JPWO2019116561A1 - ハイブリッド車両のガス欠復帰判定方法とその車両制御装置 - Google Patents

ハイブリッド車両のガス欠復帰判定方法とその車両制御装置 Download PDF

Info

Publication number
JPWO2019116561A1
JPWO2019116561A1 JP2019558851A JP2019558851A JPWO2019116561A1 JP WO2019116561 A1 JPWO2019116561 A1 JP WO2019116561A1 JP 2019558851 A JP2019558851 A JP 2019558851A JP 2019558851 A JP2019558851 A JP 2019558851A JP WO2019116561 A1 JPWO2019116561 A1 JP WO2019116561A1
Authority
JP
Japan
Prior art keywords
time
engine
gas shortage
determination
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019558851A
Other languages
English (en)
Other versions
JP6915697B2 (ja
Inventor
勇樹 藤田
勇樹 藤田
俊輔 馬場
俊輔 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2019116561A1 publication Critical patent/JPWO2019116561A1/ja
Application granted granted Critical
Publication of JP6915697B2 publication Critical patent/JP6915697B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0848Circuits or control means specially adapted for starting of engines with means for detecting successful engine start, e.g. to stop starter actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/209Fuel quantity remaining in tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

ガス欠判定した後に実行されるガス欠復帰判定方法であって、ハイブリッド車両の運転を開始する時に、発電機50の回転数制御を所定時間の間実行した後に停止させ、その後のエンジン40の回転数βが閾値より高い状態が第1判定時間TAを越えて検出されるとガス欠復帰と判定し、計時した時間が第1判定時間を越えない場合に、前記エンジンの回転数が前記閾値未満である時間の計時を開始し、該計時した時間が第2判定時間を超えればガス欠判定を維持する。

Description

本発明は、ハイブリッド車両のガス欠判定(ガス欠検知)した後に行うガス欠復帰判定方法とその車両制御装置に関する。
ハイブリッド車両のガス欠判定方法としては、例えば特許文献1に開示された方法が知られている。
特開2016−210295号公報
特許文献1に開示された方法は、エンジンを始動するエンジン始動制御を所定時間行い、該所定時間経過後にエンジンが自律運転しない場合にガス欠状態と判定する。そして、ガス欠から復帰したか否かについても同様に判定する方法である。つまり、エンジンの自律運転が一瞬でも検出できればガス欠復帰と判定してしまう。そのため、ガス欠復帰を正しく判定できない可能性があった。
本発明は、上記課題に鑑みてなされたものであり、ガス欠復帰を正しく判定できるハイブリット車両のガス欠復帰判定方法とその車両の制御装置を提供することを目的としている。
本発明の一態様に係わるハイブリット車両のガス欠復帰判定方法は、ガス欠判定された後にハイブリッド車両の運転を開始すると、発電機の回転数制御を所定時間の間実行し、その後のエンジンの回転数が閾値より高い状態が第1判定時間を超えて検出されるとガス欠復帰と判定する。
本発明のハイブリット車両のガス欠復帰判定方法によれば、ガス欠復帰を正しく判定できる。
本発明の第1実施形態に係るガス欠復帰判定部を備えた車両の一部構成を例示したブロック図である。 図1に示すガス欠復帰判定部が実行するガス欠復帰判定方法の処理手順の一例を示すフローチャートである。 図2に示すフローチャートに続く処理手順の一例を示すフローチャートである。 図2及び図3に示す処理によって変化する信号を示す図であり、ガス欠復帰しない場合のタイムチャートである。 図2及び図3に示す処理によって変化する信号を示す図であり、ガス欠復帰した場合のタイムチャートである。 本発明の第1実施形態に係るガス欠復帰判定方法の他の処理手順によって変化する信号を示す図であり、ガス欠復帰しない場合のタイムチャートである。 本発明の第2実施形態に係るガス欠復帰判定方法の処理手順の一部を示すフローチャートである。 図7に示すガス欠復帰方法の処理によって変化する信号を示す図であり、ガス欠復帰した場合のタイムチャートである。
以下、本発明の実施形態を図面に基づいて説明する。
〔第1実施形態〕
図1は、本発明の第1実施形態に係るガス欠復帰判定部を備えた車両の一部構成を例示したブロック図である。図1に示す車両1は、例えばシリーズハイブリッド車両を例に説明する。
図1に示す車両1は、システムコントローラ10、エンジンコントローラ20、発電機コントローラ30、エンジン40、発電機50、バッテリ(図示せず)、及び燃料タンク60等を備える。なお、本実施形態の説明に不要な構成である駆動モータ、バッテリ、減速機、及び駆動輪等の表記は省略している。システムコントローラ10は、本実施形態に係るガス欠復帰判定部(ガス欠復帰判定回路)11を含む。
システムコントローラ10、エンジンコントローラ20、及び発電機コントローラ30は、例えば、中央演算ユニット(CPU)や、RAM、ROM、ハードディスク等の記憶手段からなる一体型のコンピュータとして構成することができる。
車両1は、エンジン40の駆動力を発電のみに使用する。エンジン40と発電機50は歯車を介して連結され、エンジン40の駆動力によって発電機50が発電した電力で駆動モータ(図示せず)を駆動する。
システムコントローラ10は、運転者のアクセルペダル操作量、車速、路面勾配などの車両状態、バッテリコントローラ(図示せず)からのバッテリ情報などに応じて、エンジンコントローラ20へエンジントルク指令、及び発電機コントローラ30へ発電トルク指令を出力する。
エンジンコントローラ20は、エンジントルク指令を実現するために、エンジン40のスロットル開度、点火時期、及び燃料噴射量を調整する。
発電機コントローラ30は、発電機トルク指令を実現するために、発電機の回転数や電圧などの状況に応じて発電機50を制御する。
また、システムコントローラ10は、燃料レベルセンサ61が出力する燃料レベルFL、及び給油口開閉センサ62の開閉信号OCSに基づいてガス欠判定を行う。ガス欠判定は、例えば、開閉信号OCSが生じてからの経過時間、及び燃料レベルFLの値に基づいて判定する。なお、ガス欠判定の方法には、他にも色々考えられる。例えば、燃料レベルFLの値のみに基づいて判定してもよいし、燃料噴射量から求めた燃費消費量でガス欠判定してもよい。ガス欠判定は、システムコントローラ10内のガス欠判定回路(図示せず)で行う。
以降おいては、何らかの方法でガス欠判定された前提で、ガス欠復帰判定部11の動作を説明する。
ガス欠復帰判定部11は、ガス欠判定した後に、ガス欠から復帰したか否かを判定(ガス欠復帰判定)する。そのガス欠復帰判定方法は、イグニッションスイッチISがオンにされると、発電機50の回転数制御を所定時間の間実行した後に停止させ、その後のエンジン40の回転数が閾値より大きい状態が一定時間を超えて検出されるとガス欠復帰と判定する。
なお、イグニッションスイッチISがオンにされるとは、ハイブリッド車両の運転を開始する時である。ハイブリッド車両の運転を開始する時は、他にも例えば、運転席近傍のスタートボタンを押す、あるいはスイッチを上下させる等のスイッチをオンする操作を含む。また、ハイブリッド車両の運転を開始する時は、鍵を捻る、又は運転者が車両に乗車した時であってもよい。
したがって、本実施形態に係るガス欠復帰判定方法によれば、一定時間を超えてエンジン40が回転することを検出するので、ガス欠復帰を確実に検出できる。よって、ガス欠復帰の誤検出を抑制できる。以降、ガス欠復帰判定方法の処理手順を示してその動作を詳しく説明する。
図2と図3は、本発明の第1実施形態に係るガス復帰判定方法の処理手順を示すフローチャートである。ガス欠復帰判定部11は、ガス欠判定された状態でイグニッションスイッチISがオンにされると動作を開始する(ステップS1)。
ガス欠復帰判定部11は、動作を開始すると先ずガス欠状態であるか否かをガス欠状態判定フラグfGKで確認する(ステップS2)。ガス欠状態判定フラグfGKが偽(例えば論理レベル0)であれば、結合子A以降の図示を省略している通常のエンジン始動の処理が行われる。この場合、ガス欠復帰判定部11は、開始した動作を直ちに終了する。
ガス欠状態判定フラグfGKが真(例えば論理レベル1)であれば、ガス欠復帰判定部11は、ガス欠復帰判定方法の処理を開始する(ステップS2のYES)。ここからは図4も参照して説明する。
図4は、ガス欠復帰判定方法の処理手順を示すタイムチャートである。図4の横方向は時間、縦方向は各信号を表す。該各信号の縦方向の次元は信号ごとに異なる。該各次元については、必要に応じてその都度説明する。
ガス欠復帰判定部11は、ガス欠復帰判定方法の処理を開始すると発電機コントローラ30に対して発電機・回転数制御要求αを出力する(ステップS3)。そして、ガス欠復帰判定を目的にエンジンに始動要求をしたことを表すエンジン始動要求フラグfESをセットする(ステップS4)。発電機・回転数制御要求α、及びエンジン始動要求フラグfESは、論理レベル1又は0の信号である。
発電機コントローラ30は、発電機・回転数制御要求αが入力されると発電機50を回転させる。発電機50と歯車を介して接続されたエンジン40の回転数βは、回転数0のβから増加し、発電機・回転数制御要求αで定められた回転数βに到達する。
ガス欠復帰判定部11は、エンジン40の回転数βが回転数βに到達すると、その情報をエンジンコントローラ20から受信する。エンジン40の回転数βが回転数βに到達したことを受信したガス欠復帰判定部11は、エンジンコントローラ20に燃料噴射要求γを出力する(ステップS5)。
燃料噴射要求γを出力したガス欠復帰判定部11は、所定時間の計測を開始する(ステップS6)。ここで所定時間とは、発電機50によって回転され且つ燃料供給が開始された状態で、エンジン40が自律運転を開始するのに必要な時間である。
この所定時間の間、ガス欠復帰判定部11は発電機・回転数制御要求αを出力し続ける(ステップS7のNOのループ)。この間、所定時間を計時するタイマーのカウント値δは、時間の経過に伴って増加する。カウント値が所定の値になると、つまり所定時間を計時し終わると(ステップS7のYES)、ガス欠復帰判定部11の内部で完爆判定開始信号εが生成される。完爆判定開始信号εが生成されると、ガス欠復帰判定部11は、発電機・回転数制御要求αの出力を停止する(ステップS8)。完爆とは、エンジン40が爆発を開始し自律運転したことを意味する。
所定時間は、表1に示すようにエンジン40のエンジン水温に対応させて変化させてもよい。例えば、エンジン水温が-20℃以下の場合は所定時間を30秒、−10℃以下の場合は20秒、それよりも高い温度範囲では10秒といった具合に、所定時間の時間幅を変更する。
Figure 2019116561
つまり、所定時間は、エンジン水温の複数の所定の範囲のいくつかにそれぞれ対応し、エンジン水温が高い範囲に対応する所定時間はエンジン水温が低い範囲に対応する所定時間よりも短い。これによりガス欠復帰状態においてエンジン40を確実に自律運転させることができる。その結果、ガス欠復帰判定を正確に行える。
ガス欠復帰判定部11は、発電機・回転数制御要求αの出力を停止した後、繰り返し回数を計数する変数iを0にリセットする(ステップS9)。繰り返しの処理については後述する。
ガス欠復帰判定部11は、発電機・回転数制御要求αの出力を停止するのと同時に、エンジンコントローラ20にエンジン・回転数制御要求ζを出力する(ステップS10)。エンジン・回転数制御要求ζは、ディジタル数値情報である。エンジンコントローラ20は、エンジン・回転数制御要求ζの数値に見合う燃料噴射量及び点火時期でエンジン40を制御する。
ガス欠復帰判定部11は、エンジンコントローラ20にエンジン・回転数制御要求ζを出力するとガス欠復帰時間の計時を開始する(ステップS11)。ここでガス欠復帰時間は、エンジン40の回転数βが閾値RTHより高い状態である時間と定義する。ガス欠復帰時間は、上記の所定時間と同様にタイマーで計時する。ガス欠復帰時間を計時するタイマーのカウント値ηは、時間の経過に伴って増加する。
発電機・回転数制御要求αの出力を停止(ステップS8)した後、エンジン40が自律運転を開始すれば、エンジン40はエンジン・回転数制御要求ζの数値に見合った回転数βを維持して回転し続ける(図4のβの一点鎖線)。一方、エンジン40が自律運転を開始しないと回転数βは、フリクションによって自由停止するまで低下する(図4のβの低下する実線)。図4に示す例は、エンジン40が自律運転を開始しない場合を示す。
ガス欠復帰判定部11は、ガス欠復帰時間が予め設定した第1判定時間Tを越えればガス欠から復帰したと判定する(ステップS13のYES)。つまり、燃料タンク60内に燃料が存在し、エンジン40の自律運転が可能と判定する。このガス欠復帰状態について、タイムチャートを参照した説明は後述する。
(ガス欠状態)
一方ガス欠状態であると、第1判定時間T以内にエンジン40の回転数βは、閾値RTHを下回る(ステップS12のNO)。第1判定時間T以内に回転数βが閾値RTHを下回ると、ガス欠復帰判定部11は、直ちにガス欠復帰時間の計時を停止し、ガス欠復帰時間を計時するタイマーのカウント値ηをリセットする(ステップS15)。
そしてガス欠復帰判定部11は、ガス欠判定時間の計時を開始する(ステップS16)。ガス欠判定時間は、上記の所定時間及びガス欠復帰時間と同様にタイマーで計時する。ガス欠判定時間を計時するタイマーのカウント値θは、時間の経過に伴って増加する。
ガス欠復帰判定部11は、エンジン40の回転数βが閾値RTHを下回るガス欠判定時間を計時する(ステップS18のNO)。ガス欠判定時間が予め設定した第2判定時間Tを越えれば、エンジン40は自律運転しないと判定し、ガス欠状態判定フラグfGKをセットする(ステップS19)。この例の場合は、「真」にセットされたガス欠状態判定フラグfGKの状態を維持する。
そしてガス欠復帰判定部11は、エンジン始動要求フラグfESをリセットする(ステップS20)。つまり、エンジン始動要求フラグfESを論理レベル0に立ち下げる。また、エンジンコントローラ20への燃料噴射要求γとエンジン・回転数制御要求ζの出力を停止し(ステップS21)、ガス欠復帰判定方法の処理を終了する。
(ガス欠復帰状態)
図5は、ガス欠復帰状態におけるガス欠復帰判定方法の処理手順を示すタイムチャートである。図5は、ガス欠復帰判定部11が発電機・回転数制御要求αの出力を停止し、エンジンコントローラ20にエンジン・回転数制御要求ζを出力(ステップS10)した後に、エンジン40の回転数βが閾値RTHを上回って回転し続ける点で図4と異なる。
図5では、ガス欠復帰判定部11が発電機・回転数制御要求αの出力を停止しても、エンジン・回転数制御要求ζの数値に見合った回転数βでエンジン40が回転し続ける。したがって、ガス欠復帰時間が第1判定時間Tを越える(ステップS13のYES)。
この場合、ガス欠復帰判定部11は、エンジン40の自律運転が可能と判定し、ガス欠状態判定フラグfGKをリセットする(ステップS14)。そして、エンジン始動要求フラグfESをリセットし(ステップS20)、エンジンコントローラ20への燃料噴射要求γ及びエンジン・回転数制御要求ζの出力を停止し(ステップS21)、ガス欠復帰判定方法の処理を終了する。
以上説明したように本実施形態に係るガス復帰判定方法は、エンジン40を制御するエンジンコントローラ20へ燃料噴射を要求した後の所定時間の経過後に、エンジンコントローラ20へ回転数制御を要求すると共にエンジン40の回転数が閾値RTH以上である時間の計時を開始し、該計時した時間が第1判定時間Tを越えればガス欠復帰と判定し、該計時した時間が第1判定時間Tを越えない場合に、エンジン40の回転数βが閾値RTH未満である時間の計時を開始し、該計時した時間が第2判定時間Tを超えればガス欠判定を維持する。
このガス復帰判定方法によればガス欠復帰を正しく判定できる。
また、上記の結合子A(図2)で示すように、本実施形態に係るガス復帰判定方法は、通常時とガス欠復帰判定時とで処理を分離することができる。よって、結合子A以降で行われる通常のエンジン40の始動時の発電トルク指令及びエンジントルク指令と、ガス欠復帰判定時の両トルク指令との間に差を持たせることができる。したがって、通常時はエンジントルク指令を例えば40Nm、ガス欠復帰判定時は例えば5Nmといったように、目的に応じてトルク指令の値を変更できる。小さいエンジントルク指令とすることで、より正確にガス欠復帰判定を行うことが可能になる。
また、ガス欠状態では、エンジン40の回転数βが閾値RTHより高い状態が第1判定時間Tを越えない場合に、エンジン40の回転数βが閾値RTH未満である時間の計時を開始し、該計時した時間が第2判定時間Tを超えればガス欠判定を維持する。したがって、ガス欠状態も正しく判定できる。
なお、第1判定時間Tと第2判定時間Tは、同じ時間幅であってもよいし、異なる時間幅にしてもよい。例えば、第2判定時間Tは、第1判定時間Tよりも長い。このように設定すると、より慎重にガス欠復帰したかどうか(ガス欠復帰)を判定することができる。
なお、第1判定時間Tは、上記の所定時間と同様にエンジン水温に対応させて変化させてもよい。表1の「所定時間(秒)」を「第1判定時間T(秒)」に変更し、「値」の関係は例えば同じとする。つまり、エンジン水温が高い場合の第1判定時間Tは、エンジン水温が低い場合の第1判定時間に比べて短い。このように設定すると、ガス欠復帰状態においてエンジン40を確実に自律運転させることができる。
また、ガス欠状態が解消されていない場合は、第1判定時間T内でエンジンストールを繰り返すことがある。その場合、エンジン40の回転数βが閾値RTH未満になる回数を計数して、その回数が所定回数になればガス欠状態の判定を維持するようにしてもよい。次に、そのガス欠状態判定の変形例について説明する。
(ガス欠状態判定の変形例)
図3に示すフローチャートは、エンジン40の回転数βが閾値RTH未満になる回数を計数する処理ステップも含む。図3と図6を参照してその動作を説明する。
図6の横方向と縦方向の関係は、図4及び図5と同じである。図6は、ガス欠復帰判定部11がエンジン・回転数制御要求ζを出力中に、エンジンストールを繰り返す示す点で図4及び図5と異なる。
ガス欠復帰判定部11がエンジン・回転数制御要求ζを出力した直後のエンジン40の回転数βは、発電機50によって回転させられていた回転数βである。その後、エンジン40が自律運転を開始すればその回転数βは、エンジン・回転数制御要求ζの数値に見合ったものとなる。しかし、エンジン40が自律運転を開始しないと、その回転数βはフリクッションに応じて低下する(ステップS12のNO)。
この状況において、何らかの理由によりエンジン40がエンジン・回転数制御要求ζに応じて回転を再開する場合がある(ステップS17のNO)。そうなると、ガス欠復帰判定部11は、ガス欠判定時間を計時するタイマーをリセットする(カウント値θ=0、ステップS22)。
そして、ガス欠復帰判定部11は、繰り返し回数を計数する変数iをインクリメントする(ステップS23)。ガス欠復帰判定部11は、変数iをインクリメントした後に、変数iが2以上であるか否かを判定する(ステップS24)。ここでの変数iは、i=0+1=1である(ステップS24のNO)。
よって、ガス欠復帰判定部11は、再びガス欠復帰時間の計時を開始する(ステップS11)。つまり、ガス欠復帰時間を計時するタイマーのカウント値ηをカウントアップする(ステップS13のNOのループ)。
ここでガス欠復帰時間が第1判定時間Tを越えない内に、再びエンジン40の回転数βが閾値RTH未満になると、ステップS12のNO→ステップS17のNOのステップを経て、変数iは、i=1+1=2となる。
変数i=2となると、変数iはリセットされ(ステップS25)、直ちにガス欠状態判定フラグfGKをセットする(ステップS19)。この例の場合は、「真」にセットされたガス欠状態判定フラグfGKの状態を維持する。
このように本実施形態に係るガス欠復帰判定方法は、エンジン40の回転数βが閾値RTHより高い状態である時間の計時中にエンジン40の回転数βが閾値RTH未満になった後、再びエンジン40の回転数βが閾値RTH以上になることを繰り返す場合は、該繰り返しの回数を計数し、該回数が所定回数になればガス欠状態を維持するようにしてもよい。これによりガス欠状態を正しく判定することができる。
なお、変形例は、再びエンジン40の回転数βが閾値RTH以上になった場合にガス欠復帰を判定する第1判定時間Tを、一回目と同じ第1判定時間Tを用いて判定する例を示したが、判定時間の長さを変えてもよい。次に、ガス欠復帰時間の計時中にエンジンストールを繰り返す場合に、一回目のガス欠復帰を判定する判定時間と二回目以降のガス欠復帰を判定する判定時間の時間幅を変えた第2実施形態について説明する。
〔第2実施形態〕
図7は、第2実施形態に係るガス欠復帰判定方法の一部の処理手順を示すフローチャートである。図7は、ガス欠復帰判定部11がエンジン・回転数制御要求ζを出力中に一度エンジンストールした後に、何らかの理由によりエンジン40が回転を再開した場合(ステップS17のNO)に用いるガス欠復帰を判定する時間を第3判定時間Tとしたフローチャートである。例えば、第3判定時間Tの時間幅は、第3判定時間T>第1判定時間Tである。
図8も参照して動作を説明する。図8の横方向と縦方向の関係は、図6等と同じである。
一回目のエンジンストール(ステップS17のNO)の後に、エンジン40が閾値RTH以上の回転数βで回転を再開すると、ガス欠復帰判定部11は再びガス欠復帰時間の計時を開始する(ステップS30)。ガス欠復帰時間を計時するタイマーのカウント値ηは、時間の経過に伴って増加する(図8の2個目のη)。
そして、エンジン40の回転数βが閾値RTH以上である時間が第3判定時間Tを越えると、ガス欠復帰判定部11は、エンジン40の自律運転が可能と判定し、ガス欠状態判定フラグfGKをリセットする(ステップS14)。図8は、ガス欠状態判定フラグfGKがリセットされる様子を示している。
また、エンジン40の回転数βが閾値RTH以上である時間が第3判定時間Tを越えない場合は、ガス欠状態判定フラグfGKがセットされる(ステップS19)。
このように本実施形態に係るガス欠復帰判定方法は、エンジン40の回転数βが閾値RTH以上である時間の計時中にエンジン40の回転数が閾値RTH未満になった後、再びエンジン40の回転数βが閾値RTH以上になった場合は、エンジン40の回転数βが閾値RTH以上である時間の計時を開始し、該計時した時間が第1判定時間Tよりも長い第3判定時間Tを越えればガス欠復帰と判定するようにしてもよい。これにより、より正確なガス欠復帰判定を実施できる。
以上述べたように本実施形態に係るハイブリッド車両のガス欠復帰判定方法によれば、発電機50の回転数制御を所定時間の間実行した後に停止させ、その後のエンジン40の回転数βが閾値RTHより高い状態が第1判定時間Tを越えて検出されるとガス欠復帰と判定する。つまり、発電機50の回転数制御をタイムアウトした後に、エンジンコントローラ20が自律運転制御を開始したタイミングからガス欠復帰判定の確認を開始する。これによりガス欠状態を正しく判定することができる。その結果、エンジン40の始動に際して発電機50の回転数制御で消費する不要な電力消費量を削減することができる。
なお、エンジン40の通常時におけるトルク指令と、ガス欠復帰判定時のトルク指令との間に差を持たせることができることは既に述べた。そのため、通常時はトルク指令を大きくできるので、ギアのラトラノイズを低減させることができる。また、ガス欠復帰判定時のトルク指令を小さくすることで、正確なエンジン40の自律運転の可否を判定することも可能である。
また、トルク指令に加えて回転数制御も変えるようにしてもよい。通常時とガス欠復帰判定時とで、発電機50の回転数制御の目標回転数を異ならせる。例えば、発電機50を制御する発電機コントローラ30へ回転数制御を目的に入力される目標回転数は、該ガス欠復帰の判定を行わない場合に発電機コントローラ30へ発電開始を目的に入力される目標回転数よりも高い。これにより、前述のとおり正確なエンジン40の自律運転の可否を判定する目的でガス欠復帰判定時のトルク指令を通常時に比べて小さくしたとしても該目標回転数が高いためラトラノイズの周波数を高くでき、ラトラノイズによる違和感を低減させることができる。また、ガス欠復帰判定をより適切な回転数βで行うことが可能になる。
つまり、発電機50の回転数制御の目標回転数は、上記のガス欠復帰の判定を行わないでエンジン40を始動する場合の発電機50の回転数制御の目標回転数よりも高い。これにより、ガス欠復帰判定をより適切に行えると共に、通常時のエンジン40の始動をより適切に行うことができる。
以上述べた実施形態は、図4、図5、図6、及び図8に示すようにガス欠復帰判定を1回実行する例で説明したが、上記のガス欠復帰判定を複数回繰り返してガス欠復帰を判定してもよい。その場合は、エンジン40の回転数が0→エンジン始動要求フラグfESをセット、を例えば3回繰り返す。例えば、3回連続してガス欠復帰と判定されない場合に、ガス欠判定を維持するようにしてもよい。これにより確実にガス欠復帰を判定することができる。例えばエンジン40内に未燃焼のガソリンが残っていた場合には初回のガス欠復帰判定では十分な自律運転ができず、ガス欠復帰を判定できない場合がある。そこで複数回のガス欠復帰判定を実施することで、より確実にガス欠復帰を判定することができる。ただし、多すぎる回数の試行は、発電機50の回転数制御で消費する不要な電力消費量の増加につながるため避ける必要がある。
エンジン40の回転数が閾値RTHより高い状態である時間の計時中にエンジン40の回転数が0になった後、再び発電機50の回転数制御を所定時間の間実行した後に停止させ、エンジンコントローラ20へ回転数制御を要求すると共にエンジン40の回転数が閾値RTH以上である時間の計時を開始させ、エンジン40の回転数が閾値RTH以上である時間の計時中にエンジン40の回転数が0になることを繰り返す場合は、該繰り返しの回数を計数し、該回数が所定回数になればガス欠状態を維持する。これによりガス欠復帰の判定をより確実に行うことができる。
以上、本発明のガス欠復帰判定方法及び車両制御装置を、図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。例えば、第1実施形態で説明した構成は、第2実施形態に適用することが可能であり、その構成からは同じ作用効果が得られる。また、上記した実施形態では、シリーズハイブリッド車両を例にして説明したが、パラレルハイブリッド車両についても適用することができる。
また、上述した実施形態の各機能部は、1又は複数の処理回路により実装され得る。処理回路は、電気回路を含む処理装置等のプログラムされた処理装置を含む。処理装置は、また、実施形態に記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)や従来型の回路部品のような装置を含んでも良い。
1 車両
10 システムコントローラ
11 ガス欠復帰判定部(ガス欠復帰判定回路)
20 エンジンコントローラ
30 発電機コントローラ
40 エンジン
50 発電機
60 燃料タンク
61 燃料レベルセンサ
62 給油口開閉センサ
IS イグニッションスイッチ
OCS 開閉信号
FL 燃料レベル
TH 閾値
GK ガス欠状態判定フラグ
ES エンジン始動要求フラグ
第1判定時間
第2判定時間
第3判定時間
α 発電機・回転数制御要求
β 回転数
γ 燃料噴射要求
δ 所定時間のカウント値
ε 完爆判定開始信号
η ガス欠復帰時間のカウント値
ζ エンジン・回転数制御要求
θ ガス欠判定時間のカウント値
本発明は、上記課題に鑑みてなされたものであり、ガス欠復帰を正しく判定できるハイブリッド車両のガス欠復帰判定方法とその車両の制御装置を提供することを目的としている。
本発明の一態様に係わるハイブリッド車両のガス欠復帰判定方法は、ガス欠判定された後にハイブリッド車両の運転を開始すると、発電機の回転数制御を所定時間の間実行し、その後のエンジンの回転数が閾値より高い状態が第1判定時間を超えて検出されるとガス欠復帰と判定する。
本発明のハイブリッド車両のガス欠復帰判定方法によれば、ガス欠復帰を正しく判定できる。
本発明の第1実施形態に係るガス欠復帰判定部を備えた車両の一部構成を例示したブロック図である。 図1に示すガス欠復帰判定部が実行するガス欠復帰判定方法の処理手順の一例を示すフローチャートである。 図2に示すフローチャートに続く処理手順の一例を示すフローチャートである。 図2及び図3に示す処理によって変化する信号を示す図であり、ガス欠復帰しない場合のタイムチャートである。 図2及び図3に示す処理によって変化する信号を示す図であり、ガス欠復帰した場合のタイムチャートである。 本発明の第1実施形態に係るガス欠復帰判定方法の他の処理手順によって変化する信号を示す図であり、ガス欠復帰しない場合のタイムチャートである。 本発明の第2実施形態に係るガス欠復帰判定方法の処理手順の一部を示すフローチャートである。 図7に示すガス欠復帰判定方法の処理によって変化する信号を示す図であり、ガス欠復帰した場合のタイムチャートである。
システムコントローラ10は、運転者のアクセルペダル操作量、車速、路面勾配などの車両状態、バッテリコントローラ(図示せず)からのバッテリ情報などに応じて、エンジンコントローラ20へエンジントルク指令、及び発電機コントローラ30へ発電トルク指令を出力する。
また、システムコントローラ10は、燃料レベルセンサ61が出力する燃料レベルFL、及び給油口開閉センサ62の開閉信号OCSに基づいてガス欠判定を行う。ガス欠判定は、例えば、開閉信号OCSが生じてからの経過時間、及び燃料レベルFLの値に基づいて判定する。なお、ガス欠判定の方法には、他にも色々考えられる。例えば、燃料レベルFLの値のみに基づいて判定してもよいし、燃料噴射量から求めた燃料消費量でガス欠判定してもよい。ガス欠判定は、システムコントローラ10内のガス欠判定回路(図示せず)で行う。
図2と図3は、本発明の第1実施形態に係るガス復帰判定方法の処理手順を示すフローチャートである。ガス欠復帰判定部11は、ガス欠判定された状態でイグニッションスイッチISがオンにされると動作を開始する(ステップS1)。
以上説明したように本実施形態に係るガス復帰判定方法は、エンジン40を制御するエンジンコントローラ20へ燃料噴射を要求した後の所定時間の経過後に、エンジンコントローラ20へ回転数制御を要求すると共にエンジン40の回転数が閾値RTH以上である時間の計時を開始し、該計時した時間が第1判定時間Tを越えればガス欠復帰と判定し、該計時した時間が第1判定時間Tを越えない場合に、エンジン40の回転数βが閾値RTH未満である時間の計時を開始し、該計時した時間が第2判定時間Tを超えればガス欠判定を維持する。このガス復帰判定方法によればガス欠復帰を正しく判定できる。
また、上記の結合子A(図2)で示すように、本実施形態に係るガス復帰判定方法は、通常時とガス欠復帰判定時とで処理を分離することができる。よって、結合子A以降で行われる通常のエンジン40の始動時の発電トルク指令及びエンジントルク指令と、ガス欠復帰判定時の両トルク指令との間に差を持たせることができる。したがって、通常時はエンジントルク指令を例えば40Nm、ガス欠復帰判定時は例えば5Nmといったように、目的に応じてトルク指令の値を変更できる。小さいエンジントルク指令とすることで、より正確にガス欠復帰判定を行うことが可能になる。

Claims (9)

  1. エンジンと、該エンジンによって駆動され車両駆動用の電力を生成する発電機を備えたハイブリッド車両において、ガス欠判定した後に実行されるガス欠復帰判定方法であって、
    前記ハイブリッド車両の運転を開始する時に、前記発電機の回転数制御を所定時間の間実行した後に停止させ、その後の前記エンジンの回転数が閾値より高い状態が第1判定時間を越えて検出されるとガス欠復帰と判定する
    ことを特徴とするハイブリット車両のガス欠復帰判定方法。
  2. 請求項1に記載したガス欠復帰判定方法において、
    前記エンジンを制御するエンジンコントローラへ燃料噴射を要求した後の前記所定時間の経過後に、前記エンジンを自律運転させると共に前記エンジンの回転数が前記閾値以上である時間の計時を開始し、該計時した時間が前記第1判定時間を越えればガス欠復帰と判定する
    ことを特徴とするハイブリット車両のガス欠復帰判定方法。
  3. 請求項1又は2に記載したガス欠復帰判定方法において、
    前記エンジンの回転数が前記閾値以上である時間が前記第1判定時間を越えない場合に、前記エンジンの回転数が前記閾値未満である時間の計時を開始し、該計時した時間が第2判定時間を超えればガス欠判定を維持する
    ことを特徴とするハイブリット車両のガス欠復帰判定方法。
  4. 請求項3に記載したガス欠復帰判定方法において、
    前記第2判定時間は、前記第1判定時間よりも長い
    ことを特徴とするハイブリット車両のガス欠復帰判定方法。
  5. 請求項1乃至4の何れか一項に記載したガス欠復帰判定方法において、
    前記エンジンの回転数が前記閾値以上である時間の計時中に前記エンジンの回転数が前記閾値未満になった後、再び前記エンジンの回転数が前記閾値以上になった場合は、前記エンジンの回転数が前記閾値以上である時間の計時を開始し、該計時した時間が前記第1判定時間よりも長い第3判定時間を越えればガス欠復帰と判定する
    ことを特徴とするハイブリット車両のガス欠復帰判定方法。
  6. 請求項1乃至5の何れか一項に記載したガス欠復帰判定方法において、
    前記エンジンの回転数が閾値より高い状態である時間の計時中に前記エンジンの回転数が0になった後、再び前記発電機の回転数制御を所定時間の間実行した後に停止させ、エンジンコントローラへ回転数制御を要求すると共に前記エンジンの回転数が前記閾値以上である時間の計時を開始させ、前記エンジンの回転数が前記閾値以上である時間の計時中に前記エンジンの回転数が0になることを繰り返す場合は、該繰り返しの回数を計数し、該回数が所定回数になればガス欠判定を維持する
    ことを特徴とするハイブリット車両のガス欠復帰判定方法。
  7. 請求項1乃至6の何れか一項に記載したガス欠復帰判定方法において、
    前記回転数制御の目標回転数は、前記ガス欠復帰の判定を行わないで前記エンジンを始動する場合の前記発電機の回転数制御の目標回転数よりも高い
    ことを特徴とするハイブリット車両のガス欠復帰判定方法。
  8. 請求項1乃至7の何れか一項に記載したガス欠復帰判定方法において、
    エンジン水温が高い場合の前記第1判定時間は、エンジン水温が低い場合の前記第1判定時間に比べて短い
    ことを特徴とするハイブリット車両のガス欠復帰判定方法。
  9. エンジンと、該エンジンによって駆動され車両駆動用の電力を生成する発電機を備えたハイブリッド車両の車両制御装置であって、
    ガス欠を判定するガス欠判定回路と、
    前記ガス欠判定回路がガス欠を判定した後に、前記発電機の回転数制御を所定時間の間実行した後に停止させ、その後の前記エンジンの回転数が閾値より高い状態が第1判定時間を越えて検出されるとガス欠復帰と判定するガス欠復帰判定回路と
    を備えたことを特徴とするハイブリッド車両の車両制御装置。
JP2019558851A 2017-12-15 2017-12-15 ハイブリッド車両のガス欠復帰判定方法とその車両制御装置 Active JP6915697B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045181 WO2019116561A1 (ja) 2017-12-15 2017-12-15 ハイブリット車両のガス欠復帰判定方法とその車両制御装置

Publications (2)

Publication Number Publication Date
JPWO2019116561A1 true JPWO2019116561A1 (ja) 2021-02-12
JP6915697B2 JP6915697B2 (ja) 2021-08-04

Family

ID=66820193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019558851A Active JP6915697B2 (ja) 2017-12-15 2017-12-15 ハイブリッド車両のガス欠復帰判定方法とその車両制御装置

Country Status (8)

Country Link
US (1) US11161495B2 (ja)
EP (1) EP3725611B1 (ja)
JP (1) JP6915697B2 (ja)
KR (1) KR102272621B1 (ja)
CN (1) CN111491836B (ja)
MX (1) MX2020006130A (ja)
RU (1) RU2750308C1 (ja)
WO (1) WO2019116561A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115370499B (zh) * 2022-09-29 2023-09-01 重庆长安汽车股份有限公司 一种混动汽车发动机起动控制方法、系统、电子设备及车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117012A (ja) * 1995-10-20 1997-05-02 Aqueous Res:Kk ハイブリッド型車両
JP2004084570A (ja) * 2002-08-27 2004-03-18 Nissan Motor Co Ltd 内燃機関の完爆判定装置
JP2008151077A (ja) * 2006-12-19 2008-07-03 Toyota Motor Corp 燃料噴射装置
JP2012057537A (ja) * 2010-09-08 2012-03-22 Honda Motor Co Ltd 汎用エンジンの燃料切れ判定装置
WO2014054723A1 (ja) * 2012-10-04 2014-04-10 日産自動車株式会社 始動制御装置
JP2014144672A (ja) * 2013-01-28 2014-08-14 Toyota Motor Corp ハイブリッド車の走行判定システム
JP2016210295A (ja) * 2015-05-08 2016-12-15 三菱自動車工業株式会社 ハイブリッド自動車

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008284972A (ja) 2007-05-16 2008-11-27 Toyota Motor Corp 自動車およびその制御方法
CN101705865A (zh) * 2009-10-09 2010-05-12 义乌市发电设备有限公司 汽油和燃气两用燃料发电机组
US8770172B2 (en) * 2010-09-08 2014-07-08 Honda Motor Co., Ltd. Fuel shortage detecting apparatus for general-purpose engine
JP5756002B2 (ja) * 2011-12-09 2015-07-29 ジヤトコ株式会社 車両制御装置および車両の制御方法
JP5221786B1 (ja) * 2012-04-02 2013-06-26 三菱電機株式会社 燃料噴射制御装置及びこれを備える自動車
JP6590784B2 (ja) * 2016-11-29 2019-10-16 本田技研工業株式会社 内燃機関の始動制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117012A (ja) * 1995-10-20 1997-05-02 Aqueous Res:Kk ハイブリッド型車両
JP2004084570A (ja) * 2002-08-27 2004-03-18 Nissan Motor Co Ltd 内燃機関の完爆判定装置
JP2008151077A (ja) * 2006-12-19 2008-07-03 Toyota Motor Corp 燃料噴射装置
JP2012057537A (ja) * 2010-09-08 2012-03-22 Honda Motor Co Ltd 汎用エンジンの燃料切れ判定装置
WO2014054723A1 (ja) * 2012-10-04 2014-04-10 日産自動車株式会社 始動制御装置
JP2014144672A (ja) * 2013-01-28 2014-08-14 Toyota Motor Corp ハイブリッド車の走行判定システム
JP2016210295A (ja) * 2015-05-08 2016-12-15 三菱自動車工業株式会社 ハイブリッド自動車

Also Published As

Publication number Publication date
EP3725611A4 (en) 2020-12-09
JP6915697B2 (ja) 2021-08-04
KR20200087235A (ko) 2020-07-20
KR102272621B1 (ko) 2021-07-05
BR112020011791A2 (pt) 2020-11-17
EP3725611A1 (en) 2020-10-21
CN111491836A (zh) 2020-08-04
WO2019116561A1 (ja) 2019-06-20
US20200398812A1 (en) 2020-12-24
EP3725611B1 (en) 2022-08-24
MX2020006130A (es) 2020-08-17
US11161495B2 (en) 2021-11-02
RU2750308C1 (ru) 2021-06-25
CN111491836B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US20150211469A1 (en) Method and apparatus to evaluate a starter motor for an internal combustion engine
CN102667414B (zh) 旋转传感器的异常判断装置
JPS58172444A (ja) 機関の冷却水温度推定方法
WO2006032976A1 (en) Hybrid vehicle
JP6356591B2 (ja) バッテリ監視装置
JP6915697B2 (ja) ハイブリッド車両のガス欠復帰判定方法とその車両制御装置
BRPI0416562B1 (pt) "aparelho e método para o controle de um motor decombustão interna".
JPWO2013108813A1 (ja) 内燃エンジン始動制御装置及び制御方法
US9828964B1 (en) Calibration of engine auto-stop delay times
JP6350318B2 (ja) 電子制御装置
CN104421090B (zh) 控制用于起动机动车辆发动机的起动机马达啮合的方法
JP2016078517A (ja) 車両の制御装置
JP6367497B2 (ja) 車両制御装置、車両制御システムおよび車両制御装置の制御方法
JP2006274937A (ja) 内燃機関異常判定装置および内燃機関異常判定方法
JP2015001200A (ja) 車両用電子制御装置および車両用電子制御方法
JP2010096096A (ja) 内燃機関装置およびこれを備える車両並びに内燃機関装置の始動制御方法
JP6949420B2 (ja) 車両用制御装置
JP2012002039A (ja) 車両の開閉体制御装置
JP2003343333A (ja) エンジンの始動制御装置
JP2019038463A (ja) ハイブリッド自動車
JP2010096095A (ja) 内燃機関装置およびこれを備える車両並びに内燃機関装置の始動制御方法
JP2011017276A (ja) 車両の制御装置および制御方法
JP6579071B2 (ja) 電子制御装置
JP2007209111A (ja) 車両用発電機の制御装置
JP6278390B2 (ja) エンジン制御装置

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R151 Written notification of patent or utility model registration

Ref document number: 6915697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151