WO2020077595A1 - 一种多维电涡流调谐质量阻尼器 - Google Patents

一种多维电涡流调谐质量阻尼器 Download PDF

Info

Publication number
WO2020077595A1
WO2020077595A1 PCT/CN2018/110858 CN2018110858W WO2020077595A1 WO 2020077595 A1 WO2020077595 A1 WO 2020077595A1 CN 2018110858 W CN2018110858 W CN 2018110858W WO 2020077595 A1 WO2020077595 A1 WO 2020077595A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow cylinder
eddy current
mass
inner hollow
unit
Prior art date
Application number
PCT/CN2018/110858
Other languages
English (en)
French (fr)
Inventor
付兴
李宏男
汪佳
杜文龙
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/761,378 priority Critical patent/US11293512B2/en
Priority to PCT/CN2018/110858 priority patent/WO2020077595A1/zh
Publication of WO2020077595A1 publication Critical patent/WO2020077595A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass
    • F16F7/1011Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass by electromagnetic means
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0215Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • F16F15/035Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means by use of eddy or induced-current damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/116Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on metal springs
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/04Bearings; Hinges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/06Magnetic or electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/08Inertia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0208Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/066Variable stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/18Control arrangements

Definitions

  • the invention belongs to the technical field of structural vibration control, and particularly relates to a multi-dimensional eddy current tuned mass damper.
  • TMD tuned mass damper
  • Traditional TMD can only effectively control the vibration of a structure in a certain direction, but under various load excitations, the structure will inevitably vibrate in multiple directions, so multi-dimensional vibration reduction has become a technical problem eager to solve at home and abroad.
  • it is usually necessary to install the damper in the direction of the two main axes of the structure at the same time, thereby greatly increasing the cost of structural vibration control. Therefore, considering the complexity of structural vibration, traditional TMD can not meet the needs of engineering vibration control well.
  • Eddy current damping technology is based on the law of electromagnetic induction to convert the mechanical energy of object movement into electrical energy in the conductor plate, and then convert the electrical energy into thermal energy through the thermal resistance effect of the conductor plate to dissipate the vibration energy of the system. After the conductor plate moves in the magnetic field to generate eddy current, the eddy current will interact with the original magnetic field to generate a damping force that hinders the relative movement of the conductor plate and the magnetic field. At the same time, the eddy current generated in the conductor plate is continuously dissipated to the surroundings in the form of thermal energy Environment. Eddy current damping technology adopts non-contact energy dissipation, has the advantages of good durability, long life and easy adjustment of damping, and is widely used.
  • the present invention combines the eddy current damping technology with other passive vibration damping technologies to provide a multi-dimensional eddy current tuned mass damper.
  • the device has the characteristics of modular production, convenient installation, convenient maintenance, simple use, etc. The market prospect is very broad.
  • the invention combines the eddy current damping technology with other passive vibration damping technologies to provide a multi-dimensional eddy current tuned mass damper.
  • orthogonal two-way mass-stiffness-damping unit and torsional stiffness-damping unit the vibration control of the horizontal and torsional directions of the structure is realized.
  • a multi-dimensional eddy current tuned mass damper including hollow cylinder, cover plate, ball, copper ring 2, connecting plate 4, permanent magnet 5, mass block 8, limit angle 9, copper plate 10, vertical rod 11, horizontal rod 12.
  • the main body of the multi-dimensional eddy current tuned mass damper consists of two hollow cylinders, the inner hollow cylinder 3 is located inside the outer hollow cylinder 1, the upper and lower walls opposite to each other are provided with a ball groove a19, and the ball groove a19 is installed with Ball a6, the inner hollow cylinder 3 rotates inside the outer hollow cylinder 1 through the ball a6; the inner hollow cylinder 3 is provided with an inner cover plate 18, and the outer hollow cylinder 1 is provided with an outer cover plate 17, forming a relatively closed box Body structure
  • An orthogonal bidirectional mass unit, a rigidity unit and an eddy current damping unit are provided in the inner hollow cylinder 3, and a torsional rigidity unit and an eddy current damping unit are provided between the inner hollow cylinder 3 and the outer hollow cylinder 1;
  • the orthogonal and bidirectional mass unit is mainly composed of a connecting plate 4 and a mass block 8.
  • the two connecting plates 4 are horizontal and perpendicular to each other in a cross shape, and the mass block 8 is fixed at its ends; the mass block 8 and the inner hollow cylinder 3
  • the opposite upper and lower inner walls are provided with ball grooves b7.
  • the ball grooves b7 are provided with balls b14.
  • the mass block 8 slides in the inner hollow cylinder 3 through the balls b14.
  • Limit angles 9 are provided at both ends along the movement direction of the mass block 8 To avoid collision between adjacent masses 8;
  • the stiffness unit is mainly composed of a vertical rod 11, a horizontal rod 12, and a tension and compression spring 13, each horizontal rod 12 passes through a hole reserved in the connecting plate 4, and the horizontal rod 12 is parallel to the movement trajectory of the corresponding mass 8 ;
  • the tension and compression spring 13 is sleeved on both ends of the horizontal rod 12 and is located between the connecting plate 4 and the vertical rod 11; both ends of the vertical rod 11 are rigidly connected to the horizontal rod 12 and the bottom surface of the inner hollow cylinder 3;
  • the eddy current damping unit in the inner hollow cylinder 3 is mainly composed of a permanent magnet 5 and a copper plate 10, the permanent magnet 5 is embedded in a hole reserved in the side wall of the inner hollow cylinder 3, and the copper plate 10 is fixed on the mass 8 side;
  • the torsion stiffness unit is a torsion spring 15, and the torsion spring 15 is fixed between the inner cover plate 18 and the outer cover plate 17, and between the inner hollow cylinder 3 and the bottom of the outer hollow cylinder 1, respectively;
  • the eddy current damping unit in the outer hollow cylinder 1 is mainly composed of a permanent magnet 5 and a copper ring 2, and the copper ring 2 is fixed on the inner wall of the outer hollow cylinder 1.
  • the outer hollow cylinder 1, the inner hollow cylinder 3, the connecting plate 4 and the mass 8 are all made of magnetically conductive material; the balls are spherical steel balls.
  • the horizontal vibration component can be controlled by the orthogonal two-way mass-stiffness-damping unit in the inner box;
  • the inner box lags behind the outer box when it rotates due to inertia, which in turn drives the permanent magnet to rotate to make the copper ring cut the magnetic induction line to produce eddy current damping. Controls the torsional vibration component of the structure.
  • a multi-dimensional eddy current tuned mass damper of the present invention has a multi-dimensional vibration reduction mechanism.
  • the orthogonal two-way mass-stiffness-damping unit in the inner box controls the horizontal vibration of the structure, and the time-lag torsion between the inner box and the outer box makes the torsional stiffness-damping unit control the torsional vibration of the structure ;
  • the multi-dimensional eddy current tuned mass damper of the present invention can easily adjust the mass, stiffness and damping parameters.
  • the mass parameters of the damper can be controlled by adjusting the mass of the mass;
  • the stiffness parameters of the damper can be controlled by adjusting the tension spring and torsion spring; by adjusting the distance between the permanent magnet and the copper ring or copper plate, or adjusting the magnetic field of the permanent magnet Strength, can adjust the damping parameters;
  • a multi-dimensional eddy current tuned mass damper of the present invention uses permanent magnets to provide a continuous magnetic field source without external energy. Since the physical performance of each control unit remains unchanged for a long time, the device can provide a long-term stable reduction Vibration effect
  • the inner and outer boxes use magnetically conductive materials, which can effectively avoid magnetic leakage of the magnetic circuit, which not only improves the efficiency of eddy current damping, but also avoids various elements around The influence of the device;
  • the multi-dimensional eddy current tuned mass damper of the present invention has a regular and beautiful appearance, a simple structure, and a very simple connection with the main structure.
  • FIG. 1 is an overall three-dimensional view of a multi-dimensional eddy current tuned mass damper provided by an embodiment of the present invention
  • FIG. 2 is an A-A cross-sectional view of a multi-dimensional eddy current tuned mass damper provided by an embodiment of the present invention
  • FIG. 3 is a B-B sectional view of a multi-dimensional eddy current tuned mass damper provided by an embodiment of the present invention
  • FIG. 4 is a C-C sectional view of a multi-dimensional eddy current tuned mass damper provided by an embodiment of the present invention
  • an embodiment of a multi-dimensional eddy current tuned mass damper provided by an embodiment of the present invention includes an outer hollow cylinder 1, a copper ring 2, an inner hollow cylinder 3, a connecting plate 4, a permanent Magnet 5, ball a6, ball groove b7, mass 8, mass stop angle 9, copper plate 10, vertical rod 11, horizontal rod 12, tension and compression spring 13, ball b14, torsion spring 15, bolt 16, outer cover plate 17 , Inner cover 18 and ball groove a19.
  • the outer hollow cylinder 1 and the outer cover plate 17 are connected by a bolt 16 to form an outer box body
  • the inner hollow cylinder 3 and the inner cover plate 18 are connected by a bolt 16 to form an inner box body
  • the inner box body passes
  • the ball a6 rotates in the ball groove a19 provided on the upper and lower inner walls of the outer box;
  • the connecting plate 4 is placed horizontally and perpendicular to each other in a cross shape, and the masses 8 are fixed at both ends thereof.
  • the masses 8 slide through the ball grooves b7 provided on the upper and lower inner walls of the inner box through the balls b14, along the movement direction of the masses 8
  • the height of both ends is set with limit angle 9 to avoid collision between adjacent masses 8;
  • the permanent magnet 5 is embedded in the hole reserved on the side wall of the inner box, the copper plate 10 is fixed on the mass block 8 side, and the copper ring 2 is fixed on the inner wall of the outer box;
  • the horizontal rod 12 passes through a hole reserved in the connecting plate 4 and is parallel to the movement trajectory of the mass 8.
  • the tension and compression spring 13 is sleeved on the horizontal rod 12 and is arranged on both sides of the connecting plate 4. Both ends of the vertical rod 11 are respectively connected with the horizontal rod 12 Just connected to the bottom of the inner box;
  • torsion spring 15 is fixed between the inner cover plate 18 and the outer cover plate 17, and the other is fixed between the outer hollow cylinder 1 and the bottom surface of the outer hollow cylinder 3;
  • the outer hollow cylinder 1, the inner hollow cylinder 3, the outer cover 17, the inner cover 18, the mass 8 and the connecting plate 4 are all made of magnetically conductive material; the balls a6 and balls b14 are spherical steel balls.
  • the mass unit is composed of a mass 8 and a connecting plate 4
  • the stiffness unit is composed of a horizontal rod 12, a vertical rod 11, and a tension and compression spring 13
  • the eddy current damping unit in the inner box is composed of a permanent magnet 5 and a copper plate 10
  • the torsional rigidity unit is a torsion spring 15, and the eddy current damping unit in the outer box is composed of a permanent magnet 5 and a copper ring 2.
  • the multi-dimensional eddy current tuned mass damper of the invention can conveniently adjust the mass, stiffness and damping parameters.
  • the mass parameters of the damper can be controlled by adjusting the mass 8; the stiffness parameters of the damper can be controlled by adjusting the tension spring 13 and the torsion spring 15; by adjusting the distance between the permanent magnet 5 and the copper ring 2 or copper plate 10, Alternatively, adjusting the magnetic field strength of the permanent magnet 5 can adjust the damping parameter.
  • the limit angle 9 should have sufficient strength and rigidity to avoid the collision between the mass 8 and its damage, and rubber pads can also be attached to the surface layer for protection and energy consumption;
  • the ball a6 and the ball b14 are embedded in the ball groove a19 and the ball groove b7 respectively, and the lubricating oil is appropriately applied in the ball groove a19 and the ball groove b7 to facilitate the rolling of the ball.
  • the size and number of balls can be adjusted according to needs;
  • the layout position of the present invention in the engineering structure should be reasonably arranged according to the corresponding vibration reduction scheme and control objectives.

Abstract

一种多维电涡流调谐质量阻尼器,主体由两个空心圆柱体构成,内空心圆柱体(3)位于外空心圆柱体(1)内部,两者相对的上下壁设有滚珠凹槽a(19),滚珠凹槽内安装有滚珠a(6),内空心圆柱体(3)通过滚珠a(6)在外空心圆柱体(1)内部转动;内空心圆柱体(3)上设有内盖板(18)、外空心圆柱体(1)上设有外盖板(17),形成相对密闭的箱体结构;内空心圆柱体(3)内设置正交双向的质量单元、刚度单元和电涡流阻尼单元,内空心圆柱体(3)和外空心圆柱体(1)之间设置扭转刚度单元和电涡流阻尼单元。

Description

一种多维电涡流调谐质量阻尼器 技术领域
本发明属于结构振动控制技术领域,尤其涉及一种多维电涡流调谐质量阻尼器。
背景技术
随着国家的发展,高层建筑、高耸结构、大跨结构等结构的重要性与日俱增。在强风、地震等动力荷载作用下,这些结构会产生比较大的振动,影响到结构的正常使用及安全。结构振动控制是通过在结构中设置减振或隔振装置来消耗或隔离外部激励对结构的作用。目前针对振动控制装置的研发多集中于被动控制装置,这些装置具有构造简单,无需人工干预等优点,其中,调谐质量阻尼器(TMD)是一类应用广泛的被动控制装置。
传统的TMD仅能有效地控制结构某一方向的振动,但在各种荷载激励下,结构会不可避免地在多个方向发生振动,因此多维减振就成为国内外急于解决的一个技术难题。为确保阻尼器对结构振动控制的可靠性,通常需要在结构两主轴方向同时设置阻尼器,从而大大增加了结构振动控制的成本。因此,考虑到结构振动的复杂性,传统的TMD无法很好的满足工程振动控制的需求。
电涡流阻尼技术是基于电磁感应定律把物体运动的机械能转化为导体板中的电能,然后通过导体板的热阻效应将电能转化为热能来耗散系统的振动能量。导体板在磁场中运动产生涡电流后,涡电流会与原磁场相互作用,产生阻碍导体板与磁场相对运动的阻尼力,同时导体板内产生的涡电流以热能的形式不断地耗散到周围的环境中。电涡流阻尼技术采用非接触式耗能的方式,具有耐久性好、寿命长、阻尼易调节等优点,得到广泛应用。
针对以往单维减振装置的不足,本发明将电涡流阻尼技术和其他被动减振技术相结合,提供了一种多维电涡流调谐质量阻尼器。该装置具有模块化生产,安装便捷,维修方便,使用简单等特点,市场前景十分广阔。
技术问题
本发明将电涡流阻尼技术和其他被动减振技术相结合,提供了一种多维电涡流调谐质量阻尼器。通过设置正交双向质量-刚度-阻尼单元和扭转刚度-阻尼单元,实现对结构水平方向和扭转方向的振动控制。
技术解决方案
本发明的技术方案:
一种多维电涡流调谐质量阻尼器,包括空心圆柱体、盖板、滚珠、铜环2、连接板4、永磁体5、质量块8、限位角钢9、铜板10、竖杆11、水平杆12、拉压弹簧13和扭转弹簧15;
多维电涡流调谐质量阻尼器的主体由两个空心圆柱体构成,内空心圆柱体3位于外空心圆柱体1内部,二者相对的上下壁设有滚珠凹槽a19,滚珠凹槽a19内安装有滚珠a6,内空心圆柱体3通过滚珠a6在外空心圆柱体1内部转动;内空心圆柱体3上设有内盖板18,外空心圆柱体1上设有外盖板17,形成相对封闭的箱体结构;
内空心圆柱体3内设置正交双向的质量单元、刚度单元和电涡流阻尼单元,内空心圆柱体3和外空心圆柱体1之间设置扭转刚度单元和电涡流阻尼单元;
正交双向的质量单元主要由连接板4和质量块8组成,两块连接板4水平、相互垂直呈十字状,在其端部均固接质量块8;质量块8与内空心圆柱体3相对的上下内壁上设有滚珠凹槽b7,滚珠凹槽b7内安装有滚珠b14,质量块8通过滚珠b14在内空心圆柱体3内滑动,沿质量块8运动方向两端设置限位角钢9,以避免相邻质量块8发生碰撞;
刚度单元主要由竖杆11、水平杆12和拉压弹簧13组成,每根水平杆12穿过预留在连接板4中的孔道,水平杆12与各自对应的质量块8的运动轨迹相平行;拉压弹簧13套在水平杆12的两端,限位于连接板4与竖杆11之间;竖杆11两端分别与水平杆12和内空心圆柱体3底面刚接;
内空心圆柱体3中的电涡流阻尼单元主要由永磁体5和铜板10组成,永磁体5嵌在内空心圆柱体3侧壁预留的孔洞内,铜板10固定在质量块8一侧;
扭转刚度单元为扭转弹簧15,扭转弹簧15分别固定在内盖板18和外盖板17之间、内空心圆柱体3和外空心圆柱体1底部之间;
外空心圆柱体1中的电涡流阻尼单元主要由永磁体5和铜环2组成,铜环2固定在外空心圆柱体1内壁。
外空心圆柱体1、内空心圆柱体3、连接板4和质量块8均采用导磁材料制成;所述滚珠为球形钢珠。
本发明的工作原理:
(1)当结构产生多维振动时,水平振动分量可由内箱体中的正交双向质量-刚度-阻尼单元控制;
(2)由于外箱体固定在主结构上随结构一起振动,内箱体由于惯性作用,发生转动时滞后于外箱体,进而带动永磁体转动使铜环切割磁感线产生电涡流阻尼,控制结构的扭转振动分量。
有益效果
本发明的有益效果:
(1)本发明的一种多维电涡流调谐质量阻尼器,具有多维减振机制。当结构产生多维振动时,内箱体中的正交双向质量-刚度-阻尼单元控制结构的水平振动,内箱体与外箱体间的时滞扭转使扭转刚度-阻尼单元控制结构的扭转振动;
(2)本发明的一种多维电涡流调谐质量阻尼器,可以很方便的调节质量、刚度和阻尼参数。通过调节质量块的质量可以控制阻尼器的质量参数;通过调节拉压弹簧和扭转弹簧可以控制阻尼器的刚度参数;通过调节永磁体与铜环或铜板之间的距离,或者调整永磁体的磁场强度,可以实现阻尼参数的调节;
(3)本发明的一种多维电涡流调谐质量阻尼器,采用永磁体提供连续不断的磁场源,无需外界能源,由于各控制单元的物理性能保持长期不变,该装置能提供长期稳定的减振效果;
(4)本发明的一种多维电涡流调谐质量阻尼器,内外箱体采用导磁材料,可以有效避免磁路的漏磁,不仅提高了电涡流阻尼的效率,而且避免了对周围各种元器件的影响;
(5)本发明的一种多维电涡流调谐质量阻尼器,外形规整美观,构造简单,与主结构连接非常简便。
附图说明
图1为本发明实施例提供的一种多维电涡流调谐质量阻尼器的整体三维图;
图2为本发明实施例提供的一种多维电涡流调谐质量阻尼器的A-A剖面图;
图3为本发明实施例提供的一种多维电涡流调谐质量阻尼器的B-B剖面图;
图4为本发明实施例提供的一种多维电涡流调谐质量阻尼器的C-C剖面图;
图中:1外空心圆柱体;2铜环;3内空心圆柱体;4连接板;5永磁体;6滚珠a;7滚珠凹槽b;8质量块;9限位角钢;10铜板;11竖杆;12水平杆;13拉压弹簧;14滚珠b;15扭转弹簧;16螺栓;17外盖板;18内盖板;19滚珠凹槽a。
本发明的实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1至图4,本发明实施例提供的一种多维电涡流调谐质量阻尼器的一个实施例,包括外空心圆柱体1、铜环2、内空心圆柱体3、连接板4、永磁体5、滚珠a6、滚珠凹槽b7、质量块8、限位角钢9、铜板10、竖杆11、水平杆12、拉压弹簧13、滚珠b14、扭转弹簧15、螺栓16、外盖板17、内盖板18和滚珠凹槽a19。
在本实施例中,外空心圆柱体1和外盖板17通过螺栓16相连接构成外箱体,内空心圆柱体3和内盖板18通过螺栓16相连接构成内箱体,内箱体通过滚珠a6在外箱体上下内壁上设置的滚珠凹槽a19内转动;
连接板4水平放置并相互垂直呈十字状,在其两端固接质量块8,质量块8通过滚珠b14在内箱体上下内壁上设置的滚珠凹槽b7内滑动,沿质量块8运动方向两端通高设置限位角钢9,以避免相邻质量块8发生碰撞;
永磁体5嵌在内箱体侧壁预留的孔洞内,铜板10固定在质量块8一侧,铜环2固定在外箱体内壁;
水平杆12穿过预留在连接板4中的孔道与质量块8运动轨迹相平行,拉压弹簧13套在水平杆12上布置在连接板4两侧,竖杆11两端分别与水平杆12和内箱体底面刚接;
扭转弹簧15一处固定在内盖板18和外盖板17之间,另一处固定在外空心圆柱体1和外空心圆柱体3底面之间;
外空心圆柱体1、内空心圆柱体3、外盖板17、内盖板18、质量块8和连接板4均采用导磁材料制成;滚珠a6和滚珠b14为球形钢珠。
在本实施例中,质量单元由质量块8和连接板4组成,刚度单元由水平杆12、竖杆11和拉压弹簧13组成,内箱体中电涡流阻尼单元由永磁体5和铜板10组成,扭转刚度单元为扭转弹簧15,外箱体中电涡流阻尼单元由永磁体5和铜环2组成。当结构产生多维振动时,水平振动分量可由内箱体中的质量单元、刚度单元和电涡流阻尼单元控制,扭转振动分量可由外箱体中的扭转刚度单元和电涡流阻尼单元控制。本发明的多维电涡流调谐质量阻尼器,可以很方便的调节质量、刚度和阻尼参数。通过调节质量块8的质量可以控制阻尼器的质量参数;通过调节拉压弹簧13和扭转弹簧15可以控制阻尼器的刚度参数;通过调节永磁体5与铜环2或铜板10之间的距离,或者调整永磁体5的磁场强度,可以实现阻尼参数的调节。
设计本发明时需要注意:第一,限位角钢9应有足够的强度和刚度,以避免质量块8与其发生碰撞而破坏,也可以在表层贴橡胶垫以起到防护和耗能的作用;第二,滚珠a6和滚珠b14分别嵌在滚珠凹槽a19和滚珠凹槽b7中,在滚珠凹槽a19和滚珠凹槽b7内适当涂抹润滑油方便滚珠滚动,滚珠a6由于承担整个内箱体的重量,可根据需要调整滚珠的大小和数量;第三,本发明在工程结构中的布设位置应根据相应的减振方案和控制目标合理布置。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (2)

  1. 一种多维电涡流调谐质量阻尼器,其特征在于,所述的多维电涡流调谐质量阻尼器包括空心圆柱体、盖板、滚珠、铜环(2)、连接板(4)、永磁体(5)、质量块(8)、限位角钢(9)、铜板(10)、竖杆(11)、水平杆(12)、拉压弹簧(13)和扭转弹簧(15);
    多维电涡流调谐质量阻尼器的主体由两个空心圆柱体构成,内空心圆柱体(3)位于外空心圆柱体(1)内部,二者相对的上下壁设有滚珠凹槽a(19),滚珠凹槽a(19)内安装有滚珠a(6),内空心圆柱体(3)通过滚珠a(6)在外空心圆柱体(1)内部转动;内空心圆柱体(3)上设有内盖板(18),外空心圆柱体(1)上设有外盖板(17),形成相对封闭的箱体结构;
    内空心圆柱体(3)内设置正交双向的质量单元、刚度单元和电涡流阻尼单元,内空心圆柱体(3)和外空心圆柱体(1)之间设置扭转刚度单元和电涡流阻尼单元;
    正交双向的质量单元主要由连接板(4)和质量块(8)组成,两块连接板(4)水平、相互垂直呈十字状,在其端部均固接质量块(8);质量块(8)与内空心圆柱体(3)相对的上下内壁上设有滚珠凹槽b(7),滚珠凹槽b(7)内安装有滚珠b(14),质量块(8)通过滚珠b(14)在内空心圆柱体(3)内滑动,沿质量块(8)运动方向两端设置限位角钢(9),以避免相邻质量块(8)发生碰撞;
    刚度单元主要由竖杆(11)、水平杆(12)和拉压弹簧(13)组成,每根水平杆(12)穿过预留在连接板(4)中的孔道,水平杆(12)与各自对应的质量块(8)的运动轨迹相平行;拉压弹簧(13)套在水平杆(12)的两端,限位于连接板(4)与竖杆(11)之间;竖杆(11)两端分别与水平杆(12)和内空心圆柱体(3)底面刚接;
    内空心圆柱体(3)中的电涡流阻尼单元主要由永磁体(5)和铜板(10)组成,永磁体(5)嵌在内空心圆柱体(3)侧壁预留的孔洞内,铜板(10)固定在质量块(8)一侧;
    扭转刚度单元为扭转弹簧(15),扭转弹簧(15)分别固定在内盖板(18)和外盖板(17)之间、内空心圆柱体(3)和外空心圆柱体(1)底部之间;
    外空心圆柱体(1)中的电涡流阻尼单元主要由永磁体(5)和铜环(2)组成,铜环(2)固定在外空心圆柱体(1)内壁。
  2. 根据权利要求1所述的多维电涡流调谐质量阻尼器,其特征在于,所述的外空心圆柱体(1)、内空心圆柱体(3)、连接板(4)和质量块(8)均采用导磁材料制成;所述的滚珠为球形钢珠。
PCT/CN2018/110858 2018-10-18 2018-10-18 一种多维电涡流调谐质量阻尼器 WO2020077595A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/761,378 US11293512B2 (en) 2018-10-18 2018-10-18 Multi-dimensional eddy current tuned mass damper
PCT/CN2018/110858 WO2020077595A1 (zh) 2018-10-18 2018-10-18 一种多维电涡流调谐质量阻尼器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/110858 WO2020077595A1 (zh) 2018-10-18 2018-10-18 一种多维电涡流调谐质量阻尼器

Publications (1)

Publication Number Publication Date
WO2020077595A1 true WO2020077595A1 (zh) 2020-04-23

Family

ID=70284332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110858 WO2020077595A1 (zh) 2018-10-18 2018-10-18 一种多维电涡流调谐质量阻尼器

Country Status (2)

Country Link
US (1) US11293512B2 (zh)
WO (1) WO2020077595A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112160437A (zh) * 2020-09-11 2021-01-01 广州大学 一种双向电涡流非线性能量阱减振装置
CN112343196A (zh) * 2020-10-10 2021-02-09 广东省建筑设计研究院有限公司 一种多级变阻尼阻尼器
CN115262791A (zh) * 2022-07-12 2022-11-01 广州地铁设计研究院股份有限公司 一种建筑用减振装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021051374A1 (zh) * 2019-09-20 2021-03-25 大连理工大学 一种连梁剪切位移放大型电涡流阻尼器
CN112537535B (zh) * 2020-12-30 2022-04-19 安徽港口物流有限公司 一种具有防摔坏功能的物流运输箱
CN113202202A (zh) * 2021-06-03 2021-08-03 清华大学 一种新型调谐惯质旋转阻尼器
CN113863526B (zh) * 2021-09-18 2022-11-25 湖南省潇振工程科技有限公司 一种摆式惯质调谐质量电涡流阻尼器
CN115305802A (zh) * 2022-07-14 2022-11-08 西北工业大学 一种消除桥梁涡致振动的模态解耦器
CN115404758A (zh) * 2022-08-15 2022-11-29 沈阳工业大学 一种回转力矩主被动复合控制系统
CN116066512B (zh) * 2023-01-17 2023-10-24 哈尔滨工程大学 一种风力机塔筒内摆式电涡流阻尼器减振装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108693A1 (en) * 2006-03-21 2007-09-27 Statoil Asa Vibration reducer for reducing flow induced vibrations in a pipe and method of reducing such vibrations
CN105887661A (zh) * 2016-05-20 2016-08-24 河海大学 可串联组装的频率可调的电涡流调谐质量阻尼器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2696072B1 (de) * 2012-08-10 2015-03-25 Wölfel Beratende Ingenieure GmbH & Co. KG Schwingungstilgeranordnung für Windkraftanlagen mit Massenpendel und Wirbelstromdämpfer
CN107061599B (zh) * 2017-06-06 2023-05-23 广东电网有限责任公司电力科学研究院 一种滚珠式电涡流全向阻尼装置
CN206759010U (zh) * 2017-06-07 2017-12-15 广东电网有限责任公司电力科学研究院 一种电涡流耗能防振锤
CN108166641B (zh) * 2017-12-21 2019-07-30 东南大学 一种电涡流三维减振装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108693A1 (en) * 2006-03-21 2007-09-27 Statoil Asa Vibration reducer for reducing flow induced vibrations in a pipe and method of reducing such vibrations
CN105887661A (zh) * 2016-05-20 2016-08-24 河海大学 可串联组装的频率可调的电涡流调谐质量阻尼器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112160437A (zh) * 2020-09-11 2021-01-01 广州大学 一种双向电涡流非线性能量阱减振装置
CN112343196A (zh) * 2020-10-10 2021-02-09 广东省建筑设计研究院有限公司 一种多级变阻尼阻尼器
CN115262791A (zh) * 2022-07-12 2022-11-01 广州地铁设计研究院股份有限公司 一种建筑用减振装置
CN115262791B (zh) * 2022-07-12 2023-08-18 广州地铁设计研究院股份有限公司 一种建筑用减振装置

Also Published As

Publication number Publication date
US11293512B2 (en) 2022-04-05
US20200362933A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2020077595A1 (zh) 一种多维电涡流调谐质量阻尼器
CN109184018B (zh) 一种多维电涡流调谐质量阻尼器
WO2021051372A1 (zh) 基于电涡流和形状记忆合金技术的自复位调谐质量阻尼器
WO2019029198A1 (zh) 一种利用杠杆原理的电涡流减振装置
US9777793B1 (en) Six-degree-of-freedom micro vibration suppression platform and control method thereof
CN112144689B (zh) 一种水平调谐的框架式电涡流阻尼器
CN101812879B (zh) 控制建筑结构三维平动及水平扭转的调谐质量阻尼器及其制作方法
CN103132628B (zh) 摆式电涡流调谐质量阻尼器装置
CN111021571B (zh) 一种半主动正负刚度并联自协调减振装置
CN108869617B (zh) 一种自供电式磁流变减振装置
CN207032558U (zh) 多维调谐电磁耗能减振装置
CN111042370B (zh) 一种半主动负刚度多维减振装置
CN107268824B (zh) 多维调谐电磁耗能减振装置
CN109138207B (zh) 一种能量回收式电涡流阻尼器
CN113847384B (zh) 一种具有阻尼放大功能的复合式多维减振装置
CN212004085U (zh) 一种磁力阻尼器
CN209066637U (zh) 一种多维电涡流调谐质量阻尼器
CN105887661A (zh) 可串联组装的频率可调的电涡流调谐质量阻尼器
WO2020177045A1 (zh) 一种轴向位移放大型电涡流阻尼器
CN111255105B (zh) 一种多维电磁智能减振装置
CN107762229A (zh) 控制水平和扭转方向的电涡流耗能减振装置
CN112283285A (zh) 一种水平调谐的悬臂式电涡流阻尼器
TW201439405A (zh) 擺動式協調質量減幅系統
CN109235686B (zh) 一种旋转式磁负刚度减振装置
CN108166641B (zh) 一种电涡流三维减振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18937099

Country of ref document: EP

Kind code of ref document: A1