JPWO2019021354A1 - 車両駐車支援装置、車両駐車支援プログラム - Google Patents

車両駐車支援装置、車両駐車支援プログラム Download PDF

Info

Publication number
JPWO2019021354A1
JPWO2019021354A1 JP2019532239A JP2019532239A JPWO2019021354A1 JP WO2019021354 A1 JPWO2019021354 A1 JP WO2019021354A1 JP 2019532239 A JP2019532239 A JP 2019532239A JP 2019532239 A JP2019532239 A JP 2019532239A JP WO2019021354 A1 JPWO2019021354 A1 JP WO2019021354A1
Authority
JP
Japan
Prior art keywords
vehicle
distance measurement
image
distance
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019532239A
Other languages
English (en)
Other versions
JP6841331B2 (ja
Inventor
俊明 安東
俊明 安東
村下 君孝
君孝 村下
康貴 岡田
康貴 岡田
純 金武
純 金武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2019021354A1 publication Critical patent/JPWO2019021354A1/ja
Application granted granted Critical
Publication of JP6841331B2 publication Critical patent/JP6841331B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0253Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting relative motion information from a plurality of images taken successively, e.g. visual odometry, optical flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1656Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with passive imaging devices, e.g. cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/028Guided parking by providing commands to the driver, e.g. acoustically or optically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Electromagnetism (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Analysis (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

車両駐車支援装置は、車両に搭載された単眼カメラから、第一時刻における第一画像と、前記第一時刻よりも後の第二時刻における第二画像とを取得する第一処理と、前記第一時刻と前記第二時刻との間の測定期間において取得されたセンサ値に基づいて前記車両の移動量を算出する第二処理と、前記移動量に応じて、前記第一画像または前記第二画像の一方を用いて測距を行う第一測距方式と、前記第一画像および前記第二画像の両方を用いて測距を行う第二測距方式とのいずれか一方を用いた測距結果を出力する第三処理と、前記測距結果に基づいて、前記車両を駐車スペースに誘導させる経路算出結果を出力する第四処理と、を実行する処理回路を備える。

Description

本発明は、車両から撮像された画像に基づいて車両周辺の対象までの距離を測定して車両の駐車を支援する車両駐車支援装置、車両駐車支援プログラムに関する。
車両(移動体と称されてもよい)に搭載されたカメラ(車載カメラと称されてもよい)から撮像される画像を基にして、目標の駐車位置を検出し、現在位置から目標の駐車位置まで車両を制御ないし運転者の操縦を支援する技術(車両駐車支援技術と称されてもよい)が知られている。そのような技術では、走行可能なルートを算出するために、車両周辺に位置する物体(対象物と称されてもよい)を検知すると共に、対象物と車両との距離を正確に算出することが求められる。また、車両周辺の物体を検知するために、センサのコストやセンサの搭載位置の制約等から、単眼カメラを用いることが好ましい。
例えば、単眼カメラで撮影された画像データから検知される対象物と車両との距離を算出する従来技術として、接地位置判定法と、移動ステレオ法がある。
接地位置判定法は、前段階で機械学習またはオプティカルフローなどを用いて、単眼カメラで撮影された画像データから対象物を検知し、検出した対象物の接地位置の画像上の座標と、ディストーションテーブルやカメラ取り付け位置・向きなどを基にして、幾何学的に、車両と対象物との距離を算出するものである。
移動ステレオ法は、車両の移動量と、車両移動前後に単眼カメラで撮影された複数の画像データとを基にして、車両から対象物までの距離を推定するものである。移動ステレオ法では、車両の移動量を比較的正確に特定でき、かつ、対象物が動いていない場合に、高精度に距離を測距することができる。
特開2015−88092号公報 特開平11−105686号公報 国際公開第2016/121550号 特開2001−187553号公報 特開2014−109819号公報 特開2014−106092号公報 特開2012−164275号公報 国際公開第2010/098170号
従来の技術では、車両などの移動体から対象物までの距離を正確に測定できない場合がある。
例えば、接地位置判定法は、一時点の画像から対象物を検出するため、検出された対象物の画素位置における誤差による影響が、測距精度に影響を与える度合いが比較的大きい。
一方、移動ステレオ法は、時間差のある複数の時点の画像と車両の移動量とに基づいて三角測量の方法により対象物の三次元位置を推定する技術であるため、複数の画像間で十分な視差が得られることが求められる。しかし、車両が停止している状態や、走行を開始した直後は、十分な視差を有する画像が得られず、移動ステレオ法による測距を十分な精度で行うことが出来ない。
一つの側面では、本発明は、単眼カメラにより撮像された画像から、移動体から対象物までの距離の測定精度を向上することができる、車両駐車支援装置、車両駐車支援プログラムを提供することを目的とする。
開示の一側面によれば、車両駐車支援装置は、車両に搭載された単眼カメラから、第一時刻における第一画像と、前記第一時刻よりも後の第二時刻における第二画像とを取得する第一処理と、前記第一時刻と前記第二時刻との間の測定期間において取得されたセンサ値に基づいて前記車両の移動量を算出する第二処理と、前記移動量に応じて、前記第一画像または前記第二画像の一方を用いて測距を行う第一測距方式と、前記第一画像および前記第二画像の両方を用いて測距を行う第二測距方式とのいずれか一方を用いた測距結果を出力する第三処理と、前記測距結果に基づいて、前記車両を駐車スペースに誘導させる経路算出結果を出力する第四処理と、を実行する処理回路を備える。
開示の技術によれば、単眼カメラにより撮像された画像から、移動体から対象物までの距離の測定精度を向上することができる。
図1は、実施例1に係る車両駐車支援装置を備えた車両の構成の概要を例示する図である。 図2は、実施例1に係る車両駐車支援装置における処理の流れの一例を示す図である。 図3は、接地位置判定法による測距原理の一例を示す図である。 図4は、車両に搭載された単眼カメラによる撮影画像の一例を示す図である。 図5は、実施例2に係る車両駐車支援装置を備えた車両の構成の概要を例示する図である。 図6は、車両の前輪の切れ角の一例を示す図である。 図7は、実施例2に係る車両駐車支援装置における処理の流れの一例を示す図である。 図8は、車両の移動軌跡と旋回半径との一例を示す図である。 図9は、実施例3に係る車両駐車支援装置における処理の流れの一例を示す図(その1)である。 図10は、実施例3に係る車両駐車支援装置における処理の流れの一例を示す図(その2)である。 図11は、第一測距方式と第二測距方式との特性を例示する図(その1)である。 図12は、第一測距方式と第二測距方式との特性を例示する図(その2)である。 図13は、測距方式の選択制御における領域の一例を示す図である。 図14は、単眼カメラの撮影画像に第一領域の境界を重ねた例を示す図である。 図15は、実施例4に係る車両駐車支援装置における処理の流れの一例を示す図(その1)である。 図16は、実施例4に係る車両駐車支援装置における処理の流れの一例を示す図(その2)である。 図17は、実施例5に係る車両駐車支援装置を備えた車両の構成の概要を例示する図である。 図18は、カメラ設置情報の内容例を示す図である。 図19は、実施例5に係る車両駐車支援装置における処理の流れの一例を示す図(その1)である。 図20は、実施例5に係る車両駐車支援装置における処理の流れの一例を示す図(その2)である。
以下に、本願が開示する車両駐車支援装置の実施例について、図面を参照しながら詳細に説明する。なお、以下に示す実施例は開示の技術を限定するものではない。また、以下に示す各実施例は、適宜組み合わせて実施してもよいことはいうまでもない。
<実施例1> 図1は、実施例1に係る車両駐車支援装置10を備えた車両1の構成の概要を例示する図である。図1に示す車両1は、車両駐車支援装置10、単眼カメラ20、ユーザインタフェース装置30、車輪速センサ40を備える。なお、図1において、車両1を駆動させるためのエンジンまたはモータなどの駆動源やタイヤなどは図示を省略している。
車両駐車支援装置10は、車両1に搭載された単眼カメラ20から撮像された画像に基づいて車両1の周辺の距離を測定し、車両1の駐車を支援するように構成された装置(コンピュータと称されてよい)である。図1に例示する車両駐車支援装置10は、処理回路11と、メモリ12とを有する。車両駐車支援装置10は、例えば、CAN(Controller Area Network)などの車載ネットワークにより、単眼カメラ20、ユーザインタフェース装置30、車輪速センサ40と通信可能に接続されている。
処理回路11は、例えば、メモリ12に格納されたプログラム(車両駐車支援プログラムと称されてもよい)を読みだして実行することで、実施例1に係る処理を実現する演算装置であってもよい。別言すると、処理回路11は、実施例1に係る処理の実行主体としての側面を有する。処理回路11として、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)やFPGA(Field Programmable Gate Array)などが挙げられる。なお、処理回路11は、二以上のコアを含むマルチコアプロセッサであっても良い。
メモリ12は、処理回路11で実行される各種処理に係るデータやプログラム(車両駐車支援プログラムと称されてもよい)を記憶保持するように構成される回路である。メモリ12は、不揮発性記憶装置と揮発性記憶装置の両方あるいは一方を少なくとも含んで構成される。たとえば、RAM(Random Access Memory)、ROM(Read Only Memory)、SSD(Solid State Drive)、HDD(Hard Disk Drive)などが挙げられる。図1において、メモリ12は、主記憶装置及び補助記憶装置などの各種記憶装置を総称したものである。
単眼カメラ20(カメラと称されてもよい)は、車両1に搭載された単眼カメラであり、例えば、CMOS(Complementary Metal Oxide Semiconductor)カメラ、CCD(Charged Coupled Devices)カメラなどである。単眼カメラ20の光軸を車両1の前方に向ける場合、単眼カメラ20は、例えば、車両1のフロントグリルやダッシュボードやフロントガラス(フロントウィンドと称されてもよい)などに設置されてもよい。単眼カメラ20の光軸を車両1の後方に向ける場合、単眼カメラ20は、例えば、車両1のリアガラス(リアウィンドと称されてもよい)やリアガーニッシュなどに設置されても良い。単眼カメラ20は、例えば、所定の周期(フレームレートと称されてもよい)で、撮影した画像の画像データを車両駐車支援装置10のメモリ12に書き込んでもよい。
ユーザインタフェース装置30は、車両駐車支援装置10からの信号に基づき、車両1を駐車スペースに誘導させる経路算出結果を出力するように構成される装置である。例えば、経路算出結果を視覚的に出力する場合、ユーザインタフェース装置30は、液晶表示装置などの表示装置であってもよい。
車輪速センサ40は、車両1の車輪(ホイールと称されてもよい)の回転に応じてパルスを出力するように構成される。例えば、車両1の車輪用軸受に搭載され、ホイールあるいは車軸の回転に応じて、一回転当たり数十パルスの出力分解能を備えてもよい。車輪速センサ40は、例えば、ピックアップコイルとパルサリングで構成されるパッシブセンサ方式であってもよいし、ホール素子や磁気抵抗素子などの磁気センサを用いたアクティブセンサ方式であってもよい。
以上の構成により、車両駐車支援装置10の処理回路11は、メモリ12に格納されたプログラムを読みだして実行することで、車両1に搭載された単眼カメラ20から、第一時刻における第一画像と、第一時刻よりも後の第二時刻における第二画像とを取得する第一処理と、第一時刻と第二時刻との間の測定期間において車輪速センサ40から取得された車輪速パルス(センサ値と称されてもよい)に基づいて車両1の移動量を算出する第二処理と、移動量に応じて、第一画像または第二画像の一方を用いて測距を行う第一測距方式と、第一画像および第二画像の両方を用いて測距を行う第二測距方式とのいずれか一方を用いた測距結果(測定結果と称されてもよい)を出力する第三処理と、測距結果に基づいて、車両1を駐車スペースに誘導させる経路算出結果を出力する第四処理と、を実行するように構成される。
図2は、実施例1に係る車両駐車支援装置10における処理の流れの一例を示す図である。図2に示す処理の流れは、例えば、ユーザ(運転者、搭乗者、同乗者と称されてもよい)の操作により、駐車支援機能が起動にされたことを契機として、実行を開始してもよい。
処理回路11は、第一時刻における第一画像を取得する(S101)。処理S101において、処理回路11は、例えば、単眼カメラ20により撮影されメモリ12に格納された第一画像を、第一時刻にメモリ12から取得してもよい。あるいは、処理回路11は、単眼カメラ20により第一時刻に撮影されメモリ12に格納された第一画像を、第一時刻よりも後の時刻にメモリ12から取得してもよい。別言すると、第一時刻は、第一画像に関する時刻であればよい。
処理回路11は、第一時刻の後、車輪速センサ40からの車輪速パルスを計測する測定期間を開始する(S102)。処理S102において、処理回路11は、車輪速センサ40から入力される車輪速パルスをカウントした値である車輪速パルス数をゼロ値で初期化した後、測定期間が継続する間、車輪速センサ40からの車輪速パルスをカウントし、車輪速パルス数を更新すればよい。車輪速パルス数は、メモリ12に格納されてもよい。ここで、車輪速パルスないし車輪速パルス数は、センサ値の一例である。
処理S102において、処理回路11は、複数の車輪速センサ40からの車輪速パルスをカウントしてもよい。例えば、車両1は、右前輪の回転に応じた車輪速パルスを出力する第一の車輪速センサ40と、左前輪の回転に応じた車輪速パルスを出力する第二の車輪速センサ40とを有し、処理回路11は、各々の車輪速パルスを個別にカウントしてもよい。この場合、第一の車輪速センサ40の車輪速パルス数と、第二の車輪速センサ40の車輪速パルス数との平均値を、センサ値としてもよい。なお、車輪速センサ40の数は一個または二個に限定されるものではないことに留意されたい。
処理回路11は、第二時刻における第二画像を取得する(S103)。処理S103において、処理回路11は、例えば、単眼カメラ20により撮影されメモリ12に格納された第二画像を、第二時刻にメモリ12から取得してもよい。あるいは、処理回路11は、単眼カメラ20により第二時刻に撮影されメモリ12に格納された第二画像を、第二時刻よりも後の時刻にメモリ12から取得してもよい。別言すると、第二時刻は、第二画像に関する時刻であればよい。
単眼カメラ20により画像データが出力される周期であるフレームレートが例えば30fps(フレーム毎秒と称されてもよい)の場合、第一時刻と第二時刻との間の時間間隔は、約0.033秒(33ミリ秒)であってもよい。
処理回路11は、測定期間における車輪速パルス数に基づき移動量を算出する(S104)。処理S104において、処理回路11は、車輪速パルスの測定期間を終了することで、測定期間における車輪速パルス数を確定させてもよい。
処理S104において、処理回路11は、例えば、「移動量d=π×T×np/N」(式(1)と称されてもよい)を算出することで、移動量を算出してもよい。ここで、πは円周率(例えば3.14)であり、Tはタイヤ径(タイヤの外径と称されてもよい)[m]であり、npは測定期間に計測された車輪速パルス数(実測パルス数と称されてもよい)であり、Nはタイヤ一回転当たりの車輪速パルス数(単位パルス数と称されてもよい)である。T値(タイヤ径の値)とN値(単位パルス数の値)は、工場出荷時や工場出荷後の整備時など任意のタイミングにおいて、メモリ12に格納されればよい。上述の式1において、「π×T」はタイヤ一周分の長さに相当する。上述の式1において、「np/N」は測定期間におけるタイヤの回転数に相当する。すなわち、式1により算出された移動量dは、測定期間におけるタイヤの回転による軌跡の長さ(移動距離と称されてもよい)に相当する。
処理S104において、処理回路11は、上述の式1に替えて、実測パルス数npそのものを移動量dとしてもよい。この場合、測定期間において車輪速センサ40からの車輪速パルス(センサ値と称されてもよい)をカウントし、処理S104において実測パルス数npを確定させる処理が、センサ値に基づいて車両1の移動量dを算出することに相当する。なお、実測パルス数npを確定させる際に、測定期間を終了してもよいし、測定期間を継続してもよい。
なお、処理S104における移動量dの算出方法は、上述の例に限定されない。例えば、後述の実施例2による方法を用いてもよい。
処理回路11は、移動量dに応じて、処理S101で取得した第一画像または処理S103で取得した第二画像の一方を用いて測距を行う第一測距方式と、第一画像および第二画像の両方を用いて測距を行う第二測距方式とのいずれか一方の測距結果に基づく経路算出結果を出力する(S105ないしS108)。
例えば、処理S105において、処理回路11は、移動量dが所定の閾値未満であるかを判定する。移動量dが所定の閾値未満である場合(S105でYES)、処理回路11は、第一測距方式を選択し、第一測距方式による測距結果を出力する(S106)。一方、移動量dが所定の閾値以上である場合(S105でNO)、処理回路11は、第二測距方式を選択し、第二測距方式による測距結果を出力する(S107)。
処理S105において、移動量dが閾値未満であるか否かの判定は、第一画像と第二画像との間で十分な視差が確保できているか否かを判定するという側面を有する。別言すると、処理S105において、移動量dが閾値未満であると判定された場合、第一画像と第二画像との間で十分な視差が確保できておらず、第二測距方式よりも、第一測距方式の方が高い測距精度を得られることが期待できる。
第一測距方式は、第一画像または第二画像の一方に基づいて距離を測定できる方式であれば何でもよく、例えば、接地位置判定法による測距方式であってもよい。接続位置判定法によれば、単一の画像を構成する各画素の縦座標と被写体の接地位置までの距離との対応関係に基づいて、画像から抽出された被写体の接地位置までの距離が推定される。
図3は、接地位置判定法による測距原理の一例を示す図である。図3では、被写体T10と、被写体T10を撮影する光学系T11と、光学系T11による撮像面T12と、撮像面T12上に結像された被写体像T13と、光学系T11の光軸T14(主軸と称されてもよい)とが図示されている。なお、図3の撮像面T12では、説明の便宜上、被写体像T13が天地逆で示されているが、単眼カメラ20から取得される実際の撮影画像とは異なり得ることに留意されたい。
図3において、被写体T10と被写体像T13とは、「H/D=Y/f」(式(2)と称されてもよい)で表わされる関係を有する。ここで、式(2)の符号Hは、被写体T10の接地位置から光軸T14までの高さを示す。式(2)の符号Yは、撮像面T12における被写体像T13の接地位置から光軸T14までの高さを示す。撮像面T12における光軸T14の位置は、撮像面T12における中心付近の座標に相当する。
式(2)の符号Dは、被写体T10の接地位置から光学系T11までの距離を示す。式(2)の符号fは、撮像面T12における被写体像T13の接地位置から光学系T11までの距離を示す。
上述の式(2)を変形すれば、被写体T10までの距離Dを算出する式が得られる。すなわち、第一測距方式の処理では、処理回路11は、「D=H×f/Y」(式(3)と称されてもよい)を算出することで、被写体T10までの距離Dに相当する測距結果を出力することができる。あるいは、高さYを多段階で変更させた場合の式(3)の算出結果に相当する変換表をメモリ12に格納しておき、動作時に得られた高さYから変換表を用いて距離Dの近似値を取得してもよい。
式(3)において、距離fは、単眼カメラ20の構造に応じた設計値であり、工場出荷時や工場出荷後の整備時など任意のタイミングにおいて、メモリ12に格納されればよい。
被写体T10から光学系T11までの路面が平坦であるとすれば、高さHは、光学系T11の設置位置の高さに相当する。すなわち、式(3)において、高さHは、車両1に搭載された単眼カメラ20の設置位置の路面からの高さに応じた設計値であり、工場出荷時や工場出荷後の整備時など任意のタイミングにおいて、メモリ12に格納されればよい。
式(3)において、高さYは、単眼カメラ20により撮影された画像(撮影画像と称されてもよい)から検出された被写体像T13の接地位置に応じて算出される値である。例えば、被写体像T13の接地位置のY座標値と、撮影画像のY軸方向(高さ方向と称されてもよい)の画像寸法の半値との差分を算出することで、高さYを求めてもよい。被写体像T13の接地位置は、撮影画像から対象物の特徴を有するエッジ線分を所定のアルゴリズムに基づき抽出し、抽出したエッジ線分のうち最下端のエッジ線分のY座標値を探索することにより求めることができる。例えば、撮影画像に対して、Sobelフィルタやラプラシアンフィルタなどの種々のフィルタを用いることで、複数のエッジ線分を有するエッジ画像が生成される。なお、第一測距方式で用いる撮影画像は、第一画像であってもよいし、第二画像であってもよい。
式(3)から理解されるように、第一の測距方式では、被写体像T13の接地位置の検出精度が劣化すれば、測距結果も劣化する。そのため、十分な視差が確保された二以上の画像を取得できたのであれば、第二測距方式による測距結果を用いた方が、測距精度を向上させることが期待できる。そこで、処理S105において、処理回路11は、移動量dが所定の閾値以上であると判定した場合(S105でNO)、第二測距方式を選択する(S107)。上述したように、処理S105において、移動量dが所定の閾値以上であると判定された場合、第一画像と第二画像との間で十分な視差が確保できており、第一測距方式よりも、第二測距方式の方が高い測距精度を得られることが期待できる。
処理S107において、第二測距方式は、第一画像及び第二画像の両方を用いて測距を行う測距方式であり、両画像の視差に基づいて対象物の三次元的位置を推定する測距方式であってよい。例えば、移動ステレオ法による測距方式であってもよい。移動ステレオ法によれば、微小な時間間隔で撮影された複数の画像に写る被写体の画面上の動きと撮影位置(カメラ位置と称されてもよい)の変位量とに基づき、被写体までの距離が推定される。例えば、単眼カメラ20により撮影される画像のフレームレートが1秒毎30フレームである場合、処理回路11は、約33ミリ秒間隔で撮影される複数の画像から選択された第一画像と第二画像に基づいて、移動ステレオ法による測距を行ってもよい。カメラ位置の変位量には、例えば、処理S104により算出された移動量dを用いてもよい。あるいは、GPS(Global Positioning System)などの衛星測位システムによる測位結果に基づく移動量dを用いてもよい。
処理S107において、第一画像と第二画像とを任意の周期で更新(取得)してもよい。例えば、第一画像は第一フレーム数(例えば30フレーム)ごとに更新され、第二画像は第二フレーム数(例えば1フレーム)ごとに更新されてもよい。別言すると、処理S107において、第一画像は30フレームごとに取得され、第一画像が取得されてから30フレームが経過するまでは、第一画像は更新されなくてもよい。この場合、図2に例示する処理の流れのうち、処理S101ないし処理S102は、第一フレーム数が経過するごとに繰り返し実行され、処理S103ないし処理S108は、第二フレーム数が経過するごとに繰り返し実行されてもよい。
処理S108において、処理回路11は、第一測距方式または第二測距方式による測距結果に基づいて、車両1を駐車スペースに誘導するための所定の経路算出アルゴリズムに従った経路算出処理を実行し、経路算出結果を出力する。例えば、処理回路11は、ユーザインタフェース装置30の画面に経路算出結果に基づく最適な経路を表示することで、車両を操作するユーザ(運転者と称されてもよい)を視覚的に支援してもよい。あるいは、処理回路11は、車両1の駆動を制御する電子制御ユニット(駆動制御ECUと称されてもよい)に、測距結果に基づく経路算出結果を供給することで、駆動制御ECUによる自動駐車処理に測距結果を反映してもよい。自動操舵により車両を所望の駐車目標位置へ誘導する従来技術について、国際公開第2010/098170号(米国特許第8816878号明細書)が詳しい。
以上により、車両1に搭載された単眼カメラ20を用いて撮像された画像から対象物までの距離を測定する場合に、車両1の移動量に応じて最適な測距方式を選択することが可能となり、測距精度を向上させることができる。
<実施例2> 上述の構成において、移動量は、測定期間におけるタイヤの回転による軌跡の長さ(移動距離と称されてもよい)に限定されない。移動量の一例として、実施例2に係る車両駐車支援装置10では、車両1の移動により生じる単眼カメラ20の光軸の変位に相当する旋回量(旋回角度と称されてもよい)の概念が導入される。実施例2に係る車両駐車支援装置10の説明に入る前に、旋回量の概念を導入する動機について説明する。
図4は、車両1に搭載された単眼カメラ20による撮影画像の一例を示す図である。図4では、第一の歩行者A10と、駐車スペースの枠を示す路面に塗布された白線A11及びA12と、壁A13と、隣の駐車スペースに駐車された車両A14と、第二の歩行者A15と、車両1の進行方向を示す矢印A16とが図示されている。なお、矢印A16は、実際には撮影画像に写っていなくてもよい。
図4において、第二の歩行者A15は画像の中央から離れた位置に存在しているが、第一の歩行者A10は画像の中央付近に存在しており、第一の歩行者A10の位置は単眼カメラ20の光軸と概ね一致する。矢印A16が示す方向に車両1が進行する場合、微小な時間間隔において第一の歩行者A10は単眼カメラ20の光軸付近に存在し続けることとなる。ここで、矢印A16が示す方向は、車両1が搭載する単眼カメラ20の光軸方向としての側面を有することに留意されたい。
車両1が単眼カメラ20の光軸方向(すなわち矢印A16が示す方向)に移動する場合、上述の閾値以上の移動距離を有していても、光軸付近については十分な視差が得られず、光軸付近に存在する第一の歩行者A10に対する移動ステレオ法の測距精度が低下し得る。
そこで、実施例2では、測距方式の選択基準として作用する移動量に旋回量の概念を導入することで、上述の測距精度の低下が改善される。
図5は、実施例2に係る車両駐車支援装置10を備えた車両1の構成の概要を例示する図である。図5に例示される車両1の構成は、舵角センサ50が追加されている点で、図1に例示する実施例1の構成と相違し、その他の点では同様である。
舵角センサ50は、車両1の正面方向に対する前輪の切れ角(舵角と称されてもよい)に応じたセンサ値を出力するように構成されるセンサである。例えば、舵角センサ50は、車両1のステアリングシャフトの回転量を検知し、ステアリングシャフトの回転量に応じたセンサ値を出力するように構成されてもよい。
処理回路11は、舵角センサ50からのセンサ値に基づいて、車両1の正面方向に対する前輪の切れ角を取得するように構成される。別言すると、前輪の切れ角は、車両1の進行方向の正面方向に対する角度に相当する。
図6は、車両1の前輪の切れ角の一例を示す図である。図6に示される車両1は、前輪と後輪との合計4つのタイヤを有しており、車両1の正面には単眼カメラB16が搭載されている。単眼カメラB16の搭載位置は、車両1の後部であってもよい。前輪と後輪との離隔距離は、ホイールベースB17で示される。
図6において、車両1の左前輪B11と右前輪B12とは、車両1の正面方向B10に対して概ねθs[rad]の切れ角を有する。すなわち、左前輪B11の方向を示す線分B13と、右前輪B12の方向を示す線分B14と、車両1の進行方向を示す線分B15とは、概ね平行である。車両1の正面方向B10は、車両1の中心軸と称されてもよい。左前輪B11の進行方向を示す線分B13は、左前輪B11の中心軸と称されてもよい。右前輪B12の方向を示す線分B14は、右前輪B12の中心軸と称されてもよい。
図6において、内輪である左前輪B11の方向を示す線分B13の車両1の正面方向B10に対する角度が、外輪である右前輪B12の方向を示す線分B14の車両1の正面方向B10に対する角度よりも大きくてもよい。この場合、処理回路11は、左前輪B11の切れ角と、右前輪B12の切れ角との平均値を、舵角としてもよい。
図7は、実施例2に係る車両駐車支援装置における処理の流れの一例を示す図である。図7では、図2に例示される実施例1の処理の流れにおける処理S104に相当する内容を示している。別言すると、実施例2に係る車両駐車支援装置10における処理の流れのうち、図2に例示される処理S101ないし処理S103、及び、処理S105ないし処理S108については、実施例1と同様である。
処理回路11は、測定期間にカウントされた車輪速パルス数npから、実施例1と同様の手法により、移動距離d[m]を算出する(S104−1)。
処理回路11は、測定期間に取得された舵角センサ50からのセンサ値に基づいて舵角量θsを取得する(S104−2)。処理S104−2において、処理回路11は、例えば、舵角センサ50からの複数のセンサ値について平均値を算出することで、舵角量θsを取得してもよい。なお、舵角量θsの取得方法は、これに限定されるものではなく、その他の公知の手段を用いてもよい。
処理回路11は、車両1のホイールベースWと舵角量θsから、車両1の旋回半径Rを算出する(S104−3)。処理S104−3において、処理回路11は、例えば、「R=W/sin(θs)」(式(4)と称されてもよい)を算出することで、旋回半径R[m]を取得してもよい。式(4)において、符号Wは車両1のホイールベースW[m]を示し、符号θsは舵角量θs[rad]を示す。なお、舵角量θsが例えばθs<0.5[rad]といった微小な角度量である場合、正弦関数sin(θs)は、舵角量θsで近似し得る。この場合、式(4)は次のように変形し得る。すなわち、「R=W/θs」(式(4’)と称されてもよい)である。
処理回路11は、処理S104−3で算出された旋回半径R[m]と、処理S104−1で算出された移動距離d[m]とから、旋回量θ1[rad]を算出する(処理S104−4)。処理S104−4において、処理回路11は、例えば、「θ1=d/R」(式(5)と称されてもよい)を算出することで、旋回量θ1を取得してもよい。式(5)において、符号dは移動距離d[m]を示し、符号Rは旋回半径R[m]を示す。
図8は、車両1の移動軌跡と旋回半径との一例を示す図である。図8では、旋回半径R10で車両1が旋回することで、車両1に搭載された単眼カメラ20が地点P1(X1,Y1)から地点P2(X2、Y2)まで、移動軌跡R12に沿って移動したことが図示されている。図8において、移動前の地点P1(X1,Y1)と旋回中心O(Xc,Yc)との距離である旋回半径R10と、移動後の地点P2(X2,Y2)と旋回中心O(Xc,Yc)との距離を示す線分R11の長さは同じであるとする。
図8において、単眼カメラ20が地点P1にある時点では、Y軸方向と平行であり、かつ地点P1を通る線分C10に沿う方向に単眼カメラ20の光軸がある。単眼カメラ20が地点P2にある時点では、旋回半径R11の円弧の接線方向にある線分C12に沿う方向に単眼カメラ20の光軸がある。線分C10と平行であり、かつ、地点P2を通る線分C11と、線分C12との成す角θ2は、地点P1と旋回中心Oとを結ぶ線分R10と、地点P2と旋回中心Oとを結ぶ線分R11との成す角θ1(旋回角度、旋回量と称されてもよい)と同じである。別言すると、車両1が地点P1から地点P2へ旋回することで、地点P2における単眼カメラ20の光軸は、地点P1における光軸に対して、旋回角度θ1と同じ角度θ2のズレが生じる。
そのため、車両1の旋回角度θ1(旋回量と称されてもよい)は、単眼カメラ20が地点P1にある時刻で取得した第一画像と、単眼カメラ20が地点P2にある時刻で取得した第二画像との間で十分な視差が確保できているか否かを判定するための基準に用いることができる。
以上の実施例2の処理の流れにおいて、処理S104−4で算出された旋回量θ1を、図2に示す処理S105における移動量として用いられる。すなわち、処理S104−4で算出された旋回量θ1(移動量と称されてもよい)は、所定の閾値と比較される(S105)。旋回量θ1が閾値未満であれば(S105でYES)、処理回路11は、第一測距方式を選択してもよい(S106)。別言すると、処理S106において、処理回路11は、第一測距方式による測距結果を出力(取得)してもよい。一方、旋回量θ1(移動量と称されてもよい)が閾値以上である場合(S105でNO)、処理回路11は、第二測距方式を選択してもよい(S107)。別言すると、処理S107において、処理回路11は、第二測距方式による測距結果を出力(取得)してもよい。そして、処理S108において、処理回路11は、第一測距方式または第二測距方式による測距結果に基づいて、車両1を駐車スペースに誘導するための所定の経路算出アルゴリズムに従った経路算出処理を実行し、経路算出結果を出力する。
以上により、車両1に搭載された単眼カメラ20を用いて撮像された画像から対象物までの距離を測定する場合に、車両1の移動量(旋回角度)に応じて最適な測距方式を選択することが可能となり、測距精度を向上させることができる。特に、判定基準として移動距離のみを用いた場合では制御が困難であった、光軸方向の移動による第二測距方式での精度の低下を防止することができる。別言すると、概ね光軸方向の移動である場合には、旋回量θ1に基づく判定により、第一測距方式が選択される。この様な作用は、単眼カメラ20により撮像された画像から、移動体から対象物までの距離の測定精度を向上させるうえで有用である。
<実施例3> 実施例3では、実施例1の処理と実施例2の処理とが組み合わされた処理の流れが提案される。実施例3に係る車両駐車支援装置10を備えた車両1の構成は、図5に示される構成と同様である。
図9及び図10は、実施例3に係る車両駐車支援装置10における処理の流れの一例を示す図である。図9に示される実施例3の処理の流れでは、移動量に基づく判定(図2の処理S105)に対して、移動距離に基づく第一判定(図9の処理S105A)と、旋回量に基づく第二判定(図10の処理S112A)との二段階の判定を実行する技術思想が導入される。
図9に示す例において、処理S101ないし処理S103は、図2に示す例と同じである。また、処理S104Aでは、センサ値に基づき算出される移動量として移動距離dを明記するように変更されているが、実質的には実施例1で説明した処理S104と同じである。
処理S105Aにおいて、移動距離dが所定の閾値(第一閾値と称されてもよい)未満であると判定された場合(S105AでYES)、処理回路11は、実施例1と同様に、第一測距方式を選択し、第一測距方式による測距結果を出力する(S106)。一方、処理S105Aにおいて、移動距離dが所定の閾値(第一閾値と称されてもよい)以上であると判定された場合(S105AでNO)、処理回路11は、直ちに第二測距方式を選択するのではなく、旋回量に基づく第二判定を実行する(S109AないしS112A)。
処理S109Aでは、実施例2の処理S104−2と同様に、処理回路11は、測定期間に取得された舵角センサ50からの複数のセンサ値について平均値(舵角量θsと称されてもよい)を算出する。
処理S110Aでは、実施例2の処理S104−3と同様に、処理回路11は、車両1のホイールベースWと舵角量θsから、車両1の旋回半径Rを算出する。すなわち、処理回路11は、例えば、「R=W/sin(θs)」(式(4)と称されてもよい)を算出することで、旋回半径R[m]を取得してもよい。式(4)において、符号Wは車両1のホイールベースW[m]を示し、符号θsは舵角量θs[rad]を示す。なお、舵角量θsが例えばθs<0.5[rad]といった微小な角度量である場合、正弦関数sin(θs)は、舵角量θsで近似し得る。この場合、式(4)は次のように変形し得る。すなわち、「R=W/θs」(式(4’)と称されてもよい)である。
処理S111Aでは、実施例2の処理S104−4と同様に、処理回路11は、処理S110Aで算出された旋回半径R[m]と、処理S104Aで算出された移動距離d[m]とから、旋回量θ1[rad]を算出する。処理S111Aにおいて、処理回路11は、例えば、「θ1=d/R」(式(5)と称されてもよい)を算出することで、旋回量θ1を取得してもよい。式(5)において、符号dは移動距離d[m]を示し、符号Rは旋回半径R[m]を示す。
処理S112Aでは、処理回路11は、旋回量θ1が所定の閾値(第二閾値と称されてもよい)未満であるかを判定する(第二判定と称されてもよい)。旋回量θ1が第二閾値未満である場合(S112AでYES)、処理回路11は、第一測距方式を選択し、第一測距方式による測距結果を出力する(S113A)。一方、旋回量θ1が第二閾値以上である場合(S112AでNO)、処理回路11は、第二測距方式を選択し、第二測距方式による測距結果を出力する(S114A)。
そして、処理回路11は、実施例1と同様に、第一測距方式または第二測距方式による測距結果に基づいて、車両1を駐車スペースに誘導するための所定の経路算出アルゴリズムに従った経路算出処理を実行し、経路算出結果を出力する(S108)。
以上により、車両1に搭載された単眼カメラ20を用いて撮像された画像から対象物までの距離を測定する場合に、車両1の移動量に応じて最適な測距方式を選択することが可能となり、測距精度を向上させることができる。特に、判定基準として、移動距離または旋回量のいずれか一方のみを用いて制御を行う場合よりも、より効率的に、移動体から対象物までの距離の測定精度を向上させることができる。
図9及び図10に示す例では、移動距離dが第一閾値未満の場合には、旋回量θ1に基づく第二判定は実行されないため、旋回量θ1の算出処理を省略でき、より簡易な処理で計測が可能な移動距離dに基づく第一判定のみで済むため、演算コストの削減に寄与する。
また、図9及び図10に示す例では、移動距離dが第一閾値以上の場合には、旋回量θ1に基づく第二判定を実行するため、光軸方向の移動による第二測距方式での精度の低下を防止することができる。別言すると、第一閾値以上の移動距離dが、概ね光軸方向の移動である場合には、旋回量θ1に基づく第二判定により、第一測距方式が選択される。これにより、十分な視差を有する画像が得られていない場合に、第二測距方式が選択されることを防止でき、車両駐車支援装置10の測距精度を向上させることができる。
<実施例4> 実施例4に係る車両駐車支援装置10では、単眼カメラ20により撮影された撮影画像を複数の領域に区分し、領域毎に測距方式の選択制御を異ならせる技術思想が導入される。まず、実施例4に係る車両駐車支援装置10の説明に入る前に、実施例4に係る上述の技術思想を導入する動機について説明する。
図11は、対象物までの距離が3.0[m]の場合の第一測距方式(接地位置判定法と称されてもよい)と第二測距方式(移動ステレオ法と称されてもよい)との特性を例示する図である。図11の特性図は、横軸に横位置[m]を示し、縦軸に距離誤差[m]を示す。
横軸に示される横位置[m]では、単眼カメラ20の光軸を中心(0[m])とし、光軸から右方向への変位を正の値で示し、光軸から左方向への変位を負の値で示している。
縦軸に示される距離誤差[m]では、各測距方式による測距結果において生じ得る誤差の範囲として、0[m]から1.0[m]の範囲が示されている。
図11において、実線D10は、対象物までの距離が3.0[m]の条件下で測定される第二測距方式の特性(特性D10と称されてもよい)を示し、一点鎖線D11は、撮影画像上での対象物の検知位置を一画素分ずらして測定される第二測距方式の特性(特性D11と称されてもよい)を示す。図11に示されるように、第二測距方式では、撮影画像上での検出位置に一画素程度の誤差が生じても、光軸から離れた領域において比較的安定した測距精度が得られる。その一方で、光軸の近傍では、第二測距方式による距離誤差(測距誤差と称されてもよい)が指数関数的に増大し、測定精度が劣化している。
図11において、実線D20は、対象物までの距離が3.0[m]の条件下で測定される第一測距方式の特性(特性D20と称されてもよい)を示し、破線D21は、撮影画像上での対象物の検知位置を一画素分ずらして測定される第一測距方式の特性(特性D21と称されてもよい)を示す。図11に示されるように、第一測距方式では、撮影画像上での検出位置の誤差による影響が、第二測距方式よりも大きい。すなわち、第一測距方式の特性D20と特性D21との差は、第二測距方式の特性D10と特性D11との差よりも大きい。その一方で、第一測距方式では、横位置が光軸に近づくにつれて、距離誤差が低下し、光軸上において距離誤差が最低となる。別言すると、第一測距方式では、横位置が光軸に近づくにつれて、測距精度が増加し、光軸上において測距精度が最高となる。
図11において、第一測距方式の特性D20と、第二測距方式の特性D10とを比較すると、横位置が約±1.5[m]の範囲W1内では、第二測距方式の特性D10よりも、第一測距方式の特性D20の方が距離誤差が少ない。一方、光軸からの変位が範囲W1の外側では、第一測距方式の特性D20よりも、第二測距方式の特性D10の方が距離誤差が少ない。
したがって、図11に示される特性からは、単眼カメラ20の光軸からの水平面内における変位が所定の閾値未満となる範囲W1においては、移動量の大小に関係なく第一測距方式を選択することで、測距精度の低下を防止できる、という知見が得られる。
また、単眼カメラ20の光軸からの水平面内における変位が所定の閾値以上となる範囲においては、移動量の大小に応じて第一測距方式または第二測距方式を適切に選択することで、測距精度を向上させることができる、という知見が得られる。
図12は、対象物までの距離が1.5[m]の場合の第一測距方式と第二測距方式との特性を例示する図である。図12の特性図でも、図11と同様に、横軸に横位置[m]を示し、縦軸に距離誤差[m]を示す。
図12において、符号D10、D11、D20、D21の意味は、図11と同じである。すなわち、実線D10は、対象物までの距離が1.5[m]の条件下で測定される第二測距方式の特性(特性D10と称されてもよい)を示し、一点鎖線D11は、撮影画像上での対象物の検知位置を一画素分ずらして測定される第二測距方式の特性(特性D11と称されてもよい)を示す。また、実線D20は、対象物までの距離が1.5[m]の条件下で測定される第一測距方式の特性(特性D20と称されてもよい)を示し、破線D21は、撮影画像上での対象物の検知位置を一画素分ずらして測定される第一測距方式の特性(特性D21と称されてもよい)を示す。
図12では、図11と比較すると、第二測距方式の特性D10よりも、第一測距方式の特性D20の方が距離誤差が少ない範囲W2の幅が、図11に示される範囲W1よりも狭い。別言すると、図12に示される特性からは、移動量に基づいて測距方式を選択する制御が有効な領域が、図11に示される例よりも広い。
図11及び図12からは、対象物までの距離に応じて、移動量に基づく測距方式の選択制御が有効な領域と、移動量に関係なく第一測距方式を優先すべき領域とが異なり得る、という知見が得られる。対象物までの距離は、撮影画像におけるY軸方向(縦方向と称されてもよい)の画素位置に相当するという側面を有する。例えば、撮影画像における画素のY座標値が大きいほど、別言すると、撮影画像において下側に位置する画素ほど、単眼カメラ20からの距離が近い。例えば、単眼カメラ20からの距離が1.5[m]の対象物に相当する画素のY座標値は、単眼カメラ20からの距離が3.0[m]の対象物に相当する画素のY座標値よりも大きい。したがって、上述の知見は、撮影画像における画素のY座標値に応じて、移動量に基づく測距方式の選択制御が有効な領域と、移動量に関係なく第一測距方式を優先すべき領域とが異なり得る、という側面を有する。
図13は、測距方式の選択制御における領域の一例を示す図である。図13の例では、移動量の大小に関係なく第一測距方式を選択する第一領域A20と、移動量に応じて第一測距方式または第二測距方式を適切に選択する第二領域A30とが図示されている。
第一領域A20は、単眼カメラ20の光軸に相当する撮影画像の中央付近において、縦軸と横軸の各々において任意の幅を有する。図13の例において、第一領域A20は、図11に示される範囲W1に相当する横幅を有する第一副領域A21と、図12に示される範囲W2に相当する横幅を有する第二副領域A22とを有する。別言すると、図13の例示では、撮影画像における画素のY座標値が大きいほど、移動量の大小に関係なく第一測距方式が選択される第一領域A20の幅が狭い、という技術思想が示される。なお、Y座標値が大きい画素ほど、撮影画像において下の方に位置する。さらに別言すると、図13の例では、第一領域A20の上端である第一副領域A21の幅は、第一領域A20の下端である第二副領域A22の幅よりも広い、という技術思想が示される。
図13の例示の変形例として、第二副領域A22を省略し、第一副領域A21のみで第一領域A20を構成してもよい。あるいは、図13の例示の変形例として、第一領域A20を構成する副領域の数を3以上にして、撮影画像における画素のY座標値が大きいほど各副領域の幅が狭くなるように、第一領域A20を多段階に構成してもよい。例えば、第一領域A20を、上底よりも下底が小さい台形の様な形状としてもよい。
図14は、単眼カメラ20の撮影画像に第一領域A20の境界を重ねた例を示す図である。図14の例示では、第一の歩行者A10と、駐車スペースの枠を示す路面に塗布された白線A11及びA12と、壁A13と、隣の駐車スペースに駐車された車両A14と、第二の歩行者A15と、第一副領域A21と第二副領域A22とを有する第一領域A20とが図示されている。なお、第一領域A20(第一副領域A21、第二副領域A22)は、実際には撮影画像に写っていなくてもよい。
図14では、単眼カメラ20の撮影画像に、第一領域A20(第一副領域A21、第二副領域A22)の境界が重畳されている。なお、図14に例示する画像は、ユーザインタフェース装置30に表示されてもよい。ユーザインタフェース装置30に表示させる際、第一領域A20の境界線は単眼カメラ20の撮影画像に重畳させて表示してもよいし、表示しなくてもよい。
図14に示す例では、第一の歩行者A10を撮像した画素は境界A21の範囲内である第一副領域(第一領域と称されてもよい)に存在するため、第一の歩行者A10を撮像した画素に対しては、車両1の移動量に関係なく第一測距方式による測距結果が用いられる。一方、第二の歩行者A15を撮像した画素に対しては、第一領域A20の範囲外(第二領域と称されてもよい)であるため、車両1の移動量に応じて適切に選択された第一測距方式または第二測距方式による測距結果が用いられる。
このように、実施例4では、単眼カメラ20により撮影された撮影画像を複数の領域に区分し、領域毎に測距方式の選択制御を異ならせることで、単眼カメラ20の光軸からの変位に応じて最適な測距方式が異なり得る場合でも適切に測距方式を選択することができるようになる。以下では、実施例4に係る車両駐車支援装置10の処理の流れについて説明する。
図15及び図16は、実施例4に係る車両駐車支援装置10における処理の流れの一例を示す図である。図15に示される実施例4の処理の流れでは、第二の測距方式が有効となる視差を含む複数の画像が得られた場合に、全ての画素に対して一律に第二の測距方式が適用されるのではなく、領域に応じて適切な測距方式を選択する制御が実行される。
図15に示す例において、処理S101ないし処理S105は、図2に示す例と同じである。すなわち、処理S105において、移動量が所定の閾値(第一閾値と称されてもよい)未満であると判定された場合(S105でYES)、処理回路11は、実施例1と同様に、第一測距方式を選択してもよい(S106)。別言すると、処理S106において、処理回路11は、第一測距方式による測距結果を出力(取得)してもよい。
一方、処理S105において、移動量が所定の閾値(第一閾値と称されてもよい)以上であると判定された場合(S105でNO)、処理回路11は、全ての画素に対して一律に第二の測距方式が適用されるのではなく、領域に応じて適切な測距方式を選択する制御が実行される(図16のS120BないしS122B)。
処理S120Bにおいて、処理回路11は、第一領域A20に含まれる画素に対して第一測距方式を選択し、第一測距方式による測距結果を取得する。
処理S121Bにおいて、処理回路11は、第二領域A30に含まれる画素に対して第二測距方式を選択し、第二測距方式による測距結果を取得する。
処理S122Bにおいて、処理回路11は、第一領域A20に対する第一測距方式による測距結果(第一測距結果と称されてもよい)と、第二領域A30に対する第二測距方式による測距結果(第二測距結果と称されてもよい)とを統合することで、全体の測距結果(第三測距結果、統合測距結果と称されてもよい)を出力(取得)してもよい。
そして、処理回路11は、実施例1と同様に、第一測距方式による測距結果、または、第一測距結果と第二測距結果とが統合された第三測距結果(統合測距結果と称されてもよい)に基づいて、車両1を駐車スペースに誘導するための所定の経路算出アルゴリズムに従った経路算出処理を実行し、経路算出結果を出力する(S108)。
以上により、単眼カメラ20により撮影された撮影画像を複数の領域に区分し、領域毎に測距方式の選択制御を異ならせることで、単眼カメラ20の光軸からの変位に応じて最適な測距方式が異なり得る場合でも適切に測距方式を選択することができるようになる。この様な作用は、単眼カメラ20により撮像された画像から、移動体から対象物までの距離の測定精度を向上させるうえで有用である。
<実施例5> 実施例5では、車両駐車支援装置10を備える車両1に複数の単眼カメラ20が設置され、単眼カメラ20の設置位置に応じて測距方式の選択制御を異ならせる、という技術思想が導入される。
図17は、実施例5に係る車両駐車支援装置10を備えた車両1の構成の概要を例示する図である。図17に例示される車両1の構成は、複数の単眼カメラ20−1ないし20−4が追加されている点、車両駐車支援装置10のメモリ12にカメラ設置情報T10が格納されている点で、図5に例示する実施例2の構成と相違し、その他の点では図5の例示と同様である。
複数の単眼カメラ20−1ないし20−4(総称する場合、単眼カメラ20と称されてもよい)は、それぞれ、車両1の前方、車両1の後方、車両1の右側、車両1の左側に、各々の光軸を向けて任意の箇所に設置される。複数の単眼カメラ20−1ないし20−4の各々は、例えば、所定の周期(フレームレートと称されてもよい)で、撮影した画像の画像データを車両駐車支援装置10のメモリ12に書き込んでもよい。
なお、メモリ12に格納された画像データは、画像データを生成した単眼カメラ20と対応付けられた状態でメモリ12に格納される。例えば、複数の単眼カメラ20−1ないし20−4の各々に対して、画像データを格納するための格納領域を個別に設けてもよい。すなわち、メモリ12は、第一の単眼カメラ20―1からの画像データを格納する第一格納領域と、第二の単眼カメラ20−2からの画像データを格納する第二格納領域と、第三の単眼カメラ20−3からの画像データを格納する第三格納領域と、第四の単眼カメラ20−4からの画像データを格納する第四格納領域とを有してもよい。
上述の変形例として、例えば、メモリ12は、複数の単眼カメラ20−1ないし20−4からの画像データを格納する単一の格納領域を有し、複数の単眼カメラ20−1ないし20−4の各々は、単眼カメラ20を識別する情報を画像データに付してメモリ12に書き込むことで、単眼カメラ20と画像データとの対応関係を保持するようにしてもよい。例えば、第一の単眼カメラ20−1は、第一の単眼カメラ20−1を識別する情報である単眼カメラ識別情報を画像データに添付して、メモリ12に書き込んでもよい。
カメラ設置情報T10は、複数の単眼カメラ20−1ないし20−4の各々の設置条件を示す情報である。例えば、カメラ設置情報T10は、設置条件として、単眼カメラの光軸方向を示す情報を有してもよい。
図18は、カメラ設置情報T10の内容例を示す図である。図18におけるカメラ設置情報T10は、カメラ識別情報T11と、光軸方向T12とを有する。カメラ識別情報T11は、車両1に搭載された単眼カメラ20を識別することが可能な情報であり、数字、文字、記号、または、これらの組合せであってもよい。光軸方向T12は、単眼カメラ20の設置条件(設置態様と称されてもよい)を示す情報の一例であり、単眼カメラ20が車両1のどの方向に設置されているかを示す。
図18では、例えば、カメラ識別情報T11が「カメラ#1」の単眼カメラ20に対して、光軸方向T12が車両1の前方に向いていることを示す値「前」が設定されている。カメラ識別情報T11が「カメラ#2」の単眼カメラ20に対して、光軸方向T12が車両1の後方に向いていることを示す値「後」が設定されている。カメラ識別情報T11が「カメラ#3」の単眼カメラ20に対して、光軸方向T12が車両1の左側面方向に向いていることを示す値「左」が設定されている。カメラ識別情報T11が「カメラ#4」の単眼カメラ20に対して、光軸方向T12が車両1の右側面方向に向いていることを示す値「右」が設定されている。
図19及び図20は、実施例5に係る車両駐車支援装置10における処理の流れの一例を示す図である。図19に示される実施例5の処理の流れは、図9に示される実施例3の処理の流れと同様である。ただし、実施例5では、複数の単眼カメラ20の各々について、図19及び図20に示される処理の流れを実行する。
例えば、第一の単眼カメラ20−1ないし第四の単眼カメラ20−4の各々について、処理S101ないし処理S103により、処理回路11は、第一時刻における第一画像と、第一時刻よりも後の第二時刻における第二画像とを取得する。なお、第一時刻は、複数の単眼カメラ20の各々で異なる時刻であってもよいし、同じ時刻であってもよい。第二時刻も同様である。
処理S104Aにおいて、処理回路11は、第一時刻と第二時刻との間の測定期間において取得されたセンサ値に基づいて、車両1の移動距離dを算出する。そして、処理S105Aにおいて、移動距離dが閾値未満であると判定された場合(S105AでYES)、処理回路11は、第一画像または第二画像の一方を用いて測距を行う第一測距方式を選択する(S106)。
一方、処理S105Aにおいて、移動距離dが閾値以上であると判定された場合(S105AでNO)、処理回路11は、図20に示す処理の流れへ続く。すなわち、実施例5では、第一画像及び第二画像に関連する単眼カメラ20の光軸方向に基づく第三判定(S130C)が導入される。
処理S130Cにおいて、処理回路11は、第一画像及び第二画像に関連する単眼カメラ20の光軸方向が車両1の進行方向(走行方向、移動方向と称されてもよい)と直交しないかを判定する。別言すると、処理回路11は、第一画像及び第二画像に関連する単眼カメラ20の光軸方向が「前」または「後」であるかを判定する。例えば、第一画像及び第二画像に関連付けられたカメラ識別情報に基づいてカメラ設置情報T10から取得される光軸方向T12が「前」または「後」を示す値に設定されている場合、処理回路11は、単眼カメラ20の光軸方向が車両1の進行方向と直交しないと判定してもよい。一方、カメラ設置情報T10から取得される光軸方向T12が「左」または「右」を示す値に設定されている場合、処理回路11は、単眼カメラ20の光軸方向が車両1の進行方向と直交すると判定してもよい。
なお、カメラ識別情報T11は、各画像に添付されていてもよいし、メモリ12上の格納領域に対応付けられた値でもよい。例えば、第一の単眼カメラ20−1からの画像データが格納される第一格納領域に対して、第一の単眼カメラ20−1を識別するカメラ識別情報「カメラ#1」が関連付けられていてもよい。同様に、第二の単眼カメラ20−2からの画像データが格納される第二格納領域に対して、第二の単眼カメラ20−2を識別するカメラ識別情報「カメラ#2」が関連付けられていてもよい。第三の単眼カメラ20−3からの画像データが格納される第三格納領域に対して、第三の単眼カメラ20−3を識別するカメラ識別情報「カメラ#3」が関連付けられていてもよい。第四の単眼カメラ20−4からの画像データが格納される第四格納領域に対して、第四の単眼カメラ20−4を識別するカメラ識別情報「カメラ#4」が関連付けられていてもよい。
処理S130Cにおいて、第一画像及び第二画像に関連する単眼カメラ20の光軸方向が車両1の進行方向と直交しないと判定された場合(S130CでYES)、処理回路11は、実施例3と同様に、旋回量θ1に基づく第二判定の一連の処理を実行する(S109AないしS112A)。そして、旋回量θ1が第二閾値未満であると判定された場合(S112AでYES)、処理回路11は、第一画像または第二画像の一方を用いて測距を行う第一測距方式を選択する(S113A)。一方、旋回量θ1が第二閾値以上であると判定した場合(S112AでNO)、処理回路11は、第一画像および第二画像の両方を用いて測距を行う第二測距方式を選択する(S114A)。
処理S130Cにおいて、第一画像及び第二画像に関連する単眼カメラ20の光軸方向が車両1の進行方向と直交すると判定された場合(S130CでNO)、処理回路11は、第一画像および第二画像の両方を用いて測距を行う第二測距方式を選択する(S114A)。すなわち、第一画像及び第二画像に関連する単眼カメラ20の光軸方向が「前」または「後」ではない場合、単眼カメラ20の光軸方向は車両1の進行方向上の軸と平行でないため、単眼カメラ20の光軸付近についても十分な視差が得られる。したがって、第一画像及び第二画像に関連する単眼カメラ20の光軸方向が「前」または「後」ではないと判定された場合、処理回路11は、旋回量θ1に基づく第二判定の一連の処理(S109AないしS112A)を省略してもよい。
以上により、車両1に搭載された単眼カメラ20を用いて撮像された画像から対象物までの距離を測定する場合に、車両1の移動量に応じて最適な測距方式を選択することが可能となり、測距精度を向上させることができる。特に、単眼カメラの設置条件(例えば光軸方向)に応じて、旋回量θ1に基づく第二判定を実施するか否かを制御することで、第二測距方式での精度の低下を防止しつつ、単眼カメラ20が複数ある場合の演算コストを削減することができる。別言すると、単眼カメラ20の光軸方向が車両1の進行方向上の軸と概ね平行する場合、旋回量θ1に基づく第二判定が実行される。この様な作用は、単眼カメラ20により撮像された画像から、移動体から対象物までの距離の測定精度を向上させつつ、リアルタイム制御での応答速度を向上させるうえで有用である。
以上の詳細な説明により、実施形態の特徴点及び利点は明らかになるであろう。これは、特許請求の範囲がその精神及び権利範囲を逸脱しない範囲で前述のような実施形態の特徴点及び利点にまで及ぶことを意図するものである。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良及び変更に容易に想到できるはずである。したがって、発明性を有する実施形態の範囲を前述したものに限定する意図はなく、実施形態に開示された範囲に含まれる適当な改良物及び均等物に拠ることも可能である。例えば、本明細書に開示の各工程は、必ずしも処理の流れの一例として説明された順序に沿って時系列に処理する必要はなく、特許請求の範囲に記載された本発明の要旨の範囲内において、工程の順序を入れ替えてもよく、あるいは複数の工程を並列的に実行してもよい。なお、以上の詳細な説明で明らかにされる車両駐車支援装置10に生じ得る様々な事情は、一側面から検討した場合に見出し得るものであり、他の側面から検討した場合には、他の事情が見出され得ることに留意されたい。別言すると、本発明の特徴点及び利点は、以上の詳細な説明に明記された事情を解決する用途に限定されるものではない。
1 車両
10 車両駐車支援装置
11 処理回路
12 メモリ
20 単眼カメラ
30 ユーザインタフェース装置
40 車輪速センサ
50 舵角センサ

Claims (14)

  1. 車両に搭載された単眼カメラから、第一時刻における第一画像と、前記第一時刻よりも後の第二時刻における第二画像とを取得する第一処理と、
    前記第一時刻と前記第二時刻との間の測定期間において取得されたセンサ値に基づいて前記車両の移動量を算出する第二処理と、
    前記移動量に応じて、前記第一画像または前記第二画像の一方を用いて測距を行う第一測距方式と、前記第一画像および前記第二画像の両方を用いて測距を行う第二測距方式とのいずれか一方を用いた測距結果を出力する第三処理と、
    前記測距結果に基づいて、前記車両を駐車スペースに誘導させる経路算出結果を出力する第四処理と、
    を実行する処理回路を備える、
    ことを特徴とする車両駐車支援装置。
  2. 請求項1に記載の車両駐車支援装置であって、
    前記第二処理は、前記第一時刻と前記第二時刻との間における前記車両の移動距離を、前記車両の移動量として算出し、
    前記第三処理は、前記第二処理により算出された前記移動距離が閾値未満である場合、前記第一測距方式を用いた測距結果を出力し、前記移動距離が閾値以上である場合、前記第二測距方式を用いた測距結果を出力する、
    ことを特徴とする車両駐車支援装置。
  3. 請求項1または請求項2に記載の車両駐車支援装置であって、
    前記第二処理は、前記第一時刻と前記第二時刻との間における前記車両の移動により生じた旋回量を、前記車両の移動量として算出し、
    前記第三処理は、前記第二処理により算出された前記旋回量が閾値未満である場合、前記第一測距方式を用いた測距結果を出力し、前記旋回量が閾値以上である場合、前記第二測距方式を用いた測距結果を出力する、
    ことを特徴とする車両駐車支援装置。
  4. 請求項1に記載の車両駐車支援装置であって、
    前記第二処理は、前記第一時刻と前記第二時刻との間における前記車両の移動距離を、前記車両の移動量として算出し、
    前記第三処理は、前記第二処理により算出された前記移動距離が閾値未満である場合、前記第一測距方式を用いた測距結果を出力し、
    前記第二処理は、前記移動距離が閾値以上である場合、前記第一時刻と前記第二時刻との間における前記車両の移動により生じた旋回量を、前記車両の移動量として算出し、
    前記第三処理は、前記第二処理により算出された前記旋回量が閾値未満である場合、前記第一測距方式を用いた測距結果を出力し、前記旋回量が閾値以上である場合、前記第二測距方式を用いた測距結果を出力する、
    ことを特徴とする車両駐車支援装置。
  5. 請求項4に記載の車両駐車支援装置であって、
    前記車両に搭載された複数の前記単眼カメラの各々について、前記単眼カメラの光軸方向を示す設置情報を格納するメモリをさらに備え、
    前記第一処理は、前記車両に搭載された複数の前記単眼カメラの各々から、前記単眼カメラと対応付けて前記第一画像と前記第二画像とを取得し、
    前記第三処理は、前記複数の単眼カメラの各々について実行され、
    前記第三処理は、
    前記単眼カメラに対応する前記設置情報に基づいて、前記単眼カメラの光軸方向を判定し、
    前記単眼カメラの光軸方向と前記車両の移動方向とが直交するとき、前記第二処理により算出された前記移動距離が閾値未満である場合、前記第一測距方式を用いた測距結果を出力し、前記移動距離が閾値以上である場合、前記第二測距方式を用いた測距結果を出力する、
    ことを特徴とする車両駐車支援装置。
  6. 請求項1ないし請求項5のいずれかに記載の車両駐車支援装置であって、
    前記第三処理は、前記第一処理により取得された前記第一画像および前記第二画像の各々において第一領域と第二領域とを設定し、前記第一領域については前記第一測距方式を用いた測距結果を出力する、
    ことを特徴とする車両駐車支援装置。
  7. 請求項6に記載の車両駐車支援装置であって、
    前記第一画像および前記第二画像において上方に位置する画素ほど車両からの距離が離れた箇所を撮像した画素であり、
    前記第一領域の上端の幅は、下端の幅以上である、
    ことを特徴とする車両駐車支援装置。
  8. 車両に搭載された単眼カメラから、第一時刻における第一画像と、前記第一時刻よりも後の第二時刻における第二画像とを取得する第一処理と、
    前記第一時刻と前記第二時刻との間の測定期間において取得されたセンサ値に基づいて前記車両の移動量を算出する第二処理と、
    前記移動量に応じて、前記第一画像または前記第二画像の一方を用いて測距を行う第一測距方式と、前記第一画像および前記第二画像の両方を用いて測距を行う第二測距方式とのいずれか一方を用いた測距結果を出力する第三処理と、
    前記測距結果に基づいて、前記車両を駐車スペースに誘導させる経路算出結果を出力する第四処理と、
    をコンピュータに実行させることを特徴とする車両駐車支援プログラム。
  9. 請求項8に記載の車両駐車支援プログラムであって、
    前記第二処理は、前記第一時刻と前記第二時刻との間における前記車両の移動距離を、前記車両の移動量として算出し、
    前記第三処理は、前記第二処理により算出された前記移動距離が閾値未満である場合、前記第一測距方式を用いた測距結果を出力し、前記移動距離が閾値以上である場合、前記第二測距方式を用いた測距結果を出力する、
    ことを特徴とする車両駐車支援プログラム。
  10. 請求項8または請求項9に記載の車両駐車支援プログラムであって、
    前記第二処理は、前記第一時刻と前記第二時刻との間における前記車両の移動により生じた旋回量を、前記車両の移動量として算出し、
    前記第三処理は、前記第二処理により算出された前記旋回量が閾値未満である場合、前記第一測距方式を用いた測距結果を出力し、前記旋回量が閾値以上である場合、前記第二測距方式を用いた測距結果を出力する、
    ことを特徴とする車両駐車支援プログラム。
  11. 請求項8に記載の車両駐車支援プログラムであって、
    前記第二処理は、前記第一時刻と前記第二時刻との間における前記車両の移動距離を、前記車両の移動量として算出し、
    前記第三処理は、前記第二処理により算出された前記移動距離が閾値未満である場合、前記第一測距方式を用いた測距結果を出力し、
    前記第二処理は、前記移動距離が閾値以上である場合、前記第一時刻と前記第二時刻との間における前記車両の移動により生じた旋回量を、前記車両の移動量として算出し、
    前記第三処理は、前記第二処理により算出された前記旋回量が閾値未満である場合、前記第一測距方式を用いた測距結果を出力し、前記旋回量が閾値以上である場合、前記第二測距方式を用いた測距結果を出力する、
    ことを特徴とする車両駐車支援プログラム。
  12. 請求項11に記載の車両駐車支援プログラムであって、
    前記第一処理は、前記車両に搭載された複数の前記単眼カメラの各々から、前記単眼カメラと対応付けて前記第一画像と前記第二画像とを取得し、
    前記第三処理は、前記複数の単眼カメラの各々について実行され、
    前記第三処理は、
    前記車両に搭載された複数の前記単眼カメラの各々について、前記単眼カメラの光軸方向を示す設置情報を格納するメモリから、前記単眼カメラに対応する前記設置情報を取得し、
    前記設置情報に基づいて、前記単眼カメラの光軸方向を判定し、
    前記単眼カメラの光軸方向と前記車両の移動方向とが直交するとき、前記第二処理により算出された前記移動距離が閾値未満である場合、前記第一測距方式を用いた測距結果を出力し、前記移動距離が閾値以上である場合、前記第二測距方式を用いた測距結果を出力する、
    ことを特徴とする車両駐車支援プログラム。
  13. 請求項8ないし請求項12のいずれかに記載の車両駐車支援プログラムであって、
    前記第三処理は、前記第一処理により取得された前記第一画像および前記第二画像の各々において第一領域と第二領域とを設定し、前記第一領域については前記第一測距方式を用いた測距結果を出力する、
    ことを特徴とする車両駐車支援プログラム。
  14. 請求項13に記載の車両駐車支援プログラムであって、
    前記第一画像および前記第二画像において上方に位置する画素ほど車両からの距離が離れた箇所を撮像した画素であり、
    前記第一領域の上端の幅は、下端の幅以上である、
    ことを特徴とする車両駐車支援プログラム。
JP2019532239A 2017-07-24 2017-07-24 車両駐車支援装置、車両駐車支援プログラム Active JP6841331B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/026741 WO2019021354A1 (ja) 2017-07-24 2017-07-24 車両駐車支援装置、車両駐車支援プログラム

Publications (2)

Publication Number Publication Date
JPWO2019021354A1 true JPWO2019021354A1 (ja) 2020-08-20
JP6841331B2 JP6841331B2 (ja) 2021-03-10

Family

ID=65040033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019532239A Active JP6841331B2 (ja) 2017-07-24 2017-07-24 車両駐車支援装置、車両駐車支援プログラム

Country Status (4)

Country Link
US (1) US11378974B2 (ja)
EP (1) EP3659872B1 (ja)
JP (1) JP6841331B2 (ja)
WO (1) WO2019021354A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109212572B (zh) * 2018-08-31 2021-05-04 百度在线网络技术(北京)有限公司 定位漂移检测方法、装置、设备及计算机可读存储介质
CN111208820B (zh) * 2020-01-09 2023-01-03 上海逍遨软件科技有限公司 人工智能大数据下粒子化无人车组、控制方法及介质
US20230075659A1 (en) * 2020-02-19 2023-03-09 Nec Corporation Object ranging apparatus, method, and computer readable medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017246A (ja) * 2005-07-07 2007-01-25 Alpine Electronics Inc 距離測位装置
JP2012122911A (ja) * 2010-12-10 2012-06-28 Fujitsu Ltd 位置特定装置、位置特定方法、及びプログラム
JP2014240753A (ja) * 2013-06-11 2014-12-25 富士通株式会社 距離測定装置、距離測定方法、およびプログラム
JP2015206798A (ja) * 2015-06-25 2015-11-19 日立オートモティブシステムズ株式会社 距離算出装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105686A (ja) 1997-10-07 1999-04-20 Nissan Motor Co Ltd 自動駐車装置
JP3494434B2 (ja) 1999-10-21 2004-02-09 松下電器産業株式会社 駐車支援装置
US6483429B1 (en) 1999-10-21 2002-11-19 Matsushita Electric Industrial Co., Ltd. Parking assistance system
US8164628B2 (en) * 2006-01-04 2012-04-24 Mobileye Technologies Ltd. Estimating distance to an object using a sequence of images recorded by a monocular camera
JP2007263657A (ja) * 2006-03-28 2007-10-11 Denso It Laboratory Inc 3次元座標取得装置
JP5403330B2 (ja) 2009-02-25 2014-01-29 アイシン精機株式会社 駐車支援装置
JP2012159469A (ja) 2011-02-02 2012-08-23 Toyota Motor Corp 車両用画像認識装置
JP2012164275A (ja) 2011-02-09 2012-08-30 Toyota Motor Corp 画像認識装置
JP2013186042A (ja) * 2012-03-09 2013-09-19 Hitachi Automotive Systems Ltd 距離算出装置及び距離算出方法
US20140058656A1 (en) * 2012-08-27 2014-02-27 Stephen Chen Method for calculating a parking path
JP5991166B2 (ja) 2012-11-27 2016-09-14 富士通株式会社 3次元位置計測装置、3次元位置計測方法および3次元位置計測プログラム
JP5987660B2 (ja) 2012-11-30 2016-09-07 富士通株式会社 画像処理装置、画像処理方法及びプログラム
JP6156067B2 (ja) 2013-11-01 2017-07-05 富士通株式会社 移動量推定装置及び移動量推定方法
EP3252514A4 (en) 2015-01-26 2018-08-22 Hitachi Automotive Systems, Ltd. Imaging lens, imaging device using same, and distance measuring system
JP2016142612A (ja) * 2015-02-02 2016-08-08 日立オートモティブシステムズ株式会社 車両制御装置、距離算出装置および距離算出方法
CN107031523A (zh) * 2015-11-30 2017-08-11 法乐第未来公司 利用已知目标进行基于摄像头的车辆位置确定
JP6660751B2 (ja) * 2016-02-04 2020-03-11 日立オートモティブシステムズ株式会社 撮像装置
JP6508177B2 (ja) * 2016-04-27 2019-05-08 株式会社デンソー 支援システム、携帯端末、及び車載装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017246A (ja) * 2005-07-07 2007-01-25 Alpine Electronics Inc 距離測位装置
JP2012122911A (ja) * 2010-12-10 2012-06-28 Fujitsu Ltd 位置特定装置、位置特定方法、及びプログラム
JP2014240753A (ja) * 2013-06-11 2014-12-25 富士通株式会社 距離測定装置、距離測定方法、およびプログラム
JP2015206798A (ja) * 2015-06-25 2015-11-19 日立オートモティブシステムズ株式会社 距離算出装置

Also Published As

Publication number Publication date
JP6841331B2 (ja) 2021-03-10
WO2019021354A1 (ja) 2019-01-31
EP3659872A1 (en) 2020-06-03
EP3659872B1 (en) 2023-05-03
EP3659872A4 (en) 2020-07-15
US11378974B2 (en) 2022-07-05
US20200133297A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP5421072B2 (ja) 接近物体検知システム
EP3147742A2 (en) Control method and control apparatus for a balanced vehicle, computer program and recording medium
US20160207526A1 (en) Vehicle-side method and vehicle-side device for detecting and displaying parking spaces for a vehicle
CN109959364B (zh) 车辆、基于车道线进行自动校正测距误差的方法和装置
US11378974B2 (en) Information processing device and recording medium recording vehicle parking support program
WO2015029443A1 (ja) 舵角補正方法、舵角補正装置、撮像装置、および舵角補正システム
US9798936B2 (en) System and method for detecting obstacles using a single camera
EP2757781B1 (en) Optical axis ascertaining device for in-vehicle camera
JP2020060550A (ja) 異常検出装置、異常検出方法、姿勢推定装置、および、移動体制御システム
JP2013018406A (ja) 駐車枠の認識装置、駐車枠の認識方法、及び、プログラム
JP2013092820A (ja) 距離推定装置
JP6407596B2 (ja) 画像処理装置、及び、運転支援システム
KR20140123299A (ko) 차량 충돌 방지 장치 및 그 방법
JP6314655B2 (ja) 標示線検出装置、標示線検出方法
JP2009014645A (ja) 車両用距離測定装置
JP2005170290A (ja) 障害物検出装置
JP2011118485A (ja) 方向転換支援装置及び方法
US11628845B2 (en) Method and device for driver state evaluation and vehicle
JP6023030B2 (ja) 舵角補正方法、舵角補正装置、撮像装置、および舵角補正システム
JP7122211B2 (ja) 駐車支援装置および駐車支援方法
JP6023025B2 (ja) 舵角補正方法、舵角補正装置、撮像装置、および舵角補正システム
CN109959920B (zh) 车辆、基于路灯进行自动校正测距误差的方法和装置
JP2010148058A (ja) 運転支援装置及び運転支援方法
JP2020118451A (ja) 移動量算出装置
JP2019151307A (ja) 駐車エリア検知装置および駐車エリア検知方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210201

R150 Certificate of patent or registration of utility model

Ref document number: 6841331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150