JP2010148058A - 運転支援装置及び運転支援方法 - Google Patents

運転支援装置及び運転支援方法 Download PDF

Info

Publication number
JP2010148058A
JP2010148058A JP2008326346A JP2008326346A JP2010148058A JP 2010148058 A JP2010148058 A JP 2010148058A JP 2008326346 A JP2008326346 A JP 2008326346A JP 2008326346 A JP2008326346 A JP 2008326346A JP 2010148058 A JP2010148058 A JP 2010148058A
Authority
JP
Japan
Prior art keywords
vehicle
image
collision position
unit
traveling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008326346A
Other languages
English (en)
Inventor
Hideki Shirai
英樹 白井
Mitsuru Abe
満 安倍
Chiharu Yamano
千晴 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso IT Laboratory Inc
Original Assignee
Denso IT Laboratory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso IT Laboratory Inc filed Critical Denso IT Laboratory Inc
Priority to JP2008326346A priority Critical patent/JP2010148058A/ja
Publication of JP2010148058A publication Critical patent/JP2010148058A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】ドライバが自車両とその進行方向に存在する立体構造物が衝突するか否かを容易に判断可能な車両周囲の画像を表示する運転支援装置及び運転支援方法を提供する。
【解決手段】運転支援装置は、車両10の周囲を撮影して、その車両周囲の構造物を撮影した画像を取得する撮像部(2a〜2c)と、車両10の進行方向に存在する立体構造物の表面上の複数のサンプリング点の3次元座標を求める測距部432と、複数のサンプリング点の3次元座標から、立体構造物の表面形状を微小平面の集合により近似する形状補間部433と、車両10が現在の進行方向に沿って進んだときに、その車両10が立体構造物と衝突する衝突位置を、微小平面の集合に従って推定する衝突位置推定部434と、衝突位置推定部434により推定された衝突位置を表すマークを画像上に重畳させた合成画像を作成する画像合成部435と、合成画像を表示する表示部3とを有する。
【選択図】図1

Description

本発明は、運転支援装置及び運転支援方法に関し、特に、車載カメラで車両周囲を撮影した画像をディスプレイに表示する運転支援装置及び運転支援方法に関する。
近年、車両後方または車両左前方など、運転席から見え難い位置を、車載カメラにより撮影し、その撮影画像を車内に設置されたモニタに表示することにより、ドライバの運転を支援する装置が提案されている(例えば、特許文献1〜3を参照)。
例えば、特許文献1に開示された操舵支援装置は、現時点の操舵角αでの後退時の車両の予想軌跡を演算し、その予想軌跡に基づいて車幅の目安を示すガイド表示を、そのときの操舵角αに対応した所定位置にカメラにより撮像された映像を重畳させて、モニタに表示させる。
また、特許文献2に開示された周辺監視装置は、二つのカメラで撮像した画像を差分処理して立体物を抽出し、抽出した立体物の中から車両にぶつかりそうな立体物を障害物として検出し、その障害物に施す強調表示枠を作成して、ディスプレイに表示される画像上にその強調表示を描画する。
さらに、特許文献3に開示された駐車支援装置は、駐車車両の表面形状情報を検出し、その検出された表面形状情報に基づいて駐車車両の輪郭形状を認識し、表面形状情報と輪郭形状と自車両の移動状態とに基づいて、自車両と駐車車両との相対的な配置関係を演算することにより、自車両が駐車可能な駐車空間を検出する。
特開2000−272445号公報 特開2006−252389号公報 特開2007−30700号公報
しかしながら、上記の何れの装置も、自車両の進行方向上に立体構造物が存在する場合、自車両がそのまま進んだ場合にその立体構造物とどこで衝突するかの情報を、ドライバに提示しない。
また、車両の周囲を撮影する車載カメラは、広い範囲を撮像してドライバに提示できるようにするために、広い画角を有することが要求される。一方、車載カメラは、限られた設置スペースに配置できるように、小型であることが求められる。そのため、車載カメラで使用される撮像光学系では、一般に歪曲収差が十分に補正されていない。従って、車載カメラで撮像された画像は、画像中心から離れるほど歪んだ像となる。さらに、車両の近傍に位置する物体と車両から遠くに位置する物体とでは、画像上の見え方、特に大きさなどが異なる。そのため、ドライバは、上記の何れかの装置により提示される画像を参照しても、衝突を避けるためにどのように車両を操作すればよいのか、分かり難い場合がった。
そこで、本発明の目的は、ドライバが自車両の進行方向に存在する立体構造物と自車両が衝突するか否かを容易に判断可能な車両周囲の画像を表示する運転支援装置及び運転支援方法を提供するを提供することにある。
請求項1の記載によれば、本発明の一つの形態として、運転支援装置が提供される。係る運転支援装置は、車両(10)の周囲を撮影して、その車両周囲の構造物を撮影した画像を取得する撮像部(2a〜2c)と、車両(10)の進行方向に存在する立体構造物の表面上の複数のサンプリング点の3次元座標を求める測距部(432)と、複数のサンプリング点の3次元座標から、立体構造物の表面形状を微小平面の集合により近似する形状補間部(433)と、車両(10)が現在の進行方向に沿って進んだときに、その車両(10)が立体構造物と衝突する衝突位置を、車両(10)の現在の進行方向における、車両(10)の最も突出した部分と微小平面の集合が交差する位置を求めることにより推定する衝突位置推定部(434)と、衝突位置推定部(434)により推定された衝突位置を表すマークを画像上に重畳させた合成画像を作成する画像合成部(435)と、合成画像を表示する表示部(3)とを有する。
本発明に係る運転支援装置は、ドライバが自車両の進行方向に存在する立体構造物と自車両が衝突するか否かを容易に判断可能な車両周囲の画像を表示することができる。特に、この運転支援装置は、自車両の進行方向に存在する立体構造物の表面形状を微小平面の集合により近似し、自車両と立体構造物の衝突位置を、立体構造物の表面を近似した微小平面の集合により推定する。そのため、この運転支援装置は、立体構造物上の全ての点の3次元座標を測定しなくても、正確にその衝突位置を推定して、ドライバに提示することができる。
また請求項2の記載によれば、形状補間部(433)は、微小平面のそれぞれを、複数のサンプリング点のそれぞれを母点とするドロネー三角形に囲まれた平面として求めることが好ましい。これにより、この運転支援装置は、個々の微小平面の形状が細長くなることを避けることができるので、立体構造物の表面形状をより正確に近似できる。そのため、この運転支援装置は、車両と立体構造物の衝突位置をより正確に推定できる。
また請求項3の記載によれば、衝突位置推定部(434)は、車両(10)の現在の進行方向における、車両(10)の最も突出した部分の軌跡を推定し、その軌跡と微小平面の何れかが交差する点を衝突位置として推定することが好ましい。
あるいは、請求項4の記載によれば、衝突位置推定部(434)は、車両(10)の進行方向における、車両(10)の最も突出した部分の路面からの高さを持ち、かつ路面と平行な面と、微小平面の何れかが交差する線を衝突位置として推定することが好ましい。
さらに、請求項5の記載によれば、測距部(432)は、車両(10)の現在の進行方向に沿った車両(10)の左右両端の軌跡を推定し、その左右両端の軌跡の間に挟まれる領域から抽出されるサンプリング点の密度を、その左右両端の軌跡の間から外れた領域から抽出されるサンプリング点の密度よりも高くすることが好ましい。
さらに、請求項6の記載によれば、本発明の他の実施形態として、運転支援方法が提供される。係る運転支援方法は、車両(10)に取り付けられた撮像部(2a〜2c)により車両(10)の周囲を撮影して、その車両周囲の構造物を撮影した画像を取得するステップと、車両(10)の現在の進行方向に存在する立体構造物の表面上の複数のサンプリング点の3次元座標を求めるステップと、複数のサンプリング点の3次元座標から、立体構造物の表面形状を微小平面の集合により近似するステップと、車両(10)が現在の進行方向に沿って進んだときに、車両(10)が立体構造物と衝突する衝突位置を、車両(10)の現在の進行方向における、車両(10)の最も突出した部分と微小平面の集合が交差する位置を求めることにより推定するステップと、推定された衝突位置を表すマークを画像上に重畳させた合成画像を作成するステップと、合成画像を表示するステップとを有する。
本発明に係る運転支援方法は、ドライバが車両の進行方向に存在する立体構造物と車両が衝突するか否かを容易に判断可能な車両周囲の画像を表示することができる。特に、この運転支援方法は、自車両の進行方向に存在する立体構造物の表面形状を微小平面の集合により近似し、自車両と立体構造物の衝突位置を、立体構造物の表面を近似した微小平面の集合により推定する。そのため、この運転支援方法は、立体構造物上の全ての点の3次元座標を測定しなくても、正確にその衝突位置を推定して、ドライバに提示することができる。
上記各部に付した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
以下、本発明の一つの実施形態に係る運転支援装置について説明する。
本発明の一つの実施形態に係る運転支援装置は、車両後方または車両の左右前方などに設置されたカメラにより撮影された車両周囲の構造物を写す周辺画像を、車内に設置されたディスプレイに表示するものである。特にこの運転支援装置は、車載カメラにより撮影された周辺画像から抽出された複数のサンプリング点の3次元座標に基づき、その撮像範囲内に存在する立体構造物の表面形状をドロネー三角形により表された微小平面の集合で近似する。そして係る運転支援装置は、車両が現在の進行方向に沿って進んだ場合に、その立体構造物と衝突する衝突位置を、車両の推定軌跡とドロネー三角形により表された微小平面の交点を求めることにより推定し、その推定位置を表すマークを画像上に重畳して表示する。これにより、係る運転支援装置は、ドライバが自車両と立体構造物の衝突の危険性を容易に認識できるようにする。
図1は、本発明の第1の実施形態に係る運転支援装置1の全体構成を示す。図1に示すように、運転支援装置1は、車両10に搭載された3台のカメラ2a、2b、2cと、ディスプレイ3と、コントローラ4とを有する。カメラ2及びディスプレイ3と、コントローラ4とは、コントロールエリアネットワーク(以下、CANという)5によって互いに接続されている。
また、コントローラ4は、CAN5を介して、ハンドルの操舵角を検知する操舵角センサ6、車両10の車輪速度を検知可能な車輪速度センサ7及び車両10の電子制御ユニット8とも接続されている。そしてコントローラ4は、操舵角センサ6から、ハンドルの操舵角を表す操舵角信号を取得可能となっている。またコントローラ4は、車輪速度センサ7から車輪速度を表す車輪速度信号を取得可能となっている。さらにコントローラ4は、電子制御ユニット8からシフトレバーのポジションを表すシフトポジション信号を取得可能となっており、そのシフトポジション信号に基づいて、車両10が前進しているか、後進しているかを判断可能となっている。
カメラ2a〜2cは、CCDあるいはC-MOSなど、可視光に感度を有する光電変換器で構成された2次元検出器と、その2次元検出器上に車両10の周囲の路面などの像を結像する結像光学系などを有する。そしてカメラ2a〜2cは、一定の時間間隔(例えば1/30秒)ごとに撮影を行う。そしてカメラ2a〜2cは、車両10の周囲を撮影した周辺画像を、例えば、横640画素×縦480画素を持ち、各画素の輝度が赤、緑、青それぞれ256階調で表されるカラー画像として生成する。なお、カメラ2a〜2cは、周辺画像を、その撮像範囲内の近赤外光の照度に応じたグレー画像として生成してもよい。
カメラ2a〜2cは、撮影により得られた周辺画像を逐次コントローラ4へ送信する。
図2(a)及び図2(b)は、それぞれ、3台のカメラ2a、2b、2cが車両10に設置された、カメラの配置の一例を示す、車両10の概略平面図及び概略側面図である。図2(a)及び図2(b)に示すように、カメラ2aは、車両10の後方、トランクの上部中央に、カメラ2aの撮像光学系の光軸が、車両10の後方且つ斜め下方に向くように取り付けられる。そしてカメラ2aは、車両10の後側端部の少なくとも一部及び車両10の後方の路面を含む所定範囲を撮影する。またカメラ2bは、車両10の左前方に、カメラ2bの撮像系の光軸が車両の前後方向の中心軸に対して左方向に45°の角をなすように取り付けられる。そしてカメラ2bは、車両10の前側端部の少なくとも一部及び車両10の左前方の路面を含む所定範囲を撮影する。さらにカメラ2cは、車両10の右前方に、カメラ2cの撮像系の光軸が車両の前後方向の中心軸に対して右方向に45°の角をなすように取り付けられる。そしてカメラ2cは、車両10の前側端部の少なくとも一部及び車両10の右前方の路面を含む所定範囲を撮影する。
ディスプレイ3は、例えば、液晶ディスプレイあるいは有機ELディスプレイで構成され、インストルメントパネル内に配置される。なお、ディスプレイ3は、インストルメントパネルと独立して配置してもよい。あるいは、ディスプレイ3は、ナビゲーション装置など、他の装置のディスプレイであってもよい。
コントローラ4は、記憶部41と、通信部42と、制御部43とを有する。記憶部41は、例えば、電気的に書き換え可能な不揮発性メモリ及び揮発性メモリなどの半導体メモリを有する。そして記憶部41は、運転支援装置1を制御するための各種プログラム及びパラメータ、制御部43による一時的な演算結果などを記憶する。また、通信部42は、カメラ2、ディスプレイ3、操舵角センサ6、車輪速度センサ7及び電子制御ユニット8とCAN5を通じて通信する通信インターフェース及びその制御回路を有する。
制御部43は、1個もしくは複数個の図示してないマイクロプロセッサ及びその周辺回路を有する。そして制御部43は、運転支援装置1全体を制御する。
図3に、制御部43の機能ブロック図を示す。図3に示すように、制御部43は、画像選択部431と、測距部432と、形状補間部433と、衝突位置推定部434と、画像合成部435とを有する。制御部43が有するこれらの各部は、例えば、制御部43が有するマイクロプロセッサ上で実行されるコンピュータプログラムによって実現される機能モジュールとして実装される。
画像選択部431は、カメラ2a〜2cのうちの何れのカメラにより取得された周辺画像をディスプレイ3に表示させるかを選択する。そのために、画像選択部431は、操舵角センサ6から取得した操舵角信号及び電子制御ユニット8から取得したシフトポジション信号を参照する。そして、画像選択部431は、シフトポジション信号がシフトレバーがリバースポジションとなっていることを示していれば、車両10の後部に取り付けられたカメラ2aを選択する。なお、画像選択部431は、車輪速度センサ7から取得した車輪速度信号が、車両10が後進していることを示していれば、カメラ2aを選択してもよい。そして画像選択部431は、カメラ2aの識別信号を制御部43に通知する。一方、画像選択部431は、シフトポジション信号がシフトレバーがドライブポジションとなっていることを示しているか、あるいは車輪速度信号が車両10が前進していることを示しており、かつ操舵角信号が車両10が左方向へ旋回していることを示していれば、車両10の左前方に取り付けられたカメラ2bを選択する。そして画像選択部431は、カメラ2bの識別信号を制御部43に通知する。また、画像選択部431は、シフトポジション信号がシフトレバーがドライブポジションとなっていることを示しているか、あるいは車輪速度信号が車両10が前進していることを示しており、かつ操舵角信号が車両10が右方向へ旋回していることを示していれば、車両10の右前方に取り付けられたカメラ2cを選択する。そして画像選択部431は、カメラ2cの識別信号を制御部43に通知する。
制御部43は、画像選択部431から通知された識別信号に対応するカメラに対して画像要求信号を送信する。そして制御部43は、そのカメラから画像信号を受信し、記憶部41に記憶するとともに、測距部432及び画像合成部435へ渡す。
測距部432は、カメラ2a〜2cのうち、画像選択部431により選択された一つのカメラにより撮像された周辺画像から抽出した複数のサンプリング点について、実空間上での車両10の周囲の構造物の位置を表す実座標系上の3次元座標を求める。特に、測距部432は、その選択されたカメラの撮像範囲内に存在する立体構造物の表面上に位置する複数のサンプリング点の3次元座標を求める。なお、立体構造物は、路面上に存在する3次元状の形状を持つ物体であり、例えば、他の車両、ガードレール、壁、ポール、ブロックなどである。
本実施形態では、測距部432は、選択されたカメラが車両10の移動中に連続して撮影することにより得られた複数の周辺画像から、単眼ステレオ法を用いて、抽出した複数のサンプリング点の3次元座標を求める。
先ず、測距部432は、例えば、異なる撮影時刻において取得された少なくとも2枚の周辺画像に対して、それぞれ、複数のサンプリング点を抽出する。一つの周辺画像から抽出されたサンプリング点は、他の周辺画像から抽出された何れかのサンプリング点に対応するものであることが好ましい。そこで、例えば、測距部432は、周辺画像に対してコーナー検出フィルタを用いたフィルタリング処理を行って、コーナー状の特徴を有する点をサンプリング点として抽出する。あるいは、測距部432は、周辺画像からSIFT(Scale Invariant Feature Transform)特徴点を抽出して、サンプリング点とする。SIFT特徴点及びその抽出手法の詳細については、例えば、David G.Lowe, "Distinctive Image Features from Scale-Invariant Keypoints", Journal of Computer Vision, vol.60, No.2, pp.91-110, 2004に開示されている。
なお、車両10とその進行方向上に存在する立体構造物の衝突位置を正確に検出するために、周辺画像上において偏りなくサンプリング点が抽出されることが好ましい。そこで、測距部432は、例えば、周辺画像を複数の部分領域に分割し(例えば、周辺画像を64×64個の部分領域に分割し)、各部分領域内でコーナー検出フィルタリング処理あるいはSIFT特徴点抽出処理を行う。そして測距部432は、部分領域ごとにそれらの処理の出力値が最も高い画素を決定し、その画素をサンプリング点としてもよい。
あるいは、測距部432は、周辺画像全体に対してコーナー検出フィルタリング処理あるいはSIFT特徴点抽出処理を行って、それらの処理の出力値が最も高い画素を最初のサンプリング点とする。次に、測距部432は、最初のサンプリング点の周囲に所定サイズのマスク領域を設定し、周辺画像からそのマスク領域を除いた他の領域において、コーナー検出フィルタリング処理あるいはSIFT特徴点抽出処理の出力値が最も高い画素を次のサンプリング点とする。なお、マスク領域のサイズは、例えば、周辺画像の水平方向、垂直方向の長さを、それぞれ1/64にしたものとすることができる。これ以降、立体構造部検出部432は、周辺画像からマスク領域を除いた領域のサイズが、周辺画像のサイズに対する所定の比率(例えば、1/10)となるまで、サンプリング点の抽出及びマスク領域の設定を繰り返すことにより、複数のサンプリング点を抽出する。
測距部432は、一つの周辺画像上で抽出された各サンプリング点について、公知の様々なトラッキング技術の何れかを用いることにより、他の周辺画像上で対応するサンプリング点を決定する。そして、測距部432は、複数の周辺画像において対応するサンプリング点が存在すると判定されたサンプリング点を、3次元座標を求める対象点とする。なお、連続して取得された3枚以上の周辺画像にわたってトラッキング可能なサンプリング点について、測距部432は、位置検出の誤差を軽減するために、サンプリング点の位置を補正してもよい。そのために、測距部432は、例えば、各周辺画像にわたるそのサンプリング点の位置の変化を表す軌跡を、各周辺画像上のサンプリング点に対して最小二乗法を適用して求め、サンプリング点の位置をその軌跡上に位置するように補正してもよい。
一方、測距部432は、それら少なくとも2枚の周辺画像を取得する間に得られた操舵角センサ6から取得した操舵角信号及び車輪速度センサ7から取得した車輪速度信号に基づいて、それら周辺画像の画像撮影間におけるカメラの移動距離を決定する。そして測距部432は、三角測量の原理を用いて、カメラから各サンプリング点までの距離を求める。また、カメラの画角、撮影方向、取り付け位置及びその取り付け位置の路面からの高さは予め分かっている。そのため、周辺画像上に路面のみが写っていると仮定した場合における、周辺画像上の各画素についての路面までの距離も予め求めることができる。そこで、測距部432は、着目するサンプリング点に対応する画素におけるカメラから路面までの距離lgに対する、その距離lgからそのサンプリング点までの距離lsの差の比((lg-ls)/lg)を、カメラの路面からの高さに乗じることにより、そのサンプリング点の路面からの高さを決定できる。また測距部432は、カメラの光軸と、サンプリング点に対応する位置とカメラを結ぶ線とのなす角θが分かるので、サンプリング点までの距離にsinθを乗じることで、カメラを基準としたサンプリング点の水平方向の位置を求めることができる。そして測距部432は、カメラの設置位置と、実座標系の原点との位置のずれを補正することにより、サンプリング点の実座標系上の3次元座標を求めることができる。
また、例えば、カメラ2a〜2cが、光波測距画像センサのように、各画素ごとに撮影対象物までの距離を測定する機能を有するカメラである場合、測距部432は、各サンプリング点の画素に対応する測距信号を、CAN5を通じてカメラ2a〜2cから取得し、その測距信号を用いて各サンプリング点の3次元座標を決定してもよい。
測距部432は、周辺画像上の各サンプリング点の3次元座標を表す座標情報を、形状補間部433へ渡す。
形状補間部433は、測距部432から取得した、周辺画像上の複数のサンプリング点の座標情報に基づいて、立体構造物の表面形状を複数の微小平面により近似的に表す。そのために、本実施形態では、形状補間部433は、複数のサンプリング点に基づいてドロネー図を作成する。
図4に、ドロネー図の一例を示す。図4に示されるように、ドロネー図400は、二つのボロノイ領域が境界辺を共有するとき、それら二つのボロノイ領域の母点同士を線分で結ぶことにより作成される三角形(ドロネー三角形という)の集合図である。このドロネー図では、一般に、ドロネー三角形が細長い三角形になることが少ない。そのため、形状補間部433は、得られた複数のサンプリング点から選択されたサンプリング点を頂点とするドロネー三角形を作成することにより、サンプリング点以外の立体構造物の表面上の任意の点の3次元座標を、良好に補間して求めることができる。
形状補間部433は、例えば、得られた複数のサンプリング点を母点として、逐次添加法によりドロネー図を作成する。ドロネー図が作成されると、周辺画像上の任意の点についての3次元座標は、その点が属するドロネー三角形の各頂点の3次元座標によって求められる平面上にその点が存在するものとして、ドロネー三角形の各頂点からの距離により決定される。
形状補間部433は、作成したドロネー図を表す情報、具体的には、各サンプリング点について、そのサンプリング点がその他のどのサンプリング点と結ばれるかを示す情報を衝突位置推定部434へ渡す。
衝突位置推定部434は、車両10とその現在の進行方向に存在する立体構造物の衝突位置を推定する。そして衝突位置推定部434は、周辺画像と同じサイズを持ち、推定された衝突位置に対応する画素に、推定衝突位置を表す衝突位置マークを付したガイド画像を作成する。
そこで、衝突位置推定部434は、車両10の進行方向における、車両10の最も突出した部分(例えば、バンパー)の路面からの高さを持ち、かつ路面に対して平行な面と、形状補間部433により作成されたドロネー図の各微小平面との交線を求める。得られた交線が、車両10と立体構造物が衝突する可能性のある位置を示す衝突予測線となる。そこで、衝突位置推定部434は、衝突予測線上に存在する、周辺画像の画素を選択する。そして衝突位置推定部434は、選択された画素に衝突位置マークを付する。具体的には、衝突位置推定部434は、その選択された画素に対応する、ガイド画像上の画素の色または輝度を、周辺画像の対応する画素の周囲と区別可能な特定の色または輝度にする。あるいは、衝突位置推定部434は、衝突予測線と路面の間に挟まれる領域全体に衝突位置マークを付してもよい。この場合、衝突位置推定部434は、衝突予測線と路面の間に挟まれた領域に含まれる全ての画素の色または輝度を特定の色または輝度にする。
また、衝突位置推定部434は、車両10の現在の進行方向に沿った、車両10の最も突出した部分の推定軌跡と、形状補間部433により作成されたドロネー図の各ドロネー三角形で囲まれた微小平面との交点を求め、その交点に対応するガイド画像上の画素に対して、衝突予測線上に位置する画素の代わりに、あるいは、衝突予測線上に位置する画素とともに衝突位置マークを付してもよい。
なお、ドロネー図に示された各ドロネー三角形の全ての頂点の実座標系上での路面からの高さが、車両10の進行方向における、車両10の最も突出した部分の路面の高さよりも低い場合、衝突位置推定部434は、路面からの高さが最も高いドロネー三角形の頂点以下の車両10の最も突出した部分について、推定軌跡を求めてもよい。
また、衝突位置推定部434は、車両10が現在の進行方向に沿って進んだとき、車両10と立体構造物が衝突しない場合、ガイド画像を作成せず、その旨を制御部43に通知する。
図5を参照しつつ、現在の進行方向に沿った車両10の最も突出した部分が通る軌跡を推定する方法について説明する。図5において、車両10はxz平面上に存在するものとする。そして車両10の前側端の中心101をxz平面の原点とし、車両10が直進するときにz軸と平行となるように実座標系を設定する。また車両10が存在する路面からの高さ方向にy軸を設定する。また図5では、車両10は、右方向へ旋回するものとする。さらに図5において、車両10のホイールベース長及び前輪102から車両10の前側端までの距離は、それぞれ、L、L'で表される。また、車幅及びトレッド長(左右の車輪の中心間の距離)は、それぞれ、W、Tで表される。さらに、車両10の旋回中心はcで表される。
このとき、車両10の前側端の中心101の最小回転半径θcは次式により求められる。
Figure 2010148058
ただし、Routは、旋回中心cから外側の車輪(図5では、左側の車輪)の中心までの距離である。そして、車両10のハンドルの操舵角をθstrとし、ハンドルの左右どちらか一方における最大回転角をθmaxstrとすれば、車両10の前側端の中心101の回転角αは次式で表すことができる。
Figure 2010148058
したがって、車両10の旋回中心cから、車両10の前側端の中心101が通る軌跡までの回転半径Rcは、次式により求められる。
Figure 2010148058
したがって、旋回中心cの座標(Xc,Yc,Zc)は、次式で与えられる。
Figure 2010148058
ただし、hは、車両10の最も突出した部分の路面からの高さを表す。
次に、車両10の前側端の中心101の推定軌跡に沿った車両10からの距離をL2とする。このとき、車両10の前側端の中心101から推定軌跡に沿って車両10からの距離がL2である点までの回転角βは次式で求められる。
Figure 2010148058
したがって、車両10の前側端の何れかの点が通る軌跡上の回転角βにおける座標(Xf,Yf,Zf)は、次式で与えられる。
Figure 2010148058
ただし、dは、車両10の前側端の中心101からその前側端に沿った方向のずれ量を表し、車幅Wに対し、-W/2からW/2の範囲に含まれる。そしてd=W/2のとき、座標(Xf,Yf,Zf)は、車両10の前側端の外側の端点(図5では、車両10の左端)が通る軌跡上の回転角βにおける座標を表す。一方、d=-W/2のとき、座標(Xf,Yf,Zf)は、車両10の前側端の内側の端点(図5では、車両10の右端)が通る軌跡上の回転角βにおける座標を表す。
次に、車両10が後進するときの軌跡について説明する。図5において、車両10の後端と後輪間の距離はL”で表される。このとき、旋回中心cから車両10の後側端の中心103までの距離Rrは、以下の式で表される。
Figure 2010148058
また、車両10の後側端の中心103の推定軌跡に沿った車両10からの距離をL3とする。このとき、車両10の後側端の中心103から推定軌跡に沿って車両10からの距離がL3である点までの回転角γは次式で求められる。
Figure 2010148058
したがって、車両10の後側端の何れかの点が通る軌跡上の回転角γにおける座標(Xb,Yb,Zb)は、次式で与えられる。
Figure 2010148058
ただし、dは、車両10の後側端の中心103からその後側端に沿った方向のずれ量を表し、車幅Wに対し、-W/2からW/2の範囲に含まれる。そしてd=W/2のとき、座標(Xb,Yb,Zb)は、車両10の後側端の外側の端点(図5では、車両10の左端)が通る軌跡上の回転角γにおける座標を表す。一方、d=-W/2のとき、座標(Xb,Yb,Zb)は、車両10の後側端の内側の端点(図5では、車両10の右端)が通る軌跡上の回転角γにおける座標を表す。
なお、衝突位置推定部434は、車両10が左旋回するときも、x軸の正負を逆向きに設定することにより、上記と同様に実座標上の軌跡を推定することができる。なお、衝突位置推定部434は、実座標系上で車両の軌跡を推定する他の様々な方法、例えば、特開2000−272445号公報に開示された方法にしたがって、軌跡を推定してもよい。
衝突位置推定部434は、上記の(6)式または(9)式に従って求められる車両10の最も突出した部分の実座標系での推定軌跡と、形状補間部433により作成されたドロネー図に含まれる各ドロネー三角形で囲まれた微小平面との交点を求める。ドロネー三角形の各頂点については、実座標系上の3次元座標が求められているから、ドロネー三角形で囲まれた微小平面についても、それら頂点を通る実座標系上の平面として決定することができる。そのため、衝突位置推定部434は、曲線と平面の交点を求める周知の方法を用いて、車両10が立体構造物と衝突する衝突位置を簡単に推定することができる。
衝突位置推定部434は、車両10の実座標系での推定軌跡とドロネー図に含まれる各ドロネー三角形で囲まれた微小平面との交点を求めると、その交点に対応する周辺画像上の画素を決定する。この場合、衝突位置推定部434は、交点が存在する微小平面を囲むドロネー三角形の各頂点からその交点までの実座標系上での距離の互いに対する比をそれぞれ求める。そして衝突位置推定部434は、周辺画像上において、その交点に対応する画素と、その画素を囲むドロネー三角形の各頂点に対応する画素との距離の互いに対する比が、実座標系上で求めた各比と等しくなるように、その交点に対応する画素を決定する。
衝突位置推定部434は、衝突位置に対応する画素に衝突位置マークを付する。具体的には、衝突位置推定部434は、衝突位置に対応する、ガイド画像上の画素の色または輝度を、周辺画像の衝突位置に対応する画素の周囲と区別可能な特定の色または輝度にする。あるいは衝突位置推定部434は、ガイド画像の衝突位置に対応する画素を中心とした複数の画素に跨って、円形、星型などの形状を持つ衝突位置マークを付してもよい。
衝突位置推定部434は、作成したガイド画像を画像合成部435へ渡す。
画像合成部435は、周辺画像上に衝突位置推定部434により描画されたガイド画像を重畳して、合成画像を作成する。その際、画像合成部435は、ガイド画像上の各画素のうち、衝突位置マークが描画されていない画素を透明とする。すなわち、画像合成部435は、合成画像のうち、衝突位置マークが描画される画素は、ガイド画像上の対応する画素の輝度値を有し、衝突位置マーク以外の画素は、周辺画像上の対応する画素の輝度値を有するように合成画像を作成する。
また、画像合成部435は、衝突位置マークに対応するガイド画像の画素を半透明として、周辺画像上の衝突位置マークと重畳される部位に写っているものも、ドライバが見えるようにしてもよい。これらの画像合成法自体は公知であるため、その画像合成法の詳細な説明は省略する。
画像合成部435は、作成した合成画像を制御部43へ渡す。そして制御部43は、その合成画像をディスプレイ3に表示させる。
図6に、車両10の進行方向上に立体構造物が存在する状況の一例を示す鳥瞰図600を示す。図6に示される鳥瞰図600では、車両10が後進しようとしており、車両10の後方に側壁610及び620が存在する。そして、車両10の左右端の推定軌跡630、640から明らかなように、車両10がそのまま後進すると、車両10の後側左端が側壁620と衝突するおそれがある。
図7に、図6に示される状況に対応する合成画像の一例を示す。図7に示された合成画像700では、衝突予測線に対応する線状の衝突位置マーク710及び衝突予測位置に対応する同心円状の衝突位置マーク720が立体構造物である側壁620に重なって表示されている。そのため、ドライバは、それら衝突位置マーク710及び720を参照することにより、車両10が側壁620と衝突する危険性を容易に認識することが可能となる。
図8に、制御部43により制御される、本発明の一実施形態に係る運転支援装置1の動作フローチャートを示す。
まず、制御部43は、操舵角センサ6から取得した操舵角信号、車輪速度センサ7から取得した車輪速度信号または電子制御ユニット8から取得したシフトポジション信号に基づいて、車両10が後進を開始したこと、あるいは車両10が所定速度(例えば、20km/h)以下で旋回を開始したことを検知すると、処理を開始する。
まず、制御部43の画像選択部431は、カメラ2a〜2cのうち、操舵角信号と、シフトポジション信号または車輪速度信号に基づいて、車両10の進行方向に対応するカメラを選択する(ステップS101)。そして制御部43は、選択されたカメラに対して画像取得要求信号を送信し、選択されたカメラから周辺画像を取得する(ステップS102)。そして制御部43は、取得した周辺画像にその取得時間を関連付けて記憶部41に記憶する。
また、制御部43の測距部432は、記憶部41に記憶されている、所定フレーム数前に取得された過去の周辺画像及び最新の周辺画像と、その過去の周辺画像が取得されてから最新の周辺画像が取得されるまでの操舵角信号及び車輪速度信号に基づき、単眼ステレオ法などを用いることにより、周辺画像中の複数のサンプリング点の実座標系上の3次元座標を決定する(ステップS103)。そして測距部432は、各サンプリング点及びその3次元座標を制御部43の形状補間部433へ渡す。なお、所定フレーム数は、例えば、1〜10フレームの何れかとすることができる。
形状補間部433は、立体構造物の表面形状を複数の微小平面により近似的に表すために、各サンプリング点を母点としてドロネー図を作成する(ステップS104)。そして形状補間部433は、作成したドロネー図を表す情報、具体的には、各サンプリング点について、そのサンプリング点がその他のどのサンプリング点と結ばれるかを示す情報を制御部43の衝突位置推定部434へ渡す。
衝突位置推定部434は、操舵角信号及び車輪速度信号に基づいて、車両10の現在の進行方向における、車両10の最も突出した部分の軌跡を推定する(ステップS105)。そして衝突位置推定部434は、その推定軌跡と、ドロネー図に含まれる各ドロネー三角形で囲まれた微小平面との交点を求めることにより、車両10と立体構造物の衝突位置を推定する(ステップS106)。そして衝突位置推定部434は、推定された衝突位置に対応する周辺画像の画素を決定し、その画素に衝突位置マークを付したガイド画像を作成する(ステップS107)。そして衝突位置推定部434は、ガイド画像を画像合成部435へ渡す。
画像合成部435は、周辺画像上に衝突位置推定部434により描画されたガイド画像を重畳して、合成画像を作成する(ステップS108)。そして画像合成部435は、作成された合成画像を制御部43へ渡す。制御部43は、ディスプレイ3にその合成画像を表示させる(ステップS109)。なお、ステップS106において、推定された衝突位置がなければ、衝突位置推定部434はその旨を制御部43に通知し、制御部43は、ステップS107及びS108の処理を省略する。そして制御部43は、ステップS109において周辺画像そのものをディスプレイ3に表示させる。
次に、制御部43は、運転支援装置1を待機状態にすべきか否か判定する(ステップS110)。制御部43は、運転支援装置1を待機状態にしない場合、ステップS102〜S110の処理を繰り返す。一方、制御部43は、運転支援装置1を待機状態にすべき場合、処理を終了する。なお、運転支援装置1を待機状態にする条件は、例えば、車両10が停止してから所定時間(例えば、10秒間)経過したこととすることができる。あるいは、その条件は、車両10のインストルメントパネルなどに設置された運転支援装置1の操作部(図示せず)を介して、ドライバが運転支援装置1をオフにしたことであってもよい。
なお、上記の動作フローチャートでは、各サンプリング点の3次元座標を決定するために、測距部432は、単眼ステレオ法など複数フレームの画像を用いるものとしている。そのため、所定フレーム数前に取得された過去の周辺画像が記憶部41に記憶されていない場合、制御部43は、ステップS104〜S108の処理を省略する。しかし、例えば、カメラ2a〜2cが、光波測距画像センサのように、各画素ごとに撮影対象物までの距離を測定する機能を有するカメラである場合、ステップS103では、測距部432は、各サンプリング点の画素に対応する測距信号を、CAN5を通じてカメラ2a〜2cから取得し、その測距信号を用いて各サンプリング点の3次元座標を決定する。
また、各ステップにおける、制御部43の各部の処理の詳細は既に詳述したので、ここではその説明を省略する。
以上説明してきたように、本発明の一つの実施形態に係る運転支援装置は、車載カメラにより撮影された周辺画像から抽出された複数のサンプリング点の3次元座標を求めることにより、そのカメラの撮像範囲内に存在する立体構造物の表面形状を、微小平面の集合により近似的に表す。そしてこの運転支援装置は、車両が現在の進行方向に沿って進んだ場合に、車両がその立体構造物と衝突する予測位置を、車両の推定軌跡と微小平面の交点とを求めることにより推定してその推定位置を画像上に重畳して表示できる。そのため、この運転支援装置は、ドライバに対して自車両と立体構造物の衝突の危険性を容易に認識させることができる。さらに、この運転支援装置は、立体構造物の表面形状を表す個々の微小平面をドロネー三角形で表すことにより、3次元座標が測定されたサンプリング点以外の立体構造物の表面上の任意の点の3次元座標を、良好に求めることができるので、衝突予測位置を正確に推定できる。
なお、本発明は上記の実施形態に限定されるものではない。例えば、運転支援装置が有するカメラの台数は3台に限られず、例えば、運転支援装置は、車両後方を撮影する1台のカメラのみを有していてもよい。あるいは、運転支援装置は、車両後方を撮影するカメラと、車両前方の左右の角のうち、運転席から離れた方の角に設置されたカメラのみを有していてもよい。
また、コントローラの測距部は、車両が通る可能性の高い領域から抽出されるサンプリング点の密度を、車両が通る可能性の低い領域から抽出されるサンプリング点の密度よりも高くしてもよい。これにより、コントローラの形状補間部は、車両が通る可能性の高い領域については立体構造物の表面形状をより正確に近似することが可能となる一方、コントローラは、サンプリング点の密度を周辺画像全体に対して高くするよりも少ない計算時間で済む。
なお、測距部は、上記の(6)式または(9)式にしたがって、車両の左右端の通る軌跡を求め、その左右端の軌跡の間の領域を、車両が通る可能性の高い領域とすればよい。また測距部は、車両が通る可能性の高い領域から抽出されるサンプリング点の密度をその他の領域から抽出されるサンプリング点の密度よりも高くするために、例えば、車両の左右端の軌跡の間の領域を、それ以外の領域よりも細かく分割し、各分割領域に対してコーナー検出フィルタリング処理あるいはSIFT特徴点抽出処理を行って、それらの処理の出力値が最も高い画素をサンプリング点として抽出する。
また、コントローラの形状補間部は、立体構造物の表面形状を複数の微小平面により近似的に表すために、ドロネー図以外の空間分割手法を用いてもよい。例えば、形状補間部は、各サンプリング点を母点として、ドロネー図と双対関係にあるボロノイ図を作成してもよい。この場合、形状補間部は、逐次添加法あるいは再帰二分法を用いてボロノイ図を作成することができる。あるいは、形状補間部は、ドロネー図以外の他の三角形分割法を用いてもよい。
さらに、コントローラの衝突位置推定部は、ガイド画像において、衝突位置マークに加えて、車両の進行方向における先端部を中心とし、車両から所定距離であることを表すガイド線を同心円状に少なくとも一本描画してもよい。そして画像合成部は、そのようなガイド画像を周辺画像上に重畳して、合成画像を作成してもよい。
図9に、図6に示される状況に対応する、同心円状のガイド線が表示された合成画像の他の一例を示す。図9に示された合成画像900では、衝突予測線に対応する線状の衝突位置マーク710及び衝突予測位置に対応する衝突位置マーク720に加えて、同心円状のガイド線910〜930が車両のバンパーの高さに合わせて描画されている。そしてガイド線910〜930は、それぞれ、車両10から距離ld1、ld2、ld3の範囲を表している。そのため、ドライバは、ガイド線910〜930を参照することにより、車両10を他の車両と衝突させることなく、移動させることが可能な範囲を容易に認識することができる。
さらに、コントローラは、取得した周辺画像に対して輝度補正またはコントラスト補正などの補正処理を行ってもよい。
上記のように、当業者は、本発明の範囲内で様々な修正を行うことが可能である。
本発明の一つの実施形態に係る運転支援装置の全体構成図である。 (a)は、本発明の実施形態に係る運転支援装置に含まれるカメラの配置を示す車両の概略平面図であり、(b)は、本発明の実施形態に係る運転支援装置に含まれるカメラの配置を示す車両の概略側面図である。 本発明の一つの実施形態に係る運転支援装置の制御部の機能ブロック図である。 ドロネー図の一例を示す図である。 車両の進行方向の推定軌跡を求める方法の説明図である。 運転支援装置が搭載された車両の進行方向に他の車両が存在する状況の一例を示す鳥瞰図である。 図6の状況に対応する合成画像の一例を示す図である。 本発明の一つの実施形態に係る運転支援装置の動作フローチャートである。 図6の状況に対応する合成画像の他の一例を示す図である。
符号の説明
1 運転支援装置
2a、2b、2c カメラ
3 ディスプレイ
4 コントローラ
41 記憶部
42 通信部
43 制御部
431 画像選択部
432 測距部
433 形状補間部
434 衝突位置推定部
435 画像合成部
5 コントロールエリアネットワーク(CAN)
10 車両

Claims (6)

  1. 車両(10)の周囲を撮影して、該車両周囲の構造物を撮影した画像を取得する撮像部(2a〜2c)と、
    前記車両(10)の進行方向に存在する立体構造物の表面上の複数のサンプリング点の3次元座標を求める測距部(432)と、
    前記複数のサンプリング点の3次元座標から、前記立体構造物の表面形状を微小平面の集合により近似する形状補間部(433)と、
    前記車両(10)が現在の進行方向に沿って進んだときに、前記車両(10)が前記立体構造物と衝突する衝突位置を、前記車両(10)の現在の進行方向における、前記車両(10)の最も突出した部分と前記微小平面の集合が交差する位置を求めることにより推定する衝突位置推定部(434)と、
    前記衝突位置推定部(434)により推定された衝突位置を表すマークを前記画像上に重畳させた合成画像を作成する画像合成部(435)と、
    前記合成画像を表示する表示部(3)と、
    を有することを特徴とする運転支援装置。
  2. 前記形状補間部(433)は、前記微小平面のそれぞれを、前記複数のサンプリング点のそれぞれを母点とするドロネー三角形に囲まれた平面として求める、請求項1に記載の運転支援装置。
  3. 前記衝突位置推定部(434)は、前記車両(10)の現在の進行方向における、前記車両(10)の最も突出した部分の軌跡を推定し、該軌跡と前記微小平面の何れかが交差する点を前記衝突位置として推定する、請求項1または2に記載の運転支援装置。
  4. 前記衝突位置推定部(434)は、前記車両(10)の現在の進行方向における、前記車両(10)の最も突出した部分の路面からの高さを持ち、かつ該路面と平行な面と、前記微小平面の何れかが交差する線を前記衝突位置として推定する、請求項1または2に記載の運転支援装置。
  5. 前記測距部(432)は、前記車両(10)の現在の進行方向に沿った前記車両(10)の左右両端の軌跡を推定し、該左右両端の軌跡の間に挟まれる領域から抽出される前記サンプリング点の密度を、該左右両端の軌跡の間から外れた領域から抽出される前記サンプリング点の密度よりも高くする、請求項1〜4の何れか一項に記載の運転支援装置。
  6. 車両(10)に取り付けられた撮像部(2a〜2c)により車両(10)の周囲を撮影して、該車両周囲の構造物を撮影した画像を取得するステップと、
    前記車両(10)の現在の進行方向に存在する立体構造物の表面上の複数のサンプリング点の3次元座標を求めるステップと、
    前記複数のサンプリング点の3次元座標から、前記立体構造物の表面形状を微小平面の集合により近似するステップと、
    前記車両(10)が現在の進行方向に沿って進んだときに、前記車両(10)が前記立体構造物と衝突する衝突位置を、前記車両(10)の現在の進行方向における、前記車両(10)の最も突出した部分と前記微小平面の集合が交差する位置を求めることにより推定するステップと、
    前記推定された衝突位置を表すマークを前記画像上に重畳させた合成画像を作成するステップと、
    前記合成画像を表示するステップと、
    を有することを特徴とする運転支援方法。
JP2008326346A 2008-12-22 2008-12-22 運転支援装置及び運転支援方法 Pending JP2010148058A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008326346A JP2010148058A (ja) 2008-12-22 2008-12-22 運転支援装置及び運転支援方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008326346A JP2010148058A (ja) 2008-12-22 2008-12-22 運転支援装置及び運転支援方法

Publications (1)

Publication Number Publication Date
JP2010148058A true JP2010148058A (ja) 2010-07-01

Family

ID=42567961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008326346A Pending JP2010148058A (ja) 2008-12-22 2008-12-22 運転支援装置及び運転支援方法

Country Status (1)

Country Link
JP (1) JP2010148058A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123228A1 (ja) * 2013-02-08 2014-08-14 日立建機株式会社 旋回式作業機械の周囲監視装置
WO2018042567A1 (ja) * 2016-08-31 2018-03-08 日立建機株式会社 周辺監視システム及び周辺監視装置
CN110088802A (zh) * 2016-12-19 2019-08-02 日立汽车系统株式会社 物体检测装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123228A1 (ja) * 2013-02-08 2014-08-14 日立建機株式会社 旋回式作業機械の周囲監視装置
JPWO2014123228A1 (ja) * 2013-02-08 2017-02-02 日立建機株式会社 旋回式作業機械の周囲監視装置
US10506179B2 (en) 2013-02-08 2019-12-10 Hitachi Construction Machinery Co., Ltd. Surrounding monitoring device for slewing-type work machine
WO2018042567A1 (ja) * 2016-08-31 2018-03-08 日立建機株式会社 周辺監視システム及び周辺監視装置
JPWO2018042567A1 (ja) * 2016-08-31 2018-08-30 日立建機株式会社 周辺監視システム及び周辺監視装置
CN110088802A (zh) * 2016-12-19 2019-08-02 日立汽车系统株式会社 物体检测装置
CN110088802B (zh) * 2016-12-19 2023-08-01 日立安斯泰莫株式会社 物体检测装置

Similar Documents

Publication Publication Date Title
KR101188588B1 (ko) 모노큘러 모션 스테레오 기반의 주차 공간 검출 장치 및방법
JP4406381B2 (ja) 障害物検出装置及び方法
US8320628B2 (en) Method and system for assisting driver
JP4899424B2 (ja) 物体検出装置
US9151626B1 (en) Vehicle position estimation system
JP3494434B2 (ja) 駐車支援装置
EP3140725B1 (en) Dynamic camera view to aid with trailer attachment
US20200191927A1 (en) Sensor calibration method and sensor calibration apparatus
KR101498973B1 (ko) 차량용 주차 지원 시스템 및 방법
US20100226544A1 (en) Moving state estimating device
JP2010136289A (ja) 運転支援装置及び運転支援方法
JP6316161B2 (ja) 車載用画像処理装置
JP2009044730A (ja) 車両の後方視認システムの歪みを補正し且つ像を強調する方法及び装置
JP6291866B2 (ja) 運転支援装置、および運転支援方法
JP5539250B2 (ja) 接近物体検知装置及び接近物体検知方法
JP2004120661A (ja) 移動体周辺監視装置
JP3521859B2 (ja) 車両周辺画像処理装置及び記録媒体
JP2009188635A (ja) 車両周辺画像処理装置及び車両周辺状況提示方法
JP2010148058A (ja) 運転支援装置及び運転支援方法
KR101424636B1 (ko) 자동 후진 주차시스템
CN112528719A (zh) 推定装置、推定方法以及存储介质
US10249056B2 (en) Vehicle position estimation system
JP7380443B2 (ja) 部分画像生成装置及び部分画像生成用コンピュータプログラム
WO2020196676A1 (ja) 画像処理装置、車両制御装置、および方法、並びにプログラム
JP5580062B2 (ja) 障害物検知警報装置