JP6926996B2 - 渦電流式ダンパ - Google Patents

渦電流式ダンパ Download PDF

Info

Publication number
JP6926996B2
JP6926996B2 JP2017231038A JP2017231038A JP6926996B2 JP 6926996 B2 JP6926996 B2 JP 6926996B2 JP 2017231038 A JP2017231038 A JP 2017231038A JP 2017231038 A JP2017231038 A JP 2017231038A JP 6926996 B2 JP6926996 B2 JP 6926996B2
Authority
JP
Japan
Prior art keywords
permanent magnet
conductive member
holding member
eddy current
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017231038A
Other languages
English (en)
Other versions
JP2019100438A (ja
Inventor
薫平 佐野
薫平 佐野
裕 野上
裕 野上
今西 憲治
憲治 今西
亮介 増井
亮介 増井
野口 泰隆
泰隆 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017231038A priority Critical patent/JP6926996B2/ja
Publication of JP2019100438A publication Critical patent/JP2019100438A/ja
Application granted granted Critical
Publication of JP6926996B2 publication Critical patent/JP6926996B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、渦電流式ダンパに関する。
地震等による振動から建築物を保護するために、建築物に制震装置が取り付けられる。制震装置は建築物に与えられた運動エネルギを熱エネルギ等の他のエネルギに変換する。これにより、建築物の大きな揺れが抑制される。制震装置はたとえば、ダンパである。ダンパの種類はたとえば、オイル式、せん断抵抗式がある。一般に、建築物にはオイル式やせん断抵抗式ダンパが使用されることが多い。オイル式ダンパは、シリンダ内の非圧縮性流体を利用して振動を減衰させる。せん断抵抗式ダンパは、粘性流体のせん断抵抗を利用して振動を減衰させる。
しかしながら、特にせん断抵抗式ダンパで用いられる粘性流体の粘度は、粘性流体の温度に依存する。すなわち、せん断抵抗式ダンパの減衰力は、粘性流体の温度に依存する。したがって、せん断抵抗式ダンパを建築物に使用する際には、使用環境を考慮して適切な粘性流体を選択する必要がある。また、オイル式やせん断抵抗式などの流体を用いているダンパは、温度上昇等によって流体の圧力が上昇し、シリンダのシール材などの機械的な要素が破損する恐れがある。減衰力が温度に依存しないダンパとして、渦電流式ダンパがある。
渦電流式ダンパはたとえば、特公平5−86496号公報(特許文献1)に開示される。
特許文献1の渦電流式ダンパは、主筒に取り付けられた複数の永久磁石と、ねじ軸に接続されたヒステリシス材と、ねじ軸と噛み合うボールナットと、ボールナットに接続された副筒と、を備える。複数の永久磁石は、磁極の配置が交互に異なる。ヒステリシス材は、複数の永久磁石と対向し、相対回転可能である。この渦電流式ダンパに運動エネルギが与えられると、副筒及びボールナットが軸方向に移動し、ボールねじの作用によってヒステリシス材が回転する。これにより、ヒステリシス損により運動エネルギが消費される。また、ヒステリシス材に渦電流が発生するため、渦電流損により運動エネルギが消費される、と特許文献1には記載されている。
特公平5−86496号公報
渦電流式ダンパでは渦電流が発生する部材(導電部材)に集中的に熱が発生する。そのため、短期間に余震が何度も発生したり、1回の地震が長時間続いたりすると、導電部材が高温になる。渦電流を発生させるために導電部材は永久磁石の近傍に設けられる。導電部材が高温になると、輻射熱により永久磁石も高温になる。永久磁石が高温になると、永久磁石が減磁し、発生する渦電流が弱まる。これにより、渦電流式ダンパの減衰力が低下する。そのため、渦電流式ダンパは冷却機構を含むのが望まれる。
しかしながら、特許文献1には、渦電流式ダンパの冷却機構については何ら開示されていない。
本発明の目的は、導電部材及び永久磁石の過度な温度上昇を抑制できる渦電流式ダンパを提供することである。
本実施形態の渦電流式ダンパは、導電部材と、磁石保持部材と、第1永久磁石と、第2永久磁石と、ねじ軸と、ボールナットと、を備える。円筒形状の導電部材は、導電性を有する。円筒形状の磁石保持部材は、導電部材と隙間を空けて対向する表面及び表面に設けられた凹部を含む。第1永久磁石は、凹部に固定され、導電部材と隙間を空けて対向する。第2永久磁石は、凹部に固定され、導電部材と隙間を空けて対向し、磁石保持部材の円周方向において第1永久磁石に隣接し、第1永久磁石と磁極の配置が反転する。ボールナットは、磁石保持部材又は導電部材に固定され、ねじ軸とかみ合う。磁石保持部材の熱伝導率は、第1永久磁石の熱伝導率及び第2永久磁石の熱伝導率よりも高い。
本実施形態の渦電流式ダンパによれば、導電部材及び永久磁石の過度な温度上昇を抑制できる。
図1は、渦電流式ダンパの軸方向の断面図である。 図2は、図1の一部拡大図である。 図3は、凹部を示す斜視図である。 図4は、渦電流式ダンパの軸方向に垂直な断面図である。 図5は、図4の一部拡大図である。 図6は、渦電流式ダンパの磁気回路を示す模式図である。 図7は、磁極の配置が円周方向である第1永久磁石及び第2永久磁石を示す斜視図である。 図8は、図7の渦電流式ダンパの磁気回路を示す模式図である。 図9は、軸方向に複数個配置された第1永久磁石及び第2永久磁石を示す斜視図である。 図10は、第2実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。 図11は、第2実施形態の渦電流式ダンパの軸方向に垂直な面での断面図である。 図12は、第3実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。 図13は、図12の一部拡大図である。 図14は、第4実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。 図15は、フィンを含む渦電流式ダンパの断面図である。 図16は、フィンの他の実施形態を示す断面図である。 図17は、フィンの他の実施形態を示す断面図である。
(1)本実施形態の渦電流式ダンパは、導電部材と、磁石保持部材と、第1永久磁石と、第2永久磁石と、ねじ軸と、ボールナットと、を備える。円筒形状の導電部材は、導電性を有する。円筒形状の磁石保持部材は、導電部材と隙間を空けて対向する表面及び表面に設けられた凹部を含む。第1永久磁石は、凹部に固定され、導電部材と隙間を空けて対向する。第2永久磁石は、凹部に固定され、導電部材と隙間を空けて対向し、磁石保持部材の円周方向において第1永久磁石に隣接し、第1永久磁石と磁極の配置が反転する。ボールナットは、磁石保持部材又は導電部材に固定され、ねじ軸とかみ合う。磁石保持部材の熱伝導率は、第1永久磁石の熱伝導率及び第2永久磁石の熱伝導率よりも高い。
ねじ軸及びボールナットは、ボールねじを構成する。渦電流式ダンパに振動が加えられ、ねじ軸が並進運動すると、ねじ軸とかみ合うボールナットが回転運動する。磁石保持部材又は導電部材はボールナットに固定される。したがって、ボールナットが回転すると磁石保持部材又は導電部材も回転する。磁石保持部材には第1永久磁石及び第2永久磁石が固定される。これにより、磁石保持部材又は導電部材が回転すると、導電部材に渦電流が発生し、減衰力が得られる。その一方で、導電部材は渦電流により発熱する。ここで、第1永久磁石及び第2永久磁石は、磁石保持部材の導電部材と対向する表面(外周面又は内周面)に設けられた凹部に固定される。したがって、導電部材と磁石保持部材の表面との距離及び導電部材と第1永久磁石及び第2永久磁石との距離に関して、従来の磁石保持部材の表面に永久磁石が固定されていたものと比較して、導電部材と磁石保持部材の表面との距離を短くすることができる。加えて、磁石保持部材の熱伝導率は高い。そのため、導電部材に発生した熱は、磁石保持部材に優先的に伝達される。磁石保持部材は、第1永久磁石及び第2永久磁石と比べて熱容量が大きい。したがって、第1永久磁石、第2永久磁石及び導電部材の過度な温度上昇が抑制される。
(2)上記(1)の渦電流式ダンパにおいて、磁石保持部材の表面と導電部材との距離は、第1永久磁石の導電部材に対向する表面と導電部材との距離と同じであるのが好ましい。
磁石保持部材の表面(外周面又は内周面)は導電部材に近づくことで導電部材の熱を優先的に吸収しやすくなる。したがって、干渉しない限り、磁石保持部材の表面は導電部材に近い方が好ましい。一方、第1永久磁石は第2永久磁石とともに磁気回路を形成し、導電部材に渦電流を発生させる。渦電流が強い方が渦電流式ダンパの減衰力が高まるため、第1永久磁石も導電部材に可能な限り近づける方が好ましい。したがって、磁石保持部材の表面及び第1永久磁石の導電部材と対向する表面共に、導電部材に極力近づけるのが好ましい。第2永久磁石についても同様である。
(3)上記(1)又は(2)の渦電流式ダンパはさらに、磁石保持部材に固定されたフィンを備えるのが好ましい。
このような構成によれば、磁石保持部材が回転すれば、フィンも回転する。したがって、渦電流式ダンパ内の空気がより拡散され、各永久磁石及び導電部材の過度な温度上昇がさらに抑制される。また、磁石保持部材が回転しない場合(ボールナットが導電部材に固定される場合)であっても、フィンが設けられた分、導電部材の熱を吸収できる容量が増える。したがって、各永久磁石及び導電部材の過度な温度上昇がさらに抑制される。
(4)上記(1)〜(3)の渦電流式ダンパはさらに、導電部材に固定されたフィンを備えるのが好ましい。
このような構成によれば、導電部材が回転しない場合、フィンは渦電流式ダンパ内の熱を吸収又は放熱する。導電部材が回転する場合、渦電流式ダンパ内の空気がより拡散され、又は外気と接することによりフィンが冷却される。これにより、各永久磁石及び導電部材の過度な温度上昇がさらに抑制される。
以下、図面を参照して、本実施形態の渦電流式ダンパについて説明する。
[第1実施形態]
図1は、渦電流式ダンパの軸方向の断面図である。図1を参照して、渦電流式ダンパ1は、導電部材8と、磁石保持部材4と、第1永久磁石6と、第2永久磁石7と、ねじ軸2と、ボールナット3と、を含む。
[導電部材]
導電部材8は、ねじ軸2を中心軸とする円筒形状である。導電部材8は、磁石保持部材4、第1永久磁石6、第2永久磁石7、ボールナット3及びねじ軸2を収容可能である。つまり、磁石保持部材4が導電部材8の内側に同心状に配置される。
導電部材8は磁石保持部材4を回転可能に支持する。磁石保持部材4の径方向において、磁石保持部材4と導電部材8との間には、ラジアル軸受16が設けられる。また、磁石保持部材4の軸方向において、磁石保持部材4と導電部材8との間には、スラスト軸受17が設けられる。なお、ラジアル軸受やスラスト軸受の種類は、特に限定されることなく、ボール式、ローラー式、滑り式などでもよいことはもちろんである。
図2は、図1の一部拡大図である。図2を参照して、導電部材8の内周面は、第1永久磁石6及び第2永久磁石7と隙間を空けて対向する。後述するように、導電部材8の表面(内周面)に渦電流を発生させるため、導電部材8は磁石保持部材4と相対的に回転する。干渉を回避するため、導電部材8と第1永久磁石6及び第2永久磁石7との間には、隙間が設けられる。導電部材8と一体の取付具14は、建物支持面又は建物内に固定される(図1参照)。そのため、導電部材8はねじ軸2周りに回転しない。
導電部材は、導電性を有する。導電部材の材質はたとえば、炭素鋼、鋳鉄等の強磁性体である。その他に、導電部材の材質は、フェライト系ステンレス鋼等の弱磁性体であってもよいし、アルミニウム合金、オーステナイト系ステンレス鋼、銅合金等の非磁性体であってもよい。これらの材質の熱伝導率は、永久磁石よりも高い。
[磁石保持部材]
磁石保持部材4は、ねじ軸2を中心軸とする円筒形状である。磁石保持部材4は、ボールナット3及びねじ軸2を収容可能である。磁石保持部材4は、表面(外周面)5及び表面5に設けられた凹部9を含む。表面(外周面)5は、干渉を回避するため導電部材8と隙間を空けて対向する。
一般には、第1永久磁石6及び第2永久磁石7は、磁石保持部材の表面(外周面)5に固定される。したがって、第1永久磁石6及び第2永久磁石7と導電部材8との距離は、磁石保持部材の表面(外周面)5と導電部材8との距離よりも短い。したがって、渦電流により発熱した導電部材8の熱が、第1永久磁石6及び第2永久磁石7に伝達されやすい。しかしながら、本実施形態の渦電流式ダンパは、凹部9を含む。凹部9は、底面10を含む。底面10と導電部材8との距離は、磁石保持部材の表面(外周面)5と導電部材8との距離よりも長い。この底面10に第1永久磁石6及び第2永久磁石7が固定される。したがって、第1永久磁石6及び第2永久磁石7と導電部材8との距離が長くなる。これにより、導電部材8の熱が第1永久磁石6及び第2永久磁石7に伝達されにくくなる。
また、導電部材8と磁石保持部材の表面5との距離及び導電部材8と第1永久磁石6及び第2永久磁石7との距離を見ると、凹部に第1永久磁石及び第2永久磁石が固定されることにより磁石保持部材の表面(外周面)に第1永久磁石及び第2永久磁石が固定される場合と比べて導電部材8と磁石保持部材の表面5との距離を短くすることができる。表面(外周面)5は導電部材8と対向するため、導電部材8の熱が磁石保持部材4に伝達されやすくなる。さらには、磁石保持部材の熱伝導率は、第1永久磁石の熱伝導率及び第2永久磁石の熱伝導率よりも高い。したがって、熱の特性上、導電部材の熱は熱伝導率の高い磁石保持部材に伝達されやすい。
このような構成により、導電部材に発生した熱は、磁石保持部材に優先的に伝達される。磁石保持部材は、円筒形状であり第1永久磁石及び第2永久磁石と比べて熱容量が大きい。そのため、同じ量の熱が伝達されても第1永久磁石及び第2永久磁石の昇温量に比べて磁石保持部材の昇温量の方が小さくて済む。要するに、従来、第1永久磁石及び第2永久磁石に伝達されていた熱を、渦電流式ダンパの永久磁石以外の部品に分散させることで、導電部材の過度な温度上昇を抑制し、かつ、第1永久磁石及び第2永久磁石の温度上昇も抑制する。
磁石保持部材4の材質は、特に限定されない。しかしながら、磁石保持部材4の材質は、透磁率の高い鋼等が好ましい。磁石保持部材4の材質はたとえば、炭素鋼、鋳鉄等の強磁性体である。この場合、磁石保持部材4は、ヨークとしての役割を果たす。すなわち、第1永久磁石6及び第2永久磁石7からの磁束が外部に漏れにくくなり、渦電流式ダンパ1の減衰力が高まる。
磁石保持部材4は、ボールナット3に固定される。したがって、ボールナット3が回転すれば、磁石保持部材4も回転し、磁石保持部材4は導電部材8に対して相対的に回転可能となる。
図3は、凹部を示す斜視図である。図3を参照して、凹部9は、磁石保持部材4の円周方向にわたって設けられる。磁石保持部材4の軸方向に沿った凹部9の長さは特に限定されないが、第1永久磁石6及び第2永久磁石7を収容可能である必要がある。また、磁石保持部材4の軸方向に沿った凹部9の長さは、磁石保持部材4の表面(外周面)5の長さよりも短い。これにより、磁石保持部材4の外周面に凹部9を設けても、導電部材と対向する表面(外周面)5が存在し得る。
図3では、複数の第1永久磁石6及び複数の第2永久磁石7が、1つの凹部9に固定される場合を示す。しかしながら、本実施形態の渦電流式ダンパはこれに限定されない。たとえば、磁石保持部材4の円周方向に沿って複数の凹部9が設けられてもよい。各凹部9に第1永久磁石6及び第2永久磁石7が1つずつ固定されてもよい。
[第1永久磁石及び第2永久磁石]
第1永久磁石6は、凹部9に固定される。第2永久磁石7も、第1永久磁石6と同様である。第2永久磁石7は、磁石保持部材4の円周方向において第1永久磁石6に隣接する。より具体的には、第1永久磁石6は、磁石保持部材4の円周方向において隙間を空けて第2永久磁石7と隣接する。第2永久磁石7のサイズ及び特質は第1永久磁石6のサイズ及び特質と同じである。
図4は、渦電流式ダンパの軸方向に垂直な断面図である。図4を参照して、磁石保持部材4に複数の第1永久磁石6及び複数の第2永久磁石7が固定される場合を示す。この場合、隙間を空けて隣接する2つの第1永久磁石6の間に1つの第2永久磁石7が配置される。すなわち、第1永久磁石6及び第2永久磁石7は、磁石保持部材4の円周方向に交互に配列される。
図5は、図4の一部拡大図である。図5を参照して、第1永久磁石6及び第2永久磁石7の磁極は、磁石保持部材4の径方向に配置される。第2永久磁石7の磁極の配置は第1永久磁石6の磁極の配置と反転している。具体的には、磁石保持部材4の径方向において、第1永久磁石6のN極は外側に配置され、S極は内側に配置される。そのため、第1永久磁石6のS極が磁石保持部材4(凹部9の底面10)と接する。一方、磁石保持部材4の径方向において、第2永久磁石7のN極は内側に配置され、そのS極は外側に配置される。そのため、第2永久磁石7のN極が磁石保持部材4と接する。このような構成により、導電部材に渦電流を発生させることができる。この点については後述する。
第1永久磁石6及び第2永久磁石7はたとえば、接着剤により磁石保持部材4に固定される。なお、接着剤に限らず、第1永久磁石6及び第2永久磁石7はネジ等で固定されてもよいことはもちろんである。
図2を参照して、磁石保持部材4の径方向において、磁石保持部材4の導電部材8と対向する表面5と導電部材8との距離は、第1永久磁石6の導電部材8に対向する表面と導電部材8との距離と同じであるのが好ましい。すなわち、磁石保持部材の表面(外周面)5は、第1永久磁石6の導電部材8に対向する表面と同一曲面上に存在するのが好ましい。上述したように、磁石保持部材の表面(外周面)5は導電部材8に近づくことで導電部材8の熱を優先的に吸収しやすくなる。したがって、干渉しない限り、磁石保持部材の表面(外周面)5は導電部材8の内周面に近い方が好ましい。一方、後述するように、第1永久磁石6は第2永久磁石7とともに磁気回路を形成し、導電部材8に渦電流を発生させる。渦電流が強い方が渦電流式ダンパの減衰力が高まるため、第1永久磁石6も導電部材8の内周面に可能な限り近づける方が好ましい。したがって、磁石保持部材の表面(外周面)5及び第1永久磁石6の導電部材8と対向する表面共に、導電部材8に可能な限り近づけると、導電部材8から同じ距離となる。
[ねじ軸]
図1を参照して、ねじ軸2の外周面には、ねじ部が形成されている。ねじ軸2は、中心軸を含む。ねじ軸2は、中心軸方向に延びる。ねじ軸2は、ボールナット3を貫通し、ボールを介してボールナット3とかみ合う。
[ボールナット]
ボールナット3は、ねじ軸2とかみ合う。ボールナット3の内周面には、ねじ軸2とかみ合うねじ部が形成されている。ボールナット3は、磁石保持部材4及び導電部材8の内部に配置される。ボールナット3の種類は、特に限定されない。ボールナット3は、周知のボールナットを用いてよい。
すなわち、ねじ軸2及びボールナット3は、ボールねじを構成する。ボールねじは、ねじ軸2の軸方向の並進運動をボールナット3の回転運動に変換する。ねじ軸2には取付具15が接続される。ねじ軸2と一体の取付具15は、建物支持面又は建物内に固定される。渦電流式ダンパ1が、たとえば建物内と建物支持面との間の免震層に設置される事例の場合、ねじ軸2と一体の取付具15が建物内に固定され、導電部材8と一体の取付具14は建物支持面に固定される。渦電流式ダンパ1が、たとえば建物内の任意の層間に設置される事例の場合は、ねじ軸2と一体の取付具15が任意の層間の上部梁側に固定され、導電部材8と一体の取付具14は任意の層間の下部梁側に固定される。そのため、ねじ軸2はその中心軸周りに回転しない。
ねじ軸2と一体の取付具15及び導電部材8と一体の取付具14の固定は、上述の説明の逆であってもよい。すなわち、ねじ軸2と一体の取付具15が建物支持面に固定され、導電部材8と一体の取付具14が建物内に固定されてもよい。
ねじ軸2は、磁石保持部材4及び導電部材8の内部に軸方向に沿って進出又は退出可能である。したがって、振動等により、渦電流式ダンパ1に運動エネルギが与えられると、ねじ軸2が軸方向に移動する。ねじ軸2が軸方向に移動すれば、ボールねじの機能によってボールナット3がねじ軸の中心軸周りに回転する。ボールナット3の回転に伴い、ボールナット3に固定された磁石保持部材4が回転する。これにより、磁石保持部材4と一体の第1永久磁石6及び第2永久磁石7が導電部材8に対して相対回転するため、導電部材8には渦電流が発生する。その結果、渦電流式ダンパ1に減衰力が生じ、振動を減衰させる。
続いて、渦電流の発生原理及び渦電流による減衰力の発生原理について説明する。
[渦電流による減衰力]
図6は、渦電流式ダンパの磁気回路を示す模式図である。図6を参照して、第1永久磁石6の磁極の配置は、隣接する第2永久磁石7の磁極の配置と反転している。したがって、第1永久磁石6のN極から出た磁束は、隣接する第2永久磁石7のS極に到達する。第2永久磁石7のN極から出た磁束は、隣接する第1永久磁石6のS極に到達する。これにより、第1永久磁石6、第2永久磁石7、導電部材8及び磁石保持部材4の中で、磁気回路が形成される。第1永久磁石6及び第2永久磁石7と、導電部材8との間の隙間は十分に小さいため、導電部材8は磁界の中にある。
磁石保持部材4が回転すると(図6中の矢印参照)、第1永久磁石6及び第2永久磁石7は導電部材8に対して移動する。そのため、導電部材8の表面(図6では第1永久磁石6及び第2永久磁石7が対向する導電部材8の内周面)を通過する磁束が変化する。これにより導電部材8の表面に渦電流が発生する。渦電流が発生すると、新たな磁束(反磁界)が発生する。この新たな磁束は、磁石保持部材4と導電部材8との相対回転を妨げる。すなわち、磁石保持部材4の回転が妨げられる。磁石保持部材4の回転が妨げられれば、磁石保持部材4に固定されたボールナット3の回転も妨げられる。ボールナット3の回転が妨げられれば、ねじ軸2の軸方向の移動も妨げられる。これが渦電流式ダンパ1の減衰力である。振動等による運動エネルギにより発生する渦電流は、導電部材の温度を上昇させる。すなわち、渦電流式ダンパに与えられた運動エネルギが熱エネルギに変換され、減衰力が得られる。
続いて、本実施形態の渦電流式ダンパの好適な態様及び他の実施形態について説明する。
[磁極の配置]
上述の説明では、第1永久磁石及び第2永久磁石の磁極の配置は、磁石保持部材の径方向である場合について説明した。しかしながら、第1永久磁石及び第2永久磁石の磁極の配置は、これに限定されない。
図7は、磁極の配置が円周方向である第1永久磁石及び第2永久磁石を示す斜視図である。図7を参照して、第1永久磁石6及び第2永久磁石7の磁極の配置は、磁石保持部材4の円周方向に沿う。この場合であっても、第1永久磁石6の磁極の配置は、第2永久磁石7の磁極の配置と反転している。第1永久磁石6と第2永久磁石7との間には、強磁性体のポールピース11が設けられる。
図8は、図7の渦電流式ダンパの磁気回路を示す模式図である。図8を参照して、第1永久磁石6のN極から出た磁束は、ポールピース11を通って、第1永久磁石6のS極に到達する。第2永久磁石7についても同様である。第1永久磁石6、第2永久磁石7、ポールピース11及び導電部材8の中で、磁気回路が形成される。これにより、上述と同様に、渦電流式ダンパに減衰力が得られる。
[永久磁石の軸方向への配置]
渦電流式ダンパの減衰力をより大きくするには、導電部材に発生する渦電流を強くすればよい。強い渦電流を発生させる1つの方法として、第1永久磁石及び第2永久磁石から出る磁束の量を増やすことが考えられる。すなわち、第1永久磁石及び第2永久磁石のサイズを大きくする。しかしながら、サイズの大きい第1永久磁石及び第2永久磁石はコストが高く、磁石保持部材への取り付けも容易ではない。
図9は、軸方向に複数個配置された第1永久磁石及び第2永久磁石を示す斜視図である。図9を参照して、第1永久磁石6及び第2永久磁石7は、1つの磁石保持部材4の軸方向に複数個配置されてもよい。これにより、1つの第1永久磁石6及び1つの第2永久磁石7それぞれのサイズは小さくて済む。したがって、第1永久磁石6及び第2永久磁石7のコストは安価で済む。また、第1永久磁石6及び第2永久磁石7の磁石保持部材4への取り付けも容易である。また、磁石保持部材4に取り付けられた複数の第1永久磁石6及び第2永久磁石7の総サイズは大きい。したがって、導電部材に発生する渦電流の強さは強くなる。
軸方向に配置された第1永久磁石6及び第2永久磁石7の、磁石保持部材4の円周方向の配置は、上述と同様である。すなわち、磁石保持部材4の円周方向に沿って第1永久磁石6と第2永久磁石7は交互に配置され、磁極の配置は反転する。
渦電流式ダンパの減衰力を高める観点から、磁石保持部材4の軸方向において、第1永久磁石6は第2永久磁石7と隣接するのが好ましい。この場合、磁気回路が磁石保持部材4の円周方向だけでなく、軸方向においても生じる。したがって、導電部材8に発生する渦電流が強くなる。その結果、渦電流式ダンパの減衰力が大きくなる。
しかしながら、磁石保持部材4の軸方向において、第1永久磁石6及び第2永久磁石7の配置は特に限定されない。すなわち、磁石保持部材4の軸方向において、第1永久磁石6は第1永久磁石6の隣に配置されていてもよいし、第2永久磁石7の隣に配置されていてもよい。
上述した第1実施形態では、磁石保持部材が導電部材の内側に配置されて第1永久磁石及び第2永久磁石が磁石保持部材の外周面に取り付けられ、磁石保持部材が回転する場合について説明した。しかしながら、本実施形態の渦電流式ダンパは、これに限定されない。
[第2実施形態]
第2実施形態の渦電流式ダンパは、磁石保持部材が導電部材の外側に配置され、回転しない。渦電流は、内側の導電部材が回転することで発生する。
図10は、第2実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。図11は、第2実施形態の渦電流式ダンパの軸方向に垂直な面での断面図である。図10及び図11を参照して、磁石保持部材4は、導電部材8、ボールナット3及びねじ軸2を収容可能である。第1永久磁石6及び第2永久磁石7は、磁石保持部材4の内周面に取り付けられる。したがって、導電部材8の外周面が、第1永久磁石6、第2永久磁石7及び磁石保持部材4の表面(内周面)5と隙間を空けて対向する。
第2実施形態では、磁石保持部材4はねじ軸2周りに回転しない。一方で、ボールナット3は、導電部材8に固定される。したがって、ボールナット3が回転すれば、導電部材8は回転する。このような構成の場合でも、上述したように、磁石保持部材4と一体の第1永久磁石6及び第2永久磁石7が導電部材8に対して相対回転するため、導電部材8には渦電流が発生する。その結果、渦電流式ダンパ1に減衰力が生じ、振動を減衰させることができる。
また、第2実施形態の渦電流式ダンパでは、磁石保持部材4が導電部材8の外側に配置される。つまり、磁石保持部材4が最も外側に配置されて外気と接する。これにより、磁石保持部材4は外気によって冷却される。そのため、磁石保持部材4を通じて第1永久磁石及び第2永久磁石を冷却できる。その結果、導電部材、第1永久磁石及び第2永久磁石の温度上昇を抑制できる。
[第3実施形態]
第3実施形態の渦電流式ダンパは、磁石保持部材が導電部材の内側に配置され、回転しない。渦電流は、外側の導電部材が回転することで発生する。
図12は、第3実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。図13は、図12の一部拡大図である。図12及び図13を参照して、導電部材8は、磁石保持部材4、ボールナット3及びねじ軸2を収容可能である。第1永久磁石6及び第2永久磁石7は、磁石保持部材4の外周面に取り付けられる。したがって、導電部材8の内周面が、第1永久磁石6、第2永久磁石7及び磁石保持部材4の表面(外周面)5と隙間を空けて対向する。
第3実施形態では、磁石保持部材4はねじ軸2周りに回転しない。一方で、ボールナット3は、導電部材8に接続される。したがって、ボールナット3が回転すれば、導電部材8は回転する。このような構成の場合でも、上述したように、磁石保持部材4と一体の第1永久磁石6及び第2永久磁石7が導電部材8に対して相対回転するため、導電部材8には渦電流が発生する。その結果、渦電流式ダンパ1に減衰力が生じ、振動を減衰させることができる。
また、第3実施形態の渦電流式ダンパでは、導電部材8が磁石保持部材4の外側に配置される。つまり、導電部材8が最も外側に配置されて外気と接する。また、導電部材8は、ねじ軸2周りに回転する。これにより、回転する導電部材8は外気によって効率良く冷却される。そのため、導電部材8の温度上昇を抑制できる。その結果、第1永久磁石及び第2永久磁石の温度上昇を抑制できる。
[第4実施形態]
第4実施形態の渦電流式ダンパは、導電部材が磁石保持部材の内側に配置され、回転しない。渦電流は、外側の磁石保持部材が回転することで発生する。
図14は、第4実施形態の渦電流式ダンパの軸方向に沿った面での断面図である。図14を参照して、磁石保持部材4は、導電部材8、ボールナット3及びねじ軸2を収容可能である。第1永久磁石6及び第2永久磁石7は、磁石保持部材4の内周面に取り付けられる。したがって、導電部材8の外周面が、第1永久磁石6、第2永久磁石7及び磁石保持部材4の表面(内周面)5と隙間を空けて対向する。
第4実施形態では、導電部材8はねじ軸2周りに回転しない。一方で、ボールナット3は、磁石保持部材4に固定される。したがって、ボールナット3が回転すれば、磁石保持部材4は回転する。このような構成の場合でも、上述したように、磁石保持部材4と一体の第1永久磁石6及び第2永久磁石7が導電部材8に対して相対回転するため、導電部材8には渦電流が発生する。その結果、渦電流式ダンパ1に減衰力が生じ、振動を減衰させることができる。
また、第4実施形態の渦電流式ダンパでは、磁石保持部材4が導電部材8の外側に配置される。つまり、磁石保持部材4が最も外側に配置されて外気と接する。また、磁石保持部材4は、ねじ軸2周りに回転する。これにより、回転する磁石保持部材4は外気によって効率良く冷却される。そのため、磁石保持部材4を通じて第1永久磁石及び第2永久磁石を冷却できる。その結果、第1永久磁石及び第2永久磁石の温度上昇を抑制できる。
[フィン]
導電部材及び各永久磁石の冷却効果をさらに高めるため、渦電流式ダンパはフィンを含んでもよい。以下では、例として、第1実施形態の渦電流式ダンパにフィンが設けられる場合について説明する。しかしながら、第2〜第4実施形態の渦電流式ダンパも、以下の説明と同様のフィンを含むことができる。
図15は、フィンを含む渦電流式ダンパの断面図である。図15を参照して、フィン13は、磁石保持部材4の外周面に固定される。磁石保持部材4が回転すると、フィン13も磁石保持部材4の中心軸周りに回転する。フィン13の回転により、渦電流式ダンパ内の空気が流れ、導電部材8及び各永久磁石の熱が拡散される。したがって、導電部材及び各永久磁石の過度な温度上昇がさらに抑制される。なお、磁石保持部材4が回転しない場合であっても、フィンが設けられた分、導電部材からの熱を吸収できる容量が増える。したがって、各永久磁石及び導電部材の過度な温度上昇がさらに抑制される。
図16は、フィンの他の実施形態を示す断面図である。図16を参照して、フィン13は、導電部材8の内周面に固定される。導電部材8は、磁石保持部材4の軸回りに回転しない。この場合、フィン13は渦電流式ダンパ内の熱を吸収する。したがって、導電部材及び各永久磁石の過度な温度上昇がさらに抑制される。なお、導電部材8が回転する場合は、フィン13も回転するため、渦電流式ダンパ内の空気が流れ、導電部材8及び各永久磁石の熱が拡散される。したがって、導電部材及び各永久磁石の過度な温度上昇がさらに抑制される。
図17は、フィンの他の実施形態を示す断面図である。図17を参照して、フィン13は導電部材8の外周面に固定される。この場合、フィン13は導電部材8の熱を外部に放出する。これにより、導電部材8の温度が低下し、導電部材8が各永久磁石の熱を吸収できるようになる。したがって、導電部材及び各永久磁石の過度な温度上昇がさらに抑制される。なお、導電部材8が回転する場合であっても、回転するフィン13が外気と接するため、フィンが冷却され、導電部材8の熱を吸収する。したがって、導電部材及び各永久磁石の過度な温度上昇がさらに抑制される。
フィン13の数は特に限定されない。たとえば、フィン13は、磁石保持部材4の円周方向に複数配置されてもよい。また、図15〜図17に示すフィンを組み合せて用いてもよい。
以上、本実施形態の渦電流式ダンパについて説明した。その他、本発明は上記の実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能であることは言うまでもない。
本発明の渦電流式ダンパは、建造物の制震装置および免震装置に有用である。
1:渦電流式ダンパ
2:ねじ軸
3:ボールナット
4:磁石保持部材
5:表面
6:第1永久磁石
7:第2永久磁石
8:導電部材
9:凹部
10:底面
11:ポールピース
13:フィン
14:取付具(導電部材と一体)
15:取付具(ねじ軸と一体)
16:ラジアル軸受
17:スラスト軸受

Claims (3)

  1. 導電性を有する円筒形状の導電部材と、
    前記導電部材と隙間を空けて対向する表面及び前記表面に設けられた凹部を含む円筒形状の磁石保持部材と、
    前記凹部に固定され、前記導電部材と隙間を空けて対向する第1永久磁石と、
    前記凹部に固定され、前記導電部材と隙間を空けて対向し、前記磁石保持部材の円周方向において前記第1永久磁石に隣接し、前記第1永久磁石と磁極の配置が反転した第2永久磁石と、
    ねじ軸と、
    前記磁石保持部材又は前記導電部材に固定され、前記ねじ軸とかみ合うボールナットと、を備え、
    前記磁石保持部材の熱伝導率は、前記第1永久磁石の熱伝導率及び前記第2永久磁石の熱伝導率よりも高く、
    前記磁石保持部材の表面と前記導電部材との距離は、前記第1永久磁石の前記導電部材に対向する表面と前記導電部材との距離と同じである、渦電流式ダンパ。
  2. 請求項に記載の渦電流式ダンパであってさらに、
    前記磁石保持部材に固定されたフィンを備える、渦電流式ダンパ。
  3. 請求項1又は請求項2に記載の渦電流式ダンパであってさらに、
    前記導電部材に固定されたフィンを備える、渦電流式ダンパ。
JP2017231038A 2017-11-30 2017-11-30 渦電流式ダンパ Active JP6926996B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017231038A JP6926996B2 (ja) 2017-11-30 2017-11-30 渦電流式ダンパ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017231038A JP6926996B2 (ja) 2017-11-30 2017-11-30 渦電流式ダンパ

Publications (2)

Publication Number Publication Date
JP2019100438A JP2019100438A (ja) 2019-06-24
JP6926996B2 true JP6926996B2 (ja) 2021-08-25

Family

ID=66976644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017231038A Active JP6926996B2 (ja) 2017-11-30 2017-11-30 渦電流式ダンパ

Country Status (1)

Country Link
JP (1) JP6926996B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404060B2 (ja) * 2019-12-20 2023-12-25 東芝テリー株式会社 旋回カメラ装置の旋回部落下防止器具と旋回カメラ装置
CN117222825A (zh) 2021-05-27 2023-12-12 日本制铁株式会社 涡电流式阻尼器
CN113309218B (zh) * 2021-06-04 2023-12-08 陕西超艺实业有限公司 一种混凝土建筑之间的钢结构连廊

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533679U (ja) * 1991-10-07 1993-04-30 東京部品工業株式会社 渦電流式ブレーキの回転体
JP3285059B2 (ja) * 1993-10-18 2002-05-27 いすゞ自動車株式会社 渦電流式減速装置
JP6104678B2 (ja) * 2013-04-02 2017-03-29 株式会社東芝 減衰装置

Also Published As

Publication number Publication date
JP2019100438A (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
TWI674368B (zh) 渦電流式阻尼器
JP6863465B2 (ja) 渦電流式ダンパ
JP6926996B2 (ja) 渦電流式ダンパ
JP6947224B2 (ja) 渦電流式ダンパ
WO2016063980A1 (ja) 高速回転用磁性流体シール構造
JP7185393B2 (ja) 渦電流式ダンパ
JP6897523B2 (ja) 渦電流式ダンパ
JP7050619B2 (ja) 渦電流式ダンパ
JP7040350B2 (ja) 渦電流式ダンパ
JP7101556B2 (ja) 渦電流式ダンパ
JP6897525B2 (ja) 渦電流式ダンパ
JP7040357B2 (ja) 渦電流式ダンパ
JP7135725B2 (ja) 渦電流式ダンパ
JP2019078331A (ja) 渦電流式ダンパ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R151 Written notification of patent or utility model registration

Ref document number: 6926996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151