JPWO2020031869A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JPWO2020031869A1
JPWO2020031869A1 JP2020535721A JP2020535721A JPWO2020031869A1 JP WO2020031869 A1 JPWO2020031869 A1 JP WO2020031869A1 JP 2020535721 A JP2020535721 A JP 2020535721A JP 2020535721 A JP2020535721 A JP 2020535721A JP WO2020031869 A1 JPWO2020031869 A1 JP WO2020031869A1
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
region
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020535721A
Other languages
English (en)
Other versions
JP7372244B2 (ja
Inventor
俊介 南部谷
俊介 南部谷
優努 堀内
優努 堀内
慎平 山上
慎平 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Sanyo Electric Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Sanyo Electric Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Sanyo Electric Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2020031869A1 publication Critical patent/JPWO2020031869A1/ja
Application granted granted Critical
Publication of JP7372244B2 publication Critical patent/JP7372244B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

非水電解質二次電池は、正極と、負極と、電解液と、を備える。負極は、第1負極活物質を含む負極合剤層と、負極合剤層が付着している負極集電体と、を有する。第1負極活物質は、リチウムとケイ素と酸素とを含む第1リチウムシリケート相と、第1リチウムシリケート相内に分散している第1シリコン粒子と、を含む。第1リチウムシリケート相におけるケイ素に対する酸素の原子比A1:O/Siは、2<A1≦3の関係を満たす。負極の負極集電体側よりも負極の表面側において、負極合剤層中の第1負極活物質の存在割合が大きくなっている。

Description

本発明は、シリコン粒子を分散させたリチウムシリケート相を含む負極活物質を用いた非水電解質二次電池に関する。
非水電解質二次電池、特にリチウムイオン二次電池は、高電圧かつ高エネルギー密度を有するため、小型民生用途、電力貯蔵装置および電気自動車の電源として期待されている。電池の高エネルギー密度化が求められる中、理論容量密度の高い負極活物質として、リチウムと合金化するケイ素(シリコン)を含む材料の利用が期待されている。
特許文献1では、Li2vSiO2+v(0<v<2)で表されるリチウムシリケート相と、リチウムシリケート相中に分散しているシリコン粒子と、を備える負極活物質を用いた非水電解質二次電池が提案されている。負極は、負極集電体と、負極集電体上に形成された、上記負極活物質を含む負極合剤層と、を有する。上記負極活物質は、ケイ素を含む材料の中では充放電に伴う体積変化が小さく、不可逆容量も小さい。
国際公開第2016/035290号
充電時にリチウムイオンが負極活物質に吸蔵されると、負極活物質が膨張し、それに伴い発生する応力により、負極内に含まれる電解液が負極外へ押し出される。放電時には、負極活物質からのリチウムイオンの放出により負極活物質が収縮し、上記応力が緩和されるが、電解液と負極表面の親和性が低く、負極内に電解液が浸透しにくい。このため、充放電の繰り返しに伴い、負極内の電解液が不均一化しやすい。すなわち、負極合剤層の負極集電体側で電解液が不足しやすい。このような負極内の電解液の不均一化により、非水電解質二次電池のサイクル特性が低下する。
以上に鑑み、本発明の一側面は、正極と、負極と、電解液と、を備え、前記負極は、第1負極活物質を含む負極合剤層と、前記負極合剤層が付着している負極集電体と、を有し、前記第1負極活物質は、リチウムとケイ素と酸素とを含む第1リチウムシリケート相と、前記第1リチウムシリケート相内に分散している第1シリコン粒子と、を含み、前記第1リチウムシリケート相における前記ケイ素に対する前記酸素の原子比A:O/Siは、2<A≦3の関係を満たし、前記負極の前記負極集電体側よりも前記負極の表面側において、前記負極合剤層中の前記第1負極活物質の存在割合が大きくなっている、非水電解質二次電池に関する。
本発明によれば、非水電解質二次電池のサイクル特性が向上する。
本発明の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。 図1の非水電解質二次電池に用いられる負極の概略断面図である。
本発明の実施形態に係る非水電解質二次電池は、正極と、負極と、電解液と、を備える。負極は、第1負極活物質を含む負極合剤層と、負極合剤層が付着している負極集電体と、を有する。第1負極活物質は、リチウム(Li)とケイ素(Si)と酸素(O)とを含む第1リチウムシリケート相(酸化物相)と、第1リチウムシリケート相内に分散している第1シリコン粒子と、を含む第1負極材料(以下、「第1負極材料LSX」、あるいは、単に「第1LSX」とも称する。)を含む。第1リチウムシリケート相におけるSiに対するOの原子比A:O/Siは、2<A≦3の関係を満たす。負極の負極集電体側よりも負極の表面側において、負極合剤層中の第1負極活物質の存在割合が大きくなっている。
負極の負極集電体側よりも負極の表面側において、負極合剤層中の第1負極活物質の存在割合を大きくする場合に、充放電の繰り返しに伴い、負極(負極合剤層)表面の凹凸化が促進される。これにより、電解液と負極表面の親和性が向上し、負極内に電解液が浸透しやすくなる。その結果、充放電の繰り返しに伴う負極内の電解液の不均一化が抑制され、サイクル特性が向上する。
充放電の繰り返しに伴う負極表面の凹凸化には、負極合剤層の内部と表面部との間における充電時の第1負極活物質の膨張に伴い発生する応力のバランスが寄与しているものと推測される。また、負極合剤層の表面では、硬い第1負極活物質が多く存在するため、第1負極活物質の周囲が上記応力の影響を受けやすいことも上記凹凸化の要因の一つと推測される。
2<A≦3の場合、安定性やリチウムイオン伝導性の面で有利である。また、特にサイクルの初期から中期において容量が維持されやすい。また、2<A≦3を満たす第1リチウムシリケート相は、硬度が高いため、その周囲に膨張と収縮の影響を及ぼしやすく、負極表面の凹凸化に有利である。
第1リチウムシリケート相におけるSiに対するLiの原子比:Li/Siは、例えば0超2以下であり、例えば1以上2以下が好ましい。第1リチウムシリケート相は、Li、SiおよびO以外に、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、銅(Cu)、モリブデン(Mo)、亜鉛(Zn)、アルミニウム(Al)などの他の元素を微量含んでもよい。
負極合剤層の負極の表面側から1/2の領域を第1領域とし、負極合剤層の負極集電体側から1/2の領域を第2領域とする。すなわち、負極合剤層の負極の表面側における負極合剤層の厚さの1/2の幅の領域を第1領域とする。負極合剤層の第1領域以外の領域(負極合剤層のうち負極集電体側における負極合剤層の厚さの1/2の幅の領域)を第2領域とする。この場合、第1領域中の第1負極活物質の含有量M1A(質量%)と、第2領域中の第1負極活物質の含有量M1B(質量%)とが、0≦M1B/M1A<1の関係を満たすことが好ましい。第2領域よりも第1領域において第1負極活物質の存在割合を大きくすることにより、負極表面の凹凸化が促進される。
1B/M1Aは、より好ましくは0以上0.85以下であり、更に好ましくは0.3以上0.6以下である。
なお、M1Bが0の場合、第2領域には、第1負極活物質以外の活物質を含ませればよい。第1負極活物質以外の活物質としては、例えば、後述の第2負極活物質および第3負極活物質の少なくとも一方を用いればよい。
負極合剤層の少なくとも第2領域は、第2負極活物質を含んでもよい。第2負極活物質は、リチウム(Li)とケイ素(Si)と酸素(O)とを含む第2リチウムシリケート相(酸化物相)と、第2リチウムシリケート相内に分散している第2シリコン粒子と、を含む第2負極材料(以下、「第2負極材料LSX」、あるいは、単に「第2LSX」とも称する。)を含む。
第2負極活物質の第2リチウムシリケート相におけるSiに対するOの原子比A:O/Siは、3<A≦4の関係を満たす。3<A≦4の場合、サイクルの中期以降において容量が維持されやすい。第2リチウムシリケート相におけるSiに対するLiの原子比:Li/Siは、例えば、2超4未満である。第2リチウムシリケート相は、Li、SiおよびO以外に、他の元素を微量含んでもよい。他の元素としては、第1リチウムシリケート相で例示するものが挙げられる。
更に第2負極活物質を用いる場合、サイクルの初期から中期以降にかけて高い容量が維持される。高容量化とサイクル特性の向上を両立させやすい。
リチウムシリケート相のO/Si比が小さいほど、LSXの硬度が大きい。A<Aであることから、第1負極活物質は第2負極活物質よりも硬度が大きい。第1負極活物質よりも硬度の低い第2負極活物質を更に用いることで、更なる容量の向上を図ることができるとともに、第1領域と第2領域との間での応力のバランスを調整しやすくなるため、負極表面の凹凸化を促進させやすい。また、第1負極活物質よりも硬度の低い第2負極活物質を用いることで、硬い第1負極活物質の膨張と収縮が周囲に及ぼす影響を小さくすることができ、第1負極活物質に起因する応力の蓄積が緩和される。それにより、負極合剤層内での活物質粒子間の良好な導電ネットワークが維持される。負極合剤層と負極集電体との間の良好な接触状態も維持される。
/Aは、好ましくは0.75以下であり、より好ましくは0.62以上0.75以下である。
第1領域が第1負極活物質を含み、第2領域が第2負極活物質を含んでもよい。
第1領域および第2領域は、それぞれ第1負極活物質および第2負極活物質を含んでもよい。このとき、第1領域における第1負極活物質および第2負極活物質の合計に対する第1負極活物質の質量比Mと、第2領域における第1負極活物質および第2負極活物質の合計に対する第1負極活物質の質量比Mとが、M/M<1の関係を満たすことが好ましい。この場合、充放電の繰り返しに伴う負極表面の凹凸化が促進されやすい。サイクルの初期から中期以降にわたって、高い容量が維持される。
/Mは、より好ましくは0.95以下であり、更に好ましくは0.70以上0.85以下である。
第1LSXの第1リチウムシリケート相の組成は、例えば、式:LiSi2x+1で表され、xは、1≦x≦2の関係を満たすことが好ましい。1≦x≦2の場合、安定性やリチウムイオン伝導性の面で有利である。また、特にサイクルの初期から中期において容量が維持されやすい。
第2LSXの第2リチウムシリケート相の組成は、例えば、式:LiSi2y+1で表され、yは、1/2≦y<1の関係を満たすことが好ましい。1/2≦y<1の場合、サイクルの中期以降において容量が維持されやすい。
負極表面の凹凸化促進の観点から、x=2かつy=1/2が好ましい。
サイクル特性向上および高容量化の観点から、質量比Mは0.65以上0.71以下であり、かつ、質量比Mは0.50以上0.61以下であることが好ましい。より好ましくは、質量比Mは0.68以上0.71以下であり、かつ、質量比Mは0.50以上0.56以下である。
上記の質量比MおよびMは、例えば、以下の手順により求めることができる。ここでは、負極活物質としてLSX粒子とともに電気化学的にリチウムイオンを吸蔵および放出する炭素材料(炭素粒子)を用いる場合を示す。
初期の放電状態の電池を解体し、負極を取り出す。なお、放電状態では、リチウムシリケート相内に分散しているSi粒子はリチウムイオンを吸蔵していない状態となっている。負極合剤層の第1領域を削り取り、粉末状の負極合剤のサンプルを得る。例えばX線光電子分光法(XPS)を用いて、サンプル(第1領域)中のLSX粒子の総含有量MTaを求める。
一方、負極をエポキシ樹脂に埋め込み、研磨し、負極合剤層(LSX粒子)の断面を得る。走査型電子顕微鏡(SEM)を用いて第1領域の断面を撮影し、第1画像(200μm×200μm)を得る。LSX粒子と炭素粒子とを区別すべく、第1画像を二値化処理する。第1画像で断面が確認可能なLSX粒子の中から、最大粒子径が大きいものから順に10個のLSX粒子を選出する。選出した10個のLSX粒子の断面について、それぞれ、電子線プローブマイクロアナライザ(EPMA)を用いた元素分析を行い、LSX粒子の組成およびLSX粒子中のリチウムシリケート相の組成(LiSi2t+1)を求める。tが1以上である場合、第1LSX粒子とする。tが1未満である場合、第2LSX粒子とする。上記で選別された第1LSX粒子の総面積A1a、およびtの平均値(x)を求める。上記で選別された第2LSX粒子の総面積A2a、およびtの平均値(y)を求める。
上記で得られた結果に基づいて、第1領域中の第1LSX粒子の含有量M1Aおよび第2LSX粒子の含有量M2Aを求める。M1A/(M1A+M2A)を質量比Mとする。
第1領域中の第1LSX粒子の含有量M1Aおよび第2LSX粒子の含有量M2Aの場合と同様の方法により、第2領域中の第1LSX粒子の含有量M1Bおよび第2LSX粒子の含有量M2Bを求める。M1B/(M1B+M2B)を質量比Mとする。
なお、LSX粒子の表面が導電層で被覆されている場合があるが、導電層は非常に薄く、微量であるため、その質量は無視する。
初回充電前(負極作製時)において、負極合剤層の少なくとも第2領域は、第2負極活物質の前駆体を含んでもよい。第2負極活物質の前駆体の組成は、式:SiOで表され、zは、0.5≦z≦1.5の関係を満たしてもよい。この場合、第1負極活物質の第1リチウムシリケート相はLiSiであることが好ましい。第1リチウムシリケート相がLiSiである第1負極活物質(ビッカース硬度177)と、SiO(ビッカース硬度41)との間の硬度の差が大きく、これらを併用することで充放電サイクルの初期の段階で負極表面の凹凸化が促進されやすくなる。
第1LSXとともにSiOを併用する場合、中期以降のサイクルの容量維持に有利である。なお、SiOは、SiO相と、SiO相内に分散しているSi粒子と、を含む。初回充電によりSiO相はリチウムイオンを吸蔵し、LiSiO相を主成分とする第2LSXを生成する。LiSiO相内に分散しているSi粒子もリチウムイオンを吸蔵する。質量1gあたりのSiOzから生成する初回充電後の第2LSXの質量は、概ね1.6gとなる。初回充電前(負極作製時)において、SiOを1g用いることは、第2LSX(LiSiO相内に分散しているSi粒子内にリチウムイオンが吸蔵されていない状態)を約1.16g用いることに相当する。一方、放電時には、LiSiO相からリチウムイオンは殆ど放出されずLiSiO相を維持する。よって、サイクルの中期以降で負極の劣化が生じにくい。
初回充電前(負極作製時)において、第1領域および第2領域は、それぞれ第1負極活物質およびSiOを含んでもよい。このとき、第1領域における第1負極活物質およびSiOの合計に対する第1負極活物質の質量比Mと、第2領域における第1負極活物質およびSiOの合計に対する第1負極活物質の質量比Mとが、M/M<1の関係を満たすことが好ましい。より好ましくは、質量比Mは0.67以上0.75未満であり、質量比Mは0.5超0.67未満である。更に好ましくは、質量比Mは0.68以上0.74以下であり、質量比Mは0.54以上0.65以下である。この場合、上記の質量比Mおよび質量比Mを上記の好ましい範囲内に調整しやすい。
[負極材料LSX]
以下、第1LSXおよび第2LSX(以下、負極材料LSX、もしくは単に「LSX」とも称する。)に共通する事項について説明する。
負極材料LSXは、リチウム(Li)とケイ素(Si)と酸素(O)とを含むリチウムシリケート相(酸化物相)と、リチウムシリケート相内に分散しているシリコン粒子と、を含む。負極材料LSX中のシリコン粒子の含有量が高いほど負極容量が大きくなる。リチウムシリケート相は、LiSi2u+1で表される組成を有し得る。第1負極材料LSXの場合、1≦uであり、好ましくは1≦u≦2である。第2負極材料LSXの場合、1/2≦u<1である。
リチウムシリケート相は、SiO(0.5≦z≦1.5)中のSiOマトリクスに比べ、リチウムと反応し得るサイトが少ない。よって、LSXはSiOと比べて充放電に伴う不可逆容量を生じにくい。リチウムシリケート相内にシリコン粒子を分散させる場合、充放電の初期に、優れた充放電効率が得られる。また、シリコン粒子の含有量を任意に変化させることができるため、高容量の負極を設計することができる。
リチウムシリケート相内に分散しているシリコン粒子の結晶子サイズは、例えば10nm以上である。シリコン粒子は、ケイ素(Si)単体の粒子状の相を有する。シリコン粒子の結晶子サイズを10nm以上とする場合、シリコン粒子の表面積を小さく抑えることができるため、不可逆容量の生成を伴うシリコン粒子の劣化を生じにくい。シリコン粒子の結晶子サイズは、シリコン粒子のX線回折(XRD)パターンのSi(111)面に帰属される回析ピークの半値幅からシェラーの式により算出される。
負極材料LSXは、構造安定性にも優れている。シリコン粒子は、リチウムシリケート相内に分散しているため、充放電に伴う負極材料LSXの膨張収縮が抑制されるためである。シリコン粒子自身の亀裂を抑制する観点から、シリコン粒子の平均粒径は、初回充電前において、500nm以下が好ましく、200nm以下がより好ましく、50nm以下が更に好ましい。初回充電後においては、シリコン粒子の平均粒径は、400nm以下が好ましく、100nm以下がより好ましい。シリコン粒子を微細化することにより、充放電時の体積変化が小さくなり、負極材料LSXの構造安定性が更に向上する。
シリコン粒子の平均粒径は、負極材料LSXの断面SEM(走査型電子顕微鏡)写真を観察することにより測定される。具体的には、シリコン粒子の平均粒径は、任意の100個のシリコン粒子の最大径を平均して求められる。シリコン粒子は、複数の結晶子が寄り集まることにより形成されている。
負極材料LSX中のシリコン粒子の含有量は、高容量化の観点からは、例えば30質量%以上であればよく、50質量%以上が好ましく、55質量%以上がより好ましい。この場合、リチウムイオンの拡散性が良好であり、優れた負荷特性を得やすくなる。一方、サイクル特性の向上の観点からは、負極材料LSX中のシリコン粒子の含有量が95質量%以下であることが好ましく、80質量%以下がより好ましく、75質量%以下が更に好ましい。リチウムシリケート相で覆われずに露出するシリコン粒子の表面が減少し、電解液とシリコン粒子との反応が抑制されやすいからである。
シリコン粒子の含有量は、Si−NMRにより測定することができる。以下、Si−NMRの望ましい測定条件を示す。
測定装置:バリアン社製、固体核磁気共鳴スペクトル測定装置(INOVA‐400)
プローブ:Varian 7mm CPMAS−2
MAS:4.2kHz
MAS速度:4kHz
パルス:DD(45°パルス+シグナル取込時間1Hデカップル)
繰り返し時間:1200sec
観測幅:100kHz
観測中心:−100ppm付近
シグナル取込時間:0.05sec
積算回数:560
試料量:207.6mg
リチウムシリケート相LiSi2u+1の組成は、例えば、以下の方法により分析することができる。
まず、負極材料LSXの試料の質量を測定する。その後、以下のように、試料に含まれる炭素、リチウムおよび酸素の含有量を算出する。次に、試料の質量から炭素含有量を差し引き、残量に占めるリチウムおよび酸素含有量を算出し、リチウム(Li)と酸素(O)のモル比から2と(2u+1)の比が求められる。
炭素含有量は、炭素・硫黄分析装置(例えば、株式会社堀場製作所製のEMIA−520型)を用いて測定する。磁性ボードに試料を測り取り、助燃剤を加え、1350℃に加熱された燃焼炉(キャリアガス:酸素)に挿入し、燃焼時に発生した二酸化炭素ガス量を赤外線吸収により検出する。検量線は、例えば、Bureau of Analysed Sampe.Ltd製の炭素鋼(炭素含有量0.49%)を用いて作成し、試料の炭素含有量を算出する(高周波誘導加熱炉燃焼−赤外線吸収法)。
酸素含有量は、酸素・窒素・水素分析装置(例えば、株式会社堀場製作所製のEGMA−830型)を用いて測定する。Niカプセルに試料を入れ、フラックスとなるSnペレットおよびNiペレットとともに、電力5.75kWで加熱された炭素坩堝に投入し、放出される一酸化炭素ガスを検出する。検量線は、標準試料Y23を用いて作成し、試料の酸素含有量を算出する(不活性ガス融解−非分散型赤外線吸収法)。
リチウム含有量は、熱フッ硝酸(熱したフッ化水素酸と硝酸の混酸)で試料を全溶解し、溶解残渣の炭素をろ過して除去後、得られたろ液を誘導結合プラズマ発光分光法(ICP−AES)で分析して測定する。市販されているリチウムの標準溶液を用いて検量線を作成し、試料のリチウム含有量を算出する。
負極材料LSXの試料の質量から、炭素含有量、酸素含有量、リチウム含有量を差し引いた量がシリコン含有量である。このシリコン含有量には、シリコン粒子の形で存在するシリコンと、リチウムシリケートの形で存在するシリコンとの双方の寄与が含まれている。Si−NMR測定によりシリコン粒子の含有量が求められ、負極材料LSX中にリチウムシリケートの形で存在するシリコンの含有量が求まる。
負極材料LSXは、平均粒径1〜25μm、更には4〜15μmの粒子状材料(以下、LSX粒子とも称する。)を形成していることが好ましい。上記粒径範囲では、充放電に伴う負極材料LSXの体積変化による応力を緩和しやすく、良好なサイクル特性を得やすくなる。LSX粒子の表面積も適度になり、非水電解質との副反応による容量低下も抑制される。
LSX粒子の平均粒径とは、レーザー回折散乱法で測定される粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。測定装置には、例えば、株式会社堀場製作所(HORIBA)製「LA−750」を用いることができる。
LSX粒子は、その表面の少なくとも一部を被覆する導電性材料を具備することが好ましい。リチウムシリケート相は、電子伝導性に乏しいため、LSX粒子の導電性も低くなりがちである。導電性材料で表面を被覆することで、導電性を飛躍的に高めることができる。LSX粒子表面の少なくとも一部を覆う導電層(導電性材料を含む層)は、実質上、LSX粒子の平均粒径に影響しない程度に薄いことが好ましい。第1負極活物質は、表面に導電層を有する第1LSX粒子でもよい。第2負極活物質は、表面に導電層を有する第2LSX粒子でもよい。
次に、本発明の実施形態に係る非水電解質二次電池について詳述する。非水電解質二次電池は、例えば、以下のような負極と、正極と、非水電解質とを備える。
[負極]
負極は、負極集電体と、負極集電体の表面に形成され、かつ負極活物質を含む負極合剤層とを具備する。負極合剤層は、負極合剤を分散媒に分散させた負極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。例えば、負極集電体の上に第2領域形成用の第2負極スラリーを塗布し、第2スラリーの塗膜の上に第1領域形成用の第1負極スラリーを塗布した後、第1負極スラリーおよび第2負極スラリーの塗膜を乾燥させればよい。乾燥後の塗膜を、必要により圧延してもよい。負極合剤層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
負極合剤は、電気化学的にリチウムイオンを吸蔵および放出する負極活物質として、負極材料LSX(もしくはLSX粒子)を必須成分として含み、任意成分として、結着剤、導電剤、増粘剤などを含むことができる。負極材料LSX中のシリコン粒子は、多くのリチウムイオンを吸蔵できることから、負極の高容量化に寄与する。負極材料LSXは、少なくとも第1負極材料LSXを含み、更に第2負極材料LSXを含んでもよい。第2負極材料LSXを用いる場合、負極作製時(初回充電前)において、負極合剤に、第2負極材料LSXの代わりに第2負極材料LSXの前駆体であるSiOを含ませてもよい。
負極合剤は、更に、電気化学的にリチウムイオンを吸蔵および放出する第3負極活物質を含むことが好ましい。第3負極活物質としては、炭素材料、チタン酸リチウム、酸化スズを主体とする活物質、シリコン、酸化シリコン(SiO)、シリコン合金を主体とする活物質などが挙げられる。
第3負極活物質は炭素材料であることが好ましい。負極材料LSXは、充放電に伴って体積が膨張収縮するため、負極活物質に占めるその比率が大きくなると、充放電に伴って負極活物質と負極集電体との接触不良が生じやすい。一方、負極材料LSXと炭素材料とを併用することで、シリコン粒子の高容量を負極に付与しながら優れたサイクル特性を達成することが可能になる。負極材料LSXと炭素材料との合計に占める負極材料LSXの割合は、例えば3〜30質量%が好ましい。これにより、高容量化とサイクル特性の向上を両立し易くなる。
炭素材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)などが例示できる。中でも、充放電の安定性に優れ、不可逆容量も少ない黒鉛が好ましい。黒鉛とは、黒鉛型結晶構造を有する材料を意味し、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子などが含まれる。炭素材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
結着剤としては、樹脂材料、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;アラミド樹脂などのポリアミド樹脂;ポリイミド、ポリアミドイミドなどのポリイミド樹脂;ポリアクリル酸、ポリアクリル酸メチル、エチレン−アクリル酸共重合体などのアクリル樹脂;ポリアクリロニトリル、ポリ酢酸ビニルなどのビニル樹脂;ポリビニルピロリドン;ポリエーテルサルフォン;スチレン−ブタジエン共重合ゴム(SBR)などのゴム状材料などが例示できる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
導電剤としては、例えば、アセチレンブラックやカーボンナノチューブなどのカーボン類;炭素繊維や金属繊維などの導電性繊維類;フッ化カーボン;アルミニウムなどの金属粉末類;酸化亜鉛やチタン酸カリウムなどの導電性ウィスカー類;酸化チタンなどの導電性金属酸化物;フェニレン誘導体などの有機導電性材料などが例示できる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩などの塩も含む)、メチルセルロースなどのセルロース誘導体(セルロースエーテルなど);ポリビニルアルコールなどの酢酸ビニルユニットを有するポリマーのケン化物;ポリエーテル(ポリエチレンオキシドなどのポリアルキレンオキサイドなど)などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
分散媒としては、特に制限されないが、例えば、水、エタノールなどのアルコール、テトラヒドロフランなどのエーテル、ジメチルホルムアミドなどのアミド、N−メチル−2−ピロリドン(NMP)、またはこれらの混合溶媒などが例示できる。
負極集電体としては、無孔の導電性基板(金属箔など)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシートなど)が使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金などが例示できる。負極集電体の厚さは、特に限定されないが、負極の強度と軽量化とのバランスの観点から、1〜50μmが好ましく、5〜20μmがより望ましい。
[正極]
正極は、例えば、正極集電体と、正極集電体の表面に形成された正極合剤層とを具備する。正極合剤層は、正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
正極活物質としては、リチウム複合金属酸化物を用いることができる。例えば、LiaCoO2、LiaNiO2、LiaMnO2、LiaCobNi1-b2、LiaCob1-bc、LiaNi1-bbc、LiaMn24、LiaMn2-bb4、LiMPO4、Li2MPO4F(Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも一種である。)が挙げられる。ここで、a=0〜1.2、b=0〜0.9、c=2.0〜2.3である。なお、リチウムのモル比を示すa値は、活物質作製直後の値であり、充放電により増減する。
中でも、LiaNib1-b2(Mは、Mn、CoおよびAlよりなる群から選択された少なくとも1種であり、0<a≦1.2であり、0.3≦b≦1である。)で表されるリチウムニッケル複合酸化物が好ましい。高容量化の観点から、0.85≦b≦1を満たすことがより好ましい。結晶構造の安定性の観点からは、MとしてCoおよびAlを含むLiaNibCocAld2(0<a≦1.2、0.85≦b<1、0<c<0.15、0<d≦0.1、b+c+d=1)が更に好ましい。
結着剤および導電剤としては、負極について例示したものと同様のものが使用できる。導電剤としては、天然黒鉛、人造黒鉛などの黒鉛を用いてもよい。
正極集電体の形状および厚みは、負極集電体に準じた形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが例示できる。
[電解液]
電解液は、非水溶媒と、非水溶媒に溶解したリチウム塩と、を含む。電解液におけるリチウム塩の濃度は、例えば0.5mol/L以上2mol/L以下が好ましい。リチウム塩濃度を上記範囲に制御することで、イオン伝導性に優れ、適度の粘性を有する電解液を得ることができる。ただし、リチウム塩濃度は上記に限定されない。
非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。環状カルボン酸エステルとしては、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)などが挙げられる。鎖状カルボン酸エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピルなどが挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
リチウム塩としては、公知のリチウム塩を用いることができる。好ましいリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、ホウ酸塩類、イミド塩類などが挙げられる。ホウ酸塩類としては、ビス(1,2−ベンゼンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,3−ナフタレンジオレート(2−)−O,O’)ホウ酸リチウム、ビス(2,2’−ビフェニルジオレート(2−)−O,O’)ホウ酸リチウム、ビス(5−フルオロ−2−オレート−1−ベンゼンスルホン酸−O,O’)ほう酸リチウムなどが挙げられる。イミド塩類としては、リチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)、ビストリフルオロメタンスルホン酸イミドリチウム(LiN(CF3SO22)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CF3SO2)(C49SO2))、ビスペンタフルオロエタンスルホン酸イミドリチウム(LiN(C25SO22)などが挙げられる。これらの中でも、LiPF6が好ましい。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[セパレータ]
通常、正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布などを用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレンなどのポリオレフィンが好ましい。
非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極群の代わりに、正極および負極がセパレータを介して積層されてなる積層型の電極群など、他の形態の電極群が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型など、いずれの形態であってもよい。
図1は、本発明の一実施形態に係る角形の非水電解質二次電池の一部を切欠いた概略斜視図である。
電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および電解液(図示せず)とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在し、かつ直接接触を防ぐセパレータとを有する。電極群1は、負極、正極、およびセパレータを、平板状の巻芯を中心にして捲回し、巻芯を抜き取ることにより形成される。
負極の負極集電体には、負極リード3の一端が溶接などにより取り付けられている。負極リード3の他端は、樹脂製の絶縁板(図示せず)を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製のガスケット7により、封口板5から絶縁されている。正極の正極集電体には、正極リード2の一端が溶接などにより取り付けられている。正極リード2の他端は、絶縁板を介して、封口板5の裏面に接続されている。すなわち、正極リード2は、正極端子を兼ねる電池ケース4に電気的に接続されている。絶縁板は、電極群1と封口板5とを隔離するとともに負極リード3と電池ケース4とを隔離している。封口板5の周縁は、電池ケース4の開口端部に嵌合しており、嵌合部はレーザー溶接されている。このようにして、電池ケース4の開口部は、封口板5で封口される。封口板5に設けられている非水電解質の注入孔は、封栓8により塞がれている。
図2は、図1の非水電解質二次電池に用いられる負極の概略断面図である。
負極は、負極集電体11と、負極集電体11の両面に形成された負極合剤層12と、を有する。負極合剤層12は、それぞれ負極合剤層12の厚さの1/2の厚さを有する、負極の表面側の第1領域12aと、負極集電体11側の第2領域12bと、を有する。負極合剤層12の少なくとも第1領域12aは、第1負極活物質を含む。第1領域中の第1負極活物質の含有量M1Aに対する第2領域中の第1負極活物質の含有量M1Bの比:M1B/M1Aが、0以上1未満である。
以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<実施例1>
[第1負極活物質の作製]
二酸化ケイ素と炭酸リチウムとを原子比:Si/Liが1.05となるように混合し、混合物を950℃空気中で10時間焼成することにより、式:LiSi(x=2)で表わされるリチウムシリケートを得た。得られたリチウムシリケートは平均粒径10μmになるように粉砕した。
平均粒径10μmのリチウムシリケート(LiSi)と、原料シリコン(3N、平均粒径10μm)とを、45:55の質量比で混合した。混合物を遊星ボールミル(フリッチュ社製、P−5)のポット(SUS製、容積:500mL)に充填し、ポットにSUS製ボール(直径20mm)を24個入れて蓋を閉め、不活性雰囲気中で、200rpmで混合物を50時間粉砕処理した。
次に、不活性雰囲気中で粉末状の混合物を取り出し、不活性雰囲気中、ホットプレス機による圧力を印加した状態で、800℃で4時間焼成して、混合物の燒結体(第1負極材料LSX)を得た。
その後、第1負極材料LSXを粉砕し、40μmのメッシュに通した後、得られた第1LSX粒子を石炭ピッチ(JFEケミカル株式会社製、MCP250)と混合し、混合物を不活性雰囲気で、800℃で焼成し、第1LSX粒子の表面を導電性炭素で被覆して導電層を形成した。導電層の被覆量は、第1LSX粒子と導電層との総質量に対して5質量%とした。その後、篩を用いて、表面に導電層を有する平均粒径5μmの第1LSX粒子(第1負極活物質)を得た。
第1LSX粒子のXRD分析によりSi(111)面に帰属される回折ピークからシェラーの式で算出したシリコン粒子の結晶子サイズは15nmであった。
リチウムシリケート相の組成を上記方法(高周波誘導加熱炉燃焼−赤外線吸収法、不活性ガス融解−非分散型赤外線吸収法、誘導結合プラズマ発光分光法(ICP−AES))により分析したところ、O/Si比は2.5であり、Si/Li比は1.0であった。Si−NMRにより測定される第1LSX粒子中のLi2Si25の含有量は45質量%(シリコン粒子の含有量は55質量%)であった。
[第2負極活物質の前駆体の作製]
SiO相内にSi粒子が分散しているSiO粒子(z=1、平均粒径5μm)を石炭ピッチ(JFEケミカル株式会社製、MCP250)と混合し、混合物を不活性雰囲気で、800℃で焼成し、SiO粒子の表面を導電性炭素で被覆して導電層を形成した。導電層の被覆量は、SiO粒子と導電層との総質量に対して5質量%とした。このようにして、表面に導電層を有するSiO粒子(第2負極活物質の前駆体)を得た。
なお、初回の充電により、SiO粒子のSiO相は、主にLiSiO相となる。すなわち、LiSiO相およびLiSiO相内に分散しているSi粒子(リチウムイオンを吸蔵した状態)を含む第2LSX粒子となる。得られる第2LSX粒子中のLiSiOの含有量は42質量%である。残りの58質量%は、初回の充電によりリチウムイオンを吸蔵したSi粒子の含有量であり、Si粒子内に吸蔵されたリチウムイオンを除いたSi粒子の含有量は29質量%である。
[負極の作製]
第1負極活物質7.5質量部と、第2負極活物質の前駆体3.0質量部と、第3負極活物質89.5質量部とを混合し、第1混合物を得た。第3負極活物質には黒鉛を用いた。第1混合物97.5質量部と、カルボキシメチルセルロースナトリウム(CMC−Na)1質量部と、スチレン−ブタジエンゴム(SBR)1.5質量部と、適量の水とを混合し、第1スラリーを調製した。
第1負極活物質4.5質量部と、第2負極活物質の前駆体3.0質量部と、第3負極活物質92.5質量部とを混合し、第2混合物を得た。第3負極活物質には黒鉛を用いた。第2混合物97.5質量部と、CMC−Na1質量部と、SBR1.5質量部と、適量の水とを混合し、第2スラリーを調製した。
なお、上記の第1混合物および第2混合物を得る際において、第2負極活物質の前駆体を3.0質量部加えることは、第2負極活物質(LiSiO相およびLiSiO相内に分散しているSi粒子(リチウムイオンを吸蔵していない状態)を含む第2LSX粒子)を3.5質量部加えることに相当する。
銅箔の表面に第2スラリーを塗布し、第2スラリーの塗膜の上に第1スラリーを塗布し、第1スラリーおよび第2スラリーの塗膜を乾燥させた後、圧延して、銅箔の両面に、密度1.5g/cm3の負極合剤層が形成された負極を作製した。
負極合剤層は、第2スラリーにより銅箔の上に形成された第2層(第2領域)と、第1スラリーにより第2層の上に形成された第1層(第1領域)とを有し、第1層および第2層の厚さは、それぞれ94μmとした。
[正極の作製]
リチウムニッケル複合酸化物(LiNi0.8Co0.18Al0.02)95質量部と、アセチレンブラック2.5質量部と、ポリフッ化ビニリデン2.5質量部と、適量のN−メチル−2−ピロリドン(NMP)とを混合し、正極スラリーを調製した。次に、アルミニウム箔の表面に正極スラリーを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に、密度3.6g/cm3の正極合剤層が形成された正極を作製した。
[電解液の調製]
非水溶媒にリチウム塩を溶解させて電解液を調製した。非水溶媒には、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)とを、3:7の体積比で混合した溶媒を用いた。リチウム塩には、LiPFを用いた。電解液中のLiPFの濃度は、1.0mol/Lとした。
[非水電解質二次電池の作製]
各電極にタブをそれぞれ取り付け、タブが最外周部に位置するように、セパレータを介して正極および負極を渦巻き状に巻回することにより電極群を作製した。電極群をアルミニウムラミネートフィルム製の外装体内に挿入し、105℃で2時間真空乾燥した後、電解液を注入し、外装体の開口部を封止して、電池A1を得た。
<実施例2〜3、比較例1〜2>
第1領域中の第1負極活物質の含有量M1aおよび第2負極活物質の前駆体の含有量M2aを、それぞれ表1に示す値とした。
第1領域中の第1混合物の含有量と、第2領域中の第2混合物の含有量とが、同じである。このため、便宜上、表1中の含有量M1a(質量%)は、第1領域に含まれる第1混合物に対する第1負極活物質の質量割合とした。表1中の含有量M2a(質量%)は、第1領域に含まれる第1混合物に対する第2負極活物質の前駆体の質量割合とした。すなわち、第1混合物について、第1負極活物質の含有量M1aと、第2負極活物質の前駆体の含有量M2aとを、表1に示す値とし、残り(100−M1a−M2a)は第3負極活物質とした。
第2領域中の第1負極活物質の含有量M1bおよび第2負極活物質の前駆体の含有量M2bを、それぞれ表1に示す値とした。
第1領域中の第1混合物の含有量と、第2領域中の第2混合物の含有量とが、同じである。このため、便宜上、表1中の含有量M1b(質量%)は、第2領域に含まれる第2混合物に対する第1負極活物質の質量割合とした。表1中の含有量M2b(質量%)は、第2領域に含まれる第2混合物に対する第2負極活物質の前駆体の質量割合とした。すなわち、第2混合物について、第1負極活物質の含有量M1bと、第2負極活物質の前駆体の含有量M2bとを、表1に示す値とし、残り(100−M1b−M2b)は第3負極活物質とした。
上記以外、実施例1と同様にして電池A2〜A3、B1〜B2を作製した。
Figure 2020031869
なお、表1中の質量比MはM1a/(M1a+M2a)の値を表し、質量比MはM1b/(M1b+M2b)の値を表す。
また、第2負極活物質の前駆体から第2LSXが生成したときの負極合剤層の状態については、以下の表2に示す。
Figure 2020031869
表2中の第2負極活物質の含有量は、第2負極活物質の前駆体(SiO)より生成する第2LSX(LiSiO相内に分散しているSi粒子がリチウムを吸蔵していない状態)の含有量である。
第1領域中の第1負極活物質、第2負極活物質、および第3負極活物質を合計した含有量と、第2領域中の第1負極活物質、第2負極活物質、および第3負極活物質を合計した含有量とが、同じである。このため、便宜上、表2中の第1領域中の第1負極活物質の含有量M1A(質量%)は、第1領域に含まれる第1負極活物質、第2負極活物質、および第3負極活物質の合計に対する第1負極活物質の質量割合とした。第1領域中の第2負極活物質の含有量M2A(質量%)は、第1領域に含まれる第1負極活物質、第2負極活物質、および第3負極活物質の合計に対する第2負極活物質の質量割合とした。
表2中の第2領域中の第1負極活物質の含有量M1B(質量%)は、第2領域に含まれる第1負極活物質、第2負極活物質、および第3負極活物質の合計に対する第1負極活物質の質量割合とした。第2領域中の第2負極活物質の含有量M2B(質量%)は、第2領域に含まれる第1負極活物質、第2負極活物質、および第3負極活物質の合計に対する第2負極活物質の質量割合とした。
表2中の質量比MはM1A/(M1A+M2A)の値を表し、質量比MはM1B/(M1B+M2B)の値を表す。
<実施例4〜5>
第1負極活物質の作製において、平均粒径10μmのリチウムシリケート(LiSi)と、原料シリコン(3N、平均粒径10μm)との混合質量比を調整し、第1LSX粒子中のシリコン粒子の含有量を表1に示す値とした以外、実施例1と同様にして電池A4〜A5を作製した。
<実施例6>
第1混合物を、第1負極活物質7.5質量部と、第3負極活物質92.5質量部との混合物とした。第2混合物を、第1負極活物質4.5質量部と、第3負極活物質95.5質量部との混合物とした。上記以外、実施例1と同様にして電池A6を作製した。
<比較例3>
第1混合物および第2混合物を、それぞれ、第1負極活物質6質量部と、第3負極活物質94質量部との混合物とした。上記以外、実施例1と同様にして電池B3を作製した。
<比較例4>
第1混合物を、第1負極活物質4.5質量部と、第3負極活物質95.5質量部との混合物とした。第2混合物を、第1負極活物質7.5質量部と、第3負極活物質92.5質量部との混合物とした。上記以外、実施例1と同様にして電池B4を作製した。
上記で作製した各電池について、以下の方法で評価を行った。
[評価1:初期容量]
0.3Cの電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの電圧で電流が0.02Cになるまで定電圧充電を行った。その後、0.2Cの電流で電圧が2.5Vになるまで定電流放電を行い、このときの放電容量を初期容量として求めた。充電と放電との間の休止期間は10分とした。充放電は25℃の環境下で行った。
[評価2:サイクル容量維持率A]
0.3Cの電流で電圧が4.15Vになるまで定電流充電を行い、その後、4.15Vの電圧で電流が0.02Cになるまで定電圧充電を行った。その後、0.5Cの電流で電圧が2.85Vになるまで定電流放電を行った。充電と放電との間の休止期間は10分とした。充放電は25℃の環境下で行った。
上記充放電の条件で充放電を繰り返した。1サイクル目の放電容量に対する200サイクル目の放電容量の割合(百分率)を、サイクル容量維持率Aとして求めた。
[評価3:サイクル容量維持率B]
0.7Cの電流で電圧が4.15Vになるまで定電流充電を行い、その後、4.1Vの電圧で電流が0.02Cになるまで定電圧充電を行った。その後、0.5Cの電流で電圧が2.85Vになるまで定電流放電を行った。充電と放電との間の休止期間は10分とした。充放電は25℃の環境下で行った。
上記充放電の条件で充放電を繰り返した。1サイクル目の放電容量に対する75サイクル目の放電容量の割合(百分率)を、サイクル容量維持率Bとして求めた。
[評価4:直流抵抗(DC−IR)]
25℃の環境下で、0.3Cの電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの電圧で電流が0.02Cになるまで定電圧充電を行った。このようにして、SOC100%の電池を準備した。
その後、25℃の環境下で、0.5Cの電流Iで30秒間定電流放電を行った。放電開始直前の電圧と放電開始後10秒経過時の電圧との差ΔVを電流Iで除した値(ΔV/I)を直流抵抗として求めた。
[評価5:反応抵抗(AC−IR)]
25℃の環境下で、0.3Cの電流で電圧が3.748Vになるまで定電流充電を行い、その後、3.748Vの電圧で電流が0.02Cになるまで定電流充電を行った。このようにして、SOC50%の電池を準備した。
その後、交流インピーダンス法を用いて反応抵抗を求めた。具体的には、25℃の環境下で、上記で準備した電池に交流電圧を印加した。振幅は10mVとし、周波数の範囲は1MHz〜0.01Hzとした。このとき得られたナイキストプロットが描く半円の直径より反応抵抗を求めた。反応抵抗に影響を及ぼす要因の一つとして、負極内部への電解液の浸透性が考えられる。
評価結果を表3に示す。
Figure 2020031869
電池A1〜A3のいずれも、低い直流抵抗および反応抵抗と、高いサイクル容量維持率AおよびBとが得られた。電池A1〜A3では、質量比Mが0.65以上0.71以下であり、質量比Mが0.50以上0.61以下であった。
第2負極活物質を用いた電池A1では、第2負極活物質を用いない電池A6よりも、高い初期容量が得られた。
電池A1、A4、A5のいずれも、低い直流抵抗および反応抵抗と、高いサイクル容量維持率AおよびBとが得られた。第1負極活物質中の第1シリコン粒子の含有量が50質量%以上80質量%以下である電池A1、A4では、初期容量が高く、サイクル特性が更に向上した。
第2負極活物質を用いない電池A6でも、低い直流抵抗および反応抵抗と、高いサイクル容量維持率AおよびBとが得られた。
電池B1、B2、B4では、負極表面の凹凸化が促進されないため、直流抵抗および反応抵抗が上昇し、サイクル容量維持率AおよびBが低下した。電池B3では、負極表面の凹凸化が促進されないため、直流抵抗が上昇し、サイクル容量維持率AおよびBが低下した。
本発明に係る非水電解質二次電池は、移動体通信機器、携帯電子機器などの主電源に有用である。
1 電極群
2 正極リード
3 負極リード
4 電池ケース
5 封口板
6 負極端子
7 ガスケット
8 封栓
11 負極集電体
12 負極合剤層
12a 第1領域
12b 第2領域

Claims (8)

  1. 正極と、負極と、電解液と、を備え、
    前記負極は、第1負極活物質を含む負極合剤層と、前記負極合剤層が付着している負極集電体と、を有し、
    前記第1負極活物質は、リチウムとケイ素と酸素とを含む第1リチウムシリケート相と、前記第1リチウムシリケート相内に分散している第1シリコン粒子と、を含み、
    前記第1リチウムシリケート相における前記ケイ素に対する前記酸素の原子比A:O/Siは、2<A≦3の関係を満たし、
    前記負極の前記負極集電体側よりも前記負極の表面側において、前記負極合剤層中の前記第1負極活物質の存在割合が大きくなっている、非水電解質二次電池。
  2. 前記負極合剤層の前記負極の表面側から1/2の領域を第1領域とし、前記負極合剤層の前記負極集電体側から1/2の領域を第2領域とする場合、
    前記第1領域中の前記第1負極活物質の含有量M1Aと、前記第2領域中の前記第1負極活物質の含有量M1Bとが、0≦M1B/M1A<1の関係を満たす、請求項1に記載の非水電解質二次電池。
  3. 前記負極合剤層の少なくとも前記第2領域は、第2負極活物質を含み、
    前記第2負極活物質は、リチウムとケイ素と酸素とを含む第2リチウムシリケート相と、前記第2リチウムシリケート相内に分散している第2シリコン粒子と、を含み、
    前記第2リチウムシリケート相における前記ケイ素に対する前記酸素の原子比A:O/Siは、3<A≦4の関係を満たす、請求項2に記載の非水電解質二次電池。
  4. 前記第1領域および前記第2領域は、それぞれ前記第1負極活物質および前記第2負極活物質を含み、
    前記第1領域における前記第1負極活物質および前記第2負極活物質の合計に対する前記第1負極活物質の質量比Mが、前記第2領域における前記第1負極活物質および前記第2負極活物質の合計に対する前記第1負極活物質の質量比Mよりも大きい、請求項3に記載の非水電解質二次電池。
  5. 前記第1リチウムシリケート相の組成は、式:LiSi2x+1で表され、前記xは、1≦x≦2の関係を満たし、
    前記第2リチウムシリケート相の組成は、式:LiSi2y+1で表され、前記yは、1/2≦y<1の関係を満たす、請求項4に記載の非水電解質二次電池。
  6. 前記質量比Mは、0.65以上0.71以下であり、
    前記質量比Mは、0.50以上0.61以下である、請求項5に記載の非水電解質二次電池。
  7. 初回充電前において、前記負極合剤層の少なくとも前記第2領域は、第2負極活物質の前駆体を含み、
    前記第2負極活物質の前駆体の組成は、式:SiOで表され、
    前記zは、0.5≦z≦1.5の関係を満たす、請求項2に記載の非水電解質二次電池。
  8. 前記第1負極活物質中の前記第1シリコン粒子の含有量は、50質量%以上80質量%以下である、請求項1〜7のいずれか1項に記載の非水電解質二次電池。
JP2020535721A 2018-08-07 2019-08-02 非水電解質二次電池 Active JP7372244B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018148266 2018-08-07
JP2018148266 2018-08-07
PCT/JP2019/030388 WO2020031869A1 (ja) 2018-08-07 2019-08-02 非水電解質二次電池

Publications (2)

Publication Number Publication Date
JPWO2020031869A1 true JPWO2020031869A1 (ja) 2021-08-10
JP7372244B2 JP7372244B2 (ja) 2023-10-31

Family

ID=69414130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020535721A Active JP7372244B2 (ja) 2018-08-07 2019-08-02 非水電解質二次電池

Country Status (4)

Country Link
US (1) US20210313564A1 (ja)
JP (1) JP7372244B2 (ja)
CN (1) CN112136232B (ja)
WO (1) WO2020031869A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200529A1 (ja) * 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極、及び非水電解質二次電池
JPWO2021241618A1 (ja) * 2020-05-29 2021-12-02
KR102651696B1 (ko) * 2020-10-19 2024-03-26 에스케이온 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
US11611307B2 (en) * 2020-10-27 2023-03-21 Jiangsu University Short-circuit fault-tolerant control method based on deadbeat current tracking for five-phase permanent magnet motor with sinusoidal back-electromotive force or trapezoidal back-electromotive force

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035290A1 (ja) * 2014-09-03 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2016035289A1 (ja) * 2014-09-05 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
WO2017051500A1 (ja) * 2015-09-24 2017-03-30 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び負極
JP2018092857A (ja) * 2016-12-07 2018-06-14 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9620768B2 (en) * 2012-05-22 2017-04-11 Sanyo Electric Co., Ltd. Negative electrode for lithium secondary batteries, lithium secondary battery, and method for producing the negative electrode for lithium secondary batteries
US9742007B2 (en) * 2014-02-27 2017-08-22 Sony Corporation Active material, electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035290A1 (ja) * 2014-09-03 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池
WO2016035289A1 (ja) * 2014-09-05 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池
WO2017051500A1 (ja) * 2015-09-24 2017-03-30 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質及び負極
JP2018092857A (ja) * 2016-12-07 2018-06-14 三洋電機株式会社 非水電解質二次電池用負極及び非水電解質二次電池

Also Published As

Publication number Publication date
JP7372244B2 (ja) 2023-10-31
CN112136232B (zh) 2024-03-26
WO2020031869A1 (ja) 2020-02-13
US20210313564A1 (en) 2021-10-07
CN112136232A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
CN110024188B (zh) 负极材料及非水电解质二次电池
WO2018179969A1 (ja) 非水電解質二次電池用負極材料および非水電解質二次電池
CN112136232B (zh) 非水电解质二次电池
JP2012129166A (ja) リチウムイオン二次電池
CN110495026B (zh) 负极材料和非水电解质二次电池
WO2020003595A1 (ja) 非水電解質二次電池
CN113632261A (zh) 非水电解质二次电池用负极及非水电解质二次电池
WO2020202843A1 (ja) 非水電解質二次電池
CN111033854B (zh) 非水电解质二次电池
US20230411618A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP7458036B2 (ja) 非水電解質二次電池
JP7352900B2 (ja) 非水電解質二次電池
JP7270230B2 (ja) 非水電解質二次電池および非水電解質二次電池の製造方法
WO2019167610A1 (ja) 非水電解質二次電池
US20240021806A1 (en) Negative electrode material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2020137560A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220603

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231019

R150 Certificate of patent or registration of utility model

Ref document number: 7372244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150