167 A JP 2022521167A JP 2022521167 A JP2022521167 A JP 2022521167A JP WO2021243928 A5 JPWO2021243928 A5 JP WO2021243928A5
Authority
JP
Japan
Prior art keywords
weight
parts
mixing
positive electrode
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022521167A
Other languages
English (en)
Other versions
JP2022554075A (ja
JP7352019B2 (ja
Publication date
Priority claimed from CN202010485860.4A external-priority patent/CN113764629A/zh
Application filed filed Critical
Publication of JP2022554075A publication Critical patent/JP2022554075A/ja
Publication of JPWO2021243928A5 publication Critical patent/JPWO2021243928A5/ja
Application granted granted Critical
Publication of JP7352019B2 publication Critical patent/JP7352019B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【要約】
本開示はリチウムイオン電池に用いられる正極材料を提供しており、該正極材料は、ベース粒子と、前記ベース粒子に被覆された第1の被覆層と、前記第1の被覆層に被覆された第2の被覆層とを含み、前記ベース粒子はLiNiMnCo1-x-y-zを含み、前記第1の被覆層はコバルト酸リチウムを含み、前記第2の被覆層は遷移金属の酸化物を含む。
【選択図】なし

Description

本開示は材料の分野に関し、例えば、リチウムイオン電池に用いられる正極材料及びその製造方法並びにリチウムイオン電池に関する。
リチウムイオン電池は、エネルギー密度が高く、サイクル性能がよいなどの利点を有するため、電子製品、自動車、航空宇宙などのさまざまな分野で広く適用されている。研究者は、高ニッケル正極材料が高容量、低価格の利点を有し、LiCoO正極材料に徐々に取って代わっていることを発見したが、高ニッケル正極材料はサイクル性能が悪く、ニッケル含有量が高すぎると、サイクル性能及び安全性能が大幅に低下することにつながる。層状構造をうまく形成するために、合成過程で過剰なリチウム源を投入する必要があり、合成後にLiOという未反応の酸化リチウムが生成し、この未反応の酸化リチウムは空気中の水と二酸化炭素などと反応してLiOH、LiCOを形成し、正極材料の表面に残る。高ニッケル正極材料の表面に残留したアルカリ性不純物が大幅に増加すると、リチウムイオン電池の充放電過程におけるガス発生の問題が厳しく、これにより電池の膨張と変形、サイクル貯蔵寿命の短縮、及び潜在的な安全上の問題が発生する。したがって、高ニッケル正極材料の表面の高い残留アルカリ含有量は、高エネルギー密度の動力電池への適用を制限する重要な要因の1つになっている。
現在、正極材料の表面の残留アルカリ含有量を低減する方法の1つは、金属酸化物、金属フッ化物などを用いて表面被覆層とすることである。例えば、CN111106328Aでは、コバルト及び第2族元素、第12族元素、第13族元素、又はそれらの組合せを含む金属酸化物を用いて被覆層とし、CN109428074Aでは、スピネル結晶構造を有するリチウムコバルト複合酸化物を用いて被覆層とし、CN106953070A及びCN105280893Aでは、導電性材料(炭素含有材料、インジウムスズ酸化物、RuO及びZnO)、金属酸化物、及び無機フッ化物を用いて被覆層とする。
しかし、従来の表面被覆層を有する高ニッケル正極材料の電気化学的性能は依然として望ましくない。
以下、本明細書で詳細に説明される課題の概要である。本概要は特許請求の保護範囲を限定するためのものではない。
本開示は、リチウムイオン電池に用いられる正極材料及びその製造方法並びにリチウムイオン電池を提供する。
本開示は、一実施例においてリチウムイオン電池に用いられる正極材料を提供しており、該正極材料は、ベース粒子と、前記ベース粒子に被覆された第1の被覆層と、前記第1の被覆層に被覆された第2の被覆層とを含み、前記ベース粒子はLiNiMnCo1-x-y-zを含み、ただし、0.80≦x≦0.90、0.02≦y≦0.05、0.05≦z≦0.1、MはMg、Ba、B、Al、Si、P、Ti、Zr、Nbの少なくとも一種であり、前記第1の被覆層はコバルト酸リチウムを含み、前記第2の被覆層は遷移金属の酸化物を含む。
一実施例において、前記ベース粒子の100重量部に対して、前記第1の被覆層の含有量は0.1~1.5重量部であり、第1の被覆層で被覆されたベース粒子の100重量部に対して、前記第2の被覆層の含有量は0.1~1.0重量部である。
一実施例において、前記ベース粒子の100重量部に対して、前記第1の被覆層の含有量は0.3~0.9重量部であり、第1の被覆層で被覆されたベース粒子の100重量部に対して、前記第2の被覆層の含有量は0.3~0.6重量部であり、前記第1の被覆層と前記第2の被覆層の合計厚みは0.1~500nmであり、一実施例において1~200nmである。
一実施例において、前記ベース粒子は単結晶粒子及び多結晶粒子の少なくとも1つである。
一実施例において、前記単結晶粒子の粒径は0.1~5μmである。
一実施例において、前記単結晶粒子の粒径は2~3μmである。
一実施例において、前記多結晶粒子の粒径は5~15μmである。
一実施例において、前記多結晶粒子の粒径は6~12μmである。
一実施例において、前記遷移金属はルテニウム、ロジウム、パラジウム、銅及びモリブデンなどの少なくとも一種である。
一実施例において、一実施例においてルテニウムである。
一実施例において、前記遷移金属を含有する酸化物はナノ酸化ルテニウムであり、前記ナノ酸化ルテニウムの粒径は10~50nmである。
一実施例において、前記正極材料の比表面積は0.3~1.5m/gである。
一実施例において、前記正極材料の比表面積は0.35~0.7m/gである。
本開示は、一実施例においてリチウムイオン電池に用いられる正極材料を製造する方法を提供しており、前記方法は、
ベース粒子を第1の被覆剤と第2の混合を行い、第2の混合材料を得るS1と、
前記第2の混合材料を第2の被覆剤と第3の混合を行い、第3の混合材料を得るS2と、
前記第3の混合材料に対して第2の焼成を行うS3とを含み、
前記ベース粒子はLiNiMnCo1-x-y-zを含み、ただし、0.80≦x≦0.90、0.02≦y≦0.05、0.05≦z≦0.1、MはMg、Ba、B、Al、Si、P、Ti、Zr、Nbの少なくとも一種であり、前記第1の被覆剤はCo(OH)、Co、Co、CoO及びCoCOの少なくとも一種を含み、前記第2の被覆剤は遷移金属の酸化物を含む。
一実施例において、前記ベース粒子の100重量部に対して、コバルトの量で、前記第1の被覆剤の使用量は0.1~1.5重量部であり、前記第2の混合材料の100重量部に対して、前記第2の被覆剤の使用量は0.1~1.0重量部である。
一実施例において、前記ベース粒子の100重量部に対して、前記第1の被覆剤の使用量は0.3~0.9重量部であり、前記第2の混合材料の100重量部に対して、前記第2の被覆剤の使用量は0.3~0.6重量部である。
一実施例において、ステップS1において、前記第2の混合の条件は、混合に使用される機器が高速ミキサーであり、混合の回転速度が2000~3000rpm、混合の温度が20~30℃、混合の時間が15~30分であることを含み、
ステップS2において、前記第3の混合の条件は、混合に使用される機器が高速ミキサーであり、混合の回転速度が2000~3000rpm、混合の温度が20~30℃、混合の時間が15~30分であることを含み、
ステップS3において、前記第2の焼成の条件は、温度が450~650℃であり、時間が4~15時間であり、焼却の雰囲気が20~100体積%を含む酸素含有雰囲気であることを含む。
一実施例において、前記ベース粒子は単結晶粒子及び多結晶粒子の少なくとも一種である。
一実施例において、前記単結晶粒子の粒径は0.1~5μmである。
一実施例において、前記単結晶粒子の粒径は2~3μmである。
一実施例において、前記多結晶粒子の粒径は5~15μmである。
一実施例において、前記多結晶粒子の粒径は6~12μmである。
一実施例において、前記第2の被覆剤における遷移金属の酸化物中の遷移金属は、ルテニウム、ロジウム、パラジウム、銅及びモリブデンなどの少なくとも一種である。
一実施例において、前記第2の被覆剤における遷移金属の酸化物中の遷移金属は、ルテニウムである。
一実施例において、前記第2の被覆剤はナノ酸化ルテニウムを含み、前記ナノ酸化ルテニウムの粒径は10~50nmである。
一実施例において、前記方法は第2の焼成により得られた材料を粉砕及び篩分することをさらに含む。
一実施例において、篩分に使用されるメッシュの目数は300~400目である。
一実施例において、前記方法は、以下のステップで前記ベース粒子を製造することをさらに含み、
SS1は、リチウム源を前駆体と第1の混合を行い、第1の混合材料を得ることであり、
SS2は、前記第1の混合材料に対して第1の焼成を行い、且つ第1の焼成により得られた材料を粉砕及び篩分することである。
一実施例において、前記リチウム源は水酸化リチウムであり、前記前駆体にNiMnCo1-x-y-z(OH)を含み、ただし、0.80≦x≦0.90、0.02≦y≦0.05、0.05≦z≦0.1、MはMg、Ba、B、Al、Si、P、Ti、Zr、Nbの少なくとも一種である。
本開示は、一実施例においてリチウムイオン電池を提供しており、前記リチウムイオン電池は上記正極材料又は上記方法により製造された正極材料を含む。
本開示は、リチウムイオン電池に用いられる正極材料及びその製造方法を提供しており、前記リチウムイオン電池に用いられる正極材料は、効果的に、正極材料表面のアルカリ含有量を低減し、正極材料の比表面積を低減し、正極材料の熱安定性を向上させることにより、正極材料の構造安定性及び電気化学的性能を向上させることができる。
以下、具体的実施形態によって本開示の技術案をさらに説明する。
本開示は、一実施例においてリチウムイオン電池に用いられる正極材料を提供しており、該正極材料は、ベース粒子と、前記ベース粒子に被覆された第1の被覆層と、前記第1の被覆層に被覆された第2の被覆層とを含み、前記ベース粒子はLiNiMnCo1-x-y-zを含み、ただし、0.80≦x≦0.90、0.02≦y≦0.05、0.05≦z≦0.1、MはMg、Ba、B、Al、Si、P、Ti、Zr、Nbの少なくとも一種であり、前記第1の被覆層はコバルト酸リチウムを含み、前記第2の被覆層は遷移金属の酸化物を含む。本開示に係るリチウムイオン電池に用いられる正極材料は、効果的に、正極材料表面のアルカリ含有量を低減し、正極材料の比表面積を低減し、正極材料の熱安定性を向上させることにより、正極材料の構造安定性及び電気化学的性能を向上させることができる。
一実施例において、前記ベース粒子の100重量部に対して、前記第1の被覆層の含有量は0.1~1.5重量部であってもよく、第1の被覆層で被覆されたベース粒子の100重量部に対して、前記第2の被覆層の含有量は0.1~1.0重量部であってもよく、一実施例において、前記ベース粒子の100重量部に対して、前記第1の被覆層の含有量は0.3~0.9重量部であってもよく、第1の被覆層で被覆されたベース粒子の100重量部に対して、前記第2の被覆層の含有量は0.3~0.6重量部であってもよく、前記第1の被覆層と前記第2の被覆層の合計厚みは0.1~500nmであってもよく、一実施例において1~200nmである。
一実施例において、前記ベース粒子は単結晶粒子及び多結晶粒子の少なくとも一種であってもよい。
一実施例において、前記単結晶粒子の粒径は0.1~5μmであってもよい。
一実施例において、前記単結晶粒子の粒径は2~3μmである。
一実施例において、前記多結晶粒子の粒径は5~15μmであってもよい。
一実施例において6~12μmである。
一実施例において、前記遷移金属はルテニウム、ロジウム、パラジウム、銅及びモリブデンなどの少なくとも一種であってもよい。
一実施例において、前記遷移金属はルテニウムである。
一実施例において、前記遷移金属を含有する酸化物はナノ酸化ルテニウムであり、前記ナノ酸化ルテニウムの粒径は10~50nmである。
一実施例において、前記正極材料の比表面積は0.3~1.5m/gである。
一実施例において、前記正極材料の比表面積は0.35~0.7m/gである。
本開示は、一実施例においてリチウムイオン電池に用いられる正極材料を製造する方法を提供しており、該方法は、
ベース粒子を第1の被覆剤と第2の混合を行い、第2の混合材料を得るS1と、
前記第2の混合材料を第2の被覆剤と第3の混合を行い、第3の混合材料を得るS2と、
前記第3の混合材料に対して第2の焼成を行うS3とを含み、
前記ベース粒子はLiNiMnCo1-x-y-zを含み、ただし、0.80≦x≦0.90、0.02≦y≦0.05、0.05≦z≦0.1、MはMg、Ba、B、Al、Si、P、Ti、Zr、Nbの少なくとも一種であり、前記第1の被覆剤はCo(OH)、Co、Co、CoO及びCoCOの少なくとも一種を含み、前記第2の被覆剤は遷移金属の酸化物を含む。
一実施例において、コバルトを含む第1の被覆剤は、ベース粒子の表面の残留リチウムと反応でき、材料のベース粒子の表面の残留リチウム含有量を低減してベース粒子の容量を確保することができ、一方で水洗浄プロセスを排除し、コストを削減することができ、遷移金属を含む第2の被覆剤は、効果的に材料の比表面積を低減し、電解液と基材が界面で副反応を発生することを低減し、材料の熱安定性及び構造安定性を向上させることができる。
一実施例において、前記ベース粒子の100重量部に対して、前記第1の被覆剤の使用量は0.1~1.5重量部であってもよく、前記第2の混合材料の100重量部に対して、前記第2の被覆剤の使用量は0.1~1.0重量部であってもよく、一実施例において、前記ベース粒子の100重量部に対して、前記第1の被覆剤の使用量は0.3~0.9重量部であってもよく、前記第2の混合材料の100重量部に対して、前記第2の被覆剤の使用量は0.3~0.6重量部であってもよい。
一実施例において、ステップS1において、前記第2の混合の条件は、混合に使用される機器が高速ミキサーであり、混合の回転速度が2000~3000rpm、混合の温度が20~30℃、混合の時間が15~30分であることを含み、ステップS2において、前記第3の混合の条件は、混合に使用される機器が高速ミキサーであり、混合の回転速度が2000~3000rpm、混合の温度が20~30℃、混合の時間が15~30分であることを含み、ステップS3において、前記第2の焼成の条件は、温度が450~650℃であり、時間が4~15時間であり、焼却の雰囲気が20~100体積%を含む酸素含有雰囲気であることを含む。
一実施例において、前記ベース粒子は単結晶粒子及び多結晶粒子の少なくとも一種であってもよい。
一実施例において、前記単結晶粒子の粒径は0.1~5μmであってもよい。
一実施例において、前記単結晶粒子の粒径は2~3μmである。
一実施例において、前記多結晶粒子の粒径は5~15μmであってもよい。
一実施例において、前記多結晶粒子の粒径は6~12μmである。
一実施例において、前記第2の被覆剤における遷移金属の酸化物中の遷移金属は、ルテニウム、ロジウム、パラジウム、銅及びモリブデンなどの少なくとも一種であってもよい。
一実施例において、前記第2の被覆剤における遷移金属の酸化物中の遷移金属は、ルテニウムである。
一実施例において、前記第2の被覆剤はナノ酸化ルテニウムを含み、前記ナノ酸化ルテニウムの粒径は10~50nmであってもよい。
一実施例において、前記方法は、第2の焼成により得られた材料を粉砕及び篩分することをさらに含んでもよく、一実施例において、篩分に使用されるメッシュの目数は300~400目である。
一実施例において、前記方法は、以下のステップで前記ベース粒子を製造することをさらに含み、
SS1は、リチウム源を前駆体と第1の混合を行い、第1の混合材料を得ることであり、
SS2は、前記第1の混合材料に対して第1の焼成を行い、且つ第1の焼成により得られた材料を粉砕及び篩分することである。
一実施例において、前記リチウム源は水酸化リチウムであってもよく、前記前駆体にNiMnCo1-x-y-z(OH)含んでもよく、ただし、0.80≦x≦0.90、0.02≦y≦0.05、0.05≦z≦0.1、MはMg、Ba、B、Al、Si、P、Ti、Zr、Nbの少なくとも一種である。
本開示は、一実施例においてリチウムイオン電池を提供しており、該リチウムイオン電池は上記正極材料又は上記方法により製造された正極材料を含む。
本開示では、二層被覆された被覆層は比較的均一で完全であり、残留アルカリ含有量を低減でき、材料のガスの発生を抑制し、サイクルの安定性、安全性を向上させることに寄与し、正極材料の比表面積が著しく低減し、材料の比表面積の低減は、電解液と基材が界面で副反応を発生することを低減し、粒子の破損を減少し、熱安定性を向上させることに寄与する。
以下、実施例によって本開示をさらに詳細に説明するが、これは、本開示の技術案に対する制限を構成するものではない。実施例で使用される原材料はすべて商業的に入手可能である。
実施例1
前駆体のNiCoMnAl(OH)(a=0.88、b=0.06、c=0.03、d=0.03)とLiOHを1:1.03のモル比で混合して第1の混合材料を得て、第1の混合材料に対して第1の焼成を行い、且つ第1の焼成により得られた材料を冷却してから粉砕及び篩分を行い、ベース粒子を得た。そのうち、第1の焼成の条件は、酸素雰囲気下、840℃で8時間焼結した後に、750℃で6時間焼結することであった。
ベース粒子とCo(OH)を100:0.9の質量比で第2の混合を行い、第2の混合材料を得て、第2の混合材料とナノRuOを100:0.3の質量比で第3の混合を行い、第3の混合材料を得て、第3の混合材料に対して第2の焼成を行い、第2の焼成の生成物を冷却、粉砕、篩過して本実施例に係る正極材料を得た。そのうち、第2の混合の条件は、高速ミキサー機器を用いて、2000rpmの回転速度、25±5℃で15分間混合することであり、第3の混合の条件は、高速ミキサー機器を用いて、2000rpmの回転速度、25±5℃で15分間混合することであり、第2の焼成の条件は、酸素雰囲気下、600℃で10時間焼結することであった。
実施例2
本実施例に係る正極材料の製造方法は実施例1と同じであり、異なる点は、本実施例において第2の混合中のベース粒子とCo(OH)の質量比が100:0.2であり、第3の混合中の第2の混合材料とナノRuOの質量比が100:0.1であることにあった。
実施例3
本実施例に係る正極材料の製造方法は実施例1と同じであり、異なる点は、本実施例において第2の混合中のベース粒子とCo(OH)の質量比が100:0.3であり、第3の混合中の第2の混合材料とナノRuOの質量比が100:0.2であることにあった。
実施例4
本実施例に係る正極材料の製造方法は実施例1と同じであり、異なる点は、本実施例において第2の混合中のベース粒子とCo(OH)の質量比が100:0.7であり、第3の混合中の第2の混合材料とナノRuOの質量比が100:0.5であることにあった。
実施例5
本実施例に係る正極材料の製造方法は実施例1と同じであり、異なる点は次のとおりであった。本実施例において第2の混合中のベース粒子とCo(OH)の質量比が100:1.0であり、第3の混合中の第2の混合材料とナノRuOの質量比が100:0.7であり、第2の混合の条件は、高速ミキサー機器を用いて、2500rpmの回転速度、25±5℃で20分間混合することであり、第3の混合の条件は、高速ミキサー機器を用いて、2500rpmの回転速度、25±5℃で20分間混合することであり、第2の焼成の条件は、酸素雰囲気下、600℃で10時間焼結することであった。
実施例6
本実施例に係る正極材料の製造方法は実施例1と同じであり、異なる点は次のとおりであった。本実施例において第2の混合中のベース粒子とCo(OH)の質量比が100:1.2であり、第3の混合中の第2の混合材料とナノRuOの質量比が100:1.0であり、第2の混合の条件は、高速ミキサー機器を用いて、2500rpmの回転速度、25±5℃で20分間混合することであり、第3の混合の条件は、高速ミキサー機器を用いて、2500rpmの回転速度、25±5℃で20分間混合することであり、第2の焼成の条件は、酸素雰囲気下、600℃で10時間焼結することであった。
実施例7
本実施例に係る正極材料の製造方法は実施例1と同じであり、異なる点は、本実施例において前駆体がNiCoMnAl(OH)(a=0.90、b=0.07、c=0.02、d=0.03)であり、前駆体とLiOHを1:1.03のモル比で混合してベース粒子を製造することにあった。そのうち、第1の焼成の条件は、酸素雰囲気下、840℃で8時間焼結した後に、750℃で6時間焼結することであった。
ベース粒子とCo(OH)を100:0.9の質量比で第2の混合を行い、第2の混合材料を得て、第2の混合材料とナノRuOを100:0.3の質量比で第3の混合を行い、第3の混合材料を得て、第3の混合材料に対して第2の焼成を行い、第2の焼成の生成物を冷却、粉砕、篩過して本実施例に係る正極材料を得た。そのうち、第2の混合の条件は、高速ミキサー機器を用いて、2000rpmの回転速度、25±5℃で15分間混合することであり、第3の混合の条件は、高速ミキサー機器を用いて、2000rpmの回転速度、25±5℃で15分間混合することであり、第2の焼成の条件は、酸素雰囲気下、600℃で10時間焼結することであった。
比較例1
前駆体のNiCoMnAl(OH)(a=0.88、b=0.06、c=0.03、d=0.03)とLiOHを1:1.03のモル比で混合して第1の混合材料を得て、第1の混合材料に対して第1の焼成を行い、且つ第1の焼成により得られた材料を冷却してから粉砕及び篩分を行い、本比較例に係る正極材料を得た。そのうち、第1の焼成の条件は、酸素雰囲気下、840℃で8時間焼結した後に、750℃で6時間焼結することであった。
比較例2
前駆体のNiCoMnAl(OH)(a=0.88、b=0.06、c=0.03、d=0.03)とLiOHを1:1.03のモル比で混合して第1の混合材料を得て、第1の混合材料に対して第1の焼成を行い、且つ第1の焼成により得られた材料を冷却してから粉砕及び篩分を行い、ベース粒子を得た。そのうち、第1の焼成の条件は、酸素雰囲気下、840℃で8時間焼結した後に、750℃で6時間焼結することであった。
ベース粒子とCo(OH)を100:0.9の質量比で第2の混合を行い、第2の混合材料を得て、第2の混合材料に対して第2の焼成を行い、第2の焼成の生成物を冷却、粉砕、篩過して本比較例に係る正極材料を得た。そのうち、第2の混合の条件は、高速ミキサー機器を用いて、2000rpmの回転速度、25±5℃で15分間混合することであり、第2の焼成の条件は、酸素雰囲気下、600℃で10時間焼結することであった。
比較例3
前駆体のNiCoMnAl(OH)(a=0.88、b=0.06、c=0.03、d=0.03)とLiOHを1:1.03のモル比で混合して第1の混合材料を得て、第1の混合材料に対して第1の焼成を行い、且つ第1の焼成により得られた材料を冷却してから粉砕及び篩分を行い、ベース粒子を得た。そのうち、第1の焼成の条件は、酸素雰囲気下、840℃で8時間焼結した後に、750℃で6時間焼結することであった。
ベース粒子とナノRuOを100:0.3の質量比で第2の混合を行い、第2の混合材料を得て、第2の混合材料に対して第2の焼成を行い、第2の焼成の生成物を冷却、粉砕、篩過して本比較例に係る正極材料を得た。そのうち、第2の混合の条件は、高速ミキサー機器を用いて、2000rpmの回転速度、25±5℃で15分間混合することであり、第2の焼成の条件は、酸素雰囲気下、600℃で10時間焼結することであった。
テスト例1
実施例1~7及び比較例1~3で製造された正極材料におけるベース粒子の結晶形及び粒径、ベース粒子の100重量部に対する第1の被覆層の重量部、第1の被覆層で被覆されたベース粒子の100重量部に対する第2の被覆層の重量部、第1の被覆層と第2の被覆層の合計厚み及び正極材料の比表面積を測定し、具体的測定方法は、XRD(X線回折計)及びSEM(高解像度走査型電子顕微鏡)を用いて測定することであり、測定結果を表1に示した。
Figure 2021243928000001
表1から、被覆層の厚みは0.5~4.5nmの間にあることが分かった。
テスト例2
実施例1~7及び比較例1~3で製造された正極材料における残留アルカリ含有量(LiCO及びLiOH)及び正極材料の比表面積を測定し、テスト方法は、化学滴定分析及び比表面積分析であり、具体的結果を表2に示した。


Figure 2021243928000002
表2から、被覆された後に、正極材料の残留アルカリ含有量、比表面積は、いずれも比較例1よりも著しく低減したことが分かった。
テスト例3
実施例1~7及び比較例1~3で製造された正極材料をDSCテストし、テスト方法は、TG-熱重量分析であり、テスト結果を表3に示した。


Figure 2021243928000003
表3から、DSC温度値は、正極材料と電解液の反応の発熱ピーク温度であり、該値が高いほど、正極材料の熱安定性及び安全性がよいことが分かった。表のテストデータから、被覆された後に、正極材料の熱安定性は、いずれも比較例1よりも著しく向上したことが分かった。実施例7は正極材料におけるNi含有量が向上し、構造安定性が悪くなることを示した。本開示に係る二層被覆は、材料の構造安定性を向上させることにより寄与した。
テスト例4
実施例1~7及び比較例1~3で製造された正極材料により製造された正極材料層を用いて、製造された正極材料層、電解質及び負極片をプレスした後に電池を得た。実施例1~7及び比較例1~3で製造された電池10個をそれぞれ取り、Land電池テスト装置で、25℃でテストし、テスト電圧の範囲は2.7~4.3Vであった。電池を0.1Cの放電効率で充放電サイクルテストを行い、2サイクル後に1Cで50サイクルの充放電テストを行い、その後に0.1Cの充放電に回復して2サイクル後にテストを停止した。各グループの平均値を取り、電池の平均初回放電比容量、平均初回放電効率及び常温サイクルの保持率のデータを表4に示した。そのうち、電池の具体的製造手順は次のとおりであった。製造された四元正極材料、導電剤及び粘着剤を一定の比率でスラリーに調製し、アルミニウム箔に塗布し、真空乾燥及びロールプレスによって正極片に作成し、リチウム金属片を負極とし、電解液は濃度が1.15Mのヘキサフルオロリン酸リチウム(LiPF6)溶液を含み、溶媒はエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合溶媒であり、ECとDMCの体積比は1:1であり、ボタン電池を組み立った。
Figure 2021243928000004
表4から、本開示に係る二層被覆された正極材料の電気化学的性能は、いずれも比較例1に係る被覆されていない正極材料よりも優れており、比較例2及び3に係る単層被覆された正極材料よりも優れていることが分かった。そして、前記ベース粒子の100重量部に対して、前記第1の被覆層の含有量は0.1~1.5重量部であり、第1の被覆層で被覆されたベース粒子の100重量部に対して、前記第2の被覆層の含有量は0.1~1.0重量部である場合、前記正極材料の電気化学的性能はより良好であった。

Claims (32)

  1. ベース粒子と、前記ベース粒子に被覆された第1の被覆層と、前記第1の被覆層に被覆された第2の被覆層とを含み、
    前記ベース粒子はLiNiMnCo1-x-y-zを含み、ただし、0.80≦x≦0.90、0.02≦y≦0.05、0.05≦z≦0.1、MはMg、Ba、B、Al、Si、P、Ti、Zr、Nbの少なくとも一種であり、
    前記第1の被覆層はコバルト酸リチウムを含み、前記第2の被覆層は遷移金属の酸化物を含む、リチウムイオン電池に用いられる正極材料。
  2. 前記ベース粒子の100重量部に対して、前記第1の被覆層の含有量は0.1~1.5重量部であり、第1の被覆層で被覆されたベース粒子の100重量部に対して、前記第2の被覆層の含有量は0.1~1.0重量部である、請求項1に記載の正極材料。
  3. 前記ベース粒子の100重量部に対して、前記第1の被覆層の含有量は0.3~0.9重量部であり、第1の被覆層で被覆されたベース粒子の100重量部に対して、前記第2の被覆層の含有量は0.3~0.6重量部である、請求項2に記載の正極材料。
  4. 前記第1の被覆層と前記第2の被覆層の合計厚みは0.1~500nmである、請求項1~3のいずれか一項に記載の正極材料。
  5. 前記第1の被覆層と前記第2の被覆層の合計厚みは1~200nmである、請求項4に記載の正極材料。
  6. 前記ベース粒子は単結晶粒子及び多結晶粒子の少なくとも一種である、請求項1~5のいずれか一項に記載の正極材料。
  7. 前記単結晶粒子の粒径は0.1~5μmである、請求項6に記載の正極材料。
  8. 前記単結晶粒子の粒径は2~3μmである、請求項7に記載の正極材料。
  9. 前記多結晶粒子の粒径は5~15μmである、請求項6に記載の正極材料。
  10. 前記多結晶粒子の粒径は6~12μmである、請求項9に記載の正極材料。
  11. 前記遷移金属はルテニウム、ロジウム、パラジウム、銅及びモリブデンなどの少なくとも一種である、請求項1~10のいずれか一項に記載の正極材料。
  12. 前記遷移金属はルテニウムである、請求項11に記載の正極材料。
  13. 前記遷移金属を含有する酸化物はナノ酸化ルテニウムであり、前記ナノ酸化ルテニウムの粒径は10~50nmである、請求項1~12のいずれか一項に記載の正極材料。
  14. 前記正極材料の比表面積は0.3~1.5m/gである、請求項1~13のいずれか一項に記載の正極材料。
  15. 前記正極材料の比表面積は0.35~0.7m/gである、請求項14に記載の正極材料。
  16. 請求項1~15のいずれか一項に記載のリチウムイオン電池に用いられる正極材料を製造する方法であって、
    ベース粒子を第1の被覆剤と第2の混合を行い、第2の混合材料を得るS1と、
    前記第2の混合材料を第2の被覆剤と第3の混合を行い、第3の混合材料を得るS2と、
    前記第3の混合材料に対して第2の焼成を行うS3とを含み、
    前記ベース粒子はLiNiMnCo1-x-y-zを含み、ただし、0.80≦x≦0.90、0.02≦y≦0.05、0.05≦z≦0.1、MはMg、Ba、B、Al、Si、P、Ti、Zr、Nbの少なくとも一種であり、
    前記第1の被覆剤はCo(OH)、Co、Co、CoO及びCoCOの少なくとも一種を含み、前記第2の被覆剤は遷移金属の酸化物を含む、方法。
  17. 前記ベース粒子の100重量部に対して、前記第1の被覆剤の使用量は0.1~1.5重量部であり、前記第2の混合材料の100重量部に対して、前記第2の被覆剤の使用量は0.1~1.0重量部である、請求項16に記載の方法。
  18. 前記ベース粒子の100重量部に対して、前記第1の被覆剤の使用量は0.3~0.9重量部であり、前記第2の混合材料の100重量部に対して、前記第2の被覆剤の使用量は0.3~0.6重量部である、請求項17に記載の方法。
  19. ステップS1において、前記第2の混合の条件は、混合に使用される機器が高速ミキサーであり、混合の回転速度が2000~3000rpm、混合の温度が20~30℃、混合の時間が15~30分であることを含み、
    ステップS2において、前記第3の混合の条件は、混合に使用される機器が高速ミキサーであり、混合の回転速度が2000~3000rpm、混合の温度が20~30℃、混合の時間が15~30分であることを含み、
    ステップS3において、前記第2の焼成の条件は、温度が450~650℃であり、時間が4~15時間であり、焼却の雰囲気が20~100体積%を含む酸素含有雰囲気であることを含む、請求項16~18のいずれか一項に記載の方法。
  20. 前記ベース粒子は単結晶粒子及び多結晶粒子の少なくとも一種である、請求項16~19のいずれか一項に記載の方法。
  21. 前記単結晶粒子の粒径は0.1~5μmである、請求項20に記載の方法。
  22. 前記単結晶粒子の粒径は2~3μmである、請求項21に記載の方法。
  23. 前記多結晶粒子の粒径は5~15μmである、請求項20に記載の方法。
  24. 前記多結晶粒子の粒径は6~12μmである、請求項23に記載の方法。
  25. 前記第2の被覆剤における遷移金属の酸化物中の遷移金属は、ルテニウム、ロジウム、パラジウム、銅及びモリブデンなどの少なくとも一種である、請求項16~24のいずれか一項に記載の方法。
  26. 前記第2の被覆剤における遷移金属の酸化物中の遷移金属は、ルテニウムである、請求項25のいずれか一項に記載の方法。
  27. 前記第2の被覆剤はナノ酸化ルテニウムを含み、前記ナノ酸化ルテニウムの粒径は10~50nmである、請求項16~26のいずれか一項に記載の方法。
  28. 第2の焼成により得られた材料を粉砕及び篩分することをさらに含む、請求項16~27のいずれか一項に記載の方法。
  29. 前記篩分に使用されるメッシュの目数は300~400目である、請求項28に記載の方法。
  30. 以下のステップで前記ベース粒子を製造することをさらに含み、
    SS1は、リチウム源を前駆体と第1の混合を行い、第1の混合材料を得ることであり、
    SS2は、前記第1の混合材料に対して第1の焼成を行い、且つ第1の焼成により得られた材料を粉砕及び篩分することである、請求項16~29のいずれか一項に記載の方法。
  31. 前記リチウム源は水酸化リチウムであり、前記前駆体にNiMnCo1-x-y-z(OH)を含み、ただし、0.80≦x≦0.90、0.02≦y≦0.05、0.05≦z≦0.1、MはMg、Ba、B、Al、Si、P、Ti、Zr、Nbの少なくとも一種である、請求項30に記載の方法。
  32. 請求項1~15のいずれか一項に記載の正極材料、又は請求項16~31のいずれか一項に記載の方法により製造された正極材料を含む、リチウムイオン電池。
JP2022521167A 2020-06-01 2020-10-27 リチウムイオン電池に用いられる正極材料及びその製造方法 Active JP7352019B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010485860.4 2020-06-01
CN202010485860.4A CN113764629A (zh) 2020-06-01 2020-06-01 一种用于锂离子电池的正极材料及其制备方法和锂离子电池
PCT/CN2020/123858 WO2021243928A1 (zh) 2020-06-01 2020-10-27 一种用于锂离子电池的正极材料及其制备方法和锂离子电池

Publications (3)

Publication Number Publication Date
JP2022554075A JP2022554075A (ja) 2022-12-28
JPWO2021243928A5 true JPWO2021243928A5 (ja) 2023-02-10
JP7352019B2 JP7352019B2 (ja) 2023-09-27

Family

ID=78782685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022521167A Active JP7352019B2 (ja) 2020-06-01 2020-10-27 リチウムイオン電池に用いられる正極材料及びその製造方法

Country Status (6)

Country Link
US (1) US20230026588A1 (ja)
EP (1) EP4024517A4 (ja)
JP (1) JP7352019B2 (ja)
KR (1) KR20220088914A (ja)
CN (1) CN113764629A (ja)
WO (1) WO2021243928A1 (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10044030B2 (en) 2014-07-18 2018-08-07 Samsung Electronics Co., Ltd. Composite positive electrode active material positive electrode including the same, and lithium battery including the positive electrode
JP2016033901A (ja) 2014-07-31 2016-03-10 ソニー株式会社 正極活物質、正極および電池
CN105185962B (zh) * 2015-08-31 2018-06-29 宁波容百新能源科技股份有限公司 一种高镍正极材料及其制备方法和锂离子电池
EP3163656B1 (en) 2015-10-28 2018-12-12 Samsung Electronics Co., Ltd. Composite positive electrode active material, positive electrode including the same, and lithium battery including the positive electrode
CN106532006A (zh) * 2016-12-16 2017-03-22 无锡晶石新型能源有限公司 一种氧化钴包覆三元正极材料的制备方法
KR101931874B1 (ko) * 2017-04-18 2018-12-21 서울과학기술대학교 산학협력단 표면 코팅된 양극 활물질의 제조방법
US11081693B2 (en) 2017-08-30 2021-08-03 Samsung Electronics Co., Ltd. Composite cathode active material, method of preparing the same, and cathode and lithium battery including the composite cathode active material
CN109037613B (zh) * 2018-07-04 2021-04-16 上海电气集团股份有限公司 二氧化钌包覆尖晶石富锂锰酸锂及其制备方法
KR102629462B1 (ko) * 2018-10-04 2024-01-26 삼성전자주식회사 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
KR20200046749A (ko) 2018-10-25 2020-05-07 삼성전자주식회사 복합양극활물질, 이를 포함한 양극, 리튬전지 및 그 제조 방법
CN110010889B (zh) * 2019-04-17 2021-09-07 贵州容百锂电材料有限公司 一种高压实高稳定性高镍正极材料及其制备方法以及一种锂离子电池
CN109980219B (zh) * 2019-04-19 2020-12-04 中南大学 全梯度镍钴锰正极材料、氧化钌包覆材料及其制备方法

Similar Documents

Publication Publication Date Title
CN111628157B (zh) 正极材料、其制备方法及锂离子电池
CN110931768B (zh) 一种高镍类单晶锂离子电池正极材料及制备方法
CN106532005B (zh) 球形或类球形锂电池正极材料、电池及制法和应用
JP7392132B2 (ja) コバルトフリー正極材料およびその調製方法
JP2022550265A (ja) コバルトフリー正極材料、その製造方法及びリチウムイオン電池
EP4024519A1 (en) Positive electrode material, preparation method therefor and lithium ion battery
EP4024523A1 (en) Gradient doped cobalt-free positive electrode material and preparation method therefor, lithium-ion battery positive electrode, and lithium battery
EP4227268A1 (en) Single-crystal high-nickel positive electrode material, preparation method therefor, and application thereof
CN110518209B (zh) 正极材料制备方法及制备的正极材料
CN113113590B (zh) 一种核壳结构的单晶正极材料及其制备方法
WO2023165130A1 (zh) 一种改性的单晶型高镍三元材料及其制备方法与应用
CN113871603A (zh) 一种高镍三元正极材料及其制备方法
CN114725371A (zh) 高镍单晶正极材料及其制备方法、锂离子电池与全固态电池
CN115036474A (zh) 一种正极材料及包括该正极材料的正极片和电池
CN114597378A (zh) 一种超高镍多晶正极材料及其制备方法和应用
CN114079047A (zh) 复合正极材料、正极极片及其制作方法、电池
CN113889617B (zh) 一种复合结构高锰基材料及其制备方法与应用
JP7352019B2 (ja) リチウムイオン電池に用いられる正極材料及びその製造方法
CN115995548A (zh) 钴酸锂正极材料及其制备方法
CN113716625A (zh) 大晶粒聚集体三元正极材料、其制备方法及锂离子电池
CN111634961A (zh) 锂离子电池用正极材料及其制备方法
JPWO2021243928A5 (ja)
CN111933929B (zh) 一种f掺杂的正极材料及其制备方法
WO2023206241A1 (zh) 正极材料及包括正极材料的电化学装置和电子装置
CN115472841A (zh) 一种正极活性材料及其制备方法、应用