JPWO2020031236A1 - 交通流シミュレータ、交通流のシミュレート方法及びコンピュータプログラム - Google Patents

交通流シミュレータ、交通流のシミュレート方法及びコンピュータプログラム Download PDF

Info

Publication number
JPWO2020031236A1
JPWO2020031236A1 JP2020535350A JP2020535350A JPWO2020031236A1 JP WO2020031236 A1 JPWO2020031236 A1 JP WO2020031236A1 JP 2020535350 A JP2020535350 A JP 2020535350A JP 2020535350 A JP2020535350 A JP 2020535350A JP WO2020031236 A1 JPWO2020031236 A1 JP WO2020031236A1
Authority
JP
Japan
Prior art keywords
route
traffic flow
mode
vehicle
traffic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020535350A
Other languages
English (en)
Other versions
JP7086195B2 (ja
Inventor
肇 榊原
肇 榊原
松本 洋
洋 松本
伸洋 山崎
伸洋 山崎
土井 新
新 土井
泰史 大上
泰史 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric System Solutions Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric System Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric System Solutions Co Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPWO2020031236A1 publication Critical patent/JPWO2020031236A1/ja
Application granted granted Critical
Publication of JP7086195B2 publication Critical patent/JP7086195B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本開示の一態様に係る装置は、道路ネットワークに発生させた複数の模擬車両の交通流をシミュレートする交通流シミュレータであって、所定の経路選択モデルに従って複数の前記模擬車両の経路を選択する経路選択部と、前記経路に従って複数の前記模擬車両を前記道路ネットワーク上で移動させて、前記道路ネットワークの交通評価指標を算出する指標算出部と、を備える。前記経路選択部は、下記の第1モードの実行時に選択した第1経路と、下記の第2モードの実行時に選択した第2経路とを記憶部に記録する。第1モード:第1の設定条件下で交通流をシミュレートする作業モード第2モード:第2の設定条件下で交通流をシミュレートする作業モード

Description

本発明は、交通流シミュレータ、交通流のシミュレート方法及びコンピュータプログラムに関する。
交通規制や事故などの要因が車両交通に与える影響を事前に評価して分かりやすく表示する手段として、交通流シミュレータの期待が高まっており、様々な技術開発が行われている(例えば、特許文献1〜9参照)。
交通流シミュレータでは、車両の走行の起終点情報を含む交通量(例えば、OD交通量)、リンクにおける車両の走行速度及び加速減速特性などの種々の交通情報が、所与のデータとして取り扱われる。
OD交通量は、車両の起点(出発地)と終点(目的地)の間の交通量を求めたもので、例えば、国又は自治体が定期的に実施する統計調査の結果得られた調査統計データなどが用いられる。
交通流シミュレータは、予め車両の移動モデル、すなわち、車両の挙動を模した計算式を内包しており、上述の入力データを当該計算式に当てはめることにより、単独交差点、路線及び市街地などの道路網における渋滞長及び旅行時間などの交通評価指標、あるいは排ガスに含まれる二酸化炭素などの環境指標を出力する。
特開2011−141836号公報 特開2011−186746号公報 特開2013−25545号公報 特開2013−25546号公報 特開2013−41313号公報 特開2013−73492号公報 特開2013−37633号公報 特開2013−80272号公報 米国特許出願公開第2014/0149029号明細書
(1) 本開示の一態様に係る装置は、道路ネットワークに発生させた複数の模擬車両の交通流をシミュレートする交通流シミュレータであって、所定の経路選択モデルに従って複数の前記模擬車両の経路を選択する経路選択部と、前記経路に従って複数の前記模擬車両を前記道路ネットワーク上で移動させて、前記道路ネットワークの交通評価指標を算出する指標算出部と、を備え、前記経路選択部は、下記の第1モードの実行時に選択した第1経路と、下記の第2モードの実行時に選択した第2経路とを記憶部に記録する。
第1モード:第1の設定条件下で交通流をシミュレートする作業モード
第2モード:第2の設定条件下で交通流をシミュレートする作業モード
(4) 本開示の一態様に係る方法は、道路ネットワークに発生させた複数の模擬車両の交通流をシミュレートする方法であって、所定の経路選択モデルに従って複数の前記模擬車両の経路を選択する選択ステップと、前記経路に従って複数の前記模擬車両を前記道路ネットワーク上で移動させて、前記道路ネットワークの交通評価指標を算出する算出ステップと、を含み、前記選択ステップには、上記の第1モードの実行時に選択した第1経路と、上記の第2モードの実行時に選択した第2経路とを記憶部に記録するステップが含まれる。
(5) 本開示の一態様に係るプログラムは、道路ネットワークに発生させた複数の模擬車両の交通流をシミュレートする交通シミュレータとして、コンピュータを機能させるコンピュータプログラムであって、前記コンピュータを、所定の経路選択モデルに従って複数の前記模擬車両の経路を選択する経路選択部と、前記経路に従って前記模擬車両を前記道路ネットワーク上で移動させて、前記道路ネットワークの交通評価指標を算出する指標算出部として機能させ、前記経路選択部は、上記の第1モードの実行時に選択した第1経路と、上記の第2モードの実行時に選択した第2経路とを記憶部に記録する。
本実施形態に係る交通情報処理システムの概略構成図である。 センタ装置の構成例を示すブロック図である。 走行情報データベースに格納される実走行情報のデータ構成図である。 所定の時間帯におけるOD交通量の一例を示す交通量テーブルである。 交通流シミュレータによる情報処理の一例を示す説明図である。 交通流シミュレータの構成例を示すブロック図である。 交通流シミュレータによる作業モードの一例を示す説明図である。 交通流シミュレータによる交通流補正処理の概要を示す説明図である。 交通流シミュレータの経路選択部が実行する模擬車両ごとの経路選択処理の一例を示すフローチャートである。
<本開示が解決しようとする課題>
交通流シミュレータは、ユーザが入力した所定の設定情報(例えば通行規制又は突発的な渋滞の位置など)を所与の条件として、道路ネットワーク上の模擬車両の交通流をシミュレートする。
従って、交通流シミュレータに組み込まれた経路選択モデルが同じであっても、設定条件が変更されると、異なる交通評価指標(例えばリンク旅行時間など)が出力されることになる。
しかし、従来の交通流シミュレータでは、各時点での模擬車両の経路の選択結果は出力対象ではなく、記憶部に保存されない。このため、設定条件を変更しても同じ経路選択モデルがそのまま通用するか否かをユーザが検証することができなかった。
本開示は、かかる従来の問題点に鑑み、ユーザが経路選択モデルの有効性を検証することができる交通流シミュレータ等を提供することを目的とする。
<本開示の効果>
本開示によれば、ユーザが経路選択モデルの有効性を検証することができる。
<本発明の実施形態の概要>
以下、本発明の実施形態の概要を列記して説明する。
(1) 本実施形態に係る装置は、道路ネットワークに発生させた複数の模擬車両の交通流をシミュレートする交通流シミュレータであって、所定の経路選択モデルに従って複数の前記模擬車両の経路を選択する経路選択部と、前記経路に従って複数の前記模擬車両を前記道路ネットワーク上で移動させて、前記道路ネットワークの交通評価指標を算出する指標算出部と、を備え、前記経路選択部は、下記の第1モードの実行時に選択した第1経路と、下記の第2モードの実行時に選択した第2経路とを記憶部に記録する。
第1モード:第1の設定条件下で交通流をシミュレートする作業モード
第2モード:第2の設定条件下で交通流をシミュレートする作業モード
本実施形態の交通流シミュレータによれば、経路選択部が、第1モードの実行時に選択した第1経路と、第2モードの実行時に選択した第2経路とを記憶部に記録する。
従って、記録された第1経路と第2経路をユーザが対比することにより、経路選択モデルが第1及び第2の設定条件の双方で通用するか否かを判断でき、交通流シミュレータに組み込まれた経路選択モデルの有効性をユーザが検証できるようになる。
(2) 本実施形態の交通流シミュレータにおいて、前記経路選択部は、下記の不等式が成立する場合に、前記第2モードにおいて前記経路選択モデルに従って算出した経路を前記第2経路とし、下記の不等式が成立しない場合には、前記第1経路を前記第2経路とすることが好ましい。
C2+R<C1
ただし、C1:第1経路のコスト、C2:第2モードにおいて算出した経路のコスト、R:第1経路の執着率
このようにすれば、執着率Rの値に応じて、第2モードに模擬車両が経路を変更する度合いを適切に調整することができる。このため、第2モードのシミュレーションの精度を向上することができる。
(3) 本実施形態の交通流シミュレータにおいて、実際の走行経路が特定可能な実走行車両が前記模擬車両に含まれる場合には、前記経路選択部は、前記第1モードにおいて、前記実走行車両に指定された前記模擬車両については、前記経路選択モデルに基づく前記経路の選択を行わずに前記走行経路を採用することが好ましい。
このようにすれば、第1モードで用いる模擬車両の経路に実際の走行経路が含まれることになるので、第1モードのシミュレーションの精度を向上することができる。
(4) 本実施形態に係る方法は、上述の(1)〜(3)の交通流シミュレータが実行するシミュレート方法である。
従って、本実施形態のシミュレート方法は、上述の(1)〜(3)の交通流シミュレータと同様の作用効果を奏する。
(5) 本実施形態に係るプログラムは、上述の(1)〜(3)の交通流シミュレータとしてコンピュータを機能させるためのコンピュータプログラムである。
従って、本実施形態のコンピュータプローブは、上述の(1)〜(3)の交通流シミュレータと同様の作用効果を奏する。
<本発明の実施形態の詳細>
以下、図面を参照して、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
〔用語の定義〕
本発明の実施形態を説明するに当たり、まず、本明細書で用いる用語の定義を行う。
「車両」:道路を通行する車両全般のことをいう。具体的には、本実施形態の車両には、自動車、原動機付自転車、軽車両及びトロリーバスなどの他、自動二輪車も含まれる。車両の駆動源は、内燃機関に限定されない。
従って、車両には、ICEV(Internal Combustion Engine Vehicle)、EV(Electric Vehicle)、PHV(Plug-in Hybrid Vehicle)、及びPHEV(Plug-in Hybrid Electric Vehicle)などが含まれる。
車両は、搭乗者による操作が必要な「通常運転車両」であってもよいし、搭乗者による操作が不要なレベル4以上の「自動運転車両」であってもよい。
「通信車両」:基地局などの路側無線機との無線通信が可能な車両のことをいう。通信車両は、通常運転車両及び自動運転車両のいずれであってもよい。本実施形態では、単に「車両」というときは、通信車両とそれ以外の非通信車両の双方を含むものとする。
「実走行情報」:実際に道路を走行する通信車両から得られる、当該車両の走行経路を特定するための各種の情報のことをいう。実走行情報には、過去の情報である「走行実績情報」と、将来の情報である「走行予定情報」が含まれる。
「走行実績情報」:実際に道路を走行する通信車両から得られる、当該車両が過去に走行した実走経路を特定するための各種の情報のことをいう。走行実績情報には、車両ID、実走経路の通過点における車両位置、車両速度、車両方位及びこれらの発生時刻などが含まれる。走行実績情報は、プローブデータ又はフローティングカーデータと称される。
車両位置と時刻が分かれば車両速度を算出できるので、走行実績情報には、少なくとも実走経路の通過点のび位置と発生時刻が含まれておれば足りる。
「走行予定情報」:実際に道路を走行する通信車両から得られる、当該車両が将来に走行する予定経路を特定するための各種の情報のことをいう。走行予定情報には、車両ID、予定経路の通過点における車両位置、車両速度、車両方位及びこれらの予定時刻などが含まれる。
車両位置と時刻が分かれば車両速度を算出できるので、走行予定情報には、少なくとも車両位置と時刻が含まれておれば足りる。
「リンク」:交差点などの所定地点であるノード間を繋ぐ、上り又は下りの方向を有する道路区間のことをいう。
ある交差点から見て、当該交差点に向かって流入する方向のリンクのことを、「流入リンク」いう。ある交差点から見て、当該交差点から流出する方向のリンクのことを、「流出リンク」という。
〔交通情報処理システム〕
図1は、本実施形態に係る交通情報処理システムの概略構成図である。
本実施形態の交通情報処理システムでは、センタ装置5が、車両位置と通過時刻を含む実走行情報を通信車両1から収集する。センタ装置5は、収集した実走行情報を利用して所定のデータ処理を施し、所定の道路区間(例えばリンク)の旅行時間及び渋滞状況などの交通情報を通信車両1の搭乗者などに提供するサービスを行う。
図1に示すように、交通情報処理システムは、通信車両1に搭載された車載機2及び通信装置3と、路側に設置された無線基地局4及びセンタ装置5と、を備える。
通信車両1と無線基地局4は、無線通信が可能である。無線基地局4とセンタ装置5は、所定の通信回線6を介して有線通信が可能である。無線基地局4とセンタ装置5との間の通信も無線通信であってもよい。
車載機2は、車速センサ、方位センサ、GPS受信機、ナビゲーション装置、メモリ、及び計時装置などを有する。車載機2は、通信車両1の位置と時刻などの実走行情報に含めるべきデータを所定時間ごと又は所定距離ごとに収集し、メモリに蓄積する。
通信装置3は、通信車両1に搭載された携帯電話機又はスマートフォンなどの無線通信機よりなる。通信装置3は車載機2に接続されている。通信装置3は、メモリに蓄積された実走行情報を外部に送信可能である。
実走行情報のうち、走行予定情報は、車載機2のナビゲーション装置が生成する。具体的には、ナビゲーション装置は、搭乗者が入力した出発地点及び目的地点を入力情報として経路探索処理を実行し、通信車両1の予定経路を生成する。
また、ナビゲーション装置は、予定経路の通過位置及び通過時刻などを含むデータ(走行予定情報)を生成する。生成されたデータは、通信車両1に搭載された通信装置3によりセンタ装置5に宛てに送信される。
無線基地局4は、通信車両1から受信した実走行情報をセンタ装置5に転送する。実走行情報は、光ビーコンやITS無線機などの路側装置(図示せず)を介して、センタ装置5に送信してもよい。
〔センタ装置の構成例〕
図2は、センタ装置5の構成例を示すブロック図である。
図2に示すように、センタ装置5は、送受信部10、制御部11、記憶部12、入力部13、表示部14、及び各種のデータベース15〜17を備える。
送受信部10は、無線基地局4と制御部11との間で、実走行情報や渋滞状況などの各種のデータを送受信する。
制御部11は、記憶部12に格納されたコンピュータプログラム18を読み出し、当該プログラム18に従って情報処理を行うCPU(Central Processing Unit)を含む演算処理装置よりなる。
記憶部12は、ハードディスク及び半導体メモリなどの記憶媒体を備える。コンピュータプログラム18には、制御部11を交通流シミュレータ21又は信号制御装置22などの装置として機能させるためのアプリケーションプログラムが含まれる。
入力部13は、ユーザが制御部11に対して所定の入力操作を行うための入力インタフェースである。入力部13には、例えば、マウス及びキーボードなどのヒューマンインタフェースが含まれる。
表示部14は、制御部11のGPU(Graphic Processing Unit)により画面表示される液晶パネルなどのディスプレイ機器よりなる。表示部14は、コンピュータプログラム18による画像処理に応じて、操作ウィンドウ及び動画などの各種の画像を表示する。
〔各データベースの内容〕
走行情報データベース15は、複数の通信車両1から収集した実走行情報が格納されるデータベースである。図3は、走行情報データベース15に格納される実走行情報のデータ構成図である。
図3の「項目」の欄に示すように、実走行情報の情報種別には、「ノード情報」、「リンク情報」、「位置情報」及び「信号機情報」などが含まれる。
ノード情報のデータ内容には、通信車両1が通過した或いは通過予定のノード(交差点)の有効データ数nと、そのノード番号とが含まれる。
通信車両1の車載機2は、交差点を通過するごとに、その通過時刻(秒単位)と通過した交差点のノード番号を実走行情報に含める。
リンク情報のデータ内容には、通信車両1が通行した或いは通行予定のリンクの有効データ数nと、そのリンク番号が含まれる。
通信車両1の車載機2は、特定のリンクの車線を通過するごとに、その通行時刻とリンク番号と車線番号を実走行情報に含める。
位置情報のデータ内容には、所定時間又は所定距離ごとに収集された車両位置の情報数nと、その車両位置(緯度・経度)とが含まれる。
通信車両1の車載機2は、所定時間又は所定距離を走行するごとに、現在時刻、車両位置、車両情報(車種や全長全幅等)、車両速度及び絶対方位を実走行情報に含める。
信号機情報のデータ内容には、通信車両1が光ビーコン(図示せず)その他の路側機から取得した交通信号機の信号機情報の数と、その信号機情報の詳細内容が含まれる。
通信車両1は、通過した交差点の時刻と、その通過時点における交通信号機の現示及び作業モード番号などを実走行情報に含める。なお、実走行情報が走行予定情報である場合は、信号機情報を含める必要はない。
走行環境データベース16は、デジタル道路地図(DRM:Digital Road Map)のデータ(以下、「地図データ」という。)などが格納されるデータベースである。
地図データには、センタ装置5の管轄エリアに属するリンク及びノード(交差点)の位置(緯度及び経度)、それらの識別番号、各リンクの車線数などのデータが含まれる。走行環境データベース16には、交差点に設置された信号機の信号情報(例えば時間ごとの信号灯色)も含まれる。
パラメータデータベース17は、交通流シミュレーションに必要な各種のパラメータが格納されるデータベースである。
パラメータには、出発ゾーンと到着ゾーンごとに発生交通量と消滅交通量を定義するOD表(マトリックス)、OD表のセルごとに算出された各ゾーン間のOD交通量、リンクごとの車両速度(例えば規制速度)などが含まれる。このうち、OD交通量は、所定の時間帯ごとに記録されている。
図4は、所定の時間帯におけるOD交通量の一例を示す交通量テーブルである。
図4の交通量テーブルでは、起点/終点がOD表のセルA1、A5、A6、A10、A12である場合の交通量が規定されている。
具体的には、起点をセルA1とし終点をセルA5とする交通量が所定時間内に40台あることを示す。また、起点をセルA10とし終点をセルA5とする交通量が150台あることを示す。他の場合も同様である。なお、車両の台数値は図示に限定されない。
〔センタ装置の機能〕
センタ装置5の制御部11は、記憶部12から読み出したコンピュータプログラム18を実行することにより、交通流シミュレータ21として機能し得る。
交通流シミュレータ21は、デジタル地図の所定エリア(例えば1つの県、都市又は州など)に含まれるリンク網よりなる道路ネットワークに、複数の模擬車両SVを試験的に走行させることにより、リンク旅行時間及び渋滞長などの交通評価指標を出力する装置である。
交通流シミュレータ21は、各データベース15〜17からシミュレーションに必要なデータを読み出し、車両通行に関する交通流シミュレーションを実行する。
本実施形態では、ユーザによる入力部13への操作入力により、シミュレーションを行うエリア、時間帯、規制区間、渋滞区間などの所定の設定入力が行われ、設定された条件に従って交通流シミュレータ21がシミュレーションを実行する。
具体的には、交通流シミュレータ21は、設定されたエリアに含まれる複数のゾーンのOD表とOD交通量を読み出し、所定の分布交通量モデルに基づくアルゴリズムにより、所定時間経過ごとの車両1台ごとの挙動を演算し、その挙動を道路ネットワークに対するアニメーションとして表示部14に表示する。
センタ装置5の制御部11は、記憶部12から読み出したコンピュータプログラム18を実行することにより、複数の交通信号制御機を制御する信号制御装置22としても機能し得る。
従って、センタ装置5の送受信部10は、管轄エリア内の車両感知器や交通信号制御機(図示せず)とも、通信回線6を介して通信可能に接続されている。
信号制御装置22は、送受信部10が受信した車両感知器の感知信号に基づいて、系統制御や広域制御などの交通感応制御を行い、この制御の結果生成した各交差点の信号制御パラメータを、送受信部10から交通信号制御機に送信する。
上記の交通感応制御には、例えば、MODERATO制御やプロファイル制御等を含む複数種類のものが含まれる。
信号制御装置22は、交通感応制御の結果の出力である、所定時間ごとの信号灯器の灯色切り替えタイミング等に関する信号制御指令を、所定周期(例えば1分)ごとに交通信号制御機に送信する。
〔交通流シミュレータの構成例〕
図5は、交通流シミュレータ21による情報処理の一例を示す説明図である。
図5に示すように、交通流シミュレータ21の入力データには、所定エリア内の道路ネットワークなどの走行環境、所定の時間帯のOD交通量、及び、ユーザが意図的に設定する通行規制又は突発的な渋滞位置などの設定情報が含まれる。
交通流シミュレータ21の出力データ(交通評価指標)は、リンク旅行時間、渋滞長、待ち行列長、及びリンクに対する車両通過台数のうちの少なくとも1つよりなる。
交通流シミュレータ21は、複数の出発地点から複数の模擬車両SVを発生させ、各模擬車両SVが目的地点まで到達した時点で模擬車両SVを消滅させる。
この際、交通流シミュレータ21は、所定の制御周期(例えば、0.1〜1.0秒)ごとの車両位置の時系列データよりなる道路ネットワーク上の交通流を生成し、生成した交通流に基づいて、各道路区間(リンク)の旅行時間、渋滞長、及び待ち行列長などの交通評価指標を算出する。
交通流シミュレータ21は、道路ネットワークに発生させる複数の模擬車両SVのうちの一部を、実走行情報により経路が既知である通信車両1に対応する車両(以下、「実走行車両RV」という。)に指定することができる。
例えば、起点が図4のセルA1を通り、終点が図4のセルA5を通る、3台の通信車両1の実走行情報が走行情報データベース15に存在する場合には、A1/A5の40台の車両のうちの3台を実走行車両RVに指定すればよい。
図6は、交通流シミュレータ21の構成例を示すブロック図である。
図6に示すように、交通流シミュレータ21は、制御周期ごとに各模擬車両SVの経路を選択する経路選択部23と、制御周期ごとにリンク旅行時間などの所定の交通評価指標を算出する指標算出部24と、を備える。
経路選択部23は、所定の経路選択モデルに従って各模擬車両SVの経路を選択する処理を、制御周期ごとに実行する。
経路選択部23は、指標算出部24から逐次入力される交通評価指標(例えばリンク旅行時間)を用いて、各模擬車両SVの経路選択を実行する。経路選択部23は、選択した各模擬車両SVの経路を、制御周期ごとに指標算出部24に出力する。
模擬車両SVの経路選択モデルは、例えば、次の算出式で定義される経路計算指標が最小となる経路を選択するモデルを採用すればよい。
経路計算指標(秒)=走行距離/規制速度+重み係数×走行時間+料金×時間係数
経路選択部23は、模擬車両SVが実走行車両RVである場合は、実走行情報に基づく経路をそのまま採用する。
具体的には、実走行情報が走行実績情報(プローブデータ)である場合は、経路選択部23は、当該情報から特定される実走経路を採用する。実走行情報が走行予定情報である場合は、経路選択部23は、当該情報から特定される予定経路を採用する。
指標算出部24は、経路選択部23から逐次入力される経路情報に従って、各模擬車両SVを道路ネットワーク上で移動させる。また、指標算出部24は、所定の車両挙動モデルに従って各模擬車両SVを、道路ネットワーク上で移動させる。
指標算出部24は、各模擬車両SVを道路ネットワーク上で移動させるごとに、各時点のリンク旅行時間などの交通評価指標を算出する。指標算出部24は、算出したリンク旅行時間などの交通評価指標を経路選択部23に出力する。
模擬車両SVの車両挙動モデルは、種々のモデルを採用し得るが、例えば、先行車両と追従車両との距離、先行車両及び追従車両の速度から求まる模擬車両SVの加減速度によって挙動を表現するモデルを採用することが好ましい。
この場合、渋滞の延伸又は消滅、及び、個々の模擬車両SVの加減速度などを道路ネットワーク上で表現することができる。
〔交通流シミュレータの作業モード〕
図7は、交通流シミュレータ21による作業モードの一例を示す説明図である。
図7に示すように、交通流シミュレータ21を用いてユーザが実施し得る作業モードには、下記の作業モード1〜3の3種類が含まれる。
ユーザは、作業モード1〜3のいずれであるかを入力部13に入力可能である。作業モード1〜3の操作入力があった場合、交通流シミュレータ21は、入力された作業モード1〜3の識別番号を記憶部12に記録する。
(作業モード1:現状再現)
作業モード1は、特定日、年平均、日種別など過去の通常日における交通状況を再現するために、交通流シミュレータ21を動作させる作業モードである。
本実施形態の交通流シミュレータ21は、後述する「交通流補正処理」(図7)の機能を有する。作業モード1では、かかる交通流補正処理が実行される。
交通流補正処理では、交通流シミュレーションの結果(渋滞長及び交通量)が実際の結果と一致するように、道路ネットワークの模擬車両SVの台数が調整される。
(作業モード2:過去事象再現)
作業モード2は、過去の大きな事象(例えば、東日本大震災、花火大会、マラソン又は重大交通事故など)の発生時に実際に行われた交通規制(通行止め又は車線規制など)を設定情報として、交通流シミュレータ21を動作させる作業モードである。
従って、作業モード2を実施すれば、過去に発生した事象の状況下でも、交通流シミュレータ21が交通状況を再現可能であるか否かを確認することができる。
作業モード1で現状が再現されても、ある事象が発生した時の交通状況を正しく予測できる保証はなく、類似している場合もあれば、異なる(外れる)場合もある。
そこで、作業モード2では、過去の事象を概ね再現できるように、共通的な調整(例えば車両挙動モデル、経路選択モデルの調整など)を行うとともに、交通流シミュレータ21の特性、例えば、ケースC1の予測性能は高いが、ケースC2の予測性能は低い又は特定の傾向があるなどの特性を把握することができる。
(作業モード3:未来事象予測)
作業モード3は、作業モード1のシミュレーション結果と作業モード2のシミュレーション結果を利用して、未来の交通状況を予測する作業モードである。
予測の適否は、交通流シミュレータ21の性能よりも、シナリオの正確さ、すなわち、どの様な交通条件の変化(需要の変化、車両挙動の変化など)が起こるかを正確に設定することが重要である。
従って、作業モード1及び作業モード2により、車両挙動モデルなどが適切に調整された交通流シミュレータ21を用いて、考えられる様々なシナリオに基づいて、交通流シミュレータ21を作業モード3で動作させれば、未来に発生し得るイベントを考慮した交通状況を予測可能となる。
〔交通流補正処理の概要〕
図8は、交通流シミュレータ21による交通流補正処理の概要を示す説明図である。
図8に示すように、交通流シミュレータ21は、作業モード1(現状再現)において、交通管制センタ(図示せず)で計測される実渋滞データAとシミュレーション出力Sとを所定時間ごとに比較する。
交通流シミュレータ21は、A>Sならば、リンクに「ダミー車両DV」を追加して、シミュレーション出力Sを実渋滞データAと一致させる。
交通流シミュレータ21は、A<Sならば、リンクから「模擬車両SV」を削除して、シミュレーション出力Sを実渋滞データAと一致させる。
追加したダミー車両DVの台数及び削除した模擬車両SVの台数は、記憶部12の所定領域に一時的に記録される。
記録された追加又は削除台数は、作業モード2(過去事象再現)又は作業モード3(未来事象予測)において、作業モード1の場合と同期して追加又は削除される。
なお、所定の事象によって経路を変更した模擬車両SVは、新しい経路上のリンクで交通量の増加(逆の場合は交通量の減少)となり、作業モード2及び3で渋滞変化として現れる。混雑、旅行時間と二酸化炭素の排出のような評価値の相違は、作業モード1との相対値として比較することができる。
〔模擬車両ごとの経路選択処理〕
図9は、経路選択部23が実行する模擬車両SVごとの経路選択処理の一例を示すフローチャートである。
交通流シミュレータ21の経路選択部23は、図9のフローチャートの処理を、道路ネットワークに存在する模擬車両SVごとに実行する。もっとも、前述の交通流補正処理(図6)によりダミー車両DVを発生させた場合には、ダミー車両DVも経路選択処理の対象となり、経路及び選択特性が未知の模擬車両SVと見なされる。
図9に示すように、経路選択部23は、現在時刻が対象時間帯に含まれるか否かを判定する(ステップST1)。対象時間帯とは、交通流シミュレーションを実施する仮想の時間帯(例えば7:00〜19:00など)のことである。
ステップST1の判定結果が否定的である場合は、経路選択部23は処理を終了する。
ステップST1の判定結果が肯定的である場合は、経路選択部23は、記憶部12に記録された作業モードの値が「1」であるか否かを判定する(ステップST2)。
ステップST2の判定結果が肯定的である場合は、1回目のシミュレーションを意味する。この場合、経路選択部23は、今回の経路計算時刻になるまで待ってから(ステップST3でYes)、模擬車両SVの経路が既知であるか否かを判定する(ステップST4)。
経路が既知であるとは、実走行情報に基づく経路が存在すること、すなわち、模擬車両SVが前述の実走行車両RVに指定されていることを意味する。
ステップST4の判定結果が肯定的である場合は、経路選択部23は、経路選択モデルに基づく計算を実行せず、模擬車両SVの経路として既知の経路1を採用する(ステップST5)。
その後、経路選択部23は、経路M1を経路1に設定したあと(ステップST9)、経路M1を指標算出部24に出力しかつ記憶部12に記録する(ステップST10)。なお、経路M1とは、模擬車両SVの作業モード1における経路のことを意味する。
ステップST4の判定結果が否定的である場合は、経路選択部23は、模擬車両SVによる経路の選択特性が既知であるか否かを判定する(ステップST6)。
選択特性とは、裏道や細街路の選択を嫌う、右左折が少ない経路を好む、有料道路を避けるなどの、予め設定可能な人的な選択特性のことをいう。
ステップST6の判定結果が肯定的である場合は、経路選択部23は、模擬車両SVの経路として、選択特性を考慮した経路選択モデルで算出した経路1を採用する(ステップST7)。
その後、経路選択部23は、経路M1を経路1に設定したあと(ステップST9)、経路M1を指標算出部24に出力しかつ記憶部12に記録する(ステップST10)。
ステップST6の判定結果が否定的である場合は、経路選択部23は、模擬車両SVの経路として、共通の経路選択モデルで算出した経路1を採用する(ステップST8)。
共通の経路選択モデルとは、例えば、「経路計算指標(秒)=走行距離/規制速度+重係数×走行時間+料金×時間係数」の算出式で定義されるモデルのこという。
その後、経路選択部23は、経路M1を経路1に設定したあと(ステップST9)、経路M1を指標算出部24に出力しかつ記憶部12に記録する(ステップST10)。
ステップST10の処理が完了すると、経路選択部23は、時刻を1単位(例えば、制御周期と同じ秒数)だけ進めてから(ステップST22)、処理をステップST1の前に戻す。
ステップST2の判定結果が否定的である場合は、交通流シミュレータ21の作業モードが「2」又は「3」の場合であり、2回目以降のシミュレーションを意味する。
この場合、経路選択部23は、今回の経路計算時刻になるまで待ってから(ステップST11でYes)、模擬車両SVの経路の選択特性が既知であるか否かを判定する(ステップST12)。
ステップST12の判定結果が肯定的である場合は、経路選択部23は、まず、作業モード1で計算した経路M1のコストC1を計算する(ステップST13)。
この場合のコストC1は、共通式「経路計算指標(秒)=走行距離/規制速度+重係数×走行時間+料金×時間係数」に、個人の特性の指標値を加算した式で与えられる。
例えば、裏道や細街路の選択を嫌う場合は裏道の走行時間に対する重み係数を大きく設定し、右左折が少ない経路を好む場合は右左折毎に一定の数値を加算するなどの処理が考えられる。
次に、経路選択部23は、選択特性を考慮した経路選択モデルにより、作業モードn(n=2又は3)の設定条件下における経路2とそのコストC2を計算する(ステップST14)。コストC2の算出方法は、コストC1と同様である。経路C2は、コストC2が最も小さくなる経路である。
その後、経路選択部23は、C2+R<C1の不等式が成立するか否かを判定する(ステップST15)。
Rは、作業モード1の経路M1に対する執着度を表す指標である。ドライバが予定経路を変更するのは、新しい経路に一定以上の価値がある場合である。従って、Rは、所定値(例えば100秒)又はC1に所定率(例えば10%)を乗じた値に設定される。Rは,運転者の特性に応じて、模擬車両SVごとに変動させてもよい。
ステップST15の判定結果が肯定的である場合は、経路選択部23は、経路Mnを経路2に設定したあと(ステップST19)、経路Mnを指標算出部24に出力しかつ記憶部12に記録する(ステップST21)。なお、経路Mnとは、模擬車両SVの作業モードn(n=2又は3)における経路のことを意味する。
ステップST15の判定結果が否定的である場合は、経路選択部23は、経路Mnを経路M1に設定したあと(ステップST20)、経路Mnを指標算出部24に出力しかつ記憶部12に記録する(ステップST21)。
ステップST12の判定結果が否定的である場合は、経路選択部23は、まず、作業モード1で計算した経路M1のコストC1を計算する(ステップST16)。
この場合のコストC1は、共通式「経路計算指標(秒)=走行距離/規制速度+重係数×走行時間+料金×時間係数」で与えられる。
次に、経路選択部23は、共通の経路選択モデルにより、作業モードn(n=2又は3)の設定条件下における経路2とそのコストC2を計算する(ステップST17)。コストC2の算出方法は、コストC1と同様である。経路C2は、コストC2が最も小さくなる経路である。
その後、経路選択部23は、C2+R<C1の不等式が成立するか否かを判定する(ステップST18)。Rは、作業モード1の経路M1に対する執着度を表す指標である。
ステップST18の判定結果が肯定的である場合は、経路選択部23は、経路Mnを経路2に設定したあと(ステップST19)。経路Mnを指標算出部24に出力しかつ記憶部12に記録する(ステップST21)。
ステップST18の判定結果が否定的である場合は、経路選択部23は、経路Mnを経路M1に設定したあと(ステップST20)、経路Mnを指標算出部24に出力しかつ記憶部12に記録する(ステップST21)。
ステップST21の処理が完了すると、経路選択部23は、時刻を1単位(例えば、制御周期と同じ秒数)だけ進めてから(ステップST22)、処理をステップST1の前に戻す。
〔交通流シミュレータの効果〕
以上の通り、本実施形態の交通流シミュレータ21によれば、各作業モード1〜3で選択されたすべての模擬車両SVの経路M1,Mn(具体的には、リンク番号とリンクの流入及び流出時刻)が記憶部12に記録される(図9のステップST10,ST21)。
従って、記録された経路M1と経路Mnをユーザが対比することにより、経路選択モデルが各設定条件で通用するか否かを判断でき、交通流シミュレータ21に組み込まれた経路選択モデルの有効性をユーザが検証できるようになる。
本実施形態の交通流シミュレータ21によれば、C2+R<C1の不等式が成立する場合には、作業モードnにおいて経路選択モデルに従って算出した経路を経路Mnとし(図9のステップST19)、その不等式が成立しない場合には、作業モード経路M1を経路Mnとする(図9のステップST20)。
従って、執着率Rの値に応じて、作業モードnにおいて模擬車両SVが経路を変更する度合いを適切に調整することができる。このため、作業モードnのシミュレーションの精度を向上することができる。
本実施形態の交通流シミュレータ21によれば、実走行車両RVが模擬車両SVに含まれる場合には、作業モード1において、実走行車両SVに指定された模擬車両SVについては、経路選択モデルに基づく経路の選択を行わずに走行経路を採用する(図9のステップST5)。
従って、作業モード1で用いる模擬車両SVの経路に実際の走行経路が含まれることになり、作業モード1のシミュレーションの精度を向上することができる。
上述の実施形態は、すべての点で例示であって制限的なものではない。本発明の権利範囲は、特許請求の範囲に記載された構成と均等の範囲内でのすべての変更が含まれる。
1 通信車両
2 車載機
3 通信装置
4 無線基地局
5 センタ装置
6 通信回線
10 送受信部
11 制御部
12 記憶部
13 入力部
14 表示部
15 走行情報データベース
16 走行環境データベース
17 パラメータデータベース
18 コンピュータプログラム
21 交通流シミュレータ
22 信号制御装置
23 経路選択部
24 指標算出部

Claims (5)

  1. 道路ネットワークに発生させた複数の模擬車両の交通流をシミュレートする交通流シミュレータであって、
    所定の経路選択モデルに従って複数の前記模擬車両の経路を選択する経路選択部と、
    前記経路に従って複数の前記模擬車両を前記道路ネットワーク上で移動させて、前記道路ネットワークの交通評価指標を算出する指標算出部と、を備え、
    前記経路選択部は、下記の第1モードの実行時に選択した第1経路と、下記の第2モードの実行時に選択した第2経路とを記憶部に記録する交通流シミュレータ。
    第1モード:第1の設定条件下で交通流をシミュレートする作業モード
    第2モード:第2の設定条件下で交通流をシミュレートする作業モード
  2. 前記経路選択部は、下記の不等式が成立する場合に、前記第2モードにおいて前記経路選択モデルに従って算出した経路を前記第2経路とし、下記の不等式が成立しない場合には、前記第1経路を前記第2経路とする請求項1に記載の交通流シミュレータ。
    C2+R<C1
    ただし、C1:第1経路のコスト、C2:第2モードにおいて算出した経路のコスト、R:第1経路の執着率
  3. 実際の走行経路が特定可能な実走行車両が前記模擬車両に含まれる場合には、
    前記経路選択部は、前記第1モードにおいて、前記実走行車両に指定された前記模擬車両については、前記経路選択モデルに基づく前記経路の選択を行わずに前記走行経路を採用する請求項1又は請求項2に記載の交通流シミュレータ。
  4. 道路ネットワークに発生させた複数の模擬車両の交通流をシミュレートする方法であって、
    所定の経路選択モデルに従って複数の前記模擬車両の経路を選択する選択ステップと、
    前記経路に従って複数の前記模擬車両を前記道路ネットワーク上で移動させて、前記道路ネットワークの交通評価指標を算出する算出ステップと、を含み、
    前記選択ステップには、下記の第1モードの実行時に選択した第1経路と、下記の第2モードの実行時に選択した第2経路とを記憶部に記録するステップが含まれる交通流のシミュレート方法。
    第1モード:第1の設定条件下で交通流をシミュレートする作業モード
    第2モード:第2の設定条件下で交通流をシミュレートする作業モード
  5. 道路ネットワークに発生させた複数の模擬車両の交通流をシミュレートする交通シミュレータとして、コンピュータを機能させるコンピュータプログラムであって、
    前記コンピュータを、
    所定の経路選択モデルに従って複数の前記模擬車両の経路を選択する経路選択部と、
    前記経路に従って前記模擬車両を前記道路ネットワーク上で移動させて、前記道路ネットワークの交通評価指標を算出する指標算出部として機能させ、
    前記経路選択部は、下記の第1モードの実行時に選択した第1経路と、下記の第2モードの実行時に選択した第2経路とを記憶部に記録するコンピュータプログラム。
    第1モード:第1の設定条件下で交通流をシミュレートする作業モード
    第2モード:第2の設定条件下で交通流をシミュレートする作業モード
JP2020535350A 2018-08-06 2018-08-06 交通流シミュレータ、交通流のシミュレート方法及びコンピュータプログラム Active JP7086195B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029424 WO2020031236A1 (ja) 2018-08-06 2018-08-06 交通流シミュレータ、交通流のシミュレート方法及びコンピュータプログラム

Publications (2)

Publication Number Publication Date
JPWO2020031236A1 true JPWO2020031236A1 (ja) 2021-08-02
JP7086195B2 JP7086195B2 (ja) 2022-06-17

Family

ID=69414279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020535350A Active JP7086195B2 (ja) 2018-08-06 2018-08-06 交通流シミュレータ、交通流のシミュレート方法及びコンピュータプログラム

Country Status (4)

Country Link
US (1) US11847907B2 (ja)
JP (1) JP7086195B2 (ja)
CN (1) CN112534481B (ja)
WO (1) WO2020031236A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495124B2 (en) * 2019-11-22 2022-11-08 At&T Intellectual Property I, L.P. Traffic pattern detection for creating a simulated traffic zone experience
US11587049B2 (en) 2019-11-22 2023-02-21 At&T Intellectual Property I, L.P. Combining user device identity with vehicle information for traffic zone detection
US11393333B2 (en) 2019-11-22 2022-07-19 At&T Intellectual Property I, L.P. Customizable traffic zone
JP7406463B2 (ja) * 2020-06-26 2023-12-27 株式会社日立製作所 交通運行計画システム及び交通運行計画方法
CN112200453B (zh) * 2020-10-10 2024-02-09 中国城市规划设计研究院 一种道路交通承载能力评价系统
CN113409573B (zh) * 2021-06-16 2022-07-05 福建师范大学 一种基于matlab的sumo城市交通仿真及车流量控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007164262A (ja) * 2005-12-09 2007-06-28 Toyota Central Res & Dev Lab Inc 交通状況予測装置、方法及びプログラム、経路探索システム並びに交通状況提供システム
JP2010044528A (ja) * 2008-08-11 2010-02-25 Sumitomo Electric Ind Ltd 交通パラメータ算出装置、コンピュータプログラム、及び交通パラメータ算出方法
JP2013041313A (ja) * 2011-07-20 2013-02-28 Sumitomo Electric Ind Ltd 交通評価装置、コンピュータプログラム及び交通評価方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4950596B2 (ja) * 2006-08-18 2012-06-13 クラリオン株式会社 予測交通情報生成方法、予測交通情報生成装置および交通情報表示端末
JP5024392B2 (ja) 2010-01-08 2012-09-12 住友電気工業株式会社 交通評価装置、コンピュータプログラム及び交通評価方法
JP2011186746A (ja) 2010-03-08 2011-09-22 Sumitomo Electric Ind Ltd 交通評価装置、コンピュータプログラム及び交通評価方法
JP5325241B2 (ja) * 2011-01-14 2013-10-23 三菱重工業株式会社 交通流シミュレーション装置、交通流シミュレーションプログラム、及び交通流シミュレーション方法
US9014955B2 (en) * 2011-07-20 2015-04-21 Sumitomo Electric Industries, Ltd. Traffic evaluation device non-transitory recording medium and traffic evaluation method
JP5267621B2 (ja) 2011-07-20 2013-08-21 住友電気工業株式会社 交通評価装置、コンピュータプログラム及び交通評価方法
JP5310802B2 (ja) 2011-07-20 2013-10-09 住友電気工業株式会社 交通評価装置、コンピュータプログラム及び交通評価方法
JP5382076B2 (ja) 2011-08-10 2014-01-08 住友電気工業株式会社 交通評価装置、コンピュータプログラム及び交通評価方法
JP5494600B2 (ja) 2011-09-28 2014-05-14 住友電気工業株式会社 交通評価装置、コンピュータプログラム及び交通評価方法
JP5494605B2 (ja) 2011-09-30 2014-05-21 住友電気工業株式会社 交通評価装置、コンピュータプログラム及び交通評価方法
CN103116608A (zh) * 2013-01-18 2013-05-22 同济大学 一种快速路交通流再现的方法
JP5980170B2 (ja) * 2013-05-30 2016-08-31 三菱重工メカトロシステムズ株式会社 シミュレーション装置、シミュレーション方法及びプログラム
US10578455B2 (en) * 2014-03-06 2020-03-03 Mitsubishi Heavy Industries, Ltd. Device for providing electric-moving-body information and method for providing electric-moving-body information
CN108335485B (zh) * 2018-01-31 2020-04-24 杭州远眺科技有限公司 基于车牌识别数据的大事件交通动态仿真拥堵预测的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007164262A (ja) * 2005-12-09 2007-06-28 Toyota Central Res & Dev Lab Inc 交通状況予測装置、方法及びプログラム、経路探索システム並びに交通状況提供システム
JP2010044528A (ja) * 2008-08-11 2010-02-25 Sumitomo Electric Ind Ltd 交通パラメータ算出装置、コンピュータプログラム、及び交通パラメータ算出方法
JP2013041313A (ja) * 2011-07-20 2013-02-28 Sumitomo Electric Ind Ltd 交通評価装置、コンピュータプログラム及び交通評価方法

Also Published As

Publication number Publication date
US11847907B2 (en) 2023-12-19
US20210233394A1 (en) 2021-07-29
WO2020031236A1 (ja) 2020-02-13
CN112534481B (zh) 2023-05-05
JP7086195B2 (ja) 2022-06-17
CN112534481A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
JP7086195B2 (ja) 交通流シミュレータ、交通流のシミュレート方法及びコンピュータプログラム
US20220034671A1 (en) Method and system for risk determination of a route
Dandl et al. Microsimulation of an autonomous taxi-system in Munich
CN101639871B (zh) 面向行为研究的车载动态交通信息诱导系统模拟设计方法
WO2012096063A1 (ja) 交通流シミュレーション装置、交通流シミュレーションプログラム、及び交通流シミュレーション方法
JP6139179B2 (ja) 情報生成装置、交通シミュレータ及びコンピュータプログラム
JP2016513805A (ja) 車両ルート指定および交通管理のための車線レベル車両ナビゲーション
Anya et al. Application of AIMSUN microsimulation model to estimate emissions on signalized arterial corridors
JP5980170B2 (ja) シミュレーション装置、シミュレーション方法及びプログラム
US11955000B2 (en) Methods, systems, and media for generating and evaluating street grids
JP2002163748A (ja) 交通流模擬装置による交通流予測制御システム
US20210174672A1 (en) Traffic index computation device, computation method, traffic signal control system, and computer program
Chundury et al. Evaluation of CORSIM car-following model by using Global Positioning System field data
WO2015155884A1 (ja) 車両電力消費シミュレーション装置、車両電力消費シミュレーション方法、およびプログラム
JP5110125B2 (ja) 情報処理装置及びコンピュータプログラム
Chang et al. Data challenges in development of a regional assignment: simulation model to evaluate transit signal priority in Chicago
JP4947090B2 (ja) プローブ情報生成装置及び方法
Demİrİz et al. Corridor capacity analysis with mesoscopic simulation: Erzincan province sample
JP5299155B2 (ja) プローブ情報生成装置及びコンピュータプログラム
US12097887B2 (en) Open space planner profiling tool for autonomous vehicle
JP6163309B2 (ja) 車両電力消費シミュレーション装置、車両電力消費シミュレーション方法、およびプログラム
Kelly et al. A high fidelity driving simulator as a tool for design and evaluation of highway infrastructure upgrades
Cetin et al. Active bottleneck management on freeways through connected vehicles
Hughes AIMSUN2 simulation of a congested Auckland freeway
US20230251103A1 (en) Information processing device, information processing method, and storage medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R150 Certificate of patent or registration of utility model

Ref document number: 7086195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150