WO2021051374A1 - 一种连梁剪切位移放大型电涡流阻尼器 - Google Patents

一种连梁剪切位移放大型电涡流阻尼器 Download PDF

Info

Publication number
WO2021051374A1
WO2021051374A1 PCT/CN2019/106889 CN2019106889W WO2021051374A1 WO 2021051374 A1 WO2021051374 A1 WO 2021051374A1 CN 2019106889 W CN2019106889 W CN 2019106889W WO 2021051374 A1 WO2021051374 A1 WO 2021051374A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel structure
eddy current
screw
copper sheet
rigid rod
Prior art date
Application number
PCT/CN2019/106889
Other languages
English (en)
French (fr)
Inventor
付兴
李宏男
李钢
张兴恒
董志骞
杜文龙
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to PCT/CN2019/106889 priority Critical patent/WO2021051374A1/zh
Priority to US16/967,695 priority patent/US11754140B2/en
Publication of WO2021051374A1 publication Critical patent/WO2021051374A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • F16F15/035Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means by use of eddy or induced-current damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/06Magnetic or electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2236/00Mode of stressing of basic spring or damper elements or devices incorporating such elements
    • F16F2236/10Shear

Definitions

  • the invention belongs to the technical field of structural vibration control, and in particular relates to a coupling beam shear displacement amplification type eddy current damper.
  • Coupling beam damper is a device that absorbs the vibration energy of earthquakes to reduce building damage, and is widely used in shear wall buildings.
  • the connecting beam is required to consume the impact energy of the external force on the building, and the damper is used to reduce the vibration response of the connecting beam, which greatly reduces the shear damage of the connecting beam under the earthquake.
  • the existing coupling beam dampers still have many shortcomings. For example, when the amplitude is small, the energy consumption efficiency is low, and the ability to consume vibration and impact energy is poor. These shortcomings greatly affect the safety of buildings and the safety of people's lives and properties. .
  • the present invention proposes a coupling beam shear displacement amplified eddy current damper based on the energy consumption of the eddy current effect.
  • the present invention addresses the problem of poor ability to consume vibration and impact energy in the prior art.
  • the present invention proposes a coupling beam shear displacement amplification type eddy current damper with high energy consumption efficiency.
  • the coupling beam shear displacement amplifying eddy current damper includes a rigid rod 1, a rotating shaft 2, a pin 3, a pin 4, a lever 5, a screw 6.
  • the housing 13 is a hollow cuboid structure with one end open;
  • the steel structure assembly 10 is a cuboid structure with a through hole in the middle, and the steel structure assembly 10 is constructed with multiple steel plates to form four permanent magnets.
  • the spatial structure of the component 9; the steel structure component 10 is inserted into the inside of the shell 13, leaving a gap between the two to allow relative movement; the steel structure component 10 and the shell 13 are respectively installed on two connecting beams ;
  • the cross section of the rigid rod 1 is rectangular.
  • the rigid rod 1 passes through the through hole of the steel structure assembly 10 and is installed on the inner wall of the housing 13.
  • the rigid rod 1 is rigidly connected to the housing 13, and the longitudinal direction of the rigid rod 1 is vertical. Direction;
  • ball holders 12 which are respectively installed on the outer surface of the inner steel plate of the steel structure assembly 10.
  • the barrel 7 is respectively installed at the end of the screw 6 through a thread pair.
  • the closed end and the open end of the threaded sleeve 7 are equipped with a plurality of balls 11, the closed end ball 11 contacts the inner surface of the steel structure assembly 10, and the open end ball 11 passes
  • the ball holder 12 is restricted around the screw 6, and the threaded sleeve 7 rotates freely between the steel structure assembly 10 and the ball holder 12; there are four copper sheets 8 in total, which are installed on the outside of the threaded sleeve 7, and the copper sheet 8 and
  • the axis of the threaded sleeve 7 is vertical;
  • the permanent magnet assembly 9 has four groups, which are installed in the space formed by the steel plate inside the steel structure assembly 10; each group of permanent magnet assembly 9 has a total of two permanent magnets, respectively located on the copper sheet 8. On both sides, the magnetic line of induction between the permanent magnet assemblies 9 is perpendicular to the copper sheet 8.
  • the distance between the center of the screw mounting hole 502 and the center of the sliding hole B503 is R 1
  • the distance between the center of the sliding hole A501 and the center of the sliding hole B503 is R 2
  • the lever can amplify the relative vertical displacement on both sides of the connecting beam.
  • the magnification is R1/R2.
  • the screw pitch is set to d, the copper sheet will rotate once for every vertical displacement d of the screw, and the pitch is very small relative to the vertical displacement of the screw.
  • a small vertical displacement of the screw can cause a larger angle of rotation of the copper sheet
  • the eddy current damping force formed by the rotation forms a large torque on the rotating shaft. This torque is converted into a large damping force that hinders the vertical movement of the screw through the screw pair.
  • the larger the ratio of the screw displacement to the pitch the better the amplification effect. , The damper thus obtains a large damping coefficient.
  • the coupling beam shear displacement amplified eddy current damper of the present invention converts the vertical relative shear displacement of the coupling beam into the rotation of a circular copper sheet and generates an eddy current for energy consumption, using levers and threads
  • the transmission amplifies the shearing displacement of the connecting beam, and a smaller shearing displacement can cause a larger rotation of the copper sheet, and the energy consumption efficiency is greatly improved;
  • the coupling beam shear displacement amplified eddy current damper of the present invention can be adjusted by adjusting the lever ratio, the magnetic field strength of the permanent magnet, the thickness of the copper sheet, the radius of the copper sheet, and the distance between the copper sheet and the permanent magnet. Can realize the adjustment of damping parameters;
  • the coupling beam shear displacement amplified eddy current damper of the present invention uses permanent magnets to provide a continuous magnetic field source without external energy sources, and can produce long-term stable vibration damping effects;
  • the coupling beam shear displacement amplified eddy current damper of the present invention adopts magnetic materials, which can effectively avoid magnetic leakage of the magnetic circuit, which not only improves the efficiency of eddy current damping, but also avoids impact on surrounding The influence of various components;
  • the coupling beam shear displacement amplified eddy current damper of the present invention has reasonable design, simple structure and convenient installation.
  • the present invention can amplify the relative vertical displacement on both sides of the connecting beam, and the magnification is R1/R2.
  • the screw pitch of the screw is set to d, and the copper sheet will rotate once for every vertical displacement d of the screw.
  • the pitch of the screw relative to the vertical displacement of the screw is very small.
  • the eddy current damping force formed by the rotation of the copper plate forms a large torque on the rotating shaft. This torque is converted into a large damping force that hinders the vertical movement of the screw through the screw pair.
  • the ratio of the screw displacement to the pitch is greater. Larger, the better the amplification effect, and the damper thus obtains a large damping coefficient.
  • Fig. 1 is an A-A sectional view of a coupling beam shear displacement amplified eddy current damper according to the present invention
  • Figure 2 is a B-B cross-sectional view of a coupling beam shear displacement amplified eddy current damper according to the present invention
  • Figure 3 is a C-C cross-sectional view of a coupling beam shear displacement amplified eddy current damper according to the present invention
  • FIG. 4 is a schematic diagram of the installation of an eddy current damper with amplified shear displacement of connecting beams according to the present invention
  • Figure 5 is a schematic diagram of the structure of the lever of the present invention.
  • Figure 6 is a schematic diagram of the structure of the lever of the present invention.
  • the coupling beam shear displacement amplification type eddy current damper shown in Figure 1, Figure 2, Figure 3 includes a rigid rod 1, a rotating shaft 2, a pin 3, a pin 4, a lever 5, a screw 6, a threaded sleeve 7,
  • the copper sheet 8 the permanent magnet assembly 9, the steel structure assembly 10, the balls 11, the ball holder 12 and the housing 13.
  • the housing 13 is a hollow cuboid structure with one end open;
  • the steel structure assembly 10 is a cuboid structure with a through hole in the middle, and the steel structure assembly 10 is constructed with multiple steel plates to form four permanent magnets.
  • the spatial structure of the component 9; the steel structure component 10 is inserted into the inside of the shell 13, leaving a gap between the two to allow relative movement; the steel structure component 10 and the shell 13 are respectively installed on two connecting beams ;
  • the cross section of the rigid rod 1 is rectangular.
  • the rigid rod 1 passes through the through hole of the steel structure assembly 10 and is installed on the inner wall of the housing 13.
  • the rigid rod 1 is rigidly connected to the housing 13, and the longitudinal direction of the rigid rod 1 is vertical. direction;
  • levers 5 there are two levers 5 as shown in Figures 5 and 6, one end of the lever 5 has a sliding hole A501, the other end of the lever 5 has a screw mounting hole 502, and the middle of the lever 5 has a sliding hole B503. ;
  • the pin 3 passes through the sliding hole A501 of the lever 5 to install the two levers 5 on both sides of the rigid rod 1, and the two rotating shafts 2 in the steel structure assembly 10 respectively pass through the sliding hole B503 of the lever 5;
  • ball holders 12 which are respectively installed on the outer surface of the inner steel plate of the steel structure assembly 10.
  • the barrel 7 is respectively installed at the end of the screw 6 through a thread pair.
  • the closed end and the open end of the threaded sleeve 7 are equipped with a plurality of balls 11, the closed end ball 11 contacts the inner surface of the steel structure assembly 10, and the open end ball 11 passes
  • the ball holder 12 is restricted around the screw 6, and the threaded sleeve 7 rotates freely between the steel structure assembly 10 and the ball holder 12; there are four copper sheets 8 in total, which are installed on the outside of the threaded sleeve 7, and the copper sheet 8 and
  • the axis of the threaded sleeve 7 is vertical;
  • the permanent magnet assembly 9 has four groups, which are installed in the space formed by the steel plate inside the steel structure assembly 10; each group of permanent magnet assembly 9 has a total of two permanent magnets, respectively located on the copper sheet 8. On both sides, the magnetic line of induction between the permanent magnet assemblies 9 is perpendicular to the copper sheet 8.
  • the distance between the center of the screw mounting hole 502 and the center of the sliding hole B503 is R 1
  • the distance between the center of the sliding hole A501 and the center of the sliding hole B503 is R 2
  • the lever can amplify the relative vertical displacement on both sides of the connecting beam.
  • the magnification is R1/R2.
  • the screw pitch is set to d, the copper sheet will rotate once for every vertical displacement d of the screw, and the pitch is very small relative to the vertical displacement of the screw.
  • a small vertical displacement of the screw can cause a larger angle of rotation of the copper sheet
  • the eddy current damping force formed by the rotation forms a large torque on the rotating shaft. This torque is converted into a large damping force that hinders the vertical movement of the screw through the screw pair.
  • the larger the ratio of the screw displacement to the pitch the better the amplification effect. , The damper thus obtains a large damping coefficient.
  • the eddy current damper with amplifying coupling beam shear displacement of the present invention converts the vertical relative shear displacement of the coupling beam into the rotation of a circular copper sheet and generates an eddy current for energy consumption.
  • the coupling beam is driven by a lever and a screw thread.
  • the beam shear displacement is enlarged, and a smaller shear displacement can cause a larger rotation of the copper sheet, and the energy consumption efficiency is greatly improved;
  • the coupling beam shear displacement amplified eddy current damper of the present invention can achieve damping by adjusting the lever ratio, the magnetic field strength of the permanent magnet, the thickness of the copper sheet, the radius of the copper sheet, and the distance between the copper sheet and the permanent magnet. Parameter adjustment;
  • the eddy current damper with amplifying coupling beam shear displacement of the present invention adopts permanent magnets to provide a continuous magnetic field source, does not require external energy, and can produce long-term stable vibration damping effects;
  • the coupling beam shear displacement amplified eddy current damper of the present invention adopts magnetic conductive materials, which can effectively avoid magnetic leakage of the magnetic circuit, which not only improves the efficiency of eddy current damping, but also avoids impact on various surrounding components. Impact;
  • the eddy current damper with amplifying coupling beam shear displacement of the present invention has reasonable design, simple structure and convenient installation.
  • the invention can amplify the relative vertical displacement on both sides of the connecting beam, and the magnification is R1/R2.
  • the screw pitch of the screw is set to d, and the copper sheet will rotate once for each vertical displacement d of the screw, and the pitch of the screw relative to the vertical displacement of the screw is very small.
  • a small vertical displacement of the screw can cause a larger angle of rotation of the copper sheet.
  • the eddy current damping force formed by the rotation of the copper sheet forms a large torque on the rotating shaft. This torque is converted into a large damping force that hinders the vertical movement of the screw through the screw pair.
  • the larger the ratio of the screw displacement to the pitch the larger the torque. The better the effect, the damper thus obtains a large damping coefficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

一种连梁剪切位移放大型电涡流阻尼器,属于结构振动控制技术领域。所述的连梁剪切位移放大型电涡流阻尼器包括刚性杆(1)、转动轴(2)、销柱(3)、销钉(4)、杠杆(5)、螺杆(6)、螺纹套筒(7)、铜片(8)、永磁体组件(9)、钢结构组件(10)、滚珠(11)、滚珠托(12)和外壳(13)。当振动发生时,阻尼器两侧的连梁发生相对竖向位移,此时两个杠杆(5)会发生相对刚性杆(1)的上下移动,这个移动会导致螺杆(6)以及铜片(8)的转动;铜片(8)在磁场中转动,其内部会产生感应电动势,从而在铜片(8)中产生电涡流。电涡流效应会产生一个阻碍铜片(8)转动的阻尼力。同时,由电涡流的热效应可知,振动能量将转化为热能,从而减小结构振动。

Description

一种连梁剪切位移放大型电涡流阻尼器 技术领域
本发明属于结构振动控制技术领域,尤其涉及一种连梁剪切位移放大型电涡流阻尼器。
背景技术
连梁阻尼器是一种通过吸收地震的振动能量以减小建筑物破坏的装置,在剪力墙建筑物中被广泛使用。当建筑物受到地震作用时,要求连梁部分消耗外力对建筑物的冲击能量,利用阻尼器减小连梁的振动响应,大大减轻地震作用下连梁的受剪破坏程度。然而,现有的连梁阻尼器仍存在诸多不足,如,振幅较小时耗能效率低,消耗振动冲击能量的能力较差,而这些不足极大地影响了建筑物的安全以及人们的生命财产安全。针对现有产品的不足,本发明基于电涡流效应耗能,提出了一种连梁剪切位移放大型电涡流阻尼器。
技术问题
本发明针对现有技术中消耗振动冲击能量的能力差的问题,本发明提出一种耗能效率高的连梁剪切位移放大型电涡流阻尼器。
技术解决方案
为实现上述目的,本发明所采用的技术方案是:
一种连梁剪切位移放大型电涡流阻尼器,所述的连梁剪切位移放大型电涡流阻尼器包括刚性杆1、转动轴2、销柱3、销钉4、杠杆5、螺杆6、螺纹套筒7、铜片8、永磁体组件9、钢结构组件10、滚珠11、滚珠托12和外壳13。所述的外壳13为一端开口的空心长方体结构;所述的钢结构组件10为长方体形结构,中部开有通孔,钢结构组件10的内部通过多个钢板构建出四个用于安装永磁体组件9的空间结构;所述的钢结构组件10插入外壳13的内部,二者之间留有空隙,允许产生相对移动;所述的钢结构组件10和外壳13分别安装在两个连梁上;
所述的刚性杆1的截面为矩形,刚性杆1穿过钢结构组件10的通孔安装在外壳13内壁面上,刚性杆1与外壳13刚接,刚性杆1的长边方向为竖直方向;所述的杠杆5共有两个,杠杆5的一个端部开有滑孔A501,杠杆5的另一个端部开有螺杆安装孔502,杠杆5的中部开有滑孔B503;销柱3穿过杠杆5的滑孔A501将两个杠杆5安装在刚性杆1两侧,钢结构组件10中的两个转动轴2分别穿过杠杆5的滑孔B503;
所述的滚珠托12共有四个,分别安装在钢结构组件10的内部钢板外表面上;所述的螺杆6共有两个,通过销钉4垂直安装在螺杆安装孔502内,螺杆6的两端依次穿过滚珠托12和钢结构组件10的内部钢板;所述的螺纹套筒7共有四个,其闭口端过钢结构组件10的内部钢板,位于钢结构组件10的外壳,四个螺纹套筒7分别通过螺纹副安装在螺杆6的末端,螺纹套筒7的闭口端和开口端均安装多个滚珠11,闭口端的滚珠11与钢结构组件10的外壳内表面接触,开口端的滚珠11通过滚珠托12限制在螺杆6周围,螺纹套筒7在钢结构组件10和滚珠托12之间自由转动;所述的铜片8共有四个,分别安装在螺纹套筒7外侧,铜片8与螺纹套筒7的轴线垂直;所述的永磁体组件9共有四组,分别安装在钢结构组件10内部钢板形成的空间内;每组永磁体组件9共两个永磁体,分别位于铜片8两侧,永磁体组件9间的磁感线与铜片8垂直。
进一步的,所述的螺杆安装孔502的中心与滑孔B503的中心距离为R 1,滑孔A501的中心与滑孔B503的中心距离为R 2,R1>R2。
本发明的工作原理:
当振动发生时,阻尼器两侧的连梁发生相对竖向位移,此时两个杠杆5会发生相对刚性杆1的上下移动,这个移动会导致螺杆6以及铜片8的转动;铜片在磁场中转动,其内部会产生感应电动势,从而在铜片中产生电涡流。电涡流效应会产生一个阻碍铜片转动的阻尼力。同时,由电涡流的热效应可知,振动能量将转化为热能,从而减小结构振动。
特别地,杠杆可将连梁两侧相对竖向位移放大,放大倍数为R1/ R2,R1与R2比值越大,放大效果越明显,耗能效率越高。另外,螺距设为d,则螺杆每竖向位移d,铜片就会旋转一周,螺距相对螺杆竖向位移很小,较小的螺杆竖向位移可引起较大角度的铜片转动,铜片转动形成的电涡流阻尼力对旋转轴形成一个大的扭矩,这个扭矩经过螺旋副又转换为一个很大的阻碍螺杆竖向运动的阻尼力,螺杆位移与螺距的比值越大,放大效果越好,阻尼器因此获得了很大的阻尼系数。
有益效果
本发明的有益效果是:
(1;本发明的一种连梁剪切位移放大型电涡流阻尼器,将连梁的竖向相对剪切位移转化为圆形铜片的转动并产生电涡流进行耗能,利用杠杆和螺纹传动将连梁剪切位移放大,较小的剪切位移即可引起较大幅度的铜片转动,耗能效率大大提高;
(2)本发明的一种连梁剪切位移放大型电涡流阻尼器,通过调整杠杆比例、永磁体的磁场强度、铜片的厚度、铜片的半径、铜片到永磁体的距离,均可以实现阻尼参数的调节;
(3)本发明的一种连梁剪切位移放大型电涡流阻尼器,采用永磁体提供连续不断的磁场源,无需外界能源,能产生长期稳定的减振效果;
(4)本发明的一种连梁剪切位移放大型电涡流阻尼器,采用了导磁材料,可以有效避免磁路的漏磁,不仅提高了电涡流阻尼的效率,而且避免了对周围各种元器件的影响;
(5)本发明的一种连梁剪切位移放大型电涡流阻尼器,设计合理、构造简单、安装方便。
(6)本发明可将连梁两侧相对竖向位移放大,放大倍数为R1/R2,R1与R2比值越大,放大效果越明显,耗能效率越高。
(7)本发明中螺杆的螺距设为d,则螺杆每竖向位移d,铜片就会旋转一周,螺距相对螺杆竖向位移很小,较小的螺杆竖向位移可引起较大角度的铜片转动,铜片转动形成的电涡流阻尼力对旋转轴形成一个大的扭矩,这个扭矩经过螺旋副又转换为一个很大的阻碍螺杆竖向运动的阻尼力,螺杆位移与螺距的比值越大,放大效果越好,阻尼器因此获得了很大的阻尼系数。
附图说明
图1为本发明一种连梁剪切位移放大型电涡流阻尼器的A-A剖面图;
图2为本发明一种连梁剪切位移放大型电涡流阻尼器的B-B剖面图;
图3为本发明一种连梁剪切位移放大型电涡流阻尼器的C-C剖面图;
图4为本发明一种连梁剪切位移放大型电涡流阻尼器的安装示意图;
图5为本发明杠杆的结构示意图;
图6为本发明杠杆的结构示意图。
图中:1刚性杆;2转动轴;3销柱;4销钉;5杠杆;6螺杆;7螺纹套筒;8铜片;9永磁体组件;10钢结构组件;11滚珠;12滚珠托;13外壳;501滑孔A;502安装孔;503滑孔B。
本发明的实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,以下参照附图并结合具体实施方式来进一步描述本发明,以令本领域技术人员参照说明书文字能够据以实施,本发明保护范围并不受限于该具体实施方式。显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1、图2、图3所示的连梁剪切位移放大型电涡流阻尼器包括刚性杆1、转动轴2、销柱3、销钉4、杠杆5、螺杆6、螺纹套筒7、铜片8、永磁体组件9、钢结构组件10、滚珠11、滚珠托12和外壳13。所述的外壳13为一端开口的空心长方体结构;所述的钢结构组件10为长方体形结构,中部开有通孔,钢结构组件10的内部通过多个钢板构建出四个用于安装永磁体组件9的空间结构;所述的钢结构组件10插入外壳13的内部,二者之间留有空隙,允许产生相对移动;所述的钢结构组件10和外壳13分别安装在两个连梁上;
所述的刚性杆1的截面为矩形,刚性杆1穿过钢结构组件10的通孔安装在外壳13内壁面上,刚性杆1与外壳13刚接,刚性杆1的长边方向为竖直方向;
如图5、图6所示的杠杆5共有两个,杠杆5的一个端部开有滑孔A501,杠杆5的另一个端部开有螺杆安装孔502,杠杆5的中部开有滑孔B503;销柱3穿过杠杆5的滑孔A501将两个杠杆5安装在刚性杆1两侧,钢结构组件10中的两个转动轴2分别穿过杠杆5的滑孔B503;
所述的滚珠托12共有四个,分别安装在钢结构组件10的内部钢板外表面上;所述的螺杆6共有两个,通过销钉4垂直安装在螺杆安装孔502内,螺杆6的两端依次穿过滚珠托12和钢结构组件10的内部钢板;所述的螺纹套筒7共有四个,其闭口端过钢结构组件10的内部钢板,位于钢结构组件10的外壳,四个螺纹套筒7分别通过螺纹副安装在螺杆6的末端,螺纹套筒7的闭口端和开口端均安装多个滚珠11,闭口端的滚珠11与钢结构组件10的外壳内表面接触,开口端的滚珠11通过滚珠托12限制在螺杆6周围,螺纹套筒7在钢结构组件10和滚珠托12之间自由转动;所述的铜片8共有四个,分别安装在螺纹套筒7外侧,铜片8与螺纹套筒7的轴线垂直;所述的永磁体组件9共有四组,分别安装在钢结构组件10内部钢板形成的空间内;每组永磁体组件9共两个永磁体,分别位于铜片8两侧,永磁体组件9间的磁感线与铜片8垂直。
进一步的,所述的螺杆安装孔502的中心与滑孔B503的中心距离为R 1,滑孔A501的中心与滑孔B503的中心距离为R 2,R1>R2。
本发明的工作原理:
当振动发生时,阻尼器两侧的连梁发生相对竖向位移,此时两个杠杆5会发生相对刚性杆1的上下移动,这个移动会导致螺杆6以及铜片8的转动;铜片在磁场中转动,其内部会产生感应电动势,从而在铜片中产生电涡流。电涡流效应会产生一个阻碍铜片转动的阻尼力。同时,由电涡流的热效应可知,振动能量将转化为热能,从而减小结构振动。
特别地,杠杆可将连梁两侧相对竖向位移放大,放大倍数为R1/ R2,R1与R2比值越大,放大效果越明显,耗能效率越高。另外,螺距设为d,则螺杆每竖向位移d,铜片就会旋转一周,螺距相对螺杆竖向位移很小,较小的螺杆竖向位移可引起较大角度的铜片转动,铜片转动形成的电涡流阻尼力对旋转轴形成一个大的扭矩,这个扭矩经过螺旋副又转换为一个很大的阻碍螺杆竖向运动的阻尼力,螺杆位移与螺距的比值越大,放大效果越好,阻尼器因此获得了很大的阻尼系数。
本发明的一种连梁剪切位移放大型电涡流阻尼器,将连梁的竖向相对剪切位移转化为圆形铜片的转动并产生电涡流进行耗能,利用杠杆和螺纹传动将连梁剪切位移放大,较小的剪切位移即可引起较大幅度的铜片转动,耗能效率大大提高;
本发明的一种连梁剪切位移放大型电涡流阻尼器,通过调整杠杆比例、永磁体的磁场强度、铜片的厚度、铜片的半径、铜片到永磁体的距离,均可以实现阻尼参数的调节;
本发明的一种连梁剪切位移放大型电涡流阻尼器,采用永磁体提供连续不断的磁场源,无需外界能源,能产生长期稳定的减振效果;
本发明的一种连梁剪切位移放大型电涡流阻尼器,采用了导磁材料,可以有效避免磁路的漏磁,不仅提高了电涡流阻尼的效率,而且避免了对周围各种元器件的影响;
本发明的一种连梁剪切位移放大型电涡流阻尼器,设计合理、构造简单、安装方便。
本发明可将连梁两侧相对竖向位移放大,放大倍数为R1/R2,R1与R2比值越大,放大效果越明显,耗能效率越高。
本发明中螺杆的螺距设为d,则螺杆每竖向位移d,铜片就会旋转一周,螺距相对螺杆竖向位移很小,较小的螺杆竖向位移可引起较大角度的铜片转动,铜片转动形成的电涡流阻尼力对旋转轴形成一个大的扭矩,这个扭矩经过螺旋副又转换为一个很大的阻碍螺杆竖向运动的阻尼力,螺杆位移与螺距的比值越大,放大效果越好,阻尼器因此获得了很大的阻尼系数。

Claims (2)

  1. 一种连梁剪切位移放大型电涡流阻尼器,其特征在于,所述的连梁剪切位移放大型电涡流阻尼器包括刚性杆(1)、转动轴(2)、销柱(3)、销钉(4)、杠杆(5)、螺杆(6)、螺纹套筒(7)、铜片(8)、永磁体组件(9)、钢结构组件(10)、滚珠(11)、滚珠托(12)和外壳(13);
    所述的外壳(13)为一端开口的空心长方体结构;所述的钢结构组件(10)为长方体形结构,中部开有通孔,钢结构组件(10)的内部通过多个钢板构建出四个用于安装永磁体组件(9)的空间结构;所述的钢结构组件(10)插入外壳(13)的内部,二者之间留有空隙,允许产生相对移动;所述的钢结构组件(10)和外壳(13)分别安装在两个连梁上;
    所述的刚性杆(1)的截面为矩形,刚性杆(1)穿过钢结构组件(10)的通孔安装在外壳(13)内壁面上,刚性杆(1)与外壳(13)刚接,刚性杆(1)的长边方向为竖直方向;所述的杠杆(5)共有两个,杠杆(5)的一个端部开有滑孔A(501),杠杆(5)的另一个端部开有螺杆安装孔(502),杠杆(5)的中部开有滑孔B(503);销柱(3)穿过杠杆(5)的滑孔A(501)将两个杠杆(5)安装在刚性杆(1)两侧,钢结构组件(10)中的两个转动轴(2)分别穿过杠杆(5)的滑孔B(503);
    所述的滚珠托(12)共有四个,分别安装在钢结构组件(10)的内部钢板外表面上;所述的螺杆(6)共有两个,通过销钉(4)垂直安装在螺杆安装孔(502)内,螺杆(6)的两端依次穿过滚珠托(12)和钢结构组件(10)的内部钢板;所述的螺纹套筒(7)共有四个,其闭口端过钢结构组件(10)的内部钢板,位于钢结构组件(10)的外壳,四个螺纹套筒(7)分别通过螺纹副安装在螺杆(6)的末端,螺纹套筒(7)的闭口端和开口端均安装多个滚珠(11),闭口端的滚珠(11)与钢结构组件(10)的外壳内表面接触,开口端的滚珠(11)通过滚珠托(12)限制在螺杆(6)周围,螺纹套筒(7)在钢结构组件(10)和滚珠托(12)之间自由转动;所述的铜片(8)共有四个,分别安装在螺纹套筒(7)外侧,铜片(8)与螺纹套筒(7)的轴线垂直;所述的永磁体组件(9)共有四组,分别安装在钢结构组件(10)内部钢板形成的空间内;每组永磁体组件(9)共两个永磁体,分别位于铜片(8)两侧,永磁体组件(9)间的磁感线与铜片(8)垂直。
  2. 根据权利要求1所述的一种连梁剪切位移放大型电涡流阻尼器,其特征在于,所述的螺杆安装孔(502)的中心与滑孔B(503)的中心距离为R 1,滑孔A(501)的中心与滑孔B(503)的中心距离为R 2,R1>R2。
PCT/CN2019/106889 2019-09-20 2019-09-20 一种连梁剪切位移放大型电涡流阻尼器 WO2021051374A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/106889 WO2021051374A1 (zh) 2019-09-20 2019-09-20 一种连梁剪切位移放大型电涡流阻尼器
US16/967,695 US11754140B2 (en) 2019-09-20 2019-09-20 Coupling beam eddy current damper with shear displacement amplification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/106889 WO2021051374A1 (zh) 2019-09-20 2019-09-20 一种连梁剪切位移放大型电涡流阻尼器

Publications (1)

Publication Number Publication Date
WO2021051374A1 true WO2021051374A1 (zh) 2021-03-25

Family

ID=74883408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106889 WO2021051374A1 (zh) 2019-09-20 2019-09-20 一种连梁剪切位移放大型电涡流阻尼器

Country Status (2)

Country Link
US (1) US11754140B2 (zh)
WO (1) WO2021051374A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113047496A (zh) * 2021-03-18 2021-06-29 中南建筑设计院股份有限公司 一种滑动减震楼板
CN113829213A (zh) * 2021-09-27 2021-12-24 江苏广新重工有限公司 一种钢结构制作加工用表面清理设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796031B2 (en) * 2019-03-04 2023-10-24 Dalian University Of Technology Axial displacement amplified eddy current damper
TWI758120B (zh) * 2021-03-05 2022-03-11 劦承精密股份有限公司 消能裝置
CN114199294B (zh) * 2021-10-29 2023-10-24 东风商用车有限公司 一种滑块式磁力座及其测量连接结构
CN115263989B (zh) * 2022-07-27 2024-04-16 重庆交通大学 阻尼可调的电涡流阻尼器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080106361A1 (en) * 2006-11-08 2008-05-08 Asml Netherlands B.V. Eddy current damper, and lithographic apparatus having an eddy current damper
WO2011133044A1 (en) * 2010-04-23 2011-10-27 Salte Tekniske As Device for damping of pendular movements and method of using same
CN206368933U (zh) * 2016-12-16 2017-08-01 同济大学 一种串联型加速度惰性消能器
CN206529922U (zh) * 2016-12-16 2017-09-29 同济大学 一种并联型加速度惰性消能器
CN107355509A (zh) * 2017-08-10 2017-11-17 东南大学 一种利用杠杆原理的电涡流减振装置
CN108590301A (zh) * 2018-04-19 2018-09-28 同济大学 一种电涡流式连梁阻尼器
CN109751352A (zh) * 2019-03-04 2019-05-14 大连理工大学 一种轴向位移放大型电涡流阻尼器
CN110528719A (zh) * 2019-09-20 2019-12-03 大连理工大学 一种连梁剪切位移放大型电涡流阻尼器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070131504A1 (en) * 2005-12-14 2007-06-14 Northrop Grumman Corporation Planar vibration absorber
JP6905594B2 (ja) * 2017-08-29 2021-07-21 日本製鉄株式会社 渦電流式ダンパ
US20200400211A1 (en) * 2017-09-13 2020-12-24 Nippon Steel Corporation Eddy current damper
JP6947224B2 (ja) * 2017-11-29 2021-10-13 日本製鉄株式会社 渦電流式ダンパ
WO2020077595A1 (zh) * 2018-10-18 2020-04-23 大连理工大学 一种多维电涡流调谐质量阻尼器
US11796031B2 (en) * 2019-03-04 2023-10-24 Dalian University Of Technology Axial displacement amplified eddy current damper
US11293175B2 (en) * 2019-09-20 2022-04-05 Dalian University Of Technology Self-resetting tuned mass damper based on eddy current and shape memory alloy technology
CN111335497B (zh) * 2020-03-24 2021-08-27 华东交通大学 一种电磁多级可调变惯容变阻尼装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080106361A1 (en) * 2006-11-08 2008-05-08 Asml Netherlands B.V. Eddy current damper, and lithographic apparatus having an eddy current damper
WO2011133044A1 (en) * 2010-04-23 2011-10-27 Salte Tekniske As Device for damping of pendular movements and method of using same
CN206368933U (zh) * 2016-12-16 2017-08-01 同济大学 一种串联型加速度惰性消能器
CN206529922U (zh) * 2016-12-16 2017-09-29 同济大学 一种并联型加速度惰性消能器
CN107355509A (zh) * 2017-08-10 2017-11-17 东南大学 一种利用杠杆原理的电涡流减振装置
CN108590301A (zh) * 2018-04-19 2018-09-28 同济大学 一种电涡流式连梁阻尼器
CN109751352A (zh) * 2019-03-04 2019-05-14 大连理工大学 一种轴向位移放大型电涡流阻尼器
CN110528719A (zh) * 2019-09-20 2019-12-03 大连理工大学 一种连梁剪切位移放大型电涡流阻尼器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113047496A (zh) * 2021-03-18 2021-06-29 中南建筑设计院股份有限公司 一种滑动减震楼板
CN113829213A (zh) * 2021-09-27 2021-12-24 江苏广新重工有限公司 一种钢结构制作加工用表面清理设备
CN113829213B (zh) * 2021-09-27 2024-04-19 江苏广新重工有限公司 一种钢结构制作加工用表面清理设备

Also Published As

Publication number Publication date
US20210148434A1 (en) 2021-05-20
US11754140B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2021051374A1 (zh) 一种连梁剪切位移放大型电涡流阻尼器
WO2021051372A1 (zh) 基于电涡流和形状记忆合金技术的自复位调谐质量阻尼器
US9777793B1 (en) Six-degree-of-freedom micro vibration suppression platform and control method thereof
US10451142B2 (en) Outer cup rotary axial eddy current damper
US11223190B2 (en) Eddy current energy-dissipating spacer
WO2020177045A1 (zh) 一种轴向位移放大型电涡流阻尼器
CN110528719B (zh) 一种连梁剪切位移放大型电涡流阻尼器
WO2019029198A1 (zh) 一种利用杠杆原理的电涡流减振装置
CN210947235U (zh) 一种连梁剪切位移放大型电涡流阻尼器
CN109853765B (zh) 采用正反牙丝杆的自平衡式惯容阻尼器
JPWO2019044722A1 (ja) 渦電流式ダンパ
TW201930747A (zh) 渦電流式阻尼器
CN112127498A (zh) 一种旋转式电涡流调谐质量阻尼器
US20210363771A1 (en) Eddy current damper
CN210767325U (zh) 基于电涡流和形状记忆合金技术的自复位调谐质量阻尼器
CN214117074U (zh) 一种旋转式电涡流调谐质量阻尼器
CN112178104A (zh) 一种快速装配长度自适应型电涡流阻尼器
CN112178103A (zh) 一种双向螺纹丝杆增速的电涡流阻尼器
WO2020232695A1 (zh) 一种基于电涡流耗能技术的输电线路减振装置
JP2012047221A (ja) 制振ダンパー装置
CN213711716U (zh) 一种快速装配长度自适应型电涡流阻尼器
CN110499836A (zh) 基于电涡流和形状记忆合金技术的自复位调谐质量阻尼器
JP2005207179A (ja) ハーフテンショントグル機構並びに建築構造物
CN214404458U (zh) 一种电涡流阻尼装置
CN116792435A (zh) 一种非线性可变刚度双边板电涡流阻尼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945499

Country of ref document: EP

Kind code of ref document: A1