JPWO2019182056A1 - 高清浄度鋼の製造方法 - Google Patents

高清浄度鋼の製造方法 Download PDF

Info

Publication number
JPWO2019182056A1
JPWO2019182056A1 JP2019546944A JP2019546944A JPWO2019182056A1 JP WO2019182056 A1 JPWO2019182056 A1 JP WO2019182056A1 JP 2019546944 A JP2019546944 A JP 2019546944A JP 2019546944 A JP2019546944 A JP 2019546944A JP WO2019182056 A1 JPWO2019182056 A1 JP WO2019182056A1
Authority
JP
Japan
Prior art keywords
molten steel
steel
added
inclusions
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019546944A
Other languages
English (en)
Other versions
JP6648866B1 (ja
Inventor
陽一 伊藤
陽一 伊藤
真行 深見
真行 深見
岡津 光浩
光浩 岡津
公人 白▲崎▼
公人 白▲崎▼
田中 全人
全人 田中
則親 荒牧
則親 荒牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6648866B1 publication Critical patent/JP6648866B1/ja
Publication of JPWO2019182056A1 publication Critical patent/JPWO2019182056A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

連続鋳造設備の浸漬ノズルの閉塞防止とより優れた耐硫化物応力腐食割れ性(耐SSC性)の両立を可能とする高清浄度鋼の製造方法を提供する。本発明の高清浄度鋼の製造方法は、転炉内で溶鋼にSiを添加した後にAlを添加する脱酸処理工程と、レードルファーネスによる取鍋精錬工程と、真空脱ガス処理工程と、前記溶鋼にCa含有金属を添加する工程と、前記溶鋼を連続鋳造する工程と、を有し、前記取鍋精錬工程では前記溶鋼にSiを添加しないか、前記溶鋼の成分を調整するための追加Siを添加する場合には、前記取鍋精錬工程の処理期間中の前半に添加し、前記取鍋精錬工程の処理期間中の後半と前記真空脱ガス処理の期間中には添加しないことを特徴とする。

Description

本発明は、酸化物系非金属介在物量が少ない鋼、すなわち高清浄度鋼の製造方法に関するものであり、特にカルシウム添加鋼の製造方法に関する。
製品特性の厳格化やより高機能な材料の要求から、鋼材中の酸化物系非金属介在物量をより低下させた高清浄度鋼に対する要請が高まっている。また、油井管などの用途で使用される高強度鋼管は、腐食性ガスの硫化水素を含む酸性化した厳しい環境(サワー環境)下で使用されることから、耐水素誘起割れ性(耐HIC性)、及び耐硫化物応力腐食割れ性(耐SSC性)に優れることが求められる。
耐HIC性及び耐SSC性の改善に対しては、溶鋼段階で酸化物系非金属介在物量を低減することだけでなく、溶鋼の凝固時に析出、晶出してくるMnSに代表される硫化物を低減及び無害化することが必要となる。特にMnSは伸延性が高く、その後の鋼を圧延する際に伸延し、水素吸蔵サイトになることから、耐HIC性及び耐SSC性に対しては有害であることが知られている。
この対策としては、溶鋼段階でCa含有金属を添加することでMnSをCaSにすることが有効であることが一般的に知られている。このCa含有金属の添加方法および添加量について、以下の技術が知られている。
特許文献1には、転炉出鋼後から、鋳造までの間に溶鋼にCaまたはCa含有物質を添加し、溶鋼中にCaを0.0005〜0.005質量%以上を含有させるとともに、鋼中S、Al、CaおよびT.[O](トータル酸素)が下記式を満足するように制御することを特徴とする、耐硫化物応力腐食割れ性に優れた油井用鋼の製造方法が記載されている。
-0.005≦(Ca/40-S/32)×sol.Al×T.[O]×1000000≦0.0042
特許文献2には、二次精錬終了後に溶鋼のT.[O]を測定し、該溶鋼を連続鋳造機のタンディッシュへと注入を開始する前に、その測定値に基づいて計算した添加量のCaを添加して介在物の制御を行う高強度・高耐食性油井管用鋼材の溶製方法が記載されている。
特許文献3には、転炉から取鍋への出鋼時または出鋼後に溶鋼にAlを添加して溶鋼を脱酸し、先ず、この取鍋内の溶鋼にCaOを含有するフラックスを添加して脱硫処理を施すとともに、この脱硫処理時にCa含有金属を添加し、次いで、取鍋内の溶鋼に真空脱ガス処理を施し、更に、真空脱ガス処理後の取鍋内の溶鋼にCa含有金属を添加し、その後、該溶鋼を鋳造するプロセスにおいて、前記脱硫処理時におけるCa含有金属のCa純分の添加量を、溶鋼中のAl濃度及びトータル酸素濃度に応じて調整することを特徴とする、耐硫化物腐食割れ性に優れた清浄鋼の製造方法が記載されている。
特開2002−60893号公報 特開2011−89180号公報 特開2010−209372号公報
溶鋼にCa含有金属を添加することにより、前述したようにMnSの生成を抑制できるだけでなく、Al系介在物をCaO−Al系介在物に変化させることが可能となる。特許文献1〜3の技術は、この観点で耐HIC性及び耐SSC性を改善することを目的に、Ca含有金属の添加量を規定するものである。すなわち、特許文献1〜3の技術は、Ca添加前にはAl系介在物のみが存在するとみなして、このAl系介在物にCaが反応することで、適正なCaO−Al系介在物に変化するという考え方に基づいて、添加方法や添加量を規定する技術である。
しかしながら、本発明者らの検討によると、このような考え方に基づくCa添加では、特に連続鋳造設備における内径の小さな浸漬ノズルでノズル閉塞が問題となったり、110psi(760MPa)以上の高強度で厳格な耐SSC性が必要となる鋼種では200μmを超過するような大型介在物を完全に生成抑止できず、このような厳格な耐SSC性の要求に応えられないことが判明した。
そこで本発明は、上記課題に鑑み、連続鋳造設備の浸漬ノズルの閉塞防止と、より優れた耐硫化物応力腐食割れ性(耐SSC性)の両立を可能とする高清浄度鋼の製造方法を提供することを目的とする。
本発明者らは、サワー環境で使用される高強度シームレスパイプ用鋼などの介在物組成を詳細に調査した。この鋼には一般的に極低S、P成分、低O成分が要求されるため、以下のプロセスで製造されるのが一般的である。まず、転炉又はその後の取鍋内の溶鋼にSi及びAlを添加して、脱酸処理を行う。次に、取鍋内の溶鋼にCaOを含有するフラックスを添加して、レードルファーネス(LF)による取鍋精錬工程(脱硫処理)を行う。次に、RH真空脱ガス装置による真空脱ガス処理を行う。次に、溶鋼にCa含有金属を添加するCa処理を実施する(本明細書において、単に「Ca添加」とも称する。)。その後、溶鋼を取鍋からタンディッシュに移し、連続鋳造を行って鋳片とする。
溶鋼中の介在物に関して、脱酸処理の直後はAl系介在物が主体である。ここで、サワー環境で使用される高強度シームレスパイプ用鋼やラインパイプなどは高強度が要求されるため、Si含有量が0.1%以上の組成であることが一般的である。このような鋼を製造する場合、Si成分については、脱酸剤のAlと同時期に大量にFeSi合金を添加した後、転炉から出鋼した溶鋼を受ける取鍋内において、あるいはその後のLF工程及び真空脱ガス工程において、目標Si含有量となるように数回に分けて溶鋼にFeSi合金を添加することが一般的である。FeSi合金中には1%程度のCa成分が不可避に混入している。また、取鍋精錬工程では、脱硫を目的に添加するCaO−Al−SiO系フラックスとMgO−C組成の耐火物との反応により、溶鋼中にMgが侵入する。このため、取鍋精錬終了時の介在物組成は、Al系介在物単体でなくCaO及びMgOを含有したCaO−MgO−Al系介在物に変化している場合が多いことを確認した。
そして、本発明者らの検討によると、1チャージ内でCa添加前の溶鋼中の複数の介在物間でCaO濃度がばらついている場合には、その後のCa処理時に所定量のCa含有金属を添加しても、タンディッシュ段階の溶鋼中の酸化物介在物の組成にもばらつきが生じることが判明した。そして、上述した介在物の組成のばらつきが生じた場合には、ノズル閉塞が発生したり、より厳格な耐SSC性の要求には応えられないことが判明した。
本発明者らが詳細に調査したところ、真空脱ガス処理後Ca処理実施前の溶鋼中Ca濃度が高位であるほど、その後のCa処理時のCa添加量を調整しても、最終的な介在物組成のばらつきが生じやすく、200μm以上の巨大介在物が鋳片に観察される確率が高くなることが確認された。
また、製造プロセスに関しては、転炉内でSi、Al等の脱酸剤を添加するキルド出鋼プロセスに対して、転炉後の取鍋にSi、Al等の脱酸剤を添加するリムド出鋼プロセスの場合の方が上記の問題が発生しやすくなること、さらには取鍋精錬(LF)の後半や真空脱ガス処理にSi成分調整のためFeSi合金を添加した場合に顕著に上記の問題が発生することが確認できた。これらの場合には、真空脱ガス処理後Ca処理実施前の溶鋼中Ca濃度が5〜10ppm程度まで上昇している分析結果が得られた。
これに対して、本発明者らは、(1)脱酸処理をリムド出鋼ではなくキルド出鋼で行うこと、(2)その際、脱酸剤の添加を、Siの添加後Alを添加する順番で行うこと、(3)成分調整のために追加でSiを添加する場合には、取鍋精錬の前半までに行い、取鍋精錬の後半と真空脱ガス工程では行わないこと、の全てを満たすことによって、(A)転炉から真空脱ガス工程までの溶鋼中Ca濃度を継続的に4ppm以下という低濃度に維持でき、(B)Ca添加後の介在物組成のばらつきを抑え、当該介在物組成を1600℃液相組成範囲に制御でき、(C)Ca添加後の溶鋼中に直径5μm以上の大きな介在物が少ない、という作用を得ることができ、その結果、連続鋳造設備の浸漬ノズルの閉塞を防止し、より優れた耐SSC性を有する高清浄度鋼を製造することが可能となることを見出した。
本発明は、上記の知見に基づき完成されたものであり、その要旨構成は、以下のとおりである。
[1]転炉内で溶鋼にSiを添加した後にAlを添加して、前記溶鋼に脱酸処理を施す工程と、
前記溶鋼にCaOを含有するフラックスを添加して、レードルファーネスを用いて前記溶鋼に脱硫処理を施す取鍋精錬工程と、
その後、真空脱ガス装置により前記溶鋼に真空脱ガス処理を施す工程と、
その後、前記溶鋼にCa含有金属を添加する工程と、
その後、前記溶鋼を連続鋳造する工程と、
を有し、
前記取鍋精錬工程では前記溶鋼にSiを添加しないか、
前記溶鋼の成分を調整するための追加Siを添加する場合には、前記取鍋精錬工程の処理期間中の前半に添加し、前記取鍋精錬工程の処理期間中の後半と前記真空脱ガス処理の期間中には添加しないことを特徴とする高清浄度鋼の製造方法。
[2]前記追加Siの添加は、前記取鍋精錬工程の処理開始から10分以内に行う、上記[1]に記載の高清浄度鋼の製造方法。
[3]前記脱酸処理におけるSi添加とAl添加との間隔は、1分以上10分以下とする、上記[1]又は[2]に記載の高清浄度鋼の製造方法。
[4]前記真空脱ガス処理後かつ前記Ca含有金属添加前の前記溶鋼中のCa濃度が0.0004質量%以下であり、
下記の(1)式を満たすように前記Ca含有金属の添加量を設定する、請求項1〜3のいずれか一項に記載の高清浄度鋼の製造方法。

1.00≦{[%Ca]−(0.18+130×[%Ca])×[%O]}
/1.25/[%S]≦2.00 ・・・(1)
ここで
[%Ca]、[%O]、[%S]:タンディッシュ内での溶鋼中の各元素の濃度(質量%)
である。
本発明によれば、連続鋳造設備の浸漬ノズルの閉塞を防止し、より優れた耐硫化物応力腐食割れ性(耐SSC性)を有する高清浄度鋼を製造することが可能となる。
(A)は、本発明の一実施形態による高清浄度鋼の製造方法の製造プロセスフロー図であり、(B)は、比較例による高清浄度鋼の製造方法の製造プロセスフロー図である。 比較法1,2及び本発明法の製造プロセスにおける溶鋼中のCa濃度推移の例である。 (A)は、比較法1,2及び本発明法において、RH処理後かつCa添加前に採取した溶鋼サンプルにおけるCaO−MgO−Al系介在物の平均組成を複数のチャージで調査した結果であり、(B)は、(A)の各チャージにおいて、Ca添加後に採取した溶鋼サンプルにおけるCaO−MgO−Al系介在物の平均組成を調査した結果である。 比較法1,2及び本発明法において、Ca添加後に採取した溶鋼サンプルにおける直径5μm以上のCaO−MgO−Al系介在物の個数を調査した結果である。 原子濃度比(ACR)指標と応力腐食割れ(SSC)試験不合格率との関係の示すグラフである。
本発明の一実施形態による高清浄度鋼の製造方法は、転炉内で溶鋼に脱酸剤を添加して、前記溶鋼に脱酸処理を施す工程と、前記溶鋼にCaOを含有するフラックスを添加して、レードルファーネスを用いて前記溶鋼に脱硫処理を施す取鍋精錬工程と、その後、真空脱ガス装置により前記溶鋼に真空脱ガス処理を施す工程と、その後、前記溶鋼にCa含有金属を添加する工程と、その後、前記溶鋼を連続鋳造する工程と、を有する。
脱酸処理としては、例えば図1(A)に示すような、転炉内でSi、Al等の脱酸剤を添加するキルド出鋼処理と、例えば図1(B)に示すような、転炉精錬後の取鍋精錬時や真空脱ガス処理時にSi、Al等の脱酸剤を投入するリムド出鋼処理がある。本実施形態においては、脱酸処理としてキルド出鋼処理を採用する。リムド出鋼処理の場合、後述のとおり、転炉〜真空脱ガス処理の間に溶鋼中のCa濃度を0.0004%以下にすることができず、また、Ca添加後の介在物組成を1600℃液相組成範囲に制御することができず、また、直径5μm以上の大きな介在物が多く発生してしまう。このことから、ノズル閉塞の問題や、十分な耐SSC性を得られない問題が生じる。脱酸処理は、溶鋼にSi、Al等の脱酸剤を添加する一般的な方法により行うことができる。脱酸処理によって形成される脱酸生成物はAl(アルミナ)である。
本実施形態においては、脱酸処理の際の脱酸剤の添加順序として、Siの添加後にAlを添加することが重要である。Alの添加後にSiの添加する場合や、AlとSiを同時に添加する場合には、転炉〜真空脱ガス処理の間に溶鋼中のCa濃度を0.0004%以下にすることができず、また、Ca添加後の介在物組成を安定的に1600℃液相組成範囲に制御することができず、また、直径5μm以上の大きな介在物が多く発生してしまう。このことから、ノズル閉塞の問題や、十分な耐SSC性を得られない問題が生じる。
脱酸処理におけるSi添加とAl添加との間隔は特に限定されないが、1分以上10分以下とすることが好ましい。間隔が1分未満の場合、本発明の効果を十分に得ることができないおそれがあり、間隔が10分を超えると、巨大なSiO−MnO(−CaO)酸化物に成長してしまうおそれがあるからである。
取鍋精錬工程は、レードルファーネス(LF)を用いて、溶鋼をアーク放電で加熱しつつ、溶鋼内にガスを導入する加熱撹拌処理を含む。溶鋼にはCaOを含有するフラックスを添加して、脱硫処理を行う。フラックスとしては、生石灰(CaO)単独、或いは、生石灰と、CaOの滓化促進剤であるAl又はSiOとの混合物などを用いることができる。真空脱ガス処理は、例えば、RH真空脱ガス装置などの一般的な装置を用いて行うことができる。取鍋精錬工程および真空脱ガス処理の処理時間は特に限定されず、目標とするO,S含有量に対する処理前のO,S含有量に応じて適宜決定すればよいが、一般的に、取鍋精錬工程の処理時間は30〜60分程度とし、真空脱ガス処理の処理時間は10〜40分程度とする。
溶鋼の組成は、最終的には真空脱ガス処理での合金添加により目標成分組成になるように調整されるが、Mn,Si成分については、脱酸剤のAlと同時期に大量に添加した後、取鍋精錬又は真空脱ガス処理までに目標成分になるように数回に分けて添加されるのが一般的である。これに対して、本実施形態では、成分調整のために追加でSiを添加する場合には、取鍋精錬工程の前半までに行い、取鍋精錬の後半と真空脱ガス工程では行わないことが重要である。転炉内でAl添加の前に行うSi添加のみで目標のSi含有量を満たすようにして、取鍋精錬工程以降では追加のSiを添加しないことも好ましい。これにより、転炉から真空脱ガス工程までの溶鋼中Ca濃度を継続的に4ppm以下という低濃度にでき、より優れた耐SSC性を有する高清浄度鋼を製造することが可能となる。
本発明の効果をより確実に得る観点から、追加Siの添加を行う場合には、前記取鍋精錬工程の処理開始から10分以内に行うことが好ましい。
真空脱ガス処理後、溶鋼にCa含有金属を添加する。Ca添加方法は特に規定しないが、含有量がCa:70質量%、Si:30質量%の塊状合金や、それをFeフープでくるんだワイヤーを溶鋼中に添加する方法が一般的に用いられている。Ca合金は溶鋼と激しく反応するため、添加時に溶鋼再酸化物を生成しやすく、添加時のアルゴンシールを完全にすることが好ましい。
なお、真空脱ガス処理後のCa添加は、RH真空脱ガス装置の取鍋内で、真空脱ガス処理に引き続き行ってもよいが、別途Ca処理専用の取鍋に溶鋼を移した後、当該取鍋内で溶鋼にしてCa添加を行うことが好ましい。
以下、本発明を完成するに至った実験例について説明する。
(本発明法)
図1(A)に示すプロセスで、タンディッシュでの溶鋼の化学組成C:0.2−0.3%、Si:0.22−0.27%、Mn:0.4−0.6%、P:0.005−0.009%、S:0.0005−0.002%、sol.Al:0.03−0.1%、Ca:0−0.003%、O:0.0010−0.0020%、残部:Fe及び不可避的不純物の鋼を溶製した。転炉処理時間は60分間とし、50分経過時に2.2kg/ton−steelのFeSi合金を添加し、その5分後に3.5kg/ton−steelのAlを添加した。LFプロセスの処理時間は30分間とし、10分経過後に、成分調整用の追加Siとして1.8kg/ton−steelのFeSi合金を添加した。LFプロセスの後半とRHプロセスではSiは添加しなかった。RHプロセス後、溶鋼にCa添加を行った。
(比較法1)
転炉でのAl添加とSi添加の順序を逆にした以外は、本発明法と同様にして、鋼を溶製した。すなわち、比較法1では、転炉処理時間を60分間とし、50分経過後に3.7kg/ton−steelのAlを添加し、その3分後に2.2kg/ton−steelのFeSi合金を添加した。
(比較法2)
図1(B)に例示するようなリムド出鋼のプロセスで、タンディッシュでの溶鋼の化学組成C:0.2−0.3%、Si:0.22−0.27%、Mn:0.4−0.6%、P:0.005−0.009%、S:0.0005−0.002%、sol.Al:0.03−0.1%、Ca:0−0.003%、O:0.0010−0.0020%、残部:Fe及び不可避的不純物の鋼を溶製した。すなわち、転炉では脱酸剤としてSi及びAlを添加しなかった。その後、LFプロセスの処理時間は45分間とし、5分経過後に脱酸剤Siとして2.2kg/ton−steelのFeSi合金を、3.5kg/ton−steelのAlと同時に投入した。また、RH処理の開始から2分のタイミングで、追加のFeSi合金を成分調整のために添加した。RHプロセス後、溶鋼にCa添加を行った。
本発明者らは、このような製造プロセスに対して溶鋼サンプルを各プロセスで採取し、溶鋼成分、介在物量及び介在物組成の調査を実施した。溶鋼の成分分析はカントバック迅速分析により実施した。介在物調査は、ASPEX社製のPSEM装置を用いて実施した。具体的には、まず、溶鋼サンプルを浴面から2m以上の深さ位置から採取し、樹脂埋め込み・研磨を実施して、SEM観察用試料を作製した。その試料をSEM観察に供し、15×15mmの視野中の介在物径が5μm以上の全ての介在物について、EDXで組成を求め、その平均を算出した。なお、介在物断面形状が異方性を持つ場合には、その断面を囲む楕円の長径と短径の積の平方根を介在物径とした。
介在物組成については、脱酸剤(Al,Si,Mnなど)による酸化物とスラグから侵入する元素との反応や、合金中に含有される強脱酸元素(Ca,Mg,Tiなど)の影響を受けて変化する。また、最終的には凝固時に生成するMnS介在物を抑制する目的でCa処理が実施され、CaO含有率の高い酸化物又はCaS系硫化物を形成することとなる。
本発明者らの調査した知見では、介在物組成は大きく下記のように変化することが確認されている。
(1)Al添加前:Fe(+MnO+SiO+CaO・・・)
(2)Al添加後:Al介在物
(3)CaOフラックス添加による脱硫処理中:MgO−Al系介在物
(4)Si添加:CaO−Al系介在物が増加
(5)取鍋精錬(LF)後、真空脱ガス(RH)後:CaO−MgO−Al系介在物
(6)Ca処理後:CaO−Al系介在物+CaS
上記の介在物組成について、(3)CaO系フラックス添加による脱硫処理中には耐火物等からスラグ中に溶融したMgが介在物と反応することでMgO・Al介在物を形成することが知られている。
(4)Si添加は、Si成分調整のために一般的にはFeSi合金を添加することで実施される。一般的なFeSi合金には0.3〜1.5%程度のCa成分が不可避的に含有されており、Si添加により微量のCa成分が溶鋼中に添加されることとなりCaO−Al系介在物が生成されることとなる。また、その他のSi添加方法として、Mnを始めとする他の成分の許容量を超えない範囲で、SiMn合金やSi屑等の合金を投入することも可能である。
なお、Ca添加プロセスを必要としないものの、低S化のためにLFプロセスを実施する高張力鋼(ハイテン)の製造においては、例えば、転炉→LFプロセス→RHプロセス→タンディッシュ→鋳型のような精錬プロセスを経る。このため、FeSi合金の添加時期を本発明と同様に制御することにより、連続鋳造後の鋼に巨大なCaO・Al系介在物が生成することを抑制することができる。
(5)取鍋精錬(LF)後、真空脱ガス(RH)後の介在物は、上述したMgO・Al介在物とCaO・Al介在物が入り交じりCaO−MgO−Al系介在物として存在することとなり、後述するようにその組成はかなりバラツキを持つことが確認された。
(6)Ca処理は、真空脱ガス後の取鍋中に主にCaSi合金を投入することで実施され、Caが溶鋼中に10ppm以上となるように投入されることが一般的である。上述したCaO−MgO−Al系介在物はMgO含有量のわずかなCaO−Al系介在物又はCaS硫化物となる。
尚、上述したFeSi合金添加時のCa混入を避けるため、高純度FeSiと呼ばれるCa含有量が0.1〜0.2%と低位の合金を使用することも有効であるが、非常に高価であり、製造上で使用できる合金種が制約されることとなる。本発明では、高純度FeSiを使用しなくても効果の大きい方法を提供しうるものである。
図2は、比較法1,2及び本発明法における溶鋼中のCa濃度の推移を示す。比較法1については22チャージの平均値をプロットし、本発明法及び比較法2については5チャージの平均値をプロットした。図2から明らかなように、本発明法では、Ca添加前までのCa分析値が4ppm以下と低位であるのに対して、比較法1,2では、Ca分析値が5〜15ppmと大きくバラツキがみられることが確認できた。
キルド出鋼でSi,Alの順に脱酸剤を添加した場合にCa濃度が低位となる理由は明確ではないが、ほとんど脱酸されていない高酸素濃度の状態にFeSiが添加された場合、酸化性が強く蒸発しやすいCaは、添加時に溶鋼表面において一瞬で酸化し、溶鋼表面に留まるか蒸発して系外に排出されるためと考えられる。これに対して、Al添加後又はAlと同時にFeSiが添加された場合には、Al脱酸により急速に鋼中酸素が低減し、Al介在物が生成された状態にCaがAl介在物と反応してCaO・Al系介在物として安定して存在するためと考えられる。また、リムド出鋼時には成分調整用にFeSiを取鍋精錬(LF)、真空脱ガス(RH)時に数回添加されることが多く、その度に溶鋼中に微量のCa成分が混入することによるものとみられる。
さらに本発明者らは、直径5μm以上の全介在物の平均組成に関して、RH処理後かつCa添加前の溶鋼と、Ca添加後の溶鋼との比較を行った。図3(A)は、RH処理後かつCa添加前に採取した溶鋼サンプルにおけるCaO−MgO−Al系介在物の平均組成を複数チャージで調査した結果であり、図3(B)は、図3(A)の各チャージにおいて、Ca添加後にタンディッシュにて採取した溶鋼サンプルにおけるCaO−MgO−Al系介在物の平均組成を調査した結果である。
いずれのチャージでも、Ca添加後の介在物組成をタンディッシュ段階で1600℃液相範囲になるようにCa添加量を決めてCa添加を実施した。しかし、図3(A),(B)に示すように、リムド出鋼(比較法1)の場合には、FeSi合金に起因するものとみられるCaにより、介在物の平均組成がCa処理前において既にCaO−Alを多数含む介在物組成となっていることがわかる。また、キルド出鋼でAl添加後にSiを添加した場合(比較法2)においても、Ca処理前においてCaO−Al介在物への変化が進み、介在物組成が大きくバラツキを持つことが確認できた。
これに対して、本発明法のSi添加後Al添加を実施したキルド出鋼の場合には、Ca添加前の介在物組成はMgO−Al成分を主体にCaOを10〜20wt%含有した非常にバラツキの少ない均一な組成となっていることが確認された。結果として、Ca処理後のタンディッシュ採取サンプルの介在物組成は、1600℃液相範囲に制御できた。これに対して、比較法1,2では、組成のバラツキが大きく高融点である高CaO組成のCaO−Al介在物が生成していることが判明した。
ここで、タンディッシュ段階の介在物の平均組成を1600℃液相範囲にする目的は、以下のとおりである。
(1)溶鋼段階でCaS析出を伴う高CaO濃度のCaO−Al介在物(3CaO・Al〜CaO+CaS)となった場合、その後のタンディッシュ〜鋳型での浸漬ノズルにおいて温度低下時にCaS起因のノズル閉塞が発生しやすい。また、凝集により巨大化した介在物がノズル付着箇所より脱落して鋳片に取り込まれ、耐HIC性及び耐SSC性の劣化が顕著となる。
(2)溶鋼段階での介在物の平均組成が液相介在物組成(1600℃液相範囲)よりも低CaO濃度のCaO−Al介在物組成(特にCaO・6Al〜CaO・2Al)となった場合にも、ノズル閉塞が生じやすくなる。また、凝固時に有害なMnSが析出しやすくなり、耐HIC性及び耐SSC性の劣化が顕著となる。
したがってCaO・Al〜3CaO・Alの介在物組成、好ましくは12CaO・7Al介在物組成に制御することが重要である。
また、図3(B)で使用したタンディッシュで採取したサンプルの介在物清浄性を調査した結果を図4に示す。直径が5μm以上の介在物個数は、本発明法の場合には比較法1,2に比べて大幅に改善していることが確認できた。本発明法は、Ca添加後の介在物の平均組成を1600℃液相範囲に制御できていたことから、介在物浮上除去が進んだことによるとみられる。
次に、Ca処理時のCa添加量の適正範囲については、あらかじめCa添加条件と硫化物応力腐食割れ(SSC)試験の結果を調査することで決定した。
本発明法において、真空脱ガス処理(RH)後にCa添加を実施した際のタンディッシュでの原子濃度比(ACR値)とSSC試験の不合格率の関係を図5に示した。SSC試験では、硬度をHRC=27にそろえた試験片に対して、1気圧の硫化水素が飽和したNACE試験液中で最小降伏応力の85%の応力を付与して単軸引張試験を720時間実施した。SSC試験において720時間満了までの途中段階で試験片が破断してしまったものを不合格とした。上記の不合格の場合には試験開始から数十時間までの比較的短時間での破断(短時間破断タイプ)が主体であり、破断面を確認すると数百μmに伸延した巨大なCaO−Al介在物やCaS介在物が観察された。
原子濃度比(ACR)は下記の式により規定した。
ACR={[%Ca]−(0.18+130×[%Ca])×[%O]}
/1.25/[%S]
[%Ca]、[%O]、[%S]:タンディッシュ内での溶鋼中の各元素の濃度(質量%)
ACR値は、凝固時に晶出するMnS硫化物、Ca過剰添加時に生成するCaS硫化物、CaO酸化物、及びカルシウムアルミネート介在物(CaO−Al)組成をコントロールするのに用いられる指標である。一般的には、ACR≧1.0でMnS硫化物生成を抑制するのに有効であること、ACR≦3.0でCa過剰添加に起因するCaO−CaS介在物生成を抑制できることが知られている。
しかしながら、本発明者らが、強度110psi(760MPa)以上のパイプでの詳細評価を進めたところ、図5に示すように、ACR>2.00の範囲で急激にSSC試験不合格率が上昇することを確認した。本結果は、前述した1600℃溶鋼段階で液相状態より高融点であるCaO−Al介在物やCaSに起因して応力腐食割れ(SSC)が発生することを併せて確認しており、Ca処理条件をACR=1.00〜2.00の範囲にすることの有効性を確認できた。
以上説明した本発明によれば、Ca添加前のMgO−CaO−Al系介在物の組成をよりバラツキの少ない状態に制御し、その後の酸化物組成及び硫化物組成をより精度よく制御可能となる。また、タンディッシュ浸漬ノズルの介在物に起因する閉塞を防止すること、および耐SSC性に対して有害な酸化物や硫化物などの介在物生成を十分に抑制することが可能となる。本発明の適用により、浸漬ノズルでの介在物に起因する閉塞無しに耐SSC性に優れた鋼管の製造が可能となり、製造コスト削減及び歩止り安定化を達成できる。
タンディッシュでの溶鋼の化学組成C:0.2−0.3%、Si:0.22−0.27%、Mn:0.4−0.6%、P:0.005−0.009%、S:0.0005−0.002%、sol.Al:0.03−0.1%、Ca:0−0.003%、O:0.0010−0.0020%、残部:Fe及び不可避的不純物の鋼を溶製し、鋳片サイズ210Φの丸ビレット連鋳機にて鋳造を実施した。
表1に製造における出鋼形態(キルド出鋼・リムド出鋼)、FeSi合金添加時期、Ca処理前の溶鋼中Ca濃度、Ca処理後タンディッシュでの溶鋼成分、及びACR値を示す。転炉処理時間は60分間とした。キルド出鋼の場合、転炉内の溶鋼にSi及びAlを添加して、脱酸処理を行った。添加の順番は表1に記載した。FeSiを添加後にAlを添加した例では、転炉処理の開始から50分経過時に2.2kg/ton−steelのFeSi合金を添加し、その5分後に3.5kg/ton−steelのAlを添加した。Al添加後にFeSiを添加した例では、転炉処理の開始から50分経過後に3.7kg/ton−steelのAlを添加し、その3分後に2.2kg/ton−steelのFeSi合金を添加した。なお、リムド出鋼の場合、転炉では脱酸剤は添加せず、LF処理開始から5分後にSi及びAlを添加して、脱酸処理を行った。
次に、溶鋼にCaO−Al−SiO系フラックスを添加して、LFによる取鍋精錬工程(脱硫処理)を行った。LFプロセスの処理時間は45分間とした。図1中、「LF前半」でSiを添加した例は、LF処理開始から5分後にSiを添加した。また、「LF後半」でSiを添加した例は、LF処理開始から30分後にSiを添加した。
次に、RH真空脱ガス装置による真空脱ガス処理を行った。次に、別の取鍋に溶鋼を移し、溶鋼にCa添加を行った。その後、溶鋼を取鍋からタンディッシュに移し、連続鋳造を行って鋳片とした。
<耐SSC性評価>
耐SSC試験は、1気圧の硫化水素が飽和したNACE試験液中でサンプルに最小降伏応力の85%の応力を付与して単軸引張試験を720時間実施した。なお、SSC試験に供試したサンプルは熱処理により硬度をHRC=27にそろえた。SSC試験は各条件6本のサンプルを実施し、720時間の満了時間に対して破断無で試験をクリアできた本数の比率を合格率として表1に示した。合格率100%の場合を、耐SSC性良好と判断する。
<ノズル閉塞判定>
ノズル閉塞の判定方法としては、タンディッシュから鋳型に溶鋼を注入させる浸漬ノズルの上部のスライディングノズルの開度(以下、SN開度と記す)から閉塞状況を判定した。すなわち、浸漬ノズルの流路の断面積が閉塞により小さくなった場合には、鋳型内湯面レベルの自動制御機能により、SN開度は100%に近づいていく。今回の鋳造条件では、SN開度は60〜70%での操業が安定鋳造状態であるが、ノズル閉塞が発生するとSN開度は80〜100%に急増する。そこで、SN開度が80%以上となった場合をノズル閉塞発生と判断した。
Figure 2019182056
水準A、B、Cは、本発明の条件をすべて満たしており、耐SSC性も浸漬ノズルの閉塞度合いも良好であった。水準Dは、ACR値が好適範囲の下限を下回った発明例であり、CaO重量比率の低い高融点のCaO・6Al〜CaO・2Al組成の介在物による浸漬ノズルの閉塞が亢進し、SSC試験結果も若干悪化した。水準Eは、ACR値が好適範囲の上限を超えた発明例であり、CaO−CaS系介在物の増加によりSSC試験結果が50%(サンプル6本のうち3本が破断)と低下した。
水準Fは、FeSi添加タイミングが本発明条件を満足しない比較例であり、Ca処理前Ca濃度も好適範囲の上限を超えていたので、SSC試験結果が33%(サンプル6本のうち4本が破断)と低下した。水準Gは、水準Fと同様の結果であった。水準H〜Lは、リムド出鋼(未脱酸出鋼)であり、FeSi添加タイミングを満足しない比較例であり、Ca処理前Ca濃度も高いため、SSC試験結果は低位となった。水準Mは、FeSiとAlの投入順序が本発明条件を満足しない比較例であり、Ca処理前Ca濃度も高いことから、SSC試験の結果は水準A、B、Cのレベルに至らなかった。
本発明によれば、連続鋳造設備の浸漬ノズルの閉塞を防止し、より優れた耐SSC性を有する高清浄度鋼を製造することが可能となる。

Claims (4)

  1. 転炉内で溶鋼にSiを添加した後にAlを添加して、前記溶鋼に脱酸処理を施す工程と、
    前記溶鋼にCaOを含有するフラックスを添加して、レードルファーネスを用いて前記溶鋼に脱硫処理を施す取鍋精錬工程と、
    その後、真空脱ガス装置により前記溶鋼に真空脱ガス処理を施す工程と、
    その後、前記溶鋼にCa含有金属を添加する工程と、
    その後、前記溶鋼を連続鋳造する工程と、
    を有し、
    前記取鍋精錬工程では前記溶鋼にSiを添加しないか、
    前記溶鋼の成分を調整するための追加Siを添加する場合には、前記取鍋精錬工程の処理期間中の前半に添加し、前記取鍋精錬工程の処理期間中の後半と前記真空脱ガス処理の期間中には添加しないことを特徴とする高清浄度鋼の製造方法。
  2. 前記追加Siの添加は、前記取鍋精錬工程の処理開始から10分以内に行う、請求項1に記載の高清浄度鋼の製造方法。
  3. 前記脱酸処理におけるSi添加とAl添加との間隔は、1分以上10分以下とする、請求項1又は2に記載の高清浄度鋼の製造方法。
  4. 前記真空脱ガス処理後かつ前記Ca含有金属添加前の前記溶鋼中のCa濃度が0.0004質量%以下であり、
    下記の(1)式を満たすように前記Ca含有金属の添加量を設定する、請求項1〜3のいずれか一項に記載の高清浄度鋼の製造方法。

    1.00≦{[%Ca]−(0.18+130×[%Ca])×[%O]}/1.25/[%S]≦2.00 ・・・(1)
    ここで
    [%Ca]、[%O]、[%S]:タンディッシュ内での溶鋼中の各元素の濃度(質量%)
    である。
JP2019546944A 2018-03-23 2019-03-20 高清浄度鋼の製造方法 Active JP6648866B1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018057080 2018-03-23
JP2018057080 2018-03-23
PCT/JP2019/011852 WO2019182056A1 (ja) 2018-03-23 2019-03-20 高清浄度鋼の製造方法

Publications (2)

Publication Number Publication Date
JP6648866B1 JP6648866B1 (ja) 2020-02-14
JPWO2019182056A1 true JPWO2019182056A1 (ja) 2020-04-30

Family

ID=67987249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019546944A Active JP6648866B1 (ja) 2018-03-23 2019-03-20 高清浄度鋼の製造方法

Country Status (4)

Country Link
EP (1) EP3770280B1 (ja)
JP (1) JP6648866B1 (ja)
KR (1) KR102410083B1 (ja)
WO (1) WO2019182056A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318108A (zh) * 2021-12-02 2022-04-12 包头钢铁(集团)有限责任公司 一种超低铝高纯工业纯铁生产方法
CN114292982B (zh) * 2022-01-04 2023-04-28 马鞍山钢铁股份有限公司 一种新能源汽车电池壳用钢砂眼缺陷的控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250459B2 (ja) * 1996-06-25 2002-01-28 住友金属工業株式会社 溶接部の低温靱性に優れた耐hic鋼およびその製造方法
JPH10237533A (ja) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd 耐hic鋼の製造方法
JP3666372B2 (ja) 2000-08-18 2005-06-29 住友金属工業株式会社 耐硫化物応力腐食割れ性に優れた油井用鋼とその製造方法
JP4571994B2 (ja) * 2008-07-15 2010-10-27 新日本製鐵株式会社 低炭素鋼の連続鋳造方法
JP5458607B2 (ja) 2009-03-09 2014-04-02 Jfeスチール株式会社 耐硫化物腐食割れ性に優れた清浄鋼の製造方法
JP5397154B2 (ja) 2009-10-23 2014-01-22 新日鐵住金株式会社 高強度・高耐食性油井管用鋼材の溶製方法
CN104018091B (zh) * 2014-06-18 2016-11-23 江苏省沙钢钢铁研究院有限公司 一种钢筋及其制备方法
JP6642174B2 (ja) * 2016-03-24 2020-02-05 日本製鉄株式会社 高炭素溶鋼の連続鋳造方法

Also Published As

Publication number Publication date
WO2019182056A1 (ja) 2019-09-26
EP3770280A4 (en) 2021-01-27
EP3770280A1 (en) 2021-01-27
KR102410083B1 (ko) 2022-06-16
KR20200124753A (ko) 2020-11-03
EP3770280B1 (en) 2023-05-10
JP6648866B1 (ja) 2020-02-14

Similar Documents

Publication Publication Date Title
CA2574025C (en) Steel for steel pipe
KR101668201B1 (ko) 피로 특성이 우수한 표면 경화강
CN108531807B (zh) 一种厚壁大口径x80m管线洁净钢及冶炼方法
JP6786964B2 (ja) 硫黄添加鋼の連続鋳造ノズルの閉塞防止方法
WO2014061782A1 (ja) 疲労特性に優れる高周波焼入れ用鋼
MX2012014433A (es) Acero para tubo de acero con excelente resistencia al fractura por tension azufrosa.
CN108893683A (zh) 一种抗硫管线钢及其生产方法
JP6648866B1 (ja) 高清浄度鋼の製造方法
JP6937190B2 (ja) Ni−Cr−Mo−Nb合金およびその製造方法
JP6116286B2 (ja) 発銹の少ないフェライト系ステンレス鋼
WO2005014872A1 (ja) 二相ステンレス鋼およびその製造方法
JP5616283B2 (ja) Fe−Ni−Cr−Mo合金およびその製造方法
KR20220125344A (ko) 금속 박용 스테인레스강, 스테인레스강 박 및 그것들의 제조 방법
JP7260731B2 (ja) 高清浄鋼とその精錬方法
JP2016191124A (ja) 高Mn含有Fe−Cr−Ni合金およびその製造方法
CN115244199B (zh) 不锈钢、不锈钢钢材及不锈钢的制造方法
JP6579147B2 (ja) 高清浄度鋼の製造方法
JP6903182B1 (ja) 表面性状に優れたNi−Cr−Al−Fe合金およびその製造方法
JP2009113086A (ja) 極低炭素鋼の連続鋳造方法
JP2013023739A (ja) 高清浄度軸受鋼およびその溶製方法
CN115667563B (zh) 耐疲劳特性优异的析出硬化型马氏体系不锈钢板
JP5056826B2 (ja) 連続鋳造用鋼およびその製造方法
JP2020084250A (ja) 継目無鋼管用鋼材
JP2005307234A (ja) 耐リジング性,表面性状に優れたフェライト系ステンレス鋼板及びその製造方法
JP7031634B2 (ja) 耐サワー鋼材の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190827

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190827

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R150 Certificate of patent or registration of utility model

Ref document number: 6648866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250