JPWO2021106373A1 - モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置 - Google Patents

モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置 Download PDF

Info

Publication number
JPWO2021106373A1
JPWO2021106373A1 JP2021504474A JP2021504474A JPWO2021106373A1 JP WO2021106373 A1 JPWO2021106373 A1 JP WO2021106373A1 JP 2021504474 A JP2021504474 A JP 2021504474A JP 2021504474 A JP2021504474 A JP 2021504474A JP WO2021106373 A1 JPWO2021106373 A1 JP WO2021106373A1
Authority
JP
Japan
Prior art keywords
harmonic
phase
voltage command
command value
phase voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021504474A
Other languages
English (en)
Other versions
JP7107430B2 (ja
Inventor
康稔 三木
将宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Publication of JPWO2021106373A1 publication Critical patent/JPWO2021106373A1/ja
Application granted granted Critical
Publication of JP7107430B2 publication Critical patent/JP7107430B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/36Arrangements for braking or slowing; Four quadrant control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

モータ制御装置は、3相電圧指令値のうちデューティ比が最大となる最大相の電圧指令値及びデューティ比が最小となる最小相の電圧指令値の平均値に基づいて第1の3次高調波を演算する3次高調波演算部(60)と、3相電圧指令値の振幅を演算する振幅演算部(61)と、第1の3次高調波及び3相電圧指令値の振幅に基づいて第2の3次高調波に変換する3次高調波変換部(62、62’、63、65〜67)と、3相電圧指令値から第2の3次高調波を減じることにより3相電圧指令値を補正する補正部(64)を備える。

Description

本発明は、3相モータを制御するモータ制御装置、並びにこのモータ制御装置により制御される3相モータを備える電動アクチュエータ製品及び電動パワーステアリング装置に関する。
3相モータに印加する印加電圧の有効利用率を改善するために、3次高調波を3相電圧指令値に重畳する技術が知られている。
下記特許文献1の技術は、3相電圧指令値のうちデューティ比が最大となる最大相の電圧指令値及びデューティ比が最小となる最小相の電圧指令値の平均値を3次高調波として算出して、3相電圧指令値に重畳する。
下記特許文献2の技術は、3相電圧指令値がその振幅の√3/2倍を各々の相で超過した超過分を合成して3次高調波を生成し、3相電圧指令値に重畳する。
特許第3480843号明細書 特許第5532904号明細書
上記特許文献1のように3相電圧指令値の最大相及び最小相の電圧指令値の平均値を3次高調波として3相電圧指令値に重畳すると、重畳後の波形に生じる急変点のためにノイズが発生することがあった。
本発明は、上記課題に着目してなされたものであり、電圧利用率改善のために3相電圧指令値に重畳する3次高調波を、3相電圧指令値の最大相及び最小相の電圧指令値の平均値に応じて演算するモータ制御装置において、3次高調波が重畳された後の波形に生じる急変点が緩和されるように3次高調波を補正することを目的とする。
上記目的を達成するために、本発明の一態様によるモータ制御装置は、3相モータに印加する3相電圧指令値を演算する電圧指令値演算部と、3相電圧指令値のうちデューティ比が最大となる最大相の電圧指令値及びデューティ比が最小となる最小相の電圧指令値の平均値に基づいて第1の3次高調波を演算する3次高調波演算部と、3相電圧指令値の振幅を演算する振幅演算部と、第1の3次高調波及び3相電圧指令値の振幅に基づいて第1の3次高調波を第2の3次高調波に変換する変換部と、3相電圧指令値から第2の3次高調波を減じることにより3相電圧指令値を補正する補正部と、補正された3相電圧指令値に基づいて前記3相モータを駆動する駆動回路とを備える。
本発明の他の一形態によれば、上記のモータ制御装置と、モータ制御装置によって制御される3相モータと、を備える電動アクチュエータ製品が与えられる。
本発明の更なる他の一形態によれば、上記のモータ制御装置と、モータ制御装置によって制御される3相モータと、を備え、3相モータによって車両の操舵系に操舵補助力を付与する電動パワーステアリング装置が与えられる。
本発明によれば、電圧利用率改善のために3相電圧指令値に重畳する3次高調波を、3相電圧指令値の最大相及び最小相の電圧指令値の平均値に応じて演算するモータ制御装置において、3次高調波が重畳された後の波形に生じる急変点が緩和されるように3次高調波を補正できる。
実施形態の電動パワーステアリング装置の一例の概要を示す構成図である。 図1に記載したコントロールユニットの機能構成の一例を示すブロック図である。 図2に記載した指令値補正部の機能構成の一例を示すブロック図である。 図3Aに記載した3次高調波演算部の機能構成の一例を示すブロック図である。 図2に記載した指令値補正部の機能構成の他の一例を示すブロック図である。 3次高調波演算部が演算した3次高調波で補正した場合の3相電圧指令値の波形の説明図である。 3次高調波演算部が演算した3次高調波を補正した補正後3次高調波の説明図である。 3次高調波演算部が演算した3次高調波で補正した後の3相電圧指令値と、補正後3次高調波で補正した後の3相電圧指令値とを比較する図である。 3次高調波演算部が演算した3次高調波と、3相電圧指令値の振幅と、補正ゲインの関係の説明図である。 第1実施形態のゲイン演算部の機能構成の一例を示すブロック図である。 第1実施形態のモータ制御方法の一例のフローチャートである。 第2実施形態における補正後3次高調波の説明図である。
本発明の実施形態を、図面を参照しながら詳細に説明する。なお、以下に示す本発明の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の構成、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
(第1実施形態)
(構成)
実施形態の電動パワーステアリング装置の構成例を図1に示す。操向ハンドル1の操舵軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4A及び4B、ピニオンラック機構5を経て操向車輪のタイロッド6に連結されている。操舵軸2には、操向ハンドル1の操舵トルクを検出するトルクセンサ10が設けられており、操向ハンドル1の操舵力を補助する3相モータ20が減速ギア3を介して操舵軸2に連結されている。
パワーステアリング装置を制御するコントロールユニット(ECU)30には、電源であるバッテリ14から電力が供給されると共に、イグニションキー11からイグニションキー信号が入力され、コントロールユニット30は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Vhとに基づいて、アシストマップ等を用いてアシスト指令の操舵補助指令値の演算を行い、演算された操舵補助指令値に基づいて3相モータ20に供給する電流Iを制御する。
このような構成の電動パワーステアリング装置において、操向ハンドル1から伝達された運転手のハンドル操作による操舵トルクThをトルクセンサ10で検出し、検出された操舵トルクThや車速Vhに基づいて算出される操舵補助指令値によって3相モータ20は駆動制御され、この駆動が運転手のハンドル操作の補助力(操舵補助力)として操舵系に付与され、運転手は軽い力でハンドル操作を行うことができる。つまり、ハンドル操作によって出力された操舵トルクThと車速Vhから操舵補助指令値を算出し、この操舵補助指令値に基づき3相モータ20をどのように制御するかによって、ハンドル操作におけるフィーリングの善し悪しが決まり、電動パワーステアリング装置の性能が大きく左右される。
コントロールユニット30は、例えば、プロセッサと、記憶装置等の周辺部品とを含むコンピュータを備えてよい。プロセッサは、例えばCPU(Central Processing Unit)、やMPU(Micro-Processing Unit)であってよい。
記憶装置は、半導体記憶装置、磁気記憶装置及び光学記憶装置のいずれかを備えてよい。記憶装置は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。
なお、コントロールユニット30を、以下に説明する各情報処理を実行するための専用のハードウエアにより形成してもよい。
例えば、コントロールユニット30は、汎用の半導体集積回路中に設定される機能的な論理回路を備えてもよい。例えばコントロールユニット30はフィールド・プログラマブル・ゲート・アレイ(FPGA:Field-Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
図2を参照して、コントロールユニット30の機能構成の一例を説明する。コントロールユニット30は、電流指令値演算部40と、減算器41及び42と、比例積分(PI:Proportional-Integral)制御部43と、2相/3相変換部44と、指令値補正部45と、PWM制御部46と、インバータ47と、3相/2相変換部48と、角速度変換部49を備え、3相モータ20をベクトル制御で駆動する。なお、添付図面においてインバータを「INV」と表記する。
電流指令値演算部40、減算器41及び42、PI制御部43、2相/3相変換部44、指令値補正部45、PWM制御部46、インバータ47、3相/2相変換部48、並びに角速度変換部49の機能は、例えばコントロールユニット30のプロセッサが、記憶装置に格納されたコンピュータプログラムを実行することにより実現される。
電流指令値演算部40は、操舵トルクThと、車速Vhと、3相モータ20のモータ角度(回転角)θと、3相モータ20の回転角速度ωに基づいて3相モータ20に流すべきq軸電流指令値Iq0及びd軸電流指令値Id0を演算する。
一方で、3相モータ20のモータ電流ia、ib及びicはそれぞれ電流センサ50、51及び52で検出される。これら検出されたモータ電流ia、ib及びicは、3相/2相変換部48でd−q2軸の電流id、iqに変換される。
減算器41及び42は、フィードバックされた電流iq、idをq軸電流指令値Iq0及びd軸電流指令値Id0からそれぞれ減じることにより、q軸偏差電流Δq及びd軸偏差電流Δdを算出する。q軸偏差電流Δq及びd軸偏差電流Δdは、PI制御部43に入力される。
PI制御部43は、q軸偏差電流Δq及びd軸偏差電流Δdを各々0とするような電圧指令値vq、vdを算出する。2相/3相変換部44は、電圧指令値vd、vqを、3相モータ20のA相電圧指令値va0、B相電圧指令値vb0、C相電圧指令値vc0にそれぞれ変換する。
以下、A相電圧指令値、B相電圧指令値及びC相電圧指令値を総称して「3相電圧指令値」と表記することがある。
指令値補正部45は、3相電圧指令値va0、vb0及びvc0に対して、電圧利用率改善のための補正を行って、補正された3相電圧指令値va1、vb1及びvc1を出力する。指令値補正部45の構成及び動作の詳細は後述する。以下、3相電圧指令値va1、vb1及びvc1を「補正後3相電圧指令値va1、vb1及びvc1」と表記することがある。
PWM制御部46は、補正後3相電圧指令値va1、vb1及びvc1に基づいてPWM制御されたゲート信号を生成する。
インバータ47は、PWM制御部46で生成されたゲート信号によって駆動され、3相モータ20にはq軸偏差電流Δq及びd軸偏差電流Δdが0になるような電流が供給される。
回転角センサ53(例えばレゾルバ)は、3相モータ20のモータ角度(回転角)θを検出する。角速度変換部49は、モータ角度θの時間的変化に基づいて3相モータ20の回転角速度ωを算出する。これらモータ角度θ及び回転角速度ωは、電流指令値演算部40に入力されてベクトル制御に使用される。
次に図3Aを参照して、指令値補正部45の機能構成の一例を説明する。指令値補正部45は、電圧利用率改善のための3次高調波を演算する3次高調波演算部60を備える。
3次高調波演算部60は、3相電圧指令値va0、vb0及びvc0のうちデューティ比が最大となる最大相の電圧指令値及びデューティ比が最小となる最小相の電圧指令値の平均値に基づいて3次高調波thw1を演算する。
図3Bを参照して、3次高調波演算部60の機能構成の一例を説明する。3次高調波演算部60は、最大値選択部60aと、最小値選択部60bと、平均部60cを備える。
最大値選択部60aは、3相電圧指令値va0、vb0及びvc0のうちの最大値Max(va0,vb0,vc0)を選択する。最大値Max(va0,vb0,vc0)は、A相、B相及びC相のうちデューティ比が最大となる最大相の電圧指令値である。
最小値選択部60bは、3相電圧指令値va0、vb0及びvc0のうちの最小値Min(va0,vb0,vc0)を選択する。最小値Min(va0,vb0,vc0)は、A相、B相及びC相のうちデューティ比が最小となる最小相の電圧指令値である。
平均部60cは、最大値Max(va0,vb0,vc0)及び最小値Min(va0,vb0,vc0)の平均値を3次高調波thw1として出力する。
いま仮に、電圧利用率改善のために3次高調波thw1を3相電圧指令値va0、vb0及びvc0に重畳して(具体的には3相電圧指令値va0、vb0及びvc0から3次高調波thw1を減算して)、3相電圧指令値va0、vb0及びvc0を補正する場合を想定する。
図4を参照する。点線70、71及び72は、それぞれ補正前のA相、B相及びC相電圧指令値va0、vb0及びvc0の波形である。実線73は、3次高調波thw1の波形である。一点鎖線74、二点鎖線75及び破線76は、3相電圧指令値va0、vb0及びvc0に3次高調波thw1を重畳して得られる補正後のA相、B相及びC相の3相電圧指令値の波形である。
図示のとおり、補正後のA相の3相電圧指令値の波形74には、参照符号77で示すような急変点が現れる。B相及びC相の3相電圧指令値の波形75及び76も同様である。このような急変点はノイズの原因となる。
さらに、参照符号78で示すように、3相のうちの2相(例えばA相とC相)の電圧指令値の波形が交差する点におけるデューティ比が増加する。このように2相のデューティ比が同時に高くなると、下流シャント方式の電流検出が困難になることがある。
そこで、実施形態の指令値補正部45は、このような急変点77の発生を緩和し、または2相の電圧指令値の波形が交差する点78におけるデューティ比を低減するように、3次高調波thw1を補正する。
図5を参照する。第1実施形態の指令値補正部45では、3次高調波thw1が、実線79の波形を有する3次高調波thw2へ補正される。以下、3次高調波thw2を「補正後3次高調波thw2」と表記する。
ハッチングされた範囲は、3相電圧指令値の振幅Aの√3/2倍の値(A×√3/2)を、A相、B相及びC相電圧指令値va0、vb0及びvc0(点線70、71及び72)の大きさが各々超えた超過分を示す。
図示の通り、A相、B相及びC相電圧指令値va0、vb0及びvc0が(A×√3/2)を超える電気角範囲は60度ずつずれており、複数の相で同時に電圧指令値が(A×√3/2)を超えることはない。
例えば、図5の電気角0〜60度、180〜240度の範囲では、B相電圧指令値vb0(点線71)のみが(A×√3/2)を超えており、電気角60〜120度、240〜300度の範囲では、A相電圧指令値va0(点線70)のみが(A×√3/2)を超えており、電気角120〜180度、300〜360度の範囲では、C相電圧指令値vc0(点線72)のみが(A×√3/2)を超えている。
補正後3次高調波thw2(実線79)は、これら電気角60度ずつずれた幅60度の電気角範囲の各々において、異なる相(すなわちA相、B相及びC相)の電圧指令値が(A×√3/2)を超える超過分の各々を合成した(又は結合した)成分と等しい波形を有している。
このような補正後3次高調波thw2を3相電圧指令値va0、vb0及びvc0から減算することで、3相電圧指令値va0、vb0及びvc0が(A×√3/2)を超えていた範囲の波形(すなわち波形のピーク部分)を平坦にすることができる。
図6を参照する。実線80、81及び82は、それぞれA相、B相及びC相電圧指令値va0、vb0及びvc0(図5の点線70、71及び72)から補正後3次高調波thw2(実線79)を減算して得られる補正後のA相、B相及びC相電圧指令値の波形を示す。
一点鎖線74、二点鎖線75及び破線76は、図4と同様に、3A相、B相及びC相電圧指令値va0、vb0及びvc0から3次高調波thw1を減算して得られる補正後のA相、B相及びC相電圧指令値の波形を示す。
補正後3次高調波thw2で補正した電圧指令値の波形80、81及び82のピーク部分は平坦であり、3次高調波thw1で補正した電圧指令値の波形74、75及び76に現れていた急変点(例えば参照符号77)が発生しない。
また、補正後3次高調波thw2で補正した電圧指令値の波形80、81及び82のうち2相が交差する点(参照符号83の例ではA相及びC相の交差点)におけるデューティ比は、3次高調波thw1で補正した電圧指令値の波形74及び76が交差する点78におけるデューティ比よりも低減している。
このように、3次高調波thw1を補正後3次高調波thw2へ補正することにより、急変点の発生を緩和し、2相の電圧指令値の波形が交差する点におけるデューティ比を低減することができる。
図3Aを参照する。3次高調波thw1を補正後3次高調波thw2へ補正するために、指令値補正部45は、振幅演算部61と、ゲイン演算部62と、乗算器63を備える。
また、指令値補正部45は、3相電圧指令値va0、vb0及びvc0から補正後3次高調波thw2を減算して、補正後3相電圧指令値va1、vb1及びvc1を算出する減算器64を備える。
以下、振幅演算部61、ゲイン演算部62及び乗算器63による補正後3次高調波thw2の演算方法の概要を説明する。
図4に示した3次高調波thw1の波形73と図5に示した補正後3次高調波thw2の波形79のうち、電気角0〜30度の範囲の波形に着目する。
3相電圧指令値va0、vb0及びvc0のデューティの総和が0であることを利用すると、電気角0〜30度の範囲の3次高調波thw1は次式(1)で表現できる。
Figure 2021106373
上式(1)においてAは、上記の通り補正前の3相電圧指令値va0、vb0及びvc0の振幅である。
一方で、電気角0〜30度の範囲の補正後3次高調波thw2は次式(2)で与えられる。
Figure 2021106373
3次高調波thw1を補正後3次高調波thw2へ補正する補正ゲインGは、上式(1)と上式(2)との比(thw2/thw1)として次式(3)により算出できる。
Figure 2021106373
上式(1)をθについて解き上式(3)に代入すると、変数θを含まない次式(4)が得られる。
Figure 2021106373
上式(4)から、補正ゲインGは3相電圧指令値va0、vb0及びvc0の振幅Aと3次高調波thw1の関数であることが分かる。
振幅演算部61は、3相電圧指令値va0、vb0及びvc0の振幅Aを演算する。振幅演算部61は、例えば次式(5)にしたがって3相電圧指令値va0、vb0及びvc0の二乗和に基づいて振幅Aを演算してよい。
Figure 2021106373
振幅演算部61は、例えば次式(6)にしたがってq軸電圧指令値vq及びd軸電圧指令値vdの二乗和に基づいて振幅Aを演算してもよい。
Figure 2021106373
ゲイン演算部62は、3次高調波thw1と振幅Aとに基づいて補正ゲインGを演算する。ゲイン演算部62は、例えば上記計算式(4)を演算して補正ゲインGを求めてもよい。
また、ゲイン演算部62は、3次高調波thw1に比例するゲインを補正ゲインGとして演算してもよい。その理由を説明する。
図7を参照して3次高調波thw1と、振幅Aと、補正ゲインGの関係を説明する。図7は、振幅Aを所定振幅(例えば最大振幅)の0.01%から100%まで変化させた場合の、3次高調波thw1と補正ゲインGの関係を示すグラフである。
図7を見て分かるように、補正ゲインGは3次高調波thw1に対してほぼ線形に変化するので、補正ゲインGは3次高調波thw1の一次関数として近似できる。このため、ゲイン演算部62は、3次高調波thw1に比例するゲインを補正ゲインGとして算出できる。
また、図7の各グラフの近似1次直線を算出し、その勾配α=((Gの変化量ΔG)/(thw1の変化量Δthw1))と切片βとを算出すると、勾配αは振幅Aに反比例することが分かる。すなわち勾配α=定数C/Aが成立する。
したがって、定数Cと切片βを計算により予め求めておくことで、補正ゲインGの算出式(7)及び(8)が得られる。
勾配α=C/A …(7)
補正ゲインG=α×|thw1|+切片β…(8)
計算式(7)及び(8)は、3次高調波thw1を変数として補正ゲインGを演算する関数を線形近似する1次近似式である。
図8は、ゲイン演算部62の機能構成の一例を示すブロック図である。ゲイン演算部62は、計算式(7)及び(8)に基づいて補正ゲインGを演算する。ゲイン演算部62は、勾配演算部62aと、乗算器62bと、加算器62cを備える。
勾配演算部62aは、上式(7)に従って振幅Aに基づいて勾配αを演算する。乗算器62bと加算器62cは、上式(8)に従って勾配αと3次高調波thw1に基づいて補正ゲインGを演算する。
図3Aを参照する。乗算器63は、3次高調波thw1に補正ゲインGを乗算して補正後3次高調波thw2を演算する。減算器64は、3相電圧指令値va0、vb0及びvc0から補正後3次高調波thw2を減算して、補正後3相電圧指令値va1、vb1及びvc1を算出する。
図2のPWM制御部46は、補正後3相電圧指令値va1、vb1及びvc1に基づいてインバータ47を駆動し、3相モータ20にモータ電流を供給する。
コントロールユニット30は、特許請求の範囲に記載の「モータ制御装置」の一例である。電流指令値演算部40、減算器41及び42、PI制御部43並びに2相/3相変換部44は、特許請求の範囲に記載の「電圧指令値演算部」の一例である。
乗算器63は、特許請求の範囲に記載の「乗算部」の一例である。減算器64は、特許請求の範囲に記載の「補正部」の一例である。PWM制御部46とインバータ47は、特許請求の範囲に記載の「駆動回路」の一例である。
ゲイン演算部62及び乗算部63は特許請求の範囲に記載の「3次高調波変換部」の一例である。
3次高調波thw1は、特許請求の範囲に記載の「第1の3次高調波」の一例である。補正後3次高調波thw2は、特許請求の範囲に記載の「第2の3次高調波」の一例である。
(動作)
図9を参照して、第1実施形態のモータ制御装置によるモータ制御方法を説明する。
ステップS1においてトルクセンサ10は、操向ハンドル1の操舵トルクThを検出する。車速センサ12は、車両の車速Vhを検出する。
ステップS2において電流指令値演算部40は、少なくとも操舵トルクThと車速Vhに基づいて、3相モータ20に流すべきq軸電流指令値Iq0及びd軸電流指令値Id0を演算する。
ステップS3においてPI制御部43は、q軸電流指令値Iq0及びd軸電流指令値Id0と、フィードバックされたモータ電流iq及びidとの偏差Δq及びΔdに基づいて、電圧指令値vq、vdを算出する。2相/3相変換部44は、電圧指令値vd、vqを、3相電圧指令値va0、vb0、vc0に変換する。
ステップS4において指令値補正部45の3次高調波演算部60は、3相電圧指令値va0、vb0及びvc0のうちデューティ比が最大となる最大相の電圧指令値及びデューティ比が最小となる最小相の電圧指令値の平均値に基づいて3次高調波thw1を演算する。
ステップS5において振幅演算部61は、3相電圧指令値va0、vb0及びvc0の振幅Aを演算する。
ステップS6においてゲイン演算部62は、3次高調波thw1と振幅Aに基づいて補正ゲインGを演算する。
ステップS7において乗算器63は、3次高調波thw1に補正ゲインGを乗算して補正後3次高調波thw2を演算する。
ステップS8において減算器64は、補正後3次高調波thw2で3相電圧指令値va0、vb0及びvc0を補正して、補正後3相電圧指令値va1、vb1及びvc1を算出する。
ステップS9においてPWM制御部46及びインバータ47は、補正後3相電圧指令値va1、vb1及びvc1に基づいて3相モータ20を駆動する。
(変形例)
(1)上式(4)に代えて、式(2)を変形して得られる次式(9)に基づいて3次高調波thw2を求めてもよい。
Figure 2021106373
図3Cは、計算式(9)により3次高調波thw2を演算する指令値補正部45の機能構成の一例を示す。指令値補正部45は、3次高調波演算部60と、振幅演算部61と、ゲイン演算部62’と、乗算器63と、加算器65、定数部66と、乗算器67を備える。ゲイン演算部62’、乗算器63、加算器65、定数部66及び乗算器67は特許請求の範囲に記載の「3次高調波変換部」の一例である。ゲイン演算部62’は次式のゲインG’を演算する。
Figure 2021106373
(2)本実施形態の指令値補正部45は、3相電圧指令値va0、vb0及びvc0に高調波が含まれていても、この高調波に応じて上式(7)及び(8)の定数C及び切片βを適切に選択することで、補正後3相電圧指令値va1、vb1及びvc1の波形のピーク部分を良好に平坦化できる。
したがって、電流指令値演算部40、減算器41及び42、PI制御部43並びに2相/3相変換部44は、高調波を含んだ3相電圧指令値va0、vb0及びvc0を生成してもよい。
一方で上記特許文献2の技術は、3相電圧指令値が正弦波であることを前提として3相電圧指令値の補正値を算出しているため、3相電圧指令値va0、vb0及びvc0が高調波を含んでいる場合には適用できない。
(第1実施形態の効果)
(1)電流指令値演算部40、減算器41及び42、PI制御部43並びに2相/3相変換部44は、3相モータ20に印加する3相電圧指令値va0、vb0及びvc0を演算する。3次高調波演算部60は、3相電圧指令値va0、vb0及びvc0のうちデューティ比が最大となる最大相の電圧指令値及びデューティ比が最小となる最小相の電圧指令値の平均値に基づいて3次高調波thw1を演算する。振幅演算部61は、3相電圧指令値va0、vb0及びvc0の振幅Aを演算する。ゲイン演算部62は、3次高調波thw1及び振幅Aに基づいて補正ゲインGを演算する。
乗算器63は、3次高調波thw1に補正ゲインGを乗じることにより補正後3次高調波thw2を演算する。減算器64は、3相電圧指令値va0、vb0及びvc0から補正後3次高調波thw2を減じることにより3相電圧指令値va0、vb0及びvc0を補正して、補正後3相電圧指令値va1、vb1及びvc1を算出する。PWM制御部46及びインバータ47は、補正後3相電圧指令値va1、vb1及びvc1に基づいて3相モータ20を駆動する。
このように3次高調波thw1を補正後3次高調波thw2へ補正することにより、補正後3相電圧指令値va1、vb1及びvc1の波形に発生する急変点が緩和され、2相の電圧指令値の波形が交差する点におけるデューティ比が低くなる。
(2)補正後3次高調波thw2は、3相電圧指令値va0、vb0及びvc0が各々の相で振幅の√3/2倍を超えた超過分を合成した成分を有する3次高調波であってよい。このような補正後3次高調波thw2で補正することにより、補正後3相電圧指令値va1、vb1及びvc1の波形に発生する急変点が緩和され、2相の電圧指令値の波形が交差する点におけるデューティ比が低くなる。
(3)ゲイン演算部62は、3次高調波thw1に比例するゲインを補正ゲインGとして演算する。これにより補正後3次高調波thw2の演算が容易になる。
(4)3相電圧指令値va0、vb0及びvc0に高調波が含まれていても、3次高調波thw1と補正後3次高調波thw2との関係から変換式を求めておくことができる。高調波を含む3相電圧指令値に適した補正後3次高調波thw2を演算することができる。
(第2実施形態)
第1実施形態は、A相、B相及びC相電圧指令値va0、vb0及びvc0が振幅の√3/2倍を各々超えた超過分を合成した成分を有する3次高調波を、補正後3次高調波thw2として算出した。しかし、他の任意の3次高調波を補正後3次高調波thw2として算出してもよい。
例えば、第1実施形態の補正後3相電圧指令値va1、vb1及びvc1は、3次成分よりも高次の成分を含んでおり、電気角60度、120度、180度、240度、300度及び360度で高次成分が発生する。このため、インバータ47の周波数応答特性によっては高次成分に応答できず、実際の電圧波形に歪みが生じるおそれがある。
そこで、第2実施形態の指令値補正部45は、例えば3相電圧指令値va0、vb0及びvc0の基本周波数の3倍の周波数を有する正弦波又は余弦波の波形を有する補正後3次高調波thw2を算出する。
例えば、第2実施形態の指令値補正部45は、次式(10)で与えられる補正後3次高調波thw2を算出する。
Figure 2021106373
図10を参照して、上式(10)の補正後3次高調波thw2で3相電圧指令値を補正した後の波形と、3次高調波thw1で補正した後の波形を比較する。
実線90は、上式(10)によって算出された補正後3次高調波thw2の波形を示す。また、実線91、92及び93は、補正後3次高調波thw2(実線90)で補正した後の補正後のA相、B相及びC相電圧指令値の波形を示す。
一点鎖線74、二点鎖線75及び破線76は、図4と同様に、3次高調波thw1で補正した後の補正後のA相、B相及びC相電圧指令値の波形を示す。
上式(10)の補正後3次高調波thw2で補正した後の電圧指令値の波形91、92及び93のピーク部分は完全な平坦ではないが、3次高調波thw1で補正した電圧指令値の波形74、75及び76のような急変点は発生しない。
さらに、補正後の電圧指令値は、3相電圧指令値va0、vb0及びvc0に含まれていた基本波成分と、補正後3次高調波thw2に含まれている3次成分のみを含み、それ以上の高次成分を含まない。このため、3次成分よりも高次の成分により発生するデメリットを回避できる。
以下、上式(10)の補正後3次高調波thw2の算出方法の一例を説明する。3次高調波thw1を上式(10)の補正後3次高調波thw2へ補正する補正ゲインG=thw2/thw1は、次式(11)により算出できる。
Figure 2021106373
上式(1)をθについて解き上式(11)に代入すると、変数θを含まない次式(12)が得られる。
Figure 2021106373
すなわち、補正ゲインGは、3相電圧指令値va0、vb0及びvc0の振幅Aと3次高調波thw1の2次関数となる。この補正ゲインGは、3次高調波thw1の二乗値に比例する。
第2実施形態のゲイン演算部62は、上式(12)にしたがって振幅Aと3次高調波thw1に基づいて補正ゲインGを演算する。
なお、上式(10)により補正後3次高調波thw2を算出する場合と比較して、上式(12)により算出する場合には、3相電圧指令値va0、vb0及びvc0の位相情報θを用いずに補正後3次高調波thw2を算出できる利点がある。
例えば、インバータ47によって3相モータ20を駆動する場合には、電圧指令値の波形の位相を電流波形の位相よりも進める必要がある。また、弱め界磁制御を行う場合には印加電流の位相を進める必要がある。
このため、上式(10)により補正後3次高調波thw2を算出する場合には、進角量を考慮して位相θを算出する必要があるが、上式(12)により算出する場合には進角量に関わらずに補正後3次高調波thw2を算出できる。
なお、第1実施形態では、上式(4)に基づいて、又は上式(7)及び(8)に基づいて補正ゲインGを算出した。第2実施形態では、上式(12)に基づいて補正ゲインGを算出した。
これに代えて、指令値補正部45は、予めオフラインで計算した補正ゲインGを格納したテーブルと、振幅Aと3次高調波thw1に応じてテーブルから補正ゲインGを読み出すゲイン読出部を備えてもよい。
また、上式(10)は次式(13)のように変形できる。したがって、3次高調波thw1の3乗と16/(3A)との乗算値と3次高調波thw1の加算による変換によって補正後3次高調波thw2を求めてもよい。
Figure 2021106373
(第2実施形態の効果)
(1)補正後3次高調波thw2は、3相電圧指令値va0、vb0及びvc0の周波数の3倍の周波数を有する正弦波であってよい。このような補正後3次高調波thw2で補正することにより、3次成分よりも高次の成分が、補正後3相電圧指令値va1、vb1及びvc1に混入するのを回避できる。
(2)ゲイン演算部62は、3次高調波thw1の二乗値に比例するゲインを補正ゲインGとして演算する。これにより、進角制御における進角量に関わらずに補正ゲインGを算出できる。
1…操向ハンドル、2…操舵軸、3…減速ギア、4A、4B…ユニバーサルジョイント、5…ピニオンラック機構、6…タイロッド、10…トルクセンサ、11…イグニションキー、12…車速センサ、14…バッテリ、20…3相モータ、30…コントロールユニット、40…電流指令値演算部、41…減算器、42…減算器、43…PI制御部、44…2相/3相変換部、45…指令値補正部、46…PWM制御部、47…インバータ、49…角速度変換部、50、51、52…電流センサ、53…回転角センサ、60a…最大値選択部、60b…最小値選択部、60c…平均部、61…振幅演算部、62、62’…ゲイン演算部、62a…勾配演算部、62b、63、67…乗算器、62c、65…加算器、64…減算器、66…定数部
Figure 2021106373
Figure 2021106373

Claims (9)

  1. 3相モータに印加する3相電圧指令値を演算する電圧指令値演算部と、
    前記3相電圧指令値のうちデューティ比が最大となる最大相の電圧指令値及びデューティ比が最小となる最小相の電圧指令値の平均値に基づいて第1の3次高調波を演算する3次高調波演算部と、
    前記3相電圧指令値の振幅を演算する振幅演算部と、
    前記第1の3次高調波及び前記振幅に基づいて前記第1の3次高調波を第2の3次高調波に変換する3次高調波変換部と、
    前記3相電圧指令値から前記第2の3次高調波を減じることにより前記3相電圧指令値を補正する補正部と、
    補正された前記3相電圧指令値に基づいて前記3相モータを駆動する駆動回路と、
    を備えることを特徴とするモータ制御装置。
  2. 前記3次高調波変換部は、
    前記第1の3次高調波及び前記振幅に基づいて補正ゲインを演算するゲイン部と、
    前記第1の3次高調波に前記補正ゲインを乗じることにより前記第2の3次高調波を演算する乗算部と、
    を備えることを特徴とする請求項1に記載のモータ制御装置。
  3. 前記第2の3次高調波は、前記3相電圧指令値が各々の相で前記振幅の√3/2倍を超えた超過分を合成した成分と等しいことを特徴とする請求項1又は2に記載のモータ制御装置。
  4. 前記ゲイン演算部は、前記第1の3次高調波に比例するゲインを前記補正ゲインとして演算することを特徴とする請求項3に記載のモータ制御装置。
  5. 前記電圧指令値演算部は、高調波を含んだ前記3相電圧指令値を演算することを特徴とする請求項1に記載のモータ制御装置。
  6. 前記第2の3次高調波は、前記3相電圧指令値の周波数の3倍の周波数を有する正弦波又は余弦波であることを特徴とする請求項1又は2に記載のモータ制御装置。
  7. 前記ゲイン演算部は、前記第1の3次高調波の二乗値に比例するゲインを前記補正ゲインとして演算することを特徴とする請求項6に記載のモータ制御装置。
  8. 請求項1〜7の何れか一項に記載のモータ制御装置と、
    前記モータ制御装置によって制御される3相モータと、
    を備えることを特徴とする電動アクチュエータ製品。
  9. 請求項1〜7の何れか一項に記載のモータ制御装置と、
    前記モータ制御装置によって制御される3相モータと、
    を備え、前記3相モータによって車両の操舵系に操舵補助力を付与することを特徴とする電動パワーステアリング装置。
JP2021504474A 2019-11-26 2020-10-02 モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置 Active JP7107430B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019213627 2019-11-26
JP2019213627 2019-11-26
PCT/JP2020/037600 WO2021106373A1 (ja) 2019-11-26 2020-10-02 モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JPWO2021106373A1 true JPWO2021106373A1 (ja) 2021-12-02
JP7107430B2 JP7107430B2 (ja) 2022-07-27

Family

ID=75728537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021504474A Active JP7107430B2 (ja) 2019-11-26 2020-10-02 モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US11873039B2 (ja)
EP (1) EP3849075B1 (ja)
JP (1) JP7107430B2 (ja)
CN (1) CN113196643B (ja)
WO (1) WO2021106373A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6703643B1 (ja) * 2018-11-14 2020-06-03 東芝三菱電機産業システム株式会社 電力変換装置
EP4346081A1 (de) * 2022-09-30 2024-04-03 Siemens Aktiengesellschaft Steuerverfahren für einen selbstgeführten, mehrphasigen stromrichter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254532A (ja) * 2005-03-08 2006-09-21 Nsk Ltd 電動パワーステアリング装置
WO2017064756A1 (ja) * 2015-10-13 2017-04-20 三菱電機株式会社 交流回転機の制御装置及びそれを備えた電動パワーステアリング装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532904B2 (ja) 1973-03-08 1980-08-27
JP3480843B2 (ja) 2001-09-04 2003-12-22 三菱電機株式会社 電動パワーステアリング制御装置及び制御方法
JP4138423B2 (ja) 2002-09-25 2008-08-27 株式会社豊田中央研究所 動力出力装置
JP5204463B2 (ja) 2007-11-12 2013-06-05 富士重工業株式会社 モータ制御装置
EP2393200B1 (en) * 2009-01-29 2020-05-06 Toyota Jidosha Kabushiki Kaisha Controller for ac motor
JP5532904B2 (ja) 2009-12-18 2014-06-25 日本精工株式会社 モータ駆動制御装置及びこれを使用した電動パワーステアリング装置
JP5877648B2 (ja) 2011-03-23 2016-03-08 北陸電力株式会社 分散型電源システム
JP6065790B2 (ja) * 2013-09-11 2017-01-25 トヨタ自動車株式会社 電動機制御装置
JP6527747B2 (ja) * 2015-05-12 2019-06-05 日立オートモティブシステムズ株式会社 インバータ制御装置
BR112018076923A2 (pt) * 2016-07-20 2019-04-02 Nsk Ltd. aparelho de direção elétrica
JP6493349B2 (ja) * 2016-10-03 2019-04-03 トヨタ自動車株式会社 車両制御装置
CN110651425B (zh) 2018-01-31 2023-04-04 日本精工株式会社 电动机控制装置以及搭载了该电动机控制装置的电动助力转向装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254532A (ja) * 2005-03-08 2006-09-21 Nsk Ltd 電動パワーステアリング装置
WO2017064756A1 (ja) * 2015-10-13 2017-04-20 三菱電機株式会社 交流回転機の制御装置及びそれを備えた電動パワーステアリング装置

Also Published As

Publication number Publication date
US20220306186A1 (en) 2022-09-29
EP3849075A4 (en) 2021-12-29
CN113196643A (zh) 2021-07-30
CN113196643B (zh) 2024-05-10
US11873039B2 (en) 2024-01-16
EP3849075B1 (en) 2023-03-01
WO2021106373A1 (ja) 2021-06-03
JP7107430B2 (ja) 2022-07-27
EP3849075A1 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
JP6590089B2 (ja) 電動パワーステアリング装置
JP5314669B2 (ja) 電動パワーステアリング装置
JPWO2005035333A1 (ja) 電動パワーステアリング装置
US9660565B2 (en) Controller for controlling a motor
US11104374B2 (en) Motor control device, electrically driven actuator product, and electrically driven power steering device
WO2021106373A1 (ja) モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JP6436005B2 (ja) 回転電機制御装置
JP4797565B2 (ja) モータ駆動制御装置
JP4103430B2 (ja) 電動パワーステアリング装置
JP7090812B2 (ja) 交流回転電機の制御装置及び電動パワーステアリング装置
JP6400231B2 (ja) 回転電機の制御装置
JP6677362B1 (ja) モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JP7371509B2 (ja) モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JP7371508B2 (ja) モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
JP6662504B1 (ja) モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
WO2020079899A1 (ja) モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
CN111758215B (zh) 电动机控制方法以及电动机控制装置
JP2023167187A (ja) モータ制御装置、電動アクチュエータおよび電動パワーステアリング装置
JP2023045904A (ja) モータ制御装置、モータ制御方法、及び電動パワーステアリング装置
JP2022048802A (ja) モータ制御装置及びマップの設定方法
CN111758215A (zh) 电动机控制方法以及电动机控制装置
JP2012191780A (ja) モータ制御装置
JP2013005486A (ja) モータ制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220627

R150 Certificate of patent or registration of utility model

Ref document number: 7107430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150