JPWO2019054278A1 - 渦電流式ダンパ - Google Patents

渦電流式ダンパ Download PDF

Info

Publication number
JPWO2019054278A1
JPWO2019054278A1 JP2019542018A JP2019542018A JPWO2019054278A1 JP WO2019054278 A1 JPWO2019054278 A1 JP WO2019054278A1 JP 2019542018 A JP2019542018 A JP 2019542018A JP 2019542018 A JP2019542018 A JP 2019542018A JP WO2019054278 A1 JPWO2019054278 A1 JP WO2019054278A1
Authority
JP
Japan
Prior art keywords
conductive member
permanent magnet
eddy current
magnet
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019542018A
Other languages
English (en)
Other versions
JP6863465B2 (ja
Inventor
野口 泰隆
泰隆 野口
今西 憲治
憲治 今西
亮介 増井
亮介 増井
裕 野上
裕 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2019054278A1 publication Critical patent/JPWO2019054278A1/ja
Application granted granted Critical
Publication of JP6863465B2 publication Critical patent/JP6863465B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • F16F15/035Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means by use of eddy or induced-current damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0215Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/06Magnetic or electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0208Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/001Specific functional characteristics in numerical form or in the form of equations

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Transmission Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Dampers (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

渦電流式ダンパ(1)は、軸方向に移動可能なねじ軸(7)と、複数の第1永久磁石(3)と、複数の第2永久磁石(4)と、円筒形状の磁石保持部材(2)と、導電性を有する円筒形状の導電部材(5)と、ねじ軸(7)と噛み合うボールナット(6)と、導電部材(5)の第1永久磁石(3)及び第2永久磁石(4)と対向する面を覆う伝熱層(12)と、を備える。磁石保持部材(2)は、第1永久磁石(3)及び第2永久磁石(4)を保持する。導電部材(5)は、第1永久磁石(3)及び第2永久磁石(4)と隙間を空けて対向する。ボールナット(6)は、磁石保持部材(2)及び導電部材(5)の内部に配置されて磁石保持部材(2)又は導電部材(5)に固定される。伝熱層(12)は、導電部材(5)よりも高い熱伝導率を有する。

Description

本発明は、渦電流式ダンパに関する。
地震等による振動から建築物を保護するために、建築物に制振装置が取り付けられる。制振装置は建築物に与えられた運動エネルギを他のエネルギ(例:熱エネルギ)に変換する。これにより、建築物の大きな揺れが抑制される。制振装置はたとえば、ダンパである。ダンパの種類はたとえば、オイル式、せん断抵抗式がある。一般に、建築物にはオイル式やせん断抵抗式ダンパが使用されることが多い。オイル式ダンパは、シリンダ内の非圧縮性流体を利用して振動を減衰させる。せん断抵抗式ダンパは、粘性流体のせん断抵抗を利用して振動を減衰させる。
しかしながら、特にせん断抵抗式ダンパで用いられる粘性流体の粘度は、粘性流体の温度に依存する。すなわち、せん断抵抗式ダンパの減衰力は、温度に依存する。したがって、せん断抵抗式ダンパを建築物に使用する際には、使用環境を考慮して適切な粘性流体を選択する必要がある。また、オイル式やせん断抵抗式などの流体を用いているダンパは、温度上昇等によって流体の圧力が上昇し、シリンダのシール材などの機械的な要素が破損する恐れがある。減衰力の温度依存が極めて小さいダンパとして、渦電流式ダンパがある。
従来の渦電流式ダンパはたとえば、特公平5−86496号公報(特許文献1)及び特開2000−320607号公報(特許文献2)に開示される。
特許文献1の渦電流式ダンパは、主筒に取り付けられた複数の永久磁石と、ねじ軸に接続されたヒステリシス材と、ねじ軸と噛み合うボールナットと、ボールナットに接続された副筒と、を備える。複数の永久磁石は、磁極の配置が交互に異なる。ヒステリシス材は導電性を有する。以下では、ヒステリシス材を導電部材ともいう。ヒステリシス材は、複数の永久磁石と対向し、相対回転可能である。この渦電流式ダンパに運動エネルギが与えられると、副筒及びボールナットが軸方向に移動し、ボールねじの作用によってヒステリシス材が回転する。これにより、ヒステリシス損により運動エネルギが消費される。また、ヒステリシス材に渦電流が発生するため、渦電流損により運動エネルギが消費される、と特許文献1には記載されている。
特許文献2の渦電流式ダンパは、ねじ軸とかみ合う案内ナットと、案内ナットに取り付けられた導電体のドラムと、ドラムの内周面側に設けられたケーシングと、ケーシングの外周面に取り付けられ、ドラムの内周面と一定の隙間を空けて対向する複数の永久磁石とを含む。ねじ軸の進退に伴って案内ナット及びドラムが回転しても、ドラム内周面と永久磁石とは非接触であるため摺動しない。これにより、オイル式ダンパに比べてメンテナンス回数が低減される、と特許文献2には記載されている。
特公平5−86496号公報 特開2000−320607号公報
特許文献1の渦電流式ダンパでは、複数の永久磁石が円周方向に沿って配列される。このダンパに運動エネルギが与えられると、永久磁石のそれぞれによって生じる磁界の中で導電部材が回転する。その際、導電部材の表面のうち、永久磁石のそれぞれと対向する領域にそれぞれ渦電流が発生する。これにより、回転する導電部材に制動力が与えられ、減衰力が発生する。さらに、渦電流が発生した領域のそれぞれが発熱する。そのため、導電部材には、永久磁石の数の発熱領域が形成される。
仮に導電部材が一方向に高速で回転する場合、発熱領域が高速で周方向に移動する。そのため、周方向の発熱が均一化され、周方向に温度差は生じない。
しかしながら、制振装置として用いられる渦電流式ダンパでは、振動を減衰するために、導電部材が正回転と逆回転を繰り返す。つまり、導電部材の回転方向が繰り返し切り替わる。回転方向の切り替わり点では導電部材の回転速度がゼロになる。これにより、導電部材が極低速で回転するときがある。
導電部材が極低速で回転する場合、導電部材には、永久磁石の数の発熱領域が形成されるのみならず、発熱領域同士の間に低温領域が形成される。発熱領域の熱膨張は、熱膨張が小さい低温領域によって拘束される。そのため、発熱領域にひずみが生じ、その結果として発熱領域に熱応力が発生する。極低速での回転が繰り返されると、熱応力が繰り返し負荷され、導電部材が疲労損傷する。
特に、導電部材の回転方向が繰り返し切り替わる渦電流式ダンパでは、その構成上、必然的に導電部材の周方向の回転速度が変化するため、導電部材の周方向の発熱が均一化されにくい。
また、特許文献2の渦電流式ダンパでは、案内ナットがドラムの外部に設けられているため案内ナットとボールねじとの間にダストが侵入しやすい。また、特許文献2の渦電流式ダンパでは、案内ナットがドラムの外部に設けられ、案内ナットのフランジ部がドラムに固定され、案内ナットの円筒部がドラムとは反対側に向かって延びている。そのため、案内ナットの円筒部のドラムとは反対側の端と建物に固定された取付具との間の距離(ボールねじのストローク距離)を長く確保する必要があり、渦電流式ダンパが大型化しやすい。さらに、特許文献2にはドラム内周面と永久磁石との隙間を管理する技術については特段言及されていない。
本発明の目的は、渦電流が生じる導電部材の疲労損傷を抑制できる渦電流式ダンパを提供することである。本発明のもう一つの目的は、小型化が可能な渦電流式ダンパを提供することである。
本実施形態の渦電流式ダンパは、軸方向に移動可能なねじ軸と、ねじ軸の周りに円周方向に沿って配列された複数の第1永久磁石と、第1永久磁石同士の間に第1永久磁石と隙間を空けて配置され、第1永久磁石と磁極の配置が反転した複数の第2永久磁石と、第1永久磁石及び第2永久磁石を保持する円筒形状の磁石保持部材と、導電性を有し、第1永久磁石及び第2永久磁石と隙間を空けて対向する円筒形状の導電部材と、磁石保持部材及び導電部材の内部に配置されて磁石保持部材又は導電部材に固定され、ねじ軸と噛み合うボールナットと、導電部材の第1永久磁石及び第2永久磁石と対向する面を覆い、導電部材よりも高い熱伝導率を有する伝熱層と、を備える。
本実施形態の渦電流式ダンパによれば、渦電流が生じる導電部材の疲労損傷を抑制できる。また、本実施形態の渦電流式ダンパによれば、小型化が可能である。
図1は、第1実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。 図2は、図1の一部拡大図である。 図3は、第1実施形態の渦電流式ダンパの軸方向に垂直な面での断面図である。 図4は、図3の一部拡大図である。 図5は、第1実施形態の第1永久磁石及び第2永久磁石を示す斜視図である。 図6は、第1実施形態の渦電流式ダンパの磁気回路を示す模式図である。 図7は、磁極の配置が円周方向である第1永久磁石及び第2永久磁石を示す斜視図である。 図8は、図7の渦電流式ダンパの磁気回路を示す模式図である。 図9は、軸方向に複数個配置された第1永久磁石及び第2永久磁石を示す斜視図である。 図10は、第2実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。 図11は、第2実施形態の渦電流式ダンパの軸方向に垂直な面での断面図である。 図12は、第3実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。 図13は、図12の一部拡大図である。 図14は、第4実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。
本実施形態の渦電流式ダンパは、軸方向に移動可能なねじ軸と、複数の第1永久磁石と、複数の第2永久磁石と、円筒形状の磁石保持部材と、導電性を有する円筒形状の導電部材と、ねじ軸と噛み合うボールナットと、導電部材の第1永久磁石及び第2永久磁石と対向する面を覆う伝熱層と、を備える。第1永久磁石は、ねじ軸の周りに円周方向に沿って配列される。第2永久磁石は、第1永久磁石同士の間に第1永久磁石と隙間を空けて配置され、第1永久磁石と磁極の配置が反転する。磁石保持部材は、第1永久磁石及び第2永久磁石を保持する。導電部材は、第1永久磁石及び第2永久磁石と隙間を空けて対向する。ボールナットは、磁石保持部材及び導電部材の内部に配置されて磁石保持部材又は導電部材に固定される。伝熱層は、導電部材よりも高い熱伝導率を有する。
本実施形態の渦電流式ダンパによれば、ダンパに運動エネルギが与えられると、ねじ軸が軸方向に移動する。ねじ軸の軸方向の移動により、ボールナットが回転する。これにより、第1及び第2永久磁石のそれぞれによって生じる磁界の中で、導電部材が第1及び第2の永久磁石に対して相対回転する。その際、導電部材の表面のうち、第1及び第2永久磁石のそれぞれと対向する領域にそれぞれ渦電流が発生する。これにより、回転する導電部材に制動力が与えられ、減衰力が発生する。さらに、渦電流が発生した領域のそれぞれが発熱する。
ここで、導電部材の第1及び第2永久磁石と対向する面が、導電部材よりも高い熱伝導率を有する伝熱層で覆われている。そのため、導電部材が第1及び第2永久磁石に対して極低速で相対回転する場合、導電部材に生じた発熱領域の熱は、速やかに伝熱層に伝わり、さらに伝熱層の周方向に分散する。これにより、導電部材の周方向で温度差が生じるのを低減できる。したがって、渦電流が生じる導電部材の疲労損傷を抑制できる。
また、本実施形態の渦電流式ダンパによれば、ボールナットが導電部材及び磁石保持部材の内部に配置される。振動等により渦電流式ダンパに運動エネルギが与えられ、ねじ軸が軸方向に移動しても、ボールナットは軸方向に移動しない。したがって、渦電流式ダンパにボールナットの可動域を設ける必要がない。そのため、磁石保持部材及び導電部材等の部品を小さくできる。これにより、渦電流式ダンパの小型化を実現できる。しかも、渦電流式ダンパの軽量化を実現できる。さらに、各部品が簡素な構成であるため、渦電流式ダンパの組立が容易となる。さらに、渦電流式ダンパの部品コスト及び製造コストが安価となる。
上記した本実施形態の渦電流式ダンパは、下記の(1)〜(4)のいずれかの構成を採用することができる。
(1)磁石保持部材が導電部材の内側に配置される。第1永久磁石及び第2永久磁石が磁石保持部材の外周面に取り付けられる。ボールナットが磁石保持部材に固定される。
この場合、導電部材の内周面が、第1及び第2永久磁石と隙間を空けて対向する。導電部材の内周面に伝熱層が形成される。ねじ軸の軸方向の移動により、ボールナット及び磁石保持部材が回転する。一方、導電部材は回転しない。これにより、第1及び第2永久磁石から導電部材を通過する磁束が変化し、導電部材の内周面に渦電流が発生する。この渦電流によって反磁界が発生し、回転する磁石保持部材に反力(制動力)が与えられる。その結果、ねじ軸が減衰力を受ける。
また、この場合、導電部材が磁石保持部材の外側に配置されて外気と接する。これにより、導電部材は外気によって冷却される。その結果、導電部材の温度上昇を抑制できる。
(2)導電部材が磁石保持部材の内側に配置される。第1永久磁石及び第2永久磁石が磁石保持部材の内周面に取り付けられる。ボールナットが導電部材に固定される。
この場合、導電部材の外周面が、第1及び第2永久磁石と隙間を空けて対向する。導電部材の外周面に伝熱層が形成される。ねじ軸の軸方向の移動により、ボールナット及び導電部材が回転する。一方、磁石保持部材は回転しない。これにより、第1及び第2永久磁石から導電部材を通過する磁束が変化し、導電部材の外周面に渦電流が発生する。この渦電流によって反磁界が発生し、回転する導電部材に反力が与えられる。その結果、ねじ軸が減衰力を受ける。
また、この場合、磁石保持部材が導電部材の外側に配置されて外気と接する。これにより、磁石保持部材は外気によって冷却される。その結果、第1及び第2永久磁石の温度上昇を抑制できる。
(3)磁石保持部材が導電部材の内側に配置される。第1永久磁石及び第2永久磁石が磁石保持部材の外周面に取り付けられる。ボールナットが導電部材に固定される。
この場合、導電部材の内周面が、第1及び第2永久磁石と隙間を空けて対向する。導電部材の内周面に伝熱層が形成される。ねじ軸の軸方向の移動により、ボールナット及び導電部材が回転する。一方、磁石保持部材は回転しない。これにより、第1及び第2永久磁石から導電部材を通過する磁束が変化し、導電部材の内周面に渦電流が発生する。この渦電流によって反磁界が発生し、回転する導電部材に反力が与えられる。その結果、ねじ軸が減衰力を受ける。
また、この場合、導電部材が磁石保持部材の外側に配置されて外気と接する。これにより、回転する導電部材は外気によって効率良く冷却される。その結果、導電部材の温度上昇を抑制できる。
(4)導電部材が磁石保持部材の内側に配置される。第1永久磁石及び第2永久磁石が磁石保持部材の内周面に取り付けられる。ボールナットが磁石保持部材に固定される。
この場合、導電部材の外周面が、第1及び第2永久磁石と隙間を空けて対向する。導電部材の外周面に伝熱層が形成される。ねじ軸の軸方向の移動により、ボールナット及び磁石保持部材が回転する。一方、導電部材は回転しない。これにより、第1及び第2永久磁石から導電部材を通過する磁束が変化し、導電部材の外周面に渦電流が発生する。この渦電流によって反磁界が発生し、回転する磁石保持部材に反力が与えられる。その結果、ねじ軸が減衰力を受ける。
また、この場合、磁石保持部材が導電部材の外側に配置されて外気と接する。これにより、回転する磁石保持部材は外気によって効率良く冷却される。その結果、第1及び第2永久磁石の温度上昇を抑制できる。
本実施形態の渦電流式ダンパにおいて、伝熱層が導電部材よりも高い熱伝導率を有する限り、伝熱層の材質は限定されない。典型的な例として、伝熱層は金属層である。導電部材に金属層を形成する手法としては、めっき、肉盛溶接、ろう付け、溶射、及び熱拡散接合などが挙げられる。これらの手法のうちでめっきが好ましい。均一な厚さの金属層(伝熱層)を簡便に形成できるからである。
本実施形態の渦電流式ダンパでは、伝熱層が銅又は銅合金からなることが好ましい。銅及び銅合金の熱伝導率は極めて高いからである。
伝熱層が銅又は銅合金からなる場合、伝熱層の厚さが0.6mm以上であることが好ましい。銅又は銅合金の伝熱層が0.6mm以上であれば、導電部材の発熱領域から伝熱層に伝わった熱が、伝熱層の周方向に有効に分散する。好ましくは、この場合の伝熱層の厚さは0.8mm以上である。
本実施形態の渦電流式ダンパでは、伝熱層がアルミニウム又はアルミニウム合金からなってもよい。アルミニウム及びアルミニウム合金の熱伝導率は、銅及び銅合金の熱伝導率ほど高くはないが、極めて高いからである。
伝熱層がアルミニウム又はアルミニウム合金からなる場合、伝熱層の厚さが1.0mm以上であることが好ましい。アルミニウム又はアルミニウム合金の伝熱層が1.0mm以上であれば、導電部材の発熱領域から伝熱層に伝わった熱が、伝熱層の周方向に有効に分散する。好ましくは、この場合の伝熱層の厚さは1.3mm以上である。
伝熱層が銅、銅合金、アルミニウム又はアルミニウム合金からなる場合、伝熱層の厚さが2.0mm以下であることが好ましい。これは以下の理由による。銅、銅合金、アルミニウム及びアルミニウム合金は非磁性材である。そのような材質の伝熱層が厚すぎると、第1及び第2永久磁石と導電部材との間の距離が大きくなり、制動力が低下する。したがって、伝熱層が銅、銅合金、アルミニウム又はアルミニウム合金からなる場合、制動力を確保する観点から、伝熱層の厚さが2.0mm以下であることが好ましい。
本実施形態の渦電流式ダンパでは、第1永久磁石は磁石保持部材の軸方向に沿って複数個配置されるとともに、第2永久磁石は磁石保持部材の軸方向に沿って複数個配置されてもよい。
この場合、1つの第1永久磁石及び1つの第2永久磁石それぞれのサイズが小さくても、複数の第1及び第2永久磁石の総サイズは大きい。したがって、渦電流式ダンパの減衰力を高くしつつ、第1及び第2永久磁石のコストは安価で済む。また、第1及び第2永久磁石の磁石保持部材への取り付けも容易である。
以下、図面を参照して、本実施形態の渦電流式ダンパについて説明する。
[第1実施形態]
図1は、第1実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。図2は、図1の一部拡大図である。図1及び図2を参照して、渦電流式ダンパ1は、磁石保持部材2と、複数の第1永久磁石3と、複数の第2永久磁石4と、導電部材5と、ボールナット6と、ねじ軸7と、伝熱層12(図2参照)とを備える。
[磁石保持部材]
磁石保持部材2は、主筒2Aと、先端側副筒2Bと、根元側副筒2Cとを含む。
主筒2Aは、ねじ軸7を中心軸とする円筒形状である。主筒2Aのねじ軸7の軸方向の長さは、第1永久磁石3及び第2永久磁石4のねじ軸7の軸方向の長さよりも長い。
先端側副筒2Bは、主筒2Aの先端側(ねじ軸7の自由端側又は取付具8a側)の端から延びる。先端側副筒2Bは、ねじ軸7を中心軸とする円筒形状である。先端側副筒2Bの外径は、主筒2Aの外径よりも小さい。
根元側副筒2Cは、主筒2Aの根元側(取付具8b側)に、ボールナットのフランジ部6Aを挟んで設けられる。根元側副筒2Cは、フランジ固定部21Cと、円筒状支持部22Cとを含む。フランジ固定部21Cは、ねじ軸7を中心軸とする円筒形状であり、ボールナットのフランジ部6Aに固定される。円筒状支持部22Cは、フランジ固定部21Cの根元側(取付具8b側)の端から延び、円筒形状である。円筒状支持部の外径は、フランジ固定部21Cの外径よりも小さい。
このような構成の磁石保持部材2は、ボールナット6の円筒部6B及びねじ軸7の一部を内部に収容可能である。磁石保持部材2の材質は、特に限定されない。しかしながら、磁石保持部材2の材質は、透磁率の高い鋼等が好ましい。磁石保持部材2の材質はたとえば、炭素鋼、鋳鉄等の強磁性材である。この場合、磁石保持部材2は、ヨークとしての役割を果たす。すなわち、第1永久磁石3及び第2永久磁石4からの磁束が外部に漏れにくくなり、渦電流式ダンパ1の減衰力が高まる。後述するように、磁石保持部材2は導電部材5に対して回転可能である。
[第1永久磁石及び第2永久磁石]
図3は、第1実施形態の渦電流式ダンパの軸方向に垂直な面での断面図である。図4は、図3の一部拡大図である。図5は、第1実施形態の第1永久磁石及び第2永久磁石を示す斜視図である。図3〜図5ではねじ軸等の一部の構成を省略している。図3〜図5を参照して、複数の第1永久磁石3及び複数の第2永久磁石4は、磁石保持部材2(主筒2A)の外周面に取り付けられる。第1永久磁石3は、ねじ軸の周りに(すなわち磁石保持部材2の円周方向に沿って)配列される。同様に、第2永久磁石4は、ねじ軸の周りに(すなわち磁石保持部材2の円周方向に沿って)配列される。第2永久磁石4は、第1永久磁石3同士の間に隙間を空けて配置される。つまり、磁石保持部材2の円周方向に沿って第1永久磁石3と第2永久磁石4は、交互に隙間を空けて配置される。
第1永久磁石3及び第2永久磁石4の磁極は、磁石保持部材2の径方向に配置される。第2永久磁石4の磁極の配置は第1永久磁石3の磁極の配置と反転している。たとえば図4及び図5を参照して、磁石保持部材2の径方向において、第1永久磁石3のN極は外側に配置され、そのS極は内側に配置される。そのため、第1永久磁石3のS極が磁石保持部材2と接する。一方、磁石保持部材2の径方向において、第2永久磁石4のN極は内側に配置され、そのS極は外側に配置される。そのため、第2永久磁石4のN極が磁石保持部材2と接する。
第2永久磁石4のサイズ及び特質は第1永久磁石3のサイズ及び特質と同じであるのが好ましい。第1永久磁石3及び第2永久磁石4はたとえば、接着剤により磁石保持部材2に固定される。なお、接着剤に限らず、第1永久磁石3及び第2永久磁石4はねじ等で固定されてもよいことはもちろんである。
[導電部材]
図1及び図2を参照して、導電部材5は、中央円筒部5Aと、先端側円錐部5Bと、先端側円筒部5Cと、根元側円錐部5Dと、根元側円筒部5Eとを含む。
中央円筒部5Aは、ねじ軸7を中心軸とする円筒形状である。中央円筒部5Aの内周面は、第1永久磁石3及び第2永久磁石4と隙間を空けて対向する。中央円筒部5Aの内周面と第1永久磁石3(又は第2永久磁石4)との隙間の距離は、ねじ軸7の軸方向に沿って一定である。中央円筒部5Aのねじ軸7の軸方向の長さは、第1永久磁石3及び第2永久磁石4のねじ軸7の軸方向の長さよりも長い。
先端側円錐部5Bは、ねじ軸7を中心軸とする円錐形状である。先端側円錐部5Bは、中央円筒部5Aの先端側(ねじ軸7の自由端側又は取付具8a側)の端から延び、先端側(ねじ軸7の自由端側又は取付具8a側)に向かうにつれ外径及び内径が小さくなる。
先端側円筒部5Cは、ねじ軸7を中心軸とする円筒形状である。先端側円筒部5Cは、先端側円錐部5Bの先端側(ねじ軸7の自由端側又は取付具8a側)の端から延びる。先端側円筒部5Cの先端側(ねじ軸7の自由端側又は取付具8a側)の端は、取付具8aに固定される。
根元側円錐部5Dは、ねじ軸7を中心軸とする円錐形状である。根元側円錐部5Dは、中央円筒部5Aの根元側(取付具8b側)の端から延び、根元側(取付具8b側)に向かうにつれ外径及び内径が小さくなる。
根元側円筒部5Eは、ねじ軸7を中心軸とする円筒形状である。根元側円筒部5Eは、根元側円錐部5Dの根元側(取付具8b側)の端から延びる。根元側円筒部5Eの根元側(取付具8b側)の端は、自由端となっている。
このような構成の導電部材5は、磁石保持部材2、第1永久磁石3、第2永久磁石4、ボールナット6及びねじ軸7の一部を収容可能である。つまり、磁石保持部材2が導電部材5の内側に同心状に配置される。後述するように、導電部材5の内周面(中央円筒部5Aの内周面)に渦電流を発生させるため、導電部材5は磁石保持部材2と相対的に回転する。そのため、導電部材5と第1永久磁石3及び第2永久磁石4との間には、隙間が設けられる。導電部材5と一体の取付具8aは、建物支持面又は建物内に固定される。そのため、導電部材5はねじ軸7周りに回転しない。
導電部材5は、導電性を有する。導電部材5の材質はたとえば、炭素鋼、鋳鉄等の強磁性材である。
導電部材5は磁石保持部材2を回転可能に支持する。磁石保持部材2の支持はたとえば、次のような構成とするのが好ましい。
図1を参照して、渦電流式ダンパ1はさらに、先端側軸受9Aと、根元側軸受9Bとを含む。先端側軸受9Aは、第1永久磁石3及び第2永久磁石4よりもねじ軸7の先端側(ねじ軸7の自由端側又は取付具8a側)において、導電部材5(先端側円筒部5C)の内周面に取り付けられ、磁石保持部材2(先端側副筒2B)の外周面を支持する。また、根元側軸受9Bは、第1永久磁石3及び第2永久磁石4よりもねじ軸7の根元側(取付具8b側)において、導電部材5(根元側円筒部5E)の内周面に取り付けられ、磁石保持部材2(円筒状支持部22C)の外周面を支持する。
このような構成により、ねじ軸7の軸方向において第1永久磁石3及び第2永久磁石4の両側で、磁石保持部材2が支持される。そのため、磁石保持部材2が回転しても、第1永久磁石3(第2永久磁石4)と導電部材5との隙間が一定の距離に保たれやすい。隙間が一定の距離に保たれれば、渦電流による制動力が安定して得られる。また、隙間が一定の距離に保たれれば、第1永久磁石3及び第2永久磁石4が導電部材5と接触する可能性が低いため、隙間をより小さくすることができる。そうすると、後述するように導電部材5を通過する第1永久磁石3及び第2永久磁石4からの磁束量が増加し、制動力をより増大させることができ、又は永久磁石の数を少なくしても所望の制動力を発揮することができる。
磁石保持部材2の軸方向において、磁石保持部材2と導電部材5との間には、スラスト軸受10が設けられる。なお、先端側軸受9A、根元側軸受9B及びスラスト軸受10の種類は、特に限定されることなく、ボール式、ローラー式、滑り式などでもよいことはもちろんである。
なお、中央円筒部5A、先端側円錐部5B、先端側円筒部5C、根元側円錐部5D及び根元側円筒部5Eはそれぞれ、別部材であり、ボルト等によって連結され組み立てられる。
図2及び図4を参照し、導電部材5の内周面は、複数の第1永久磁石3及び第2永久磁石4と対向する面である。導電部材5の内周面に伝熱層12が形成される。本実施形態の伝熱層12はめっきによって形成された銅又は銅合金の金属層である。伝熱層12の熱伝導率は導電部材5の熱伝導率よりも高い。
[ボールナット]
ボールナット6は、フランジ部6Aと、円筒部6Bとを含む。フランジ部6Aは円筒形状である。フランジ部6Aは、磁石保持部材の主筒2Aの根元側(取付具8b側)の端と、根元側副筒2Cのフランジ固定部21Cの先端側(取付具8a側)の端との間に設けられ、両者に固定される。円筒部6Bは、フランジ部6Aよりもねじ軸7の先端側に設けられ、フランジ部6Aの先端側の面から延びる。
このような構成のボールナット6は、磁石保持部材2及び導電部材5の内部に配置される。ボールナット6は、磁石保持部材2に固定されるため、ボールナット6が回転すれば、磁石保持部材2も回転する。ボールナット6の種類は、特に限定されない。ボールナット6は、周知のボールナットを用いてよい。ボールナット6の内周面には、ねじ部が形成されている。なお、図1では、ボールナット6の円筒部6Bの一部の描画を省略し、ねじ軸7が見えるようにしてある。
[ねじ軸]
ねじ軸7は、ボールナット6を貫通し、ボールを介してボールナット6と噛み合う。ねじ軸7の外周面には、ボールナット6のねじ部に対応するねじ部が形成されている。ねじ軸7及びボールナット6は、ボールねじを構成する。ボールねじは、ねじ軸7の軸方向の移動をボールナット6の回転運動に変換する。ねじ軸7に取付具8bが接続される。ねじ軸7と一体の取付具8bは、建物支持面又は建物内に固定される。渦電流式ダンパ1が、たとえば建物内と建物支持面との間の免震層に設置される事例の場合、ねじ軸7と一体の取付具8bが建物内に固定され、導電部材5と一体の取付具8aは建物支持面に固定される。渦電流式ダンパ1が、たとえば建物内の任意の層間に設置される事例の場合は、ねじ軸7と一体の取付具8bが任意の層間の上部梁側に固定され、導電部材5と一体の取付具8aは任意の層間の下部梁側に固定される。そのため、ねじ軸7は軸周りに回転しない。
ねじ軸7と一体の取付具8b及び導電部材5と一体の取付具8aの固定は、上述の説明の逆であってもよい。すなわち、ねじ軸7と一体の取付具8bが建物支持面に固定され、導電部材5と一体の取付具8aが建物内に固定されてもよい。
ねじ軸7は、磁石保持部材2及び導電部材5の内部に軸方向に沿って進退移動可能である。したがって、振動等により、渦電流式ダンパ1に運動エネルギが与えられると、ねじ軸7が軸方向に移動する。ねじ軸7が軸方向に移動すれば、ボールねじの作用によってボールナット6がねじ軸7周りに回転する。ボールナット6の回転に伴い、磁石保持部材2が回転する。これにより、磁石保持部材2と一体の第1永久磁石3及び第2永久磁石4が導電部材5に対して相対回転するため、導電部材5には渦電流が発生する。その結果、渦電流式ダンパ1に減衰力が生じ、振動を減衰させる。
本実施形態の渦電流式ダンパ1によれば、導電部材5の第1永久磁石3及び第2永久磁石4と対向する内周面が、導電部材5よりも高い熱伝導率を有する伝熱層12で覆われている。そのため、導電部材5が第1永久磁石3及び第2永久磁石4に対して極低速で相対回転する場合、導電部材5に生じた発熱領域の熱は、速やかに伝熱層12に伝わり、さらに伝熱層12の周方向に分散する。これにより、導電部材5の周方向で温度差が生じるのを低減できる。したがって、渦電流が生じる導電部材5の疲労損傷を抑制できる。
また、本実施形態の渦電流式ダンパ1によれば、ボールナット6が導電部材5及び磁石保持部材2の内部に配置される。振動等により渦電流式ダンパ1に運動エネルギが与えられ、取付具8bと一体のねじ軸7が軸方向に移動しても、ボールナット6は軸方向に移動しない。したがって、渦電流式ダンパ1にボールナット6の可動域を設ける必要がない。そのため、磁石保持部材2及び導電部材5等の部品を小さくできる。これにより、渦電流式ダンパ1を小型にすることができ、渦電流式ダンパ1の軽量化を実現できる。
また、ボールナット6が導電部材5及び磁石保持部材2の内部に配置されることで、ボールナット6とねじ軸7との間にダストが侵入しにくくなり、長期間にわたりねじ軸7が円滑に動くことができる。また、ボールナット6が導電部材5及び磁石保持部材2の内部に配置されることで、取付具8bの先端側(取付具8a側)の端と導電部材5の根元側(取付具8b側)の端との距離を短くすることができ、渦電流式ダンパを小型にすることができる。また、各部品が簡素な構成であるため、渦電流式ダンパ1の組立が容易となる。また、渦電流式ダンパ1の部品コスト及び製造コストが安価となる。
また、導電部材5は内部に第1永久磁石3及び第2永久磁石4を収容する。すなわち、導電部材5のねじ軸7の軸方向の長さは、第1永久磁石3(第2永久磁石4)のねじ軸7の軸方向の長さよりも長く、導電部材5の体積が大きい。導電部材5の体積が大きくなれば、導電部材5の熱容量も大きい。そのため、渦電流が発生することによる導電部材5の温度上昇が抑制される。導電部材5の温度上昇が抑制されれば、導電部材5からの輻射熱による第1永久磁石3及び第2永久磁石4の温度上昇が抑制され、第1永久磁石3及び第2永久磁石4の温度上昇による減磁が抑制される。
続いて、渦電流の発生原理及び渦電流による減衰力の発生原理について説明する。
[渦電流による減衰力]
図6は、渦電流式ダンパの磁気回路を示す模式図である。図6を参照して、第1永久磁石3の磁極の配置は、隣接する第2永久磁石4の磁極の配置と反転している。したがって、第1永久磁石3のN極から出た磁束は、隣接する第2永久磁石4のS極に到達する。第2永久磁石のN極から出た磁束は、隣接する第1永久磁石3のS極に到達する。これにより、第1永久磁石3、第2永久磁石4、導電部材5及び磁石保持部材2の中で、磁気回路が形成される。第1永久磁石3及び第2永久磁石4と、導電部材5との間の隙間は十分に小さいため、導電部材5は磁界の中にある。
磁石保持部材2が回転すると(図6中の矢印参照)、第1永久磁石3及び第2永久磁石4は導電部材5に対して移動する。そのため、導電部材5の表面(図6では第1永久磁石3及び第2永久磁石4が対向する導電部材5の内周面)を通過する磁束が変化する。これにより導電部材5の表面(図6では導電部材5の内周面)に渦電流が発生する。渦電流が発生すると、新たな磁束(反磁界)が発生する。この新たな磁束は、磁石保持部材2(第1永久磁石3及び第2永久磁石4)と導電部材5との相対回転を妨げる。本実施形態の場合、磁石保持部材2の回転が妨げられる。磁石保持部材2の回転が妨げられれば、磁石保持部材2と一体のボールナット6の回転も妨げられる。ボールナット6の回転が妨げられれば、ねじ軸7の軸方向の移動も妨げられる。これが渦電流式ダンパ1の減衰力である。振動等による運動エネルギにより発生する渦電流は、導電部材5の温度を上昇させる。すなわち、渦電流式ダンパに与えられた運動エネルギが熱エネルギに変換され、減衰力が得られる。
本実施形態の渦電流式ダンパによれば、第1永久磁石の磁極の配置が、磁石保持部材の円周方向において第1永久磁石と隣接する第2永久磁石の磁極の配置と反転している。そのため、第1永久磁石及び第2永久磁石による磁界が磁石保持部材の円周方向に発生する。また、磁石保持部材の円周方向に第1永久磁石及び第2永久磁石を複数配列することにより、導電部材に到達する磁束の量が増える。これにより、導電部材に発生する渦電流が大きくなり、渦電流式ダンパの減衰力が高まる。
[磁極の配置]
上述の説明では、第1永久磁石及び第2永久磁石の磁極の配置は、磁石保持部材の径方向である場合について説明した。しかしながら、第1永久磁石及び第2永久磁石の磁極の配置は、これに限定されない。
図7は、磁極の配置が円周方向である第1永久磁石及び第2永久磁石を示す斜視図である。図7を参照して、第1永久磁石3及び第2永久磁石4の磁極の配置は、磁石保持部材2の円周方向に沿う。この場合であっても、第1永久磁石3の磁極の配置は、第2永久磁石4の磁極の配置と反転している。第1永久磁石3と第2永久磁石4との間には、強磁性材のポールピース11が設けられる。
図8は、図7の渦電流式ダンパの磁気回路を示す模式図である。図8を参照して、第1永久磁石3のN極から出た磁束は、ポールピース11を通って、第1永久磁石3のS極に到達する。第2永久磁石4についても同様である。これにより、第1永久磁石3、第2永久磁石4、ポールピース11及び導電部材5の中で、磁気回路が形成される。これにより、上述と同様に、渦電流式ダンパ1に減衰力が得られる。
[永久磁石の軸方向への配置]
渦電流式ダンパ1の減衰力をより大きくするには、導電部材に発生する渦電流を大きくすればよい。大きい渦電流を発生させる1つの方法は、第1永久磁石及び第2永久磁石から出る磁束の量を増やせばよい。すなわち、第1永久磁石及び第2永久磁石のサイズを大きくすればよい。しかしながら、サイズの大きい第1永久磁石及び第2永久磁石はコストが高く、磁石保持部材への取り付けも容易ではない。
図9は、軸方向に複数個配置された第1永久磁石及び第2永久磁石を示す斜視図である。図9を参照して、第1永久磁石3及び第2永久磁石4は、1つの磁石保持部材2の軸方向に複数個配置されてもよい。これにより、1つの第1永久磁石3及び1つの第2永久磁石4それぞれのサイズは小さくて済む。一方で、磁石保持部材2に取り付けられた複数の第1永久磁石3及び第2永久磁石4の総サイズは大きい。したがって、第1永久磁石3及び第2永久磁石4のコストは安価で済む。また、第1永久磁石3及び第2永久磁石4の磁石保持部材2への取り付けも容易である。
軸方向に配置された第1永久磁石3及び第2永久磁石4の、磁石保持部材2の円周方向の配置は、上述と同様である。すなわち、磁石保持部材2の円周方向に沿って第1永久磁石3と第2永久磁石4は交互に配置される。
渦電流式ダンパ1の減衰力を高める観点から、磁石保持部材2の軸方向において、第1永久磁石3は第2永久磁石4と隣接するのが好ましい。この場合、磁気回路が磁石保持部材2の円周方向だけでなく、軸方向においても生じる。したがって、導電部材5に発生する渦電流が大きくなる。その結果、渦電流式ダンパ1の減衰力が大きくなる。
しかしながら、磁石保持部材2の軸方向において、第1永久磁石3及び第2永久磁石4の配置は特に限定されない。すなわち、磁石保持部材2の軸方向において、第1永久磁石3は第1永久磁石3の隣に配置されていてもよいし、第2永久磁石4の隣に配置されていてもよい。
上述した第1実施形態では、磁石保持部材が導電部材の内側に配置されて第1永久磁石及び第2永久磁石が磁石保持部材の外周面に取り付けられ、さらに磁石保持部材が回転する場合について説明した。しかしながら、本実施形態の渦電流式ダンパは、これに限定されない。
[第2実施形態]
第2実施形態の渦電流式ダンパは、磁石保持部材が導電部材の外側に配置され、回転しない。渦電流は、内側の導電部材が回転することで発生する。なお、第2実施形態の渦電流式ダンパでは、磁石保持部材と導電部材との配置関係が第1実施形態と逆転している。しかしながら、第2実施形態の磁石保持部材の形状は第1実施形態の導電部材と同じであり、第2実施形態の導電部材の形状は第1実施形態の磁石保持部材と同じである。そのため、第2実施形態では磁石保持部材及び導電部材の詳細な形状の説明は省略する。
図10は、第2実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。図11は、第2実施形態の渦電流式ダンパの軸方向に垂直な面での断面図である。図10及び図11を参照して、磁石保持部材2は、導電部材5、ボールナット6及びねじ軸7を収容可能である。第1永久磁石3及び第2永久磁石4は、磁石保持部材2の内周面に取り付けられる。したがって、導電部材5の外周面が、第1永久磁石3及び第2永久磁石4と隙間を空けて対向する。導電部材5の外周面に伝熱層12が形成される。
図1に示す取付具8aは磁石保持部材2に接続される。そのため、磁石保持部材2はねじ軸7周りに回転しない。一方で、ボールナット6は、導電部材5に接続される。したがって、ボールナット6が回転すれば、導電部材5は回転する。このような構成の場合でも、上述したように、磁石保持部材2と一体の第1永久磁石3及び第2永久磁石4が導電部材5に対して相対回転するため、導電部材5には渦電流が発生する。その結果、渦電流式ダンパ1に減衰力が生じ、振動を減衰させることができる。
[第3実施形態]
第3実施形態の渦電流式ダンパは、磁石保持部材が導電部材の内側に配置され、回転しない。渦電流は、外側の導電部材が回転することで発生する。
図12は、第3実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。図13は、図12の一部拡大図である。図12及び図13を参照して、導電部材5は、磁石保持部材2、ボールナット6及びねじ軸7を収容可能である。第1永久磁石3及び第2永久磁石4は、磁石保持部材2の外周面に取り付けられる。したがって、導電部材5の内周面が、第1永久磁石3及び第2永久磁石4と隙間を空けて対向する。導電部材5の内周面に伝熱層12が形成される。
取付具8aは磁石保持部材2に接続される。そのため、磁石保持部材2はねじ軸7周りに回転しない。一方で、ボールナット6は、導電部材5に接続される。したがって、ボールナット6が回転すれば、導電部材5は回転する。このような構成の場合でも、上述したように、磁石保持部材2と一体の第1永久磁石3及び第2永久磁石4が導電部材5に対して相対回転するため、導電部材5には渦電流が発生する。その結果、渦電流式ダンパ1に減衰力が生じ、振動を減衰させることができる。
[第4実施形態]
第4実施形態の渦電流式ダンパは、導電部材が磁石保持部材の内側に配置され、回転しない。渦電流は、外側の磁石保持部材が回転することで発生する。
図14は、第4実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。図14を参照して、磁石保持部材2は、導電部材5、ボールナット6及びねじ軸7を収容可能である。第1永久磁石3及び第2永久磁石4は、磁石保持部材2の内周面に取り付けられる。したがって、導電部材5の外周面が、第1永久磁石3及び第2永久磁石4と隙間を空けて対向する。導電部材5の外周面に伝熱層12が形成される。
図1に示す取付具8aは導電部材5に接続される。そのため、導電部材5はねじ軸7周りに回転しない。一方で、ボールナット6は、磁石保持部材2に固定される。したがって、ボールナット6が回転すれば、磁石保持部材2は回転する。このような構成の場合でも、上述したように、磁石保持部材2と一体の第1永久磁石3及び第2永久磁石4が導電部材5に対して相対回転するため、導電部材5には渦電流が発生する。その結果、渦電流式ダンパ1に減衰力が生じ、振動を減衰させることができる。
上述したように、渦電流式ダンパが減衰力を発生すると、導電部材の温度は上昇する。第1永久磁石及び第2永久磁石は、導電部材と対向する。したがって、第1永久磁石及び第2永久磁石は、導電部材及び伝熱層からの輻射熱によって温度が上昇するかもしれない。永久磁石の温度が上昇すれば、磁力が低下するおそれがある。
第1実施形態の渦電流式ダンパでは、導電部材5が磁石保持部材2の外側に配置される。つまり、導電部材5が最も外側に配置されて外気と接する。これにより、導電部材5は外気によって冷却される。そのため、導電部材5の温度上昇を抑制できる。その結果、第1永久磁石及び第2永久磁石の温度上昇を抑制できる。
第2実施形態の渦電流式ダンパでは、磁石保持部材2が導電部材5の外側に配置される。つまり、磁石保持部材2が最も外側に配置されて外気と接する。これにより、磁石保持部材2は外気によって冷却される。そのため、磁石保持部材2を通じて第1永久磁石及び第2永久磁石を冷却できる。その結果、第1永久磁石及び第2永久磁石の温度上昇を抑制できる。
第3実施形態の渦電流式ダンパでは、導電部材5が磁石保持部材2の外側に配置される。つまり、導電部材5が最も外側に配置されて外気と接する。また、導電部材5は、ねじ軸7周りに回転する。これにより、回転する導電部材5は外気によって効率良く冷却される。そのため、導電部材5の温度上昇を抑制できる。その結果、第1永久磁石及び第2永久磁石の温度上昇を抑制できる。
第4実施形態の渦電流式ダンパでは、磁石保持部材2が導電部材5の外側に配置される。つまり、磁石保持部材2が最も外側に配置されて外気と接する。また、磁石保持部材2は、ねじ軸7周りに回転する。これにより、回転する磁石保持部材2は外気によって効率良く冷却される。そのため、磁石保持部材2を通じて第1永久磁石及び第2永久磁石を冷却できる。その結果、第1永久磁石3及び第2永久磁石4の温度上昇を抑制できる。
以上、本実施形態の渦電流式ダンパについて説明した。渦電流は導電部材5を通過する磁束の変化により発生するため、第1永久磁石3及び第2永久磁石4が導電部材5に対して相対回転すればよい。また、導電部材5が第1永久磁石3及び第2永久磁石4による磁界の中に存在する限り、導電部材と磁石保持部材との位置関係は特に限定されない。
その他、本発明は上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能であることは言うまでもない。
本発明の渦電流式ダンパは、建造物の制振装置及び免震装置に有用である。
1:渦電流式ダンパ
2:磁石保持部材
3:第1永久磁石
4:第2永久磁石
5:導電部材
6:ボールナット
7:ねじ軸
8a、8b:取付具
9:ラジアル軸受
10:スラスト軸受
11:ポールピース
12:伝熱層

Claims (6)

  1. 軸方向に移動可能なねじ軸と、
    前記ねじ軸の周りに円周方向に沿って配列された複数の第1永久磁石と、
    前記第1永久磁石同士の間に前記第1永久磁石と隙間を空けて配置され、前記第1永久磁石と磁極の配置が反転した複数の第2永久磁石と、
    前記第1永久磁石及び前記第2永久磁石を保持する円筒形状の磁石保持部材と、
    導電性を有し、前記第1永久磁石及び前記第2永久磁石と隙間を空けて対向する円筒形状の導電部材と、
    前記磁石保持部材及び前記導電部材の内部に配置されて前記磁石保持部材又は前記導電部材に固定され、前記ねじ軸と噛み合うボールナットと、
    前記導電部材の前記第1永久磁石及び前記第2永久磁石と対向する面を覆い、前記導電部材よりも高い熱伝導率を有する伝熱層と、を備える、渦電流式ダンパ。
  2. 請求項1に記載の渦電流式ダンパであって、
    前記伝熱層が銅又は銅合金からなる、渦電流式ダンパ。
  3. 請求項2に記載の渦電流式ダンパであって、
    前記伝熱層の厚さが0.6mm以上である、渦電流式ダンパ。
  4. 請求項1に記載の渦電流式ダンパであって、
    前記伝熱層がアルミニウム又はアルミニウム合金からなる、渦電流式ダンパ。
  5. 請求項4に記載の渦電流式ダンパであって、
    前記伝熱層の厚さが1.0mm以上である、渦電流式ダンパ。
  6. 請求項2から請求項5のいずれか1項に記載の渦電流式ダンパであって、
    前記伝熱層の厚さが2.0mm以下である、渦電流式ダンパ。
JP2019542018A 2017-09-13 2018-09-06 渦電流式ダンパ Active JP6863465B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017175304 2017-09-13
JP2017175304 2017-09-13
PCT/JP2018/033061 WO2019054278A1 (ja) 2017-09-13 2018-09-06 渦電流式ダンパ

Publications (2)

Publication Number Publication Date
JPWO2019054278A1 true JPWO2019054278A1 (ja) 2020-08-27
JP6863465B2 JP6863465B2 (ja) 2021-04-21

Family

ID=65723363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019542018A Active JP6863465B2 (ja) 2017-09-13 2018-09-06 渦電流式ダンパ

Country Status (7)

Country Link
US (1) US20200400211A1 (ja)
EP (1) EP3683473A4 (ja)
JP (1) JP6863465B2 (ja)
KR (1) KR102338805B1 (ja)
CN (1) CN111065840A (ja)
TW (1) TWI678483B (ja)
WO (1) WO2019054278A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021051374A1 (zh) * 2019-09-20 2021-03-25 大连理工大学 一种连梁剪切位移放大型电涡流阻尼器
JP7205675B1 (ja) * 2021-05-27 2023-01-17 日本製鉄株式会社 渦電流式ダンパ
CN115750711B (zh) * 2022-11-28 2023-05-30 东莞市科士威传动科技有限公司 高精度滚珠螺母及其制造工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104679A1 (ja) * 2002-06-06 2003-12-18 カヤバ工業株式会社 電磁緩衝器
JP2005256889A (ja) * 2004-03-10 2005-09-22 Toyota Motor Corp 電磁緩衝器
JP2008068650A (ja) * 2006-09-12 2008-03-27 Toyota Motor Corp 車両用サスペンションシステム
JP2013210048A (ja) * 2012-03-30 2013-10-10 Hitachi Automotive Systems Ltd 電磁サスペンション

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3864969D1 (de) * 1987-04-30 1991-10-24 Tokyo Buhin Kogyo Co Ltd Foucaultstrombremse.
JP3145440B2 (ja) 1991-09-27 2001-03-12 本田技研工業株式会社 塗装用仮付け冶具
JP2000320607A (ja) 1999-05-14 2000-11-24 Kumagai Gumi Co Ltd 渦電流式ダンパ
JP5151998B2 (ja) * 2009-01-09 2013-02-27 株式会社ジェイテクト 電磁緩衝器
US20150167769A1 (en) 2013-12-13 2015-06-18 Chi Hua Fitness Co., Ltd. Linear damper
PT3180542T (pt) * 2014-08-13 2019-01-11 Esm Energie Und Schwingungstechnik Mitsch Gmbh Amortecedor magnético para absorção de vibrações
EP3196505B1 (en) * 2014-09-15 2019-07-24 Zhengqing Chen Outer cup rotary axial eddy current damper
KR101671009B1 (ko) 2015-04-24 2016-11-01 한국철도기술연구원 와전류 감쇠 특성을 이용한 철도차량용 댐퍼 및 축상스프링
CN104930113B (zh) * 2015-05-18 2016-06-29 中国人民解放军海军工程大学 一种抗冲击型主被动混合隔振器
CN105508487B (zh) * 2016-01-24 2017-09-29 中国地质大学(武汉) 双阻尼与双发电复合型减震装置
CN106402228A (zh) * 2016-11-30 2017-02-15 浙江建科减震科技有限公司 一种电磁涡流旋转阻尼器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104679A1 (ja) * 2002-06-06 2003-12-18 カヤバ工業株式会社 電磁緩衝器
JP2005256889A (ja) * 2004-03-10 2005-09-22 Toyota Motor Corp 電磁緩衝器
JP2008068650A (ja) * 2006-09-12 2008-03-27 Toyota Motor Corp 車両用サスペンションシステム
JP2013210048A (ja) * 2012-03-30 2013-10-10 Hitachi Automotive Systems Ltd 電磁サスペンション

Also Published As

Publication number Publication date
WO2019054278A1 (ja) 2019-03-21
US20200400211A1 (en) 2020-12-24
CN111065840A (zh) 2020-04-24
KR102338805B1 (ko) 2021-12-13
TWI678483B (zh) 2019-12-01
EP3683473A4 (en) 2021-06-02
TW201930747A (zh) 2019-08-01
JP6863465B2 (ja) 2021-04-21
EP3683473A1 (en) 2020-07-22
KR20200052916A (ko) 2020-05-15

Similar Documents

Publication Publication Date Title
TWI674368B (zh) 渦電流式阻尼器
JP6863465B2 (ja) 渦電流式ダンパ
JP6926996B2 (ja) 渦電流式ダンパ
JPWO2016063980A1 (ja) 高速回転用磁性流体シール構造
JP6947224B2 (ja) 渦電流式ダンパ
JP6197727B2 (ja) 渦電流式減速装置
JP2019157947A (ja) マスダンパ
JP7185393B2 (ja) 渦電流式ダンパ
JP2986414B2 (ja) 誘導電流を利用した減衰装置
WO2020116344A1 (ja) 渦電流式ダンパ
JP7040350B2 (ja) 渦電流式ダンパ
JP6897525B2 (ja) 渦電流式ダンパ
JP6897523B2 (ja) 渦電流式ダンパ
JP2019078331A (ja) 渦電流式ダンパ
JP2020070825A (ja) 渦電流式ダンパ
JP7256388B2 (ja) 渦電流式ダンパ
CN117222825A (zh) 涡电流式阻尼器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R151 Written notification of patent or utility model registration

Ref document number: 6863465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151