JPWO2019181486A1 - 繊維状炭素ナノ構造体分散液の製造方法および複合材料の製造方法 - Google Patents

繊維状炭素ナノ構造体分散液の製造方法および複合材料の製造方法 Download PDF

Info

Publication number
JPWO2019181486A1
JPWO2019181486A1 JP2020508158A JP2020508158A JPWO2019181486A1 JP WO2019181486 A1 JPWO2019181486 A1 JP WO2019181486A1 JP 2020508158 A JP2020508158 A JP 2020508158A JP 2020508158 A JP2020508158 A JP 2020508158A JP WO2019181486 A1 JPWO2019181486 A1 JP WO2019181486A1
Authority
JP
Japan
Prior art keywords
fibrous carbon
carbon nanostructure
dispersion
rubber
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020508158A
Other languages
English (en)
Other versions
JP7243710B2 (ja
Inventor
竹下 誠
誠 竹下
慶久 武山
慶久 武山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2019181486A1 publication Critical patent/JPWO2019181486A1/ja
Application granted granted Critical
Publication of JP7243710B2 publication Critical patent/JP7243710B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

ゴムと、溶媒と、繊維状炭素ナノ構造体とを湿式分散処理する分散工程を含む繊維状炭素ナノ構造体分散液の製造方法である。分散工程は、平均粒径が0.5μm以上10μm以下であり、かつモース硬度が0.5以上3.5以下である粒子状フィラーの存在下で行う。

Description

本発明は、繊維状炭素ナノ構造体分散液の製造方法および複合材料の製造方法に関し、特には、ゴムと、溶媒と、繊維状炭素ナノ構造体と、粒子状フィラーとを含む繊維状炭素ナノ構造体分散液の製造方法と、該繊維状炭素ナノ構造体分散液を用いた複合材料の製造方法に関する。
カーボンナノチューブ(以下「CNT」と称することがある。)などの繊維状炭素ナノ構造体は、導電性、熱伝導性、摺動特性、機械特性等に優れるため、幅広い用途への応用が検討されている。
近年、繊維状炭素ナノ構造体の優れた特性を活かし、ゴムと繊維状炭素ナノ構造体とを複合化することで、加工性や強度といったゴムの特性と、補強性などの繊維状炭素ナノ構造体の特性とを併せ持つ複合材料を提供する技術の開発が進められている。
ここで、複合材料の機械的特性を良好に向上させる観点からは、CNTなどの繊維状炭素ナノ構造体をゴムのマトリックス中に均一に分散させる必要がある。そこで、分散媒中に繊維状炭素ナノ構造体を均一に分散させて調製した調製分散液と、ゴムとを混合してなる分散液を用いて複合材料を調製することにより、ゴムのマトリックス中に繊維状炭素ナノ構造体が均一に分散した複合材料を得る技術が提案されている。
具体的には、例えば特許文献1では、溶媒中にCNTなどの炭素質材料を分散させてなる分散液に、ゴムなどのエラストマーを溶解させてエラストマー溶液を得た後、該エラストマー溶液から溶媒を除去して、炭素質材料を含むエラストマー組成物を製造することが開示されている。
特開2017−8244号公報
ところで、自動車産業、化学産業、機械関連産業などにおいて用いられる複合材料には、高温条件下において高い引張強度が求められることがある。しかし、従来の方法によって得られる複合材料は、高温条件下における引張強度が必ずしも十分とは言えない。そのため、高温条件下での引張強度に優れる複合材料の調製を可能にするという点において、ゴムと、繊維状炭素ナノ構造体と、分散媒とを含有する繊維状炭素ナノ構造体分散液には改良の余地があった。
そこで、本発明は、高温条件下における引張強度に優れた複合材料の調製を可能にする繊維状炭素ナノ構造体分散液の製造方法を提供することを目的とする。
また、本発明は、高温条件下における引張強度に優れた複合材料の製造方法を提供することを目的とする。
本発明者らは、上記目的を達成するために鋭意検討を重ねた。そして、本発明者らは、ゴムと、溶媒と、繊維状炭素ナノ構造体と、所定の平均粒径およびモース硬度を有する粒子状フィラーとを湿式分散処理して得られる繊維状炭素ナノ構造体分散液を複合材料の調製に用いることで、高温条件下における引張強度が向上した複合材料が得られることを見出し、本発明を完成させた。
即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の繊維状炭素ナノ構造体分散液の製造方法は、ゴムと、溶媒と、繊維状炭素ナノ構造体とを含む混合液を湿式分散処理する分散工程を含む、繊維状炭素ナノ構造体分散液の製造方法であって、前記分散工程は、平均粒径が0.5μm以上10μm以下であり、かつモース硬度が0.5以上3.5以下である粒子状フィラーの存在下で行うことを特徴とする。このように、分散工程において所定の平均粒径およびモース硬度を有する粒子状フィラーを用いることにより、高温条件下における引張強度に優れた複合材料を調製し得る繊維状炭素ナノ構造体分散液を効率的に得ることができる。
ここで、本発明の繊維状炭素ナノ構造体分散液の製造方法において、前記分散工程が、前記ゴムを前記溶媒に溶解又は分散してなるゴム溶液と、前記繊維状炭素ナノ構造体と、前記粒子状フィラーとを混合して前記混合液を調製する工程を含むことが好ましい。このように、ゴム溶液と、繊維状炭素ナノ構造体と、粒子状フィラーとを混合して混合液を調製する工程を含むことで、高温条件下における引張強度がより高められた複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
そして、本発明の繊維状炭素ナノ構造体分散液の製造方法において、前記ゴムが、フッ素ゴム、ニトリルゴムおよび水素化ニトリルゴムからなる群から選択される少なくとも1種であることが好ましい。このようなゴムを使用することで、耐油性、耐老化性などに優れる複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
また、本発明の繊維状炭素ナノ構造体分散液の製造方法において、前記繊維状炭素ナノ構造体がカーボンナノチューブを含むことが好ましい。カーボンナノチューブを含む繊維状炭素ナノ構造体を使用すれば、混合液中に含まれる繊維状炭素ナノ構造体の量が少ない場合であっても、高温条件下における引張強度が十分に優れた複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
更に、本発明の繊維状炭素ナノ構造体分散液の製造方法において、前記繊維状炭素ナノ構造体は、BET比表面積が600m/g以上であることが好ましい。繊維状炭素ナノ構造体のBET比表面積が600m/g以上であれば、高温条件下における引張強度がより優れた複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
そして、本発明の繊維状炭素ナノ構造体分散液の製造方法において、前記混合液中の前記粒子状フィラーの含有量に対する前記ゴムの含有量の比が、質量比で5以上120以下であることが好ましい。混合液中のゴムと粒子状フィラーとの含有量の比が上記範囲内であれば、高温条件下における引張強度が更に高められた複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
また、本発明の繊維状炭素ナノ構造体分散液の製造方法において、前記混合液中の前記粒子状フィラーの含有量に対する前記繊維状炭素ナノ構造体の含有量の比が、質量比で0.1以上12以下であることが好ましい。混合液中の繊維状炭素ナノ構造体と粒子状フィラーとの含有量の比が上記範囲内であれば、高温条件下における引張強度がより一層高められた複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
加えて、本発明の繊維状炭素ナノ構造体分散液の製造方法において、前記混合液中の固形分濃度が2質量%以上20質量%以下であることが好ましい。混合液中の固形分濃度が上記範囲内であれば、分散工程において各成分を効率的に分散させることができると共に、複合材料を効率的に製造可能な繊維状炭素ナノ構造体分散液を提供することができる。
更に、本発明の繊維状炭素ナノ構造体分散液の製造方法において、前記湿式分散処理は、前記混合液にせん断力を加えて行うことが好ましい。混合液にせん断力を加えることにより、高温条件下における引張強度が十分に高められた複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の複合材料の製造方法は、上述した繊維状炭素ナノ構造体分散液の製造方法によって得られた繊維状炭素ナノ構造体分散液から、前記溶媒を除去する溶媒除去工程を含むことを特徴とする。このように、繊維状炭素ナノ構造体分散液から溶媒を除去する溶媒除去工程を含むことで、高温条件下における引張強度に優れた複合材料を効率的に製造することができる。
本発明の繊維状炭素ナノ構造体分散液の製造方法によれば、高温条件下における引張強度に優れた複合材料を調製し得る繊維状炭素ナノ構造体分散液を効率的に得ることができる。
また、本発明の複合材料の製造方法によれば、高温条件下における引張強度に優れた複合材料を効率的に製造することができる。
以下、本発明の実施形態について詳細に説明する。
ここで、本発明の繊維状炭素ナノ構造体分散液の製造方法は、ゴムと、溶媒と、繊維状炭素ナノ構造体と、粒子状フィラーとを含む複合材料の調製に用いられる繊維状炭素ナノ構造体分散液を製造する際に用いられる。そして、本発明の複合材料の製造方法は、本発明の繊維状炭素ナノ構造体分散液の製造方法によって繊維状炭素ナノ構造体分散液を得る工程と、該繊維状炭素ナノ構造体分散液から溶媒を除去する工程を含む。
ここで、本発明の複合材料の製造方法によって得られる複合材料は、本発明の繊維状炭素ナノ構造体分散液を用いているので、高温条件下での引張強度に優れている。そして、本発明の複合材料の製造方法によって得られる複合材料は、特に限定されることなく、例えば、シート材、シール材などの製造に用いる材料として有用である。
(繊維状炭素ナノ構造体分散液の製造方法)
本発明の繊維状炭素ナノ構造体分散液の製造方法では、ゴムと、溶媒と、繊維状炭素ナノ構造体と、粒子状フィラーとを含有する繊維状炭素ナノ構造体分散液を製造する。そして、本発明の繊維状炭素ナノ構造体分散液の製造方法は、ゴムと、溶媒と、繊維状炭素ナノ構造体とを含む混合液を、粒子状フィラーの存在下で湿式分散処理する分散工程を含み、該粒子状フィラーは、平均粒径が0.5μm以上10μm以下であり、モース硬度が0.5以上3.5以下である。
そして、本発明の繊維状炭素ナノ構造体分散液の製造方法によれば、分散工程において、ゴムと、溶媒と、繊維状炭素ナノ構造体とを含む混合液を、粒子状フィラーの存在下で湿式分散処理しているので、高温条件下における引張強度に優れた複合材料を調製可能な繊維状炭素ナノ構造体分散液が得られる。ここで、本発明の製造方法によって得られる繊維状炭素ナノ構造体分散液を用いることで、高温条件下における引張強度に優れた複合材料が得られる理由は、明らかではないが、湿式分散処理する際に粒子状フィラーが存在することにより、良好に分散した繊維状炭素ナノ構造体と粒子状フィラーとが互いに絡み合うことが、引張強度の向上に寄与すると推察される。
<分散工程>
本発明の繊維状炭素ナノ構造体分散液の製造方法では、分散工程において、ゴムと、溶媒と、繊維状炭素ナノ構造体とを含む混合液を、粒子状フィラーの存在下で湿式分散処理する。なお、本発明では、粒子状フィラーは、通常は、混合液中に添加して使用するものとする。
[混合液]
分散工程で用いられる混合液は、ゴムと、溶媒と、繊維状炭素ナノ構造体とを含み、通常は、粒子状フィラーを更に含む。
[ゴム]
そして、ゴムとしては、公知のゴムを用いることができるが、ゴムは、フッ素ゴム、ニトリルゴムおよび水素化ニトリルゴムからなる群より選択される少なくとも1種であることが好ましい。このようなゴムを使用することで、耐油性、耐老化性などに優れる複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
−フッ素ゴム−
フッ素ゴムとしては、例えば、四フッ化エチレン−プロピレン系ゴム(FEPM)、フッ化ビニリデン系ゴム(FKM)、四フッ化エチレン−パーフルオロメチルビニルエーテル系ゴム(FFKM)、テトラフルオロエチレン系ゴム(TFE)などが挙げられる。これらの中でも、四フッ化エチレン−プロピレン系ゴム(FEPM)、フッ化ビニリデン系ゴム(FKM)が好ましい。
−ニトリルゴム−
ニトリルゴムとしては、例えば、アクリロニトリルブタジエンゴム(NBR)、カルボキシル変性アクリロニトリルブタジエン(XNBR)、アクリロニトリルブタジエンイソプレンゴム(NBIR)などが挙げられる。これらの中でも、アクリロニトリルブタジエンゴム(NBR)が好ましい。
−水素化ニトリルゴム−
水素化ニトリルゴムとしては、水素化アクリロニトリルブタジエンゴム(HNBR)などが挙げられる。
[溶媒]
そして溶媒としては、特に限定されることなく、例えば、テトラヒドロフラン(THF)、メチルエチルケトン(MEK)などが挙げられる。これらの溶媒は、1種類を単独で、または、2種類以上を組み合わせて用いることができる。
[繊維状炭素ナノ構造体]
また、繊維状炭素ナノ構造体としては、特に限定されることなく、導電性を有する繊維状炭素ナノ構造体を用いることができる。具体的には、繊維状炭素ナノ構造体としては、例えば、カーボンナノチューブ(CNT)等の円筒形状の炭素ナノ構造体や、炭素の六員環ネットワークが扁平筒状に形成されてなる炭素ナノ構造体等の非円筒形状の炭素ナノ構造体を用いることができる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
そして、上述した中でも、繊維状炭素ナノ構造体としては、CNTを含む繊維状炭素ナノ構造体を用いることがより好ましい。CNTを含む繊維状炭素ナノ構造体を使用すれば、混合液中に含まれる繊維状炭素ナノ構造体の量が少ない場合であっても、高温条件下における引張強度が十分に優れた複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
ここで、CNTを含む繊維状炭素ナノ構造体は、CNTのみからなるものであってもよいし、CNTと、CNT以外の繊維状炭素ナノ構造体との混合物であってもよい。
そして、繊維状炭素ナノ構造体中のCNTとしては、特に限定されることなく、単層カーボンナノチューブおよび/または多層カーボンナノチューブを用いることができるが、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。カーボンナノチューブの層数が少ないほど、混合液中に含まれる繊維状炭素ナノ構造体の量が少ない場合であっても、引張強度に優れた複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
また、繊維状炭素ナノ構造体の平均直径は、1nm以上であることが好ましく、60nm以下であることが好ましく、30nm以下であることがより好ましく、10nm以下であることが更に好ましい。繊維状炭素ナノ構造体の平均直径が1nm以上であれば、繊維状炭素ナノ構造体の分散性を高めることができる。また、繊維状炭素ナノ構造体の平均直径が60nm以下であれば、混合液中に含まれる繊維状炭素ナノ構造体の量が少ない場合であっても、高温条件下における引張強度に優れた複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
なお、本発明において、「繊維状炭素ナノ構造体の平均直径」は、透過型電子顕微鏡(TEM)画像上で、例えば、20本の繊維状炭素ナノ構造体について直径(外径)を測定し、個数平均値を算出することで求めることができる。
また、繊維状炭素ナノ構造体としては、平均直径(Av)に対する、直径の標準偏差(σ:標本標準偏差)に3を乗じた値(3σ)の比(3σ/Av)が0.20超0.80未満の繊維状炭素ナノ構造体を用いることが好ましく、3σ/Avが0.25超の繊維状炭素ナノ構造体を用いることがより好ましく、3σ/Avが0.40超の繊維状炭素ナノ構造体を用いることが更に好ましい。3σ/Avが0.20超0.80未満の繊維状炭素ナノ構造体を使用すれば、繊維状炭素ナノ構造体分散液を用いて製造される複合材料の性能を更に向上させることができる。
なお、繊維状炭素ナノ構造体の平均直径(Av)および標準偏差(σ)は、繊維状炭素ナノ構造体の製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られた繊維状炭素ナノ構造体を複数種類組み合わせることにより調整してもよい。
そして、繊維状炭素ナノ構造体としては、前述のようにして測定した直径を横軸に、その頻度を縦軸に取ってプロットし、ガウシアンで近似した際に、正規分布を取るものが通常使用される。
また、繊維状炭素ナノ構造体は、平均長さが、10μm以上であることが好ましく、50μm以上であることがより好ましく、80μm以上であることが更に好ましく、600μm以下であることが好ましく、550μm以下であることがより好ましく、500μm以下であることが更に好ましい。平均長さが10μm以上であれば、混合液中に含まれる繊維状炭素ナノ構造体の量が少ない場合であっても、繊維状炭素ナノ構造体分散液を用いて調製される複合材料の引張強度を向上させることができる。そして、平均長さが600μm以下であれば、分散工程において繊維状炭素ナノ構造体の分散性を高めることができる。
なお、本発明において、「繊維状炭素ナノ構造体」の平均長さは、走査型電子顕微鏡(SEM)画像上で、例えば、20本の繊維状炭素ナノ構造体について長さを測定し、個数平均値を算出することで求めることができる。
更に、繊維状炭素ナノ構造体は、通常、アスペクト比が10超である。なお、繊維状炭素ナノ構造体のアスペクト比は、走査型電子顕微鏡または透過型電子顕微鏡を用いて、無作為に選択した繊維状炭素ナノ構造体100本の直径および長さを測定し、直径と長さとの比(長さ/直径)の平均値を算出することにより求めることができる。
−BET比表面積−
ここで、繊維状炭素ナノ構造体は、BET比表面積が600m/g以上であることが好ましく、800m/g以上であることがより好ましく、2500m/g以下であることが好ましく、1200m/g以下であることがより好ましい。繊維状炭素ナノ構造体のBET比表面積上記範囲内であれば、高温条件下における引張強度により優れた複合材料を調製可能な優れた繊維状炭素ナノ構造体分散液を提供することができる。
なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
また、繊維状炭素ナノ構造体は、吸着等温線から得られるt−プロットが上に凸な形状を示すことが好ましい。なお、「t−プロット」は、窒素ガス吸着法により測定された繊維状炭素ナノ構造体の吸着等温線において、相対圧を窒素ガス吸着層の平均厚みt(nm)に変換することにより得ることができる。すなわち、窒素ガス吸着層の平均厚みtを相対圧P/P0に対してプロットした、既知の標準等温線から、相対圧に対応する窒素ガス吸着層の平均厚みtを求めて上記変換を行うことにより、繊維状炭素ナノ構造体のt−プロットが得られる(de Boerらによるt−プロット法)。
ここで、表面に細孔を有する物質では、窒素ガス吸着層の成長は、次の(1)〜(3)の過程に分類される。そして、下記の(1)〜(3)の過程によって、t−プロットの傾きに変化が生じる。
(1)全表面への窒素分子の単分子吸着層形成過程
(2)多分子吸着層形成とそれに伴う細孔内での毛管凝縮充填過程
(3)細孔が窒素によって満たされた見かけ上の非多孔性表面への多分子吸着層形成過程
そして、上に凸な形状を示すt−プロットは、窒素ガス吸着層の平均厚みtが小さい領域では、原点を通る直線上にプロットが位置するのに対し、tが大きくなると、プロットが当該直線から下にずれた位置となる。かかるt−プロットの形状を有する繊維状炭素ナノ構造体は、繊維状炭素ナノ構造体の全比表面積に対する内部比表面積の割合が大きく、繊維状炭素ナノ構造体を構成する炭素ナノ構造体に多数の開口が形成されていることを示している。
なお、繊維状炭素ナノ構造体のt−プロットの屈曲点は、0.2≦t(nm)≦1.5を満たす範囲にあることが好ましく、0.45≦t(nm)≦1.5の範囲にあることがより好ましく、0.55≦t(nm)≦1.0の範囲にあることが更に好ましい。繊維状炭素ナノ構造体のt−プロットの屈曲点がかかる範囲内にあれば、繊維状炭素ナノ構造体の分散性を高めることができる。具体的には、屈曲点の値が0.2未満であれば、繊維状炭素ナノ構造体が凝集し易く分散性が低下し、屈曲点の値が1.5超であれば繊維状炭素ナノ構造体同士が絡み合いやすくなり分散性が低下する虞がある。
なお、「屈曲点の位置」は、前述した(1)の過程の近似直線Aと、前述した(3)の過程の近似直線Bとの交点である。
更に、繊維状炭素ナノ構造体は、t−プロットから得られる全比表面積S1に対する内部比表面積S2の比(S2/S1)が0.05以上0.30以下であるのが好ましい。繊維状炭素ナノ構造体のS2/S1の値がかかる範囲内であれば、繊維状炭素ナノ構造体の分散性を高め、少ない使用量で、本発明の繊維状炭素ナノ構造体分散液を用いて調製される複合材料の高温条件下における引張強度を高めることができる。
ここで、繊維状炭素ナノ構造体の全比表面積S1および内部比表面積S2は、そのt−プロットから求めることができる。具体的には、まず、(1)の過程の近似直線の傾きから全比表面積S1を、(3)の過程の近似直線の傾きから外部比表面積S3を、それぞれ求めることができる。そして、全比表面積S1から外部比表面積S3を差し引くことにより、内部比表面積S2を算出することができる。
因みに、繊維状炭素ナノ構造体の吸着等温線の測定、t−プロットの作成、および、t−プロットの解析に基づく全比表面積S1と内部比表面積S2との算出は、例えば、市販の測定装置である「BELSORP(登録商標)−mini」(日本ベル(株)製)を用いて行うことができる。
更に、繊維状炭素ナノ構造体として好適なCNTを含む繊維状炭素ナノ構造体は、ラマン分光法を用いて評価した際に、Radial Breathing Mode(RBM)のピークを有することが好ましい。なお、三層以上の多層カーボンナノチューブのみからなる繊維状炭素ナノ構造体のラマンスペクトルには、RBMが存在しない。
また、CNTを含む繊維状炭素ナノ構造体は、ラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が0.5以上5.0以下であることが好ましい。G/D比が0.5以上5.0以下であれば、本発明の繊維状炭素ナノ構造体分散液を用いて製造される複合材料の性能を更に向上させることができる。
なお、CNTを含む繊維状炭素ナノ構造体は、特に限定されることなく、アーク放電法、レーザーアブレーション法、化学的気相成長法(CVD法)などの既知のCNTの合成方法を用いて製造することができる。具体的には、CNTを含む繊維状炭素ナノ構造体は、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に原料化合物およびキャリアガスを供給し、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称する。
そして、スーパーグロース法により製造された繊維状炭素ナノ構造体は、SGCNTのみから構成されていてもよいし、SGCNTに加え、例えば、非円筒形状の炭素ナノ構造体等の他の炭素ナノ構造体を含んでいてもよい。
[粒子状フィラー]
また、粒子状フィラーの材料としては、特に限定されることなく、例えば非炭素フィラーを用いることができ、中でも、タルク(MgSi10(OH))、炭酸カルシウム(CaCO)、酸化亜鉛(ZnO)などを用いることが好ましく、タルクを用いることがより好ましい。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。なお、本発明において、「粒子状」には、球状、楕円形状、多角形状、鱗片状などが含まれるものとする。
−平均粒径−
ここで、粒子状フィラーの平均粒径は、0.5μm以上であることが必要であり、1μm以上であることがより好ましく、10μm以下であることが必要であり、8.5μm以下であることが好ましく、また、5μm以下としてもよい。粒子状フィラーの平均粒径が上記範囲内であることにより、高温条件下における引張強度が極めて優れた複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。なお、粒子状フィラーが真球状でない場合には、粒子状フィラーの長径を粒子状フィラーの粒径とする。
また、粒子状フィラーの平均粒径は、本明細書の実施例に記載の測定方法を用いて測定することができる。
−モース硬度−
更に、粒子状フィラーのモース硬度は、0.5以上であることが必要であり、1.0以上であることが好ましく、3.5以下であることが必要であり、3.0以下であることが好ましく、2.0以下であることがより好ましい。粒子状フィラーのモース硬度が上記下限値以上であれば、粒子状フィラーの損傷を防止して、引張強度が向上した複合材料を効率的に調製可能な繊維状炭素ナノ構造体分散液を提供することができる。また、粒子状フィラーのモース硬度が上記上限値以下であれば、CNTの損傷を防止して、引張強度が向上した複合材料を効率的に調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
ここで、粒子状フィラーのモース硬度は、本明細書の実施例に記載の方法を用いて測定することができる。
[混合液の調製]
そして、ゴムと、溶媒と、繊維状炭素ナノ構造体と、粒子状フィラーとを混合する方法としては、特に限定されることなく、既知の混合方法を用いることができる。なお、複合材料の高温条件下での引張強度を向上させる観点からは、混合液は、ゴムを溶媒に溶解又は分散してなるゴム溶液と、繊維状炭素ナノ構造体と、粒子状フィラーとを混合して調製することが好ましい。そして、ゴム溶液の調製方法としては、特に限定されることなく、ゴムと溶媒とを既知の方法で混合すればよい。
なお、上述した各成分を混合する順番は、特に限定されることはなく、全成分を一括で混合してもよいし、一部の成分を混合した後に残部の成分を添加して更に混合してもよい。中でも、複合材料の強度を高めつつ簡便な操作で混合液を調製する観点からは、ゴムと溶媒とを混合して調製したゴム溶液と、残りの成分とを一括で混合することが好ましい。
−混合液中のゴムと粒子状フィラーとの含有割合−
ここで、混合液中の粒子状フィラーの含有量に対するゴムの含有量の比は、質量比(ゴム/粒子状フィラー)で5以上であることが好ましく、10以上であることがより好ましく、15以上であることが更に好ましく、120以下であることが好ましく、50以下であることがより好ましく、40以下であることが更に好ましく、30以下であることが特に好ましい。混合液中のゴムと粒子状フィラーとの含有割合が上記範囲内であれば、高温条件下における引張強度が高められた複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
−混合液中の繊維状炭素ナノ構造体と粒子状フィラーとの含有割合−
また、混合液中の粒子状フィラーの含有量に対する繊維状炭素ナノ構造体の含有量の比は、質量比(繊維状炭素ナノ構造体/粒子状フィラー)で0.1以上であることが好ましく、0.2以上であることがより好ましく、0.4以上であることが更に好ましく、12以下であることが好ましく、5以下であることがより好ましく、1.2以下であることが更に好ましく、1以下であることが特に好ましい。混合液中の繊維状炭素ナノ構造体と粒子状フィラーとの含有割合が上記範囲内であれば、高温条件下における引張強度がより高められた複合材料を調製可能な繊維状炭素ナノ構造体分散液を提供することができる。
−混合液中の固形分濃度−
そして、混合液中の固形分は、混合液(100質量%)中、2質量%以上であることが好ましく、4質量%以上であることがより好ましく、8質量%以上であることが更に好ましく、20質量%以下であることが好ましく、16質量%以下であることがより好ましく、12質量%以下であることが更に好ましい。混合液中の固形分の濃度が上記範囲内であれば、分散工程において各成分を効率的に分散させることができると共に、複合材料を効率的に製造可能な繊維状炭素ナノ構造体を提供することができる。
[湿式分散処理]
そして、本発明の繊維状炭素ナノ構造体の製造方法では、分散工程において、上記混合液を湿式分散処理する。ここで、湿式分散処理の方法は特に限定されることはないが、混合液中の各成分を均一に分散させることができる観点から、湿式分散処理は、上記混合液にせん断力を加えて行うことが好ましい。
ここで、混合液にせん断力を加えた湿式分散処理に関し、以下ではメディアレス高速せん断機を用いた湿式分散処理を例に挙げて説明するが、本発明の繊維状炭素ナノ構造体分散液の製造方法において、湿式分散処理の方法は以下の一例に限定されるものではない。
−メディアレス高速せん断機−
メディアレス高速せん断機としては、高速撹拌機、ホモジナイザーおよびインラインミキサーなどの、分散メディアを使用せずに湿式で高速せん断力を用いて分散処理をすることが可能な既知のメディアレス分散機を用いることができる。メディアレス高速せん断機を用いることにより、ジェットミル等の高圧型の高速せん断機に比べ、一度に多量の混合液を短時間で分散処理することができる。
−圧力−
ここで、湿式分散処理において上記混合液にかかる圧力、即ち、メディアレス高速せん断機へ上記混合液を供給してから湿式分散処理の終了までの間に混合液にかかる圧力は、ゲージ圧で5MPa以下であることが好ましく、4MPa以下であることがより好ましい。そして、混合液の湿式分散処理は無加圧下で行うことが更に好ましい。混合液にかかる圧力を上記上限値以下とすれば、繊維状炭素ナノ構造体や粒子状フィラーに損傷が発生するのを抑制することができる。
そして、混合液にかかる圧力(ゲージ圧)が5MPa以下の条件下において繊維状炭素ナノ構造体や粒子状フィラーを良好に分散させる観点から、メディアレス高速せん断機としては、回転式のメディアレス高速せん断機が好ましく、回転式ホモジナイザー、または、固定されたステーターとステーターに対抗して高速回転するローターとを備えるインライン・ローター・ステーター式ミキサーが好ましい。
なお、メディアレス高速せん断機として回転式ホモジナイザーを使用する場合には、湿式分散処理は、翼周速度が5m/秒以上となる条件で行うことが好ましい。翼周速度が5m/秒以上であれば、繊維状炭素ナノ構造体や粒子状フィラーを十分に分散させることができる。また、処理時間は、10分以上300分以下が好ましい。更に、回転部の形状としては、例えば、鋸歯ブレード、閉式ローター、ローター/ステーター式が好ましい。閉式ローターのスリット幅またはローター/ステーターの最小クリアランスは、3mm以下であることが好ましく、1mm以下であることがより好ましい。
また、メディアレス高速せん断機としてインライン・ローター・ステーター式ミキサーを使用する場合には、湿式分散処理は、周速度が5m/秒以上となる条件で行うことが好ましい。周速度が5m/秒以上であれば、繊維状炭素ナノ構造体や粒子状フィラーを十分に分散させることができる。また、回転部への混合液の通過回数は10回以上であることが好ましい。混合液を回転部に10回以上通過させることで、繊維状炭素ナノ構造体や粒子状フィラーを均一かつ良好に分散させることができる。更に、処理時間は10分以上300分以下が好ましい。また、回転部の形状としては、スリット式が好ましい。ローター/ステーターの最小クリアランスは3mm以下であることが好ましく、1mm以下であることがより好ましい。また、スリット幅は2mm以下であることが好ましく、1mm以下であることがより好ましい。
湿式分散処理は、湿式分散処理によって得られる分散液中の繊維状炭素ナノ構造体の平均バンドル径が、10μm以下となったときに終了することが好ましく、0.1μm以下となったときに終了することがより好ましい。分散液中の繊維状炭素ナノ構造体の平均バンドル径が10μm以下であれば、繊維状炭素ナノ構造体のバンドルが十分ほぐれた状態で分散される。ここで、分散液中の繊維状炭素ナノ構造体の平均バンドル径が3nm以上であれば、繊維状炭素ナノ構造体が繊維形状を損なうことなく分散される。このことから、繊維状炭素ナノ構造体の平均バンドル径は3nm以上になるようにして、湿式分散処理を終了することが好ましい。
分散液中の繊維状炭素ナノ構造体の平均バンドル径は、湿式分散処理の途中で分取した分散液を、マイクロスコープを用いて観察して、無作為に選択した20本の繊維状炭素ナノ構造体のバンドルのバンドル径を測定して算術平均により求めることができる。
なお、湿式分散処理の終了時は、繊維状炭素ナノ構造体の平均バンドル径を指標とすることができる。
[繊維状炭素ナノ構造体分散液]
そして、上述した湿式分散処理によって得られる繊維状炭素ナノ構造体分散液は、そのままの状態で複合材料の調製に用いてもよいし、任意に、ゴムに対する貧溶媒を繊維状炭素ナノ構造体分散液に添加してゴムを析出・凝固させてから複合材料の調製に用いてもよい。
−貧溶媒−
ここで、貧溶媒とは、温度30℃におけるゴムの溶解度が10g/100g以下の溶媒をいう。具体的には、例えばゴムとしてFEPMを用いた場合には、貧溶媒として、シクロヘキサンや、水、アルコール類(イソプロピルアルコール、メタノール等)、ケトン類(メチルエチルケトン、アセトン等)等を挙げることができる。また、ゴムとしてFKMを用いた場合には、貧溶媒として、シクロヘキサンや、水等を挙げることができる。ゴムとしてNBRを用いた場合には、貧溶媒として、シクロヘキサンや、水、アルコール類(イソプロピルアルコール、メタノール等)等を挙げることができる。
以下、本発明の繊維状炭素ナノ構造体分散液の製造方法によって得られる繊維状炭素ナノ構造体分散液を用いた複合材料の製造方法について説明するが、本発明により得られる繊維状炭素ナノ構造体分散液を用いた複合材料の製造方法は、以下の一例に限定されるものではない。
(複合材料の製造方法)
本発明の複合材料の製造方法は、本発明の繊維状炭素ナノ構造体分散液の製造方法によって繊維状炭素ナノ構造体分散液を得る工程と、得られた繊維状炭素ナノ構造体分散液から溶媒を除去する溶媒除去工程とを含む。ここで、溶媒除去工程で除去する溶媒には、分散工程で用いた溶媒および上述した任意に使用した貧溶媒が含まれる。
<溶媒除去工程>
溶媒除去工程では、繊維状炭素ナノ構造体分散液から溶媒を除去し、任意に、上述した貧溶媒を除去する。これにより、高温条件下における引張強度に優れた複合材料を効率的に得ることができる。
ここで、繊維状炭素ナノ構造体分散液から溶媒および任意の貧溶媒を除去する方法としては、特に限定されることなく、乾燥やろ過などの既知の方法を用いることができる。中でも、溶媒および任意の貧溶媒を除去する方法としては、ろ過と乾燥を組み合わせることが好ましい。ろ過としては、自然ろ過、減圧ろ過、加圧ろ過、遠心ろ過など公知のろ過方法を用いればよい。乾燥としては、真空乾燥、不活性ガスの流通による乾燥、スプレードライヤーを用いた乾燥およびCDドライヤーを用いた乾燥が好ましく、真空乾燥、スプレードライヤーを用いた乾燥およびCDドライヤーを用いた乾燥がより好ましい。
更に、得られた複合材料に任意のゴム用配合剤、例えば、架橋剤、補強材、酸化防止剤などを更に含有させて混練し、成形加工および架橋を行って所望の成形体を得ることもできる。ここで、混練、成形加工および架橋は、公知の方法および装置を用いて行うことができる。
本発明の複合材料の製造方法によって得られる、ゴムと、繊維状炭素ナノ構造体と、粒子状フィラーと、任意の添加剤とを含む複合材料は、本発明の繊維状炭素ナノ構造体分散液を用いて製造されるため、高温条件下における引張強度に優れている。
以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
実施例および比較例において、フィラーの平均粒径およびモース硬度、ならびにゴムシートの引張強度は、それぞれ以下の方法を使用して測定した。
<フィラーの平均粒径>
実施例および比較例で使用したフィラーの平均粒径は、沈降法によって測定した。具体的には、JIS R1619に従った遠心沈降法によって粒子径分布を測定した。そして得られた粒子径分布におけるメディアン径をフィラーの平均粒径とした。結果を表1に示す。
<モース硬度>
実施例および比較例で使用したフィラーのモース硬度は、モース硬度計によって測定した。ここで、モース硬度計は鉱物の「ひっかき硬度」を測定するために用いられる器具であり、硬度の異なる10種の標準鉱物により成り立っている。本実施例および比較例では、フィラーのモース硬度を測定するために、モース硬度計の標準鉱物を用いてフィラーの表面をひっかき、表面にひっかき傷がつくか否かを確かめた。そして、フィラーの表面に傷がつかなかった場合は、更に硬度の高い標準鉱物を使用して、フィラーの表面に傷がつくまでひっかき操作を繰り返した。そして、フィラーの表面に傷がついた場合は、その傷がついたフィラーでモース硬度計の標準鉱物の表面をひっかき、フィラーおよび標準鉱物の双方にひっかき傷がついたときの標準鉱物の硬度を、フィラーの硬度とした。結果を表1に示す。
実施例および比較例で使用したゴム、フィラーおよびCNTの量を用いて、フィラーに対するゴムの比、および、フィラーに対するCNTの比を求めた。結果を表1に示す。
<引張強度>
得られたゴムシートを、ダンベル試験片状(JIS3号)に打ち抜き、試験片を作製した。引張試験機(ストログラフVG、東洋精機社製)を用い、JIS K6251:2010に準拠して、試験温度230℃、200℃または120℃、試験湿度50%、引張速度500±50mm/minの条件下で引張試験を行い、引張強度(試験片を切断するまで引っ張ったときに記録される最大の引張力を試験片の初期断面積で除した値)を測定した。引張強度の値が大きい程、高温条件下における引張強度に優れる。
(実施例1−1)
フッ素ゴムとしてのFEPM(四フッ化エチレン−プロピレン系ゴム、AGC社製「アフラス100S」)の塊を、溶媒としてのテトラヒドロフラン(THF)に溶解させて、ゴム濃度が5質量%のゴム溶液を調製した。
得られたゴム溶液に、フィラーとしてのタルクA(竹原化学工業社製、製品名「TTタルク」、組成:MgSi10(OH)、平均粒径:8.5μm、モース硬度:1)をFEPM100質量部に対して1質量部と、繊維状炭素ナノ構造体としてのCNT(ゼオンナノテクノロジー社製、製品名「ZEONANO SG101」、SGCNT、比重:1.7、平均直径:3.5nm、平均長さ:400μm、BET比表面積:1050m/g、G/D比:2.1、t−プロットは上に凸)をFEPM100質量部に対して3質量部とを添加して、混合液を得た。
得られた混合液について、ホモジナイザー(プライミクス社製、製品名「ラボ・リューション(登録商標)、撹拌羽根「ネオミクサー(登録商標)」、ローター/ステーター、最少クリアランス0.5mm、回転式ホモジナイザー)を用いて、温度20℃、回転数5600rpm(翼周速度:30m/秒)にて60分間、湿式分散処理を行い、分散液を得た。そして、貧溶媒としての水を添加して、ゴムを析出・凝固させて凝固物を得た。
次いで、得られた凝固物を風乾させて、溶媒としてのTHFおよび貧溶媒としての水を除去した。その後、真空乾燥機(ヤマト科学社製)にて、温度80℃で12時間真空乾燥することで複合ゴム材料を得た。
次いで、得られた複合ゴム材料(FEPM 100質量部/タルクA 1質量部/CNT 3質量部)104質量部に、カーボンブラック(カンカーブ社製、製品名「サーマックス(登録商標)MT」)5質量部と、第一架橋剤としてのトリアリルイソシアヌレート(日本化成社製「TAIC(登録商標)」5質量部と、第二架橋剤としての有機過酸化物である1,3−ビス(t−ブチルパーオキシイロプロピル)ベンゼン(日油社製、製品名「ペロキシモンF−40」)2.5質量部と、ステアリン酸Ca1質量部とを加えた後、これらをロール混合し、一次加硫(170℃、20分)および二次加硫(200℃、4時間)処理を経て、厚さ2mmのゴムシートを得た。
(実施例1−2)〜(実施例1−5)
ゴム溶液に添加するフィラーの量を、表1に示す量に代えた以外は、(実施例1−1)と同様にして、分散液、複合材料およびゴムシートを得た。そして、得られたゴムシートを用いて、試験温度を230℃として引張強度を測定した。結果を表1に示す。
(実施例1−6)
フィラーとして、タルクAに代えて、タルクB(竹原化学工業社製、製品名「ハイトロンA」組成:MgSi10(OH)、平均粒径:4.8μm、モース硬度1)をFEPM100質量部に対して5質量部用いた以外は、(実施例1−1)と同様にして、分散液、複合材料およびゴムシートを得た。
そして、得られたゴムシートを用いて、試験温度を230℃として引張強度を測定した。結果を表1に示す。
(実施例1−7)
フィラーとして、タルクAに代えて、タルクC(竹原化学工業社製、製品名「ハイミクロンHE−5」、組成:MgSi10(OH)、平均粒径:2.3μm、モース硬度:1)を、FEPM100質量部に対して5質量部用いた以外は、(実施例1−1)と同様にして、分散液、複合材料およびゴムシートを得た。
そして、得られたゴムシートを用いて、試験温度を230℃として引張強度を測定した。結果を表1に示す。
(実施例2)
フィラーとして、タルクAに代えて、炭酸カルシウム(白石カルシウム社製、製品名「Silver−W」、組成:CaCO、平均粒径:1.5μm、モース硬度:3)を、FEPM100質量部に対して5質量部用いた以外は、(実施例1−1)と同様にして、分散液、複合材料およびゴムシートを得た。
そして、得られたゴムシートを用いて、試験温度を230℃として引張強度を測定した。結果を表1に示す。
(実施例3)
フッ素ゴムとしてのフッ化ビニリデン系ゴム(FKM)(ケマーズ社製、製品名「バイトン GBL600S」の塊を、溶媒としてのメチルエチルケトン(MEK)に溶解させて、ゴム濃度が5質量%のゴム溶液を調製した。
得られたゴム溶液に、フィラーとしてのタルクA(竹原化学工業社製、製品名「TTタルク」、組成:MgSi10(OH)、平均粒径:8.5μm、モース硬度:1)をFKM100質量部に対して5質量部と、繊維状炭素ナノ構造体としてのCNT(日本ゼオン社製、製品名「ZEONANO SG101」、単層CNT、比重:1.7、平均直径:3.5nm、平均長さ:400μm、BET比表面積:1050m/g、G/D比:2.1、t−プロットは上に凸)をFKM100質量部に対して4質量部とを添加して、混合液を得た。それ以外は(実施例1−1)と同様にして、分散液および複合ゴム材料を得た。
次いで、得られた複合ゴム材料(FKM 100質量部/タルクA 5質量部/CNT4質量部)109質量部に、架橋助剤としての酸化亜鉛(亜鉛華二種)3質量部と、第一架橋剤としてのトリアリルイソシアヌレート(日本化成社製、製品名「TAIC(登録商標)」)3質量部と、第二架橋剤としての2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン(日油社製、製品名「パーヘキサ25B−40」)2質量部とを加えた後、これらをロール混合し、一次加硫(160℃、15分)および二次加硫(232℃、2時間)処理を経て、厚さ2mmのシートを得た。
そして、得られたゴムシートを用いて、試験温度200℃として引張強度を測定した。結果を表1に示す。
(実施例4)
ニトリルゴムとしてのアクリロニトリルブタジエンゴム(NBR)(日本ゼオン社製、製品名「Nipol(登録商標)DN3350」)の塊を、溶媒としてのメチルエチルケトン(MEK)に溶解させて、ゴム濃度が5質量%のゴム溶液を調製した。
得られたゴム溶液に、フィラーとしてのタルクA(竹原化学工業社製、製品名「TTタルク」、組成:MgSi10(OH)、平均粒径:8.5μm、モース硬度:1)を、NBR100質量部に対して5質量部と、繊維状炭素ナノ構造体としてのCNT(日本ゼオン社製、製品名「ZEONANO SG101」、単層CNT、比重:1.7、平均直径:3.5nm、平均長さ:400μm、BET比表面積:1050m/g、G/D比:2.1、t−プロットは上に凸)をNBR100質量部に対して10質量部とを添加して、混合液を得た。それ以外については、(実施例1−1)と同様にして、分散液および複合ゴム材料を得た。
次いで、得られた複合ゴム材料(NBR 100質量部/タルクA 5質量部/CNT 10質量部)115質量部に、架橋助剤としての酸化亜鉛(亜鉛華二種)5質量部と、ステアリン酸1質量部と、加硫剤としての硫黄(S#325)0.5質量部と、第一加硫促進剤としてのテトラメチルチウラムジスルフィド(大内新興化学工業社製、製品名「ノクセラー−TT」)1.5質量部と、第二加硫促進剤としてのN−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド(大内新興化学工業社製、製品名「ノクセラーCZG」)1.5質量部とを加えた後、これらをロール混合し、加硫(160℃、10分)処理を経て、厚さ2mmのゴムシートを得た。
そして、得られたゴムシートを用いて、試験温度を120℃として引張強度を測定した。結果を表1に示す。
(比較例1−1)
ゴム溶液にフィラーを添加しなかったこと以外は、(実施例1−1)と同様にして、分散液、複合材料およびゴムシートを得た。
そして、得られたゴムシートを用いて、試験温度を230℃として引張強度を測定した。結果を表1に示す。
(比較例1−2)
フィラーとして、タルクAに代えて酸化亜鉛(組成:ZnO、平均粒径:2μm、モース硬度:4.5)をFEPM100質量部に対して5質量部用いた以外は、(実施例1−1)と同様にして、分散液、複合材料およびゴムシートを得た。
そして、得られたゴムシートを用いて、試験温度を230℃として引張強度を測定した。結果を表1に示す。
(比較例1−3)
フィラーとして、タルクAに代えてカーボンブラック(カンカーブ社製、製品名「MT−CB(Thermax(登録商標)N990)」、組成:C、平均粒径:0.28μm、モース硬度:1)をFEPM100質量部に対して5質量部用いた以外は、(実施例1−1)と同様にして、分散液、複合材料およびゴムシートを得た。
そして、得られたゴムシートを用いて、試験温度を230℃として引張強度を測定した。結果を表1に示す。
(比較例1−4)
ゴム溶液にフィラーを添加することに代えて、複合材料を混練する際に、(実施例1−1)で使用したフィラーとしてのタルクAをFEPM100質量部に対して5質量部添加した。それ以外については、(実施例1−1)と同様にして、分散液、複合材料およびゴムシートを得た。
そして、得られたゴムシートを用いて、試験温度を230℃として引張試験を行った。結果を表1に示す。
(比較例2)
ゴム溶液にフィラーを添加しなかったこと以外は、(実施例3)と同様にして、分散液、複合材料およびゴムシートを得た。
そして、得られたゴムシートを用いて、試験温度を200℃として引張強度を測定した。結果を表1に示す。
(比較例3)
ゴム溶液にフィラーを添加しなかったこと以外は、(実施例4)と同様にして、分散液、複合材料およびゴムシートを得た。
そして、得られたゴムシートを用いて、試験温度を120℃として引張強度を測定した。結果を表1に示す。
Figure 2019181486
表1より、所定の平均粒径およびモース硬度を有するフィラーを含む混合液を用いて湿式分散処理を行った(実施例1−1)〜(実施例1−7)、(実施例2)、(実施例3)および(実施例4)では、引張強度に優れる複合材料が得られることが分かる。
一方、(比較例1−1)、(比較例2)および(比較例3)では、フィラーを含まない混合液を用いて湿式分散処理を行ったため、これにより得られる複合材料は、フィラーを含む混合液を用いて湿式分散処理を行って得られる、同じ種類のゴムを含む複合材料と比較して、引張強度が低下することが分かる。
また、(比較例1−2)では、フィラーのモース硬度が本発明で規定する所定の範囲内外であるため、得られる複合材料の引張強度が低下することが分かる。
そして、(比較例1−3)では、フィラーの平均粒径が本発明で規定する所定の範囲内外であるため、得られる複合材料の引張強度が低下することが分かる。
更に、(比較例1−4)では、フィラーを含まない混合液を用いて湿式分散処理を行い、混練時にフィラーを加えたため、これにより得られる複合材料の引張強度が低下することが分かる。
本発明の繊維状炭素ナノ構造体分散液の製造方法によれば、高温条件下における引張強度に優れた複合材料を調製し得る繊維状炭素ナノ構造体分散液を提供することができる。
また、本発明の複合材料の製造方法によれば、高温条件下における引張強度に優れた複合材料を提供することができる。

Claims (10)

  1. ゴムと、溶媒と、繊維状炭素ナノ構造体とを含む混合液を湿式分散処理する分散工程を含む、繊維状炭素ナノ構造体分散液の製造方法であって、
    前記分散工程は、平均粒径が0.5μm以上10μm以下であり、かつモース硬度が0.5以上3.5以下である粒子状フィラーの存在下で行う、繊維状炭素ナノ構造体分散液の製造方法。
  2. 前記分散工程が、前記ゴムを前記溶媒に溶解又は分散してなるゴム溶液と、前記繊維状炭素ナノ構造体と、前記粒子状フィラーとを混合して前記混合液を調製する工程を含む、請求項1に記載の繊維状炭素ナノ構造体分散液の製造方法。
  3. 前記ゴムが、フッ素ゴム、ニトリルゴム及び水素化ニトリルゴムからなる群から選択される少なくとも1種である、請求項1または2に記載の繊維状炭素ナノ構造体分散液の製造方法。
  4. 前記繊維状炭素ナノ構造体がカーボンナノチューブを含む、請求項1〜3のいずれか1項に記載の繊維状炭素ナノ構造体分散液の製造方法。
  5. 前記繊維状炭素ナノ構造体は、BET比表面積が600m/g以上である、請求項1〜4のいずれか1項に記載の繊維状炭素ナノ構造体分散液の製造方法。
  6. 前記混合液中の前記粒子状フィラーの含有量に対する前記ゴムの含有量の比が、質量比で5以上120以下である、請求項1〜5のいずれか1項に記載の繊維状炭素ナノ構造体分散液の製造方法。
  7. 前記混合液中の前記粒子状フィラーの含有量に対する前記繊維状炭素ナノ構造体の含有量の比が、質量比で0.1以上12以下である、請求項1〜6のいずれか1項に記載の繊維状炭素ナノ構造体分散液の製造方法。
  8. 前記混合液中の固形分濃度が2質量%以上20質量%以下である、請求項1〜7のいずれか1項に記載の繊維状炭素ナノ構造体分散液の製造方法。
  9. 前記湿式分散処理は、前記混合液にせん断力を加えて行う、請求項1〜8のいずれか1項に記載の繊維状炭素ナノ構造体分散液の製造方法。
  10. 請求項1〜9のいずれか1項に記載の繊維状炭素ナノ構造体分散液の製造方法によって繊維状炭素ナノ構造体分散液を得る工程と、該繊維状炭素ナノ構造体分散液から、前記溶媒を除去する溶媒除去工程とを含む、複合材料の製造方法。
JP2020508158A 2018-03-19 2019-03-05 繊維状炭素ナノ構造体分散液の製造方法および複合材料の製造方法 Active JP7243710B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018051334 2018-03-19
JP2018051334 2018-03-19
PCT/JP2019/008697 WO2019181486A1 (ja) 2018-03-19 2019-03-05 繊維状炭素ナノ構造体分散液の製造方法および複合材料の製造方法

Publications (2)

Publication Number Publication Date
JPWO2019181486A1 true JPWO2019181486A1 (ja) 2021-03-25
JP7243710B2 JP7243710B2 (ja) 2023-03-22

Family

ID=67987803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020508158A Active JP7243710B2 (ja) 2018-03-19 2019-03-05 繊維状炭素ナノ構造体分散液の製造方法および複合材料の製造方法

Country Status (2)

Country Link
JP (1) JP7243710B2 (ja)
WO (1) WO2019181486A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301254A (ja) * 2003-03-31 2004-10-28 Koyo Seiko Co Ltd 転がり軸受の密封装置
JP2006193620A (ja) * 2005-01-13 2006-07-27 Bridgestone Corp 空気入りタイヤ
JP2010001475A (ja) * 2008-06-23 2010-01-07 Lanxess Deutschland Gmbh カーボンナノチューブ含有ゴム組成物
JP2013544904A (ja) * 2010-09-29 2013-12-19 ハッチンソン 導電性透明フィルム用の新規組成物
JP2017008244A (ja) * 2015-06-24 2017-01-12 昭和電工株式会社 エラストマー組成物の製造方法、エラストマー組成物、マスターバッチ、エラストマー混合物及びエラストマー混合物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301254A (ja) * 2003-03-31 2004-10-28 Koyo Seiko Co Ltd 転がり軸受の密封装置
JP2006193620A (ja) * 2005-01-13 2006-07-27 Bridgestone Corp 空気入りタイヤ
JP2010001475A (ja) * 2008-06-23 2010-01-07 Lanxess Deutschland Gmbh カーボンナノチューブ含有ゴム組成物
JP2013544904A (ja) * 2010-09-29 2013-12-19 ハッチンソン 導電性透明フィルム用の新規組成物
JP2017008244A (ja) * 2015-06-24 2017-01-12 昭和電工株式会社 エラストマー組成物の製造方法、エラストマー組成物、マスターバッチ、エラストマー混合物及びエラストマー混合物の製造方法

Also Published As

Publication number Publication date
JP7243710B2 (ja) 2023-03-22
WO2019181486A1 (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
US9636649B2 (en) Dispersions comprising discrete carbon nanotube fibers
JP7056556B2 (ja) 含フッ素エラストマー組成物および成形体
JP6683190B2 (ja) シリコーンゴム組成物および加硫物
JP6908050B2 (ja) スラリー、複合樹脂材料および成形体の製造方法
WO2020195799A1 (ja) エラストマー組成物および成形体
JP2017186476A (ja) 含フッ素エラストマー組成物の製造方法およびオイルシール部材の製造方法
CN116964144A (zh) 弹性体组合物及其制造方法、交联物、以及成型体
JP7151760B2 (ja) ゴム組成物の製造方法
JP7276319B2 (ja) 複合材料の製造方法
JP2023010333A (ja) タイヤ用マスターバッチ、タイヤ用ゴム組成物、タイヤ、およびそれらの製造方法
JP7155567B2 (ja) 成形体
JP7243710B2 (ja) 繊維状炭素ナノ構造体分散液の製造方法および複合材料の製造方法
WO2020175331A1 (ja) 含フッ素エラストマー組成物、フッ素ゴム成形体、含フッ素エラストマー溶液の製造方法、及び含フッ素エラストマー組成物の製造方法
JP7306641B2 (ja) ガスシール部材用組成物、高圧水素機器用ガスシール部材、および、高圧水素機器
JP7173023B2 (ja) ゴム組成物
WO2022070780A1 (ja) エラストマー組成物、エラストマー組成物の製造方法、架橋物、及び成形体
JP2021147474A (ja) ゴム組成物の製造方法
JP7468062B2 (ja) エラストマー組成物の製造方法
KR20150045169A (ko) 탄소나노튜브가 함유된 타이어용 고무 조성물
EP3778752A1 (en) Uncrosslinked elastomer composition and crosslinked product of same
JP2023019471A (ja) 炭素繊維複合材料及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7243710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150