JPWO2018216153A1 - 内燃機関の制御方法及び制御装置 - Google Patents

内燃機関の制御方法及び制御装置 Download PDF

Info

Publication number
JPWO2018216153A1
JPWO2018216153A1 JP2019519892A JP2019519892A JPWO2018216153A1 JP WO2018216153 A1 JPWO2018216153 A1 JP WO2018216153A1 JP 2019519892 A JP2019519892 A JP 2019519892A JP 2019519892 A JP2019519892 A JP 2019519892A JP WO2018216153 A1 JPWO2018216153 A1 JP WO2018216153A1
Authority
JP
Japan
Prior art keywords
combustion
spark plug
combustion engine
internal combustion
stratified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019519892A
Other languages
English (en)
Other versions
JP6835216B2 (ja
Inventor
洋史 前田
洋史 前田
理晴 葛西
理晴 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2018216153A1 publication Critical patent/JPWO2018216153A1/ja
Application granted granted Critical
Publication of JP6835216B2 publication Critical patent/JP6835216B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

吸気行程から圧縮行程前半までの間と、圧縮行程後半とに少なくとも1回ずつの燃料噴射を行うことで燃焼室内に成層混合気を形成して成層燃焼を行う内燃機関の制御方法において、圧縮行程後半に噴射した燃料噴霧のエネルギにより点火プラグ周りの流動エネルギが増大しているときに、点火プラグに相対的に大きな放電電流を流して火花点火を開始し、その後、放電電流を相対的に小さくして所定期間放電を行う。

Description

本発明は、吸気行程から圧縮行程前半までの間と圧縮行程後半とに少なくとも1回ずつの燃料噴射を行うことで成層混合気を形成し、圧縮行程後半に噴射した燃料噴霧のエネルギにより点火プラグ周りの流動エネルギが増大している間に火花点火を行う内燃機関の制御に関する。
点火プラグ周りに可燃混合気を形成し、その他の部分には希薄混合気を形成した状態で燃焼させる、いわゆる成層燃焼が知られている。JP 1999−303721 A1には、内燃機関の低負荷運転中に成層燃焼を行う際に、放電期間を均質燃焼時の放電期間よりも長くする制御が開示されている。上記文献に開示された制御は、放電期間内に点火プラグ周りに可燃混合気が存在しないという事態を回避するためのものである。
ところで、成層燃焼の場合には、燃焼室全体に均質な可燃混合気を形成して燃焼させる均質燃焼の場合に比べて、点火プラグ周りの当量比は増大している。つまり、成層燃焼時には、均質燃焼時に比べて点火プラグ周りの混合気は着火し易い状態である。このため、成層燃焼時に安定した燃焼を得るための放電電流の履歴は、均質燃焼時の放電電流の履歴とは異なる。
しかしながら、上記文献では点火のタイミングと放電期間とについて言及しているものの、成層燃焼に適した放電電流の履歴については言及されていない。このため、上記文献の制御には改善の余地がある。
そこで本発明では、成層燃焼時に放電電流の履歴を成層燃焼に適したものになるよう制御する方法を提供することを目的とする。
本発明のある態様によれば、吸気行程から圧縮行程前半までの間と、圧縮行程後半とに少なくとも1回ずつの燃料噴射を行うことで燃焼室内に成層混合気を形成して成層燃焼を行う内燃機関の制御方法が提供される。この制御方法では、圧縮行程後半に噴射した燃料噴霧のエネルギにより点火プラグ周りの流動エネルギが増大しているときに、点火プラグに相対的に大きな放電電流を流して火花点火を開始し、その後、放電電流を相対的に小さくして所定期間放電を行う。
図1は、内燃機関システムの全体構成の説明図である。 図2は、プラグ近傍における流動付与の説明図である。 図3は、燃料噴射弁の噴射形態を示す図である。 図4は、噴霧ビームについて説明するための図である。 図5は、点火プラグと燃料噴射弁の配置を示す図である。 図6は、放電領域と噴霧ビームとの関係を示す図である。 図7は、縮流について説明する為の図である。 図8は、筒内に生ずるタンブル流動の説明図である。 図9は、圧縮行程中におけるタンブル流動の説明図である。 図10は、点火プラグ周辺の乱流強度の変化を示す図である。 図11は、点火プラグ近傍におけるプラグ放電チャンネルの説明図である。 図12Aは、燃料噴射タイミングと点火時期との関係を示す図である。 図12Bは、燃料噴射タイミングと点火時期との関係を示す図である。 図13は、燃焼形態マップである。 図14は、可変圧縮比機構の一例を示す図である。 図15は、均質リーン燃焼時における放電ギャップのガス流速及び放電ギャップの空燃比のチャートである。 図16は、均質リーン燃焼時における、点火時期からの経過時間と二次電流との関係を示すチャートである。 図17は、成層リーン燃焼時における放電ギャップのガス流速及び放電ギャップの空燃比のチャートである。 図18は、成層リーン燃焼時における、点火時期からの経過時間と二次電流との関係を示すチャートである。 図19は、コントローラに記憶された制御ルーチンを示すフローチャートである。 図20は、リーン燃焼領域における、二次電流、放電時間、二次電圧、及び点火エネルギと内燃機関の負荷との関係を示す図である。 図21は、リーン燃焼領域における、燃焼室全体の空燃比、機械的圧縮比及び燃費と内燃機関の負荷との関係を示す図である。
以下、添付図面を参照しながら本発明の実施形態について説明する。
図1は、内燃機関システムの全体構成の説明図である。内燃機関システム1において内燃機関10は、吸気通路51に接続されている。また、内燃機関10は、排気通路52に接続されている。
吸気通路51にはタンブルコントロールバルブ16が設けられる。タンブルコントロールバルブ16は、吸気通路51の流路断面の一部を閉塞することにより筒内にタンブル流動を生成する。
吸気通路51にはコレクタタンク46が設けられている。コレクタタンク46にはEGR通路53bも接続されている。
吸気通路51にはエアフローメータ33が設けられる。エアフローメータ33に接続されるコントローラ50は、エアフローメータ33から吸気通路51における吸気量を取得する。また、吸気通路51には吸気温センサ34が設けられる。吸気温センサ34に接続されるコントローラ50は、吸気温センサ34から吸気通路51を通過する空気の温度を取得する。
また、吸気通路51には電子制御スロットル41が設けられ、コントローラ50によりスロットル開度が制御される。
排気通路52には排気浄化用の排気触媒44、45が設けられる。排気触媒44、45には三元触媒等が用いられる。また、排気通路52はその途中でコレクタタンク46と接続するEGR通路53に分岐する。
EGR通路53にはEGRクーラー43が設けられる。また、EGR通路53には、EGRバルブ42が設けられる。EGRバルブ42は、コントローラ50に接続される。そして、内燃機関10の運転条件に応じて、コントローラ50によりEGRバルブ42の開度が制御される。
内燃機関10は、点火プラグ11と燃料噴射弁12と吸気側可変動弁機構13と排気側可変動弁機構14と燃料噴射ポンプ15を備える。燃料噴射弁12は直上噴射弁であり、点火プラグ11の近傍に設けられる。
点火プラグ11は、駆動装置17により駆動されて、内燃機関10の燃焼室内で火花点火を行う。点火プラグ11は、コントローラ50に接続され、制御部としてのコントローラ50が点火時期を制御する。なお、本実施形態でいう「点火時期」とは、火花点火を開始するタイミングのことをいう。また、点火プラグ11は、放電ギャップ間のガス流速を検出する流速センサ23としても動作する。
駆動装置17は、コントローラ50からの点火信号に応じて点火プラグ11に放電電圧を発生させる。また、駆動装置17は、放電開始時の火花放電を行うための回路の他に、放電期間中に点火プラグ11の電極間に放電電圧と同方向の電圧(以下、重ね電圧ともいう)を印加するための回路も有する。重ね電圧を印加するための構成については公知(例えばJP2016−53312A1)なので詳細な説明は省略する。
放電期間中に重ね電圧を印加することで、放電時間を長くすることが可能である。換言すると、重ね電圧を制御することにより、放電期間を任意に制御することができる。
燃料噴射弁12は、内燃機関10の燃焼室内に燃料を直接噴射する。燃料噴射弁12は、コントローラ50に接続され、制御部としてのコントローラ50が燃料噴射タイミングを制御する。本実施形態では、吸気行程を含めて複数回燃料噴射を行う、いわゆる多段噴射が行われる。燃料噴射ポンプ15は、この燃料噴射弁12に接続する燃料供給配管に加圧した燃料を供給する。
吸気側可変動弁機構13は、吸気弁の開閉時期を変化させる。排気側可変動弁機構14は、排気弁の開閉時期を変化させる。吸気側可変動弁機構13及び排気側可変動弁機構14は、コントローラ50に接続される。そして、コントローラ50によって、これらの開閉時期が制御される。なお、ここでは、吸気側可変動弁機構13及び排気側可変動弁機構14を示しているが、いずれか一方を有するものであってもよい。
内燃機関10には、図示しないクランク角センサと筒内圧センサ及びアクセル開度センサが設けられる。クランク角センサは、内燃機関10におけるクランク角を検出する。クランク角センサはコントローラ50に接続され、内燃機関10のクランク角をコントローラ50に送る。
筒内圧センサは、内燃機関10における燃焼室の圧力を検出する。筒内圧センサはコントローラ50に接続される。そして、内燃機関10における燃焼室の圧力をコントローラ50に送る。
アクセル開度センサは、運転者によるアクセルペダルの踏み込み量を検出する。
また、内燃機関10は、ノックセンサ21や燃圧センサ24を備えることとしてもよい。コントローラ50は、前述の各種センサ及び図示しないその他のセンサからの出力を読み込み、これらに基づいて点火時期、バルブタイミング、空燃比等の制御を行う。なお、内燃機関10は機械的圧縮比を変更する可変圧縮比機構を備えており、コントローラ50はこの可変圧縮比機構の制御も行う。可変圧縮比機構の詳細については後述する。
図2は、点火プラグ11と燃料噴射弁12との位置関係を説明するための図である。上述したように、燃料噴射弁12は直上噴射弁であり、点火プラグ11の近傍に設けられる。そのため、噴射された燃料の一部は放電ギャップ近傍を通過することになり、これにより点火プラグ近傍に流動を付与することができる。なお、流動の付与については後述する。
図3は燃料噴射弁12から噴射される燃料噴霧の形態を示している。図4は図3の円Aを含む平面を図3の矢印IV方向から見た図である。
本実施形態の燃料噴射弁12は6つの噴孔から燃料が噴射される。6つの噴孔から噴射される燃料噴霧(以下、噴霧ビームともいう)をB1−B6としたとき、各噴霧ビームは噴孔から遠ざかるほど噴霧断面が広くなる円錐形状である。また、噴霧ビームB1−B6を、円Aを含む平面で切断した場合の断面は、図4に示すように等間隔で円環状に並ぶ。
図5は、噴霧ビームB1−B6と点火プラグ11との位置関係を示す図である。燃料噴射弁12は、噴霧ビームB2の中心軸B2cと噴霧ビームB3の中心軸B3cとがなす角の二等分線である一点鎖線C上に配置される。
図6は、図5を矢印VIの向きから見た場合の、点火プラグ11と噴霧ビームB3との位置関係を示す図である。図6では、中心電極11aと外側電極11bとで挟まれる放電領域が、噴霧ビームB3の図中上側の外縁と図中下側の外縁とで挟まれる範囲内に配置される。なお、図示はしないが、図5を矢印VIと反対方向から見ると、点火プラグ11と噴霧ビームB2との位置関係は図6と対象になり、放電領域が噴霧ビームB2の上側の外縁と下側の外縁とで挟まれる範囲内に配置される。すなわち、噴霧ビームB2の上側外縁と噴霧ビームB3の上側外縁とを含む平面と、噴霧ビームB2の下側外縁と噴霧ビームB3の下側外縁とを含む平面とで挟まれる範囲内に放電領域が配置されるように点火プラグ11が配置されている。
図7は、噴霧ビームB1−B6と点火プラグ11とが図5及び図6に示す位置関係にある場合の効果を説明する為の図である。
燃料噴射弁12から噴射された燃料は、液滴へと分裂して噴霧になり、図中の太線矢印のように周囲の空気を取り込みながら前進する。これにより、噴霧の周りに気流の乱れが発生する。
また、流体は、周囲に物体(流体を含む)がある場合には、いわゆるコアンダ効果によってその物体に引き寄せられ、その物体に沿って流れる。すなわち、噴霧ビームB2と噴霧ビームB3とが図7の細線矢印のように引き合う、いわゆる縮流が生じる。これにより、噴霧ビームB2と噴霧ビームB3との間に非常に強い乱れが生じるので、点火プラグ11の周辺における乱流強度が増大する。
ここで、タンブル流動の強度の変化について説明する。
図8は、筒内に生ずるタンブル流動の説明図である。図9は、タンブル流動の減衰を説明するための図である。これらの図には、吸気通路51と排気通路52と点火プラグ11と燃料噴射弁12とタンブルコントロールバルブ16が示されている。また、点火プラグ11の中心電極11aと外側電極11bが示されている。さらに、図8には、吸入行程における筒内のタンブル流動が矢印で示されている。図9には、圧縮行程における筒内のタンブル流動が矢印で示されている。
吸入行程において、タンブルコントロールバルブ16が閉じられていると、吸気は吸気通路51の図中上側に偏って流れ、筒内に流入する。その結果、図示するように筒内には縦方向に旋回するタンブル流動が形成される。その後、圧縮行程においてピストンが上昇することにより筒内の燃焼室が狭まる。燃焼室が狭くなるにつれて、タンブル流動は押しつぶされ、徐々にその流動が弱まり(図9)、やがて崩壊する。
したがって、点火プラグ11周りに可燃混合気が存在し、その他の部分に希薄な混合気が存在する成層混合気を形成し、かつ点火時期を圧縮行程後半まで遅角させる成層燃焼を実行する場合には、点火時期において点火プラグ11周りの流動が弱まっている。このため、点火プラグ11の電極11a、11bの間、つまり放電ギャップに生ずるアーク(以下、プラグ放電チャンネルCNともいう)が十分に伸長せずに、失火やパーシャルバーンを起こすおそれがある。なお、ここでいう「点火プラグ11周り」には、点火プラグ11の放電ギャップも含む。
そこで本実施形態では、燃料噴射することで点火プラグ11周りの乱流強度が増大する特性を利用して、プラグ放電チャンネルCNが伸長する状況を作り出すこととする。
図10は、圧縮行程後半に燃料噴射を行った場合の、点火プラグ11周りの乱流強度の変化を示すタイミングチャートである。図10の横軸はクランク角度、縦軸は点火プラグ11周りの乱流強度を示している。図中の破線は、圧縮行程後半の燃料噴射を行わない場合の乱流強度の変化を示している。
上述した通りタンブル流動の強度は徐々に低下するので、これに伴い点火プラグ11周りの乱流強度も低下する。しかし、圧縮行程後半に燃料噴射を行うと、燃料噴射後の所定期間は乱流強度が高まる。この、燃料噴射により乱流強度が増大している期間中が、プラグ放電チャンネルCNが伸長しやすい状況である。特に、乱流強度がピークとなるタイミングC1が点火時期として適している。一方、後述する均質リーン燃焼を行う場合には、圧縮行程後半の燃料噴射を行わないので、成層燃焼に比べて燃焼が緩慢になる。このため、均質リーン燃焼の場合の点火時期はタイミングC1よりも早いタイミングC2が適している。
図11は、プラグ放電チャンネルCNの説明図である。図11には、点火プラグ11の中心電極11aと外側電極11b、及び伸長したプラグ放電チャンネルCNが示されている。また、ここでは、プラグ放電チャンネルCNの様子に着目するために、燃料噴射弁12を省略している。なお、プラグ放電チャンネルCNが十分伸長するように点火プラグ周りに流動を与えられれば、燃料噴射弁12の先端は必ずしも点火プラグ11に向いていなくてもよい。例えば、噴射した燃料が燃焼室内で反射して、点火プラグ周りに流動を与える実施形態でもよい。
タンブル流動が弱まるほど点火プラグ11周りの流動は小さくなる。よって、火花点火が行われると、通常であれば、中心電極11aと外側電極11bとの間をほぼ直線的に跨ぐようにプラグ放電チャンネルCNが生成される。しかしながら、本実施形態では、燃料噴射弁12による燃料噴射によって点火プラグ11周りの流動が強まっている状態で火花点火を行う。これにより、図11に示されるように中心電極11aと外側電極11bとの間のプラグ放電チャンネルCNが伸長する。
このように、タンブル流動が弱まった後に点火プラグ11周りに流動を付与し、プラグ放電チャンネルCNを伸長させることができるので、パーシャルバーン及び失火を抑制し燃焼安定性を改善することができる。
図12A、図12Bは、プラグ放電チャンネルCNを伸長させるための燃料噴射パターンの例を示す図である。図12A、図12Bのいずれの場合も、吸気行程において全噴射量の90%以上を噴射する。残りの燃料は、圧縮行程後半に2回に分割して噴射してもよいし(図12A)、1回で噴射してもよい(図12B)。なお、ここでいう全噴射量とは、1サイクル当たりに噴射する燃料量である。
なお、上記の通り本実施形態における成層燃焼では、圧縮行程後半に噴射されて点火プラグ11周りに可燃混合気を形成する燃料量は、全噴射量の10%以下である。このため、点火プラグ11周りに形成される可燃混合気は全焼室全体のごく一部に過ぎない。このような成層燃焼を、圧縮行程後半により多くの燃料を噴射する成層燃焼と区別するため、「弱成層燃焼」と称してもよい。
ここで、コントローラ50が実行する制御について説明する。
まず、燃焼形態の切り替えについて説明する。
コントローラ50は、内燃機関10の運転状態に応じて、燃焼形態を切り換える。なお、ここでいう運転状態とは、内燃機関10の回転速度及び負荷である。回転速度はクランク角センサの検出値に基づいて公知の方法により算出可能である。負荷は、アクセル開度センサの検出値に基づいて公知の方法により算出可能である。
図13は、各運転状態で実行する燃焼形態を示すマップである。図13の縦軸は負荷、横軸は回転速度である。
図13に示す通り、低中回転・低中負荷領域の一部がリーン燃焼領域であり、その他の領域が均質ストイキ燃焼領域である。そして、リーン燃焼領域はさらに分割されており、負荷Q1を境界として、相対的に負荷が高い領域は成層リーン燃焼領域、相対的に負荷が低い領域が均質リーン燃焼領域となっている。ここでいう「成層リーン燃焼」とは、上述した成層燃焼のことをいう。均質ストイキ燃焼とは、燃焼室全体に理論空燃比の混合気を形成して行う燃焼である。負荷Q1は本実施形態を適用する内燃機関10の仕様に応じて設定するものである。
成層リーン燃焼及び均質リーン燃焼のいずれの場合も、コントローラ50は基本的には燃焼室全体の空気過剰率λを2に制御する。ただし、厳密な意味で空気過剰率λ=2に限られるものではなく、略2といえる程度の範囲を含むものである。また、負荷の増大に応じて、着火性確保等のためにコントローラ50は空気過剰率λを2よりもリッチ側に補正する場合がある。
また、以下の説明において、空気過剰率λに替えて空燃比A/Fを用いる場合がある。この場合、空気過剰率λ=2は空燃比A/F≒30と表示する。
また、コントローラ50は、内燃機関10の負荷の増大に応じて、ノッキングの発生を抑制するために機械的圧縮比を低下させる。ただし、コントローラ50は、成層リーン燃焼時には、仮に同一運転条件で均質リーン燃焼を行うとした場合よりも機械的圧縮比を高く制御する。これは、成層リーン燃焼の方が均質リーン燃焼よりも燃焼速度が高くノッキングが生じ難いからである。
ここで、可変圧縮比機構について説明する。可変圧縮比機構は公知のものを使用すればよい。ここでは公知の可変圧縮比機構の一例を説明する。
図14は、ピストン25とクランクシャフト30とを複数のリンクで連結することによって、ピストン25の上死点位置を可変に制御可能にした可変圧縮比機構である。
ピストン25は、アッパーリンク26及びロアリンク27を介してクランクシャフト30に連結されている。アッパーリンク26の一端はピストン25に回転自在に連結され、他端はロアリンク27に回転自在に連結されている。ロアリンク27は、アッパーリンク26との連結部とは異なる部位においてクランクシャフト30のクランクピン30Aに回転自在に連結されている。また、ロアリンク27には、コントロールリンク28の一端が回転自在に連結されている。コントロールリンク28の他端はコントロールシャフト29の回転中心からずれた位置に連結されている。
上記のような構成の可変圧縮比機構では、コントロールシャフト29を図示しないアクチュエータ等により回転させることによって、機械的圧縮比を変化させることができる。例えば、コントロールシャフト29を図中反時計回り方向に所定角度回転させると、ロアリンク27は、コントロールリンク28を介してクランクピン30Aを中心として図中反時計回り方向に回転する。その結果、ピストン25の上死点位置が上昇し、機械的圧縮比が上昇する。これとは反対に、コントロールシャフト29を図中時計回り方向に所定角度回転させると、ロアリンク27は、コントロールリンク28を介してクランクピン30Aを中心として図中時計回り方向に回転する。その結果、ピストン25の上死点位置は下降し、機械的圧縮比が低下する。
次に、均質リーン燃焼時と成層リーン燃焼時とにおける点火エネルギについて説明する。
図15は、均質リーン燃焼時における、放電ギャップのガス流速及び放電ギャップの空燃比A/Fの変化を示すチャートである。図15の横軸はクランク角度[deg]であり、図10のタイミングC2以降の様子を示している。
図16は、均質リーン燃焼時における、点火時期からの経過時間と点火プラグ11に流れる二次電流との関係を示すチャートである。
図17は、均質リーン燃焼時における、放電ギャップのガス流速及び放電ギャップの空燃比A/Fの変化を示すチャートである。図17の横軸はクランク角度[deg]であり、図10のタイミングC1以降の様子を示している。
図18は、成層リーン燃焼時における、点火時期からの経過時間と点火プラグ11に流れる二次電流との関係を示すチャートである。なお、図中の破線は、図16の均質リーン燃焼時のチャートである。
図15及び図17における「放電ギャップのガス流速」は、図10で説明した乱流強度と同義である。
均質リーン燃焼時には、放電ギャップのガス流速はクランク角度が進むにつれて低下する。また、均質リーン燃焼時には燃焼室全体の空気過剰率λが2、つまり空燃比A/Fが略30に制御されるので、当然、放電ギャップの空燃比A/Fは略30である。
これに対し成層リーン燃焼時には、圧縮行程後半に燃料噴射を行ってから火花点火する。このため、放電ギャップのガス流速は、点火時期においては均質リーン燃焼時よりも高くなる。ただし、燃料噴射によるガス流速増大の効果は徐々に減衰するので、放電ギャップのガス流速はやがて均質リーン燃焼時と同じになる。
また、圧縮行程後半の燃料噴射によって、点火時期における放電ギャップの空燃比A/Fは均質リーン燃焼時に比べてリッチになる。ただし、圧縮行程後半に噴射された燃料は、自身の貫徹力やタンブル流動によって拡散するため、放電ギャップの空燃比A/Fは徐々に30に戻る。
均質リーン燃焼時には、放電ギャップのA/Fがストイキに比べて大幅にリーンな略30なので、放電ギャップの混合気は成層リーン燃焼時に比べて着火し難い。また、均質リーン燃焼時には成層リーン燃焼時に比べて燃焼速度が緩慢である。したがって、均質リーン燃焼時には、安定した燃焼を得るために相対的に大きな二次電流が流れ続けるようにする必要がある。
一方、成層リーン燃焼時には、点火時期における放電ギャップのガス流速が均質燃焼時に比べて高いので、ガス流動に吹き消されることなく初期火炎核を形成するためには、均質リーン燃焼時に比べて二次電流を高くする必要がある。しかし、上記の通り放電ギャップの混合気は均質リーン燃焼時に比べて着火し易いので、一旦燃焼が始まれば、二次電流を低下させても安定した燃焼が得られる。このため、成層リーン燃焼時には、点火時期の後に二次電流を小さくすることができる。また、上記の通り放電ギャップの混合気は均質リーン燃焼時に比べて着火し易いので、成層リーン燃焼時には均質リーン燃焼時に比べて放電時間を短くすることもできる。
成層リーン燃焼時には、上記のように点火時期の後に二次電流を小さくしたり、放電時間を短くしたりすることで、1サイクル当たりに消費する点火エネルギを均質リーン燃焼時よりも小さくすることができる。
上記の通り、成層リーン燃焼時に適した放電波形と均質リーン燃焼時に適した放電波形とは異なる。ここでいう放電波形とは、図16及び図18に示された二次電流の履歴のことをいう。
そこで、コントローラ50は、均質リーン燃焼時には一定の二次電流が流れるように、成層リーン燃焼時には、点火時期には相対的に大きな二次電流が流れ、その後は二次電流が小さくなるように、それぞれ駆動装置17を制御する。
なお、図18に示した二次電流の波形は、あくまでも一例であって、点火時期に相対的に大きく、その後に相対的に小さくなり、かつ均質リーン燃焼時より点火エネルギが小さくなるのであれば、他の波形であってもよい。例えば、点火時期からの経過時間に応じて二次電流が徐々に小さくなる波形や、点火時期からの所定時間は一定値で、所定時間経過後に二次電流がステップ的に小さくなる波形等、様々な波形が考えられる。
図19は、上述した制御内容を具体的に制御ルーチンとして示した図である。当該制御ルーチンはコントローラ50にプログラムされている。
ステップS10において、コントローラ50は運転状態を読み込む。具体的には、内燃機関10の回転速度及び負荷を読み込む。
ステップS20において、コントローラ50は、ステップS10で読み込んだ運転状態と図13のマップとを用いて、現在の運転領域がリーン燃焼領域か否かを判定する。コントローラ50は、リーン燃焼領域であればステップS30の処理を実行し、均質ストイキ燃焼領域であればステップS60の処理を実行する。
ステップS30において、コントローラ50は現在の運転領域が成層リーン燃焼領域か否かを判定する。コントローラ50は、成層リーン燃焼領域であればステップS40の処理を実行し、均質リーン燃焼領域であればステップS50の処理を実行する。
ステップS40において、コントローラ50は上述した成層リーン燃焼用の放電波形となるように駆動装置17を制御する。
ステップS50において、コントローラ50は上述した均質リーン燃焼用の放電波形となるように駆動装置17を制御する。
ステップS60において、コントローラ50は均質ストイキ燃焼用の放電波形となるように駆動装置17を制御する。均質ストイキ燃焼用の放電波形は、基本的には均質リーン燃焼用の放電波形と同様であるが、均質リーン燃焼用の放電波形に比べて二次電流が小さく、かつ放電時間が短い。
次に、上記制御ルーチンを実行することによる作用効果について説明する。
図20は、リーン燃焼領域における、二次電流、放電時間、二次電圧、及び点火エネルギと内燃機関10の負荷との関係を示す図である。図中の負荷Q1は、図13における負荷Q1と同じものである。図中には、リーン燃焼領域の全域で、つまり相対的に高負荷な領域でも、均質リーン燃焼を行うと仮定した場合の値を比較のために破線で示している。なお、図20における二次電流は、点火時期における電流値である。上記の通り、コントローラ50は点火時期の後に二次電流を小さくする制御を行う。
成層リーン燃焼時の二次電流は、当該領域で均質リーン燃焼を行う場合の二次電流より高い。ただし、点火時期の後は、コントローラ50は二次電流が小さくなるよう制御するので、放電期間の中期から後期にかけては、成層リーン燃焼領域の二次電流は当該領域で均質リーン燃焼を行う場合の二次電流よりも小さくなる。
成層リーン燃焼時の放電時間は、当該領域で均質リーン燃焼を行う場合の放電時間より短い。
リーン燃焼領域の全域にわたって、負荷の増大に応じて二次電圧が高くなり、これに伴い点火エネルギも大きくなる。ただし、相対的に高負荷な領域においては、二次電流及び放電時間を上記の通り制御して成層リーン燃焼を行うので、点火エネルギは当該領域において均質リーン燃焼を行う場合に比べて小さくなる。
図21は、リーン燃焼領域における、燃焼室全体の空燃比、機械的圧縮比及び燃費と内燃機関10の負荷との関係を示す図である。図中の負荷Q1は、図13における負荷Q1と同じものである。図中には、リーン燃焼領域の全域で、つまり相対的に高負荷な領域でも、均質リーン燃焼を行うと仮定した場合の値を比較のために破線で示している。
コントローラ50は、負荷が高くなるにつれて着火性確保等のために燃焼室全体の空燃比を30よりもリッチにする。ただし、成層リーン燃焼の場合には、圧縮行程後半の燃料噴射により点火プラグ11周りの当量比が増大することで着火しやすくなる。このため、成層リーン燃焼の場合には、同じ領域で均質リーン燃焼を行う場合に比べると、燃焼室全体の空燃比をリーンにすることができる。
また、コントローラ50は、負荷が高くなるにつれてノッキングの発生を抑制するために機械的圧縮比を低くする。ただし、成層リーン燃焼の場合には、圧縮行程後半の燃料噴射により点火プラグ11周りの当量比が増大することで火炎伝播が速くなり、これによりノッキングが発生し難くなる。このため、成層リーン燃焼の場合には、同じ領域で均質リーン燃焼を行う場合に比べて、機械的圧縮比を高くできる。
上記の通り、相対的に高負荷の領域で成層リーン燃焼を行うと、同じ領域で均質リーン燃焼を行う場合に比べて、全焼室全体の空燃比をよりリーンに、そして機械的圧縮比をより高くできる。その結果、相対的に高負荷な領域における燃費は、同じ領域で均質リーン燃焼を行う場合に比べて良くなる。
以上の通り本実施形態の内燃機関10の制御方法は、吸気行程から圧縮行程前半までの間と、圧縮行程後半とに少なくとも1回ずつの燃料噴射を行うことで燃焼室内に成層混合気を形成して成層燃焼を行う内燃機関の制御方法である。本実施形態では、圧縮行程後半に噴射した燃料噴霧のエネルギにより点火プラグ11周りの流動エネルギが増大しているときに、点火プラグ11に相対的に大きな二次電流(放電電流ともいう)を流して火花点火を開始し、その後、二次電流を相対的に小さくして所定期間放電を行う。火花点火を開始する際の二次電流を相対的に大きくするのは、圧縮行程後半の燃料噴射により強くなった点火プラグ11周りの流動に打ち勝って放電チャンネルを形成するためである。その後に二次電流を小さくするのは、圧縮行程後半の燃料噴射により点火プラグ11周りの混合気は当量比が増大して燃焼し易くなっており、少ない点火エネルギで安定した燃焼が得られるからである。このように、成層リーン燃焼時に放電波形を成層燃焼に適した波形に制御することで、成層リーン燃焼時の点火エネルギを低減させつつ、燃費の向上を図ることができる。
本実施形態では、リーン燃焼領域において、内燃機関10の負荷が相対的に高い運転領域で成層燃焼を行い、内燃機関10の負荷が相対的に低い運転領域では均質リーン燃焼を行う。そして、成層燃焼時と均質リーン燃焼時とで、点火プラグの放電波形を異ならせる。これにより、成層燃焼時と均質リーン燃焼時とで、それぞれの燃焼形態に適した放電波形を設定することができる。
本実施形態では、成層燃焼時と均質リーン燃焼時のいずれの場合も、燃焼室全体の空気過剰率λが2になるよう制御する。これにより、成層リーン燃焼領域以外のすべての領域でストイキ燃焼を行う場合に比べて、リーン運転領域が広くなるので、燃費が向上する。
本実施形態では、均質リーン燃焼時の点火プラグ11の放電時間(放電継続期間)を、成層燃焼時の放電時間より長くする。均質リーン燃焼時には、成層リーン燃焼時に比べて着火性が低下し、かつ燃焼が緩慢になるが、放電時間を長くすることにより燃焼が安定する。その結果、燃費を向上し、かつエミッションを低減することができる。
本実施形態では、均質リーン燃焼時の点火エネルギを成層燃焼時の点火エネルギより大きくする。点火エネルギを大きくするためには、例えば放電時間を長くしたり、二次電流を大きくしたりすることで、放電期間中の二次電流の積算値を大きくすればよい。これにより、均質リーン燃焼時の燃焼が安定するので、燃費を向上し、かつエミッションを低減することができる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
図6は、図5を矢印VIの向きから見た場合の、点火プラグ11と噴霧ビームB3との位置関係を示す図である。図6では、中心電極11aと外側電極11bとで挟まれる放電領域が、噴霧ビームB3の図中上側の外縁と図中下側の外縁とで挟まれる範囲内に配置される。なお、図示はしないが、図5を矢印VIと反対方向から見ると、点火プラグ11と噴霧ビームB2との位置関係は図6と対称になり、放電領域が噴霧ビームB2の上側の外縁と下側の外縁とで挟まれる範囲内に配置される。すなわち、噴霧ビームB2の上側外縁と噴霧ビームB3の上側外縁とを含む平面と、噴霧ビームB2の下側外縁と噴霧ビームB3の下側外縁とを含む平面とで挟まれる範囲内に放電領域が配置されるように点火プラグ11が配置されている。

Claims (6)

  1. 吸気行程から圧縮行程前半までの間と、圧縮行程後半とに少なくとも1回ずつの燃料噴射を行うことで燃焼室内に成層混合気を形成して成層燃焼を行う内燃機関の制御方法において、
    圧縮行程後半に噴射した燃料噴霧のエネルギにより点火プラグ周りの流動エネルギが増大しているときに、前記点火プラグに相対的に大きな放電電流を流して火花点火を開始し、
    その後、放電電流を相対的に小さくして所定期間放電を行う、
    内燃機関の制御方法。
  2. 請求項1に記載の内燃機関の制御方法において、
    内燃機関の低中回転速度・低中負荷領域の一部をリーン燃焼領域とし、
    前記リーン燃焼領域の負荷が相対的に高い運転領域で前記成層燃焼を行い、
    前記リーン燃焼領域の負荷が相対的に低い運転領域では吸気行程から圧縮行程前半までの間に少なくとも1回の燃料噴射を行うことで前記燃焼室内に均質混合気を形成して均質燃焼を行い、
    前記成層燃焼時と前記均質燃焼時とで、前記点火プラグの放電波形を異ならせる、
    内燃機関の制御方法。
  3. 請求項2に記載の内燃機関の制御方法において、
    前記成層燃焼時と前記均質燃焼時のいずれの場合も、燃焼室全体の空気過剰率が2になるよう制御する、
    内燃機関の制御方法。
  4. 請求項2または3に記載の内燃機関の制御方法において、
    前記均質燃焼時の前記点火プラグの放電継続期間を、前記成層燃焼時の前記点火プラグの放電継続期間より長くする、
    内燃機関の制御方法。
  5. 請求項4に記載の内燃機関の制御方法において、
    前記均質燃焼時の点火エネルギを前記成層燃焼時の点火エネルギより大きくする、
    内燃機関の制御方法。
  6. 燃焼室内に直接燃料を噴射する燃料噴射弁と、
    前記燃焼室内に形成された混合気に火花点火する点火プラグと、
    前記点火プラグを駆動する駆動装置と、
    前記燃料噴射弁と前記駆動装置とを制御する制御部と、
    を備える内燃機関の制御装置において、
    前記制御部は、
    吸気行程から圧縮行程前半までの間と、圧縮行程後半とに少なくとも1回ずつの燃料噴射を行うことで前記燃焼室内に成層混合気を形成し、
    圧縮行程後半に噴射した燃料噴霧のエネルギにより点火プラグ周りの流動エネルギが増大しているときに、前記点火プラグに相対的に大きな放電電流を流して火花点火を開始し、
    その後、放電電流を相対的に小さくして所定期間放電を行う、
    内燃機関の制御装置。
JP2019519892A 2017-05-24 2017-05-24 内燃機関の制御方法及び制御装置 Active JP6835216B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019428 WO2018216153A1 (ja) 2017-05-24 2017-05-24 内燃機関の制御方法及び制御装置

Publications (2)

Publication Number Publication Date
JPWO2018216153A1 true JPWO2018216153A1 (ja) 2020-04-30
JP6835216B2 JP6835216B2 (ja) 2021-02-24

Family

ID=64396341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019519892A Active JP6835216B2 (ja) 2017-05-24 2017-05-24 内燃機関の制御方法及び制御装置

Country Status (5)

Country Link
US (1) US10890155B2 (ja)
EP (1) EP3633182A4 (ja)
JP (1) JP6835216B2 (ja)
CN (1) CN110621871B (ja)
WO (1) WO2018216153A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248555B2 (en) * 2017-05-24 2022-02-15 Nissan Motor Co., Ltd. Control method and control device for internal combustion engine
WO2018229933A1 (ja) * 2017-06-15 2018-12-20 日産自動車株式会社 直噴エンジンの制御装置および制御方法
EP3779154A4 (en) * 2018-04-10 2021-04-14 Nissan Motor Co., Ltd. COMBUSTION MACHINE CONTROL PROCEDURES AND COMBUSTION MACHINE
JP7437120B2 (ja) 2019-06-21 2024-02-22 日立Astemo株式会社 内燃機関制御装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153015A (ja) * 1999-11-29 2001-06-05 Mitsubishi Motors Corp 火花点火式層状燃焼内燃機関の点火制御装置
JP2004245171A (ja) * 2003-02-17 2004-09-02 Toyota Motor Corp 混合気を圧縮自着火させる自着火運転が可能な内燃機関
JP2006046276A (ja) * 2004-08-09 2006-02-16 Nissan Motor Co Ltd 直噴火花点火式内燃機関の点火制御装置
JP2006307659A (ja) * 2005-04-26 2006-11-09 Nissan Motor Co Ltd 筒内直接噴射式内燃機関の制御装置
JP2007292059A (ja) * 2006-03-31 2007-11-08 Mazda Motor Corp 火花点火式ガソリンエンジン
JP2011094604A (ja) * 2009-09-30 2011-05-12 Nippon Soken Inc 内燃機関の制御装置及び内燃機関
JP2015187439A (ja) * 2014-03-10 2015-10-29 本田技研工業株式会社 内燃機関の燃焼制御装置
JP2015200254A (ja) * 2014-04-10 2015-11-12 株式会社デンソー 点火装置
WO2018216154A1 (ja) * 2017-05-24 2018-11-29 日産自動車株式会社 内燃機関の制御方法及び制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3500876B2 (ja) * 1996-10-31 2004-02-23 日産自動車株式会社 直噴式火花点火エンジンの燃料噴射装置
EP1471240A2 (en) * 1997-05-21 2004-10-27 Nissan Motor Co., Ltd. Transient control between two spark-ignited combustion states in engine
DE19730908C2 (de) * 1997-07-18 2002-11-28 Daimler Chrysler Ag Verfahren zum Betrieb einer direkteinspritzenden Otto-Brennkraftmaschine
JPH11343911A (ja) * 1998-03-31 1999-12-14 Mazda Motor Corp 筒内噴射式エンジンの燃料制御装置
JP3464145B2 (ja) 1998-04-24 2003-11-05 株式会社日本自動車部品総合研究所 内燃機関の点火装置
US6116208A (en) * 1998-09-29 2000-09-12 Mazda Motor Corporation Control system for a direct injection-spark ignition engine
JP3651304B2 (ja) * 1999-03-26 2005-05-25 日産自動車株式会社 内燃機関の点火装置
JP4253426B2 (ja) * 1999-09-14 2009-04-15 日産自動車株式会社 圧縮自己着火式ガソリン機関
JP3552609B2 (ja) * 1999-09-30 2004-08-11 マツダ株式会社 火花点火式直噴エンジンの制御装置
DE10031874A1 (de) * 2000-06-30 2002-01-17 Bosch Gmbh Robert Vorrichtung zur Zündung einer bezindirekteinspritzenden Brennkraftmaschine und entsprechendes Verfahren
DE10031875A1 (de) 2000-06-30 2002-01-10 Bosch Gmbh Robert Zündverfahren und entsprechende Zündvorrichtung
JP2002054488A (ja) * 2000-08-10 2002-02-20 Mazda Motor Corp 火花点火式エンジンの燃料制御装置
ES2574560T3 (es) * 2005-11-24 2016-06-20 Toyota Jidosha Kabushiki Kaisha Motor de combustión interna de ignición por chispa, de inyección directa al cilindro
JP5035088B2 (ja) * 2007-08-06 2012-09-26 日産自動車株式会社 エンジン
JP4918911B2 (ja) * 2007-12-25 2012-04-18 日産自動車株式会社 筒内直接燃料噴射式火花点火エンジンの燃圧制御装置
JP5015910B2 (ja) * 2008-03-28 2012-09-05 株式会社日本自動車部品総合研究所 点火装置
DE102013213686A1 (de) * 2013-07-12 2015-01-15 Robert Bosch Gmbh Verfahren zum Betreiben einer Verbrennungskraftmaschine mit mehreren Zylindern
DE112015000119T5 (de) 2014-03-10 2016-04-21 Honda Motor Co., Ltd. Verbrennungssteuervorrichtung für Verbrennungsmotor
JP6350135B2 (ja) 2014-09-03 2018-07-04 日産自動車株式会社 内燃機関の点火装置および点火方法
US10801436B2 (en) * 2017-06-15 2020-10-13 Nissan Motor Co., Ltd. Control device for direct fuel injection engine and control method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153015A (ja) * 1999-11-29 2001-06-05 Mitsubishi Motors Corp 火花点火式層状燃焼内燃機関の点火制御装置
JP2004245171A (ja) * 2003-02-17 2004-09-02 Toyota Motor Corp 混合気を圧縮自着火させる自着火運転が可能な内燃機関
JP2006046276A (ja) * 2004-08-09 2006-02-16 Nissan Motor Co Ltd 直噴火花点火式内燃機関の点火制御装置
JP2006307659A (ja) * 2005-04-26 2006-11-09 Nissan Motor Co Ltd 筒内直接噴射式内燃機関の制御装置
JP2007292059A (ja) * 2006-03-31 2007-11-08 Mazda Motor Corp 火花点火式ガソリンエンジン
JP2011094604A (ja) * 2009-09-30 2011-05-12 Nippon Soken Inc 内燃機関の制御装置及び内燃機関
JP2015187439A (ja) * 2014-03-10 2015-10-29 本田技研工業株式会社 内燃機関の燃焼制御装置
JP2015200254A (ja) * 2014-04-10 2015-11-12 株式会社デンソー 点火装置
WO2018216154A1 (ja) * 2017-05-24 2018-11-29 日産自動車株式会社 内燃機関の制御方法及び制御装置

Also Published As

Publication number Publication date
EP3633182A1 (en) 2020-04-08
JP6835216B2 (ja) 2021-02-24
CN110621871B (zh) 2021-09-14
US20200173417A1 (en) 2020-06-04
EP3633182A4 (en) 2020-06-17
US10890155B2 (en) 2021-01-12
WO2018216153A1 (ja) 2018-11-29
CN110621871A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
JP6835216B2 (ja) 内燃機関の制御方法及び制御装置
JP2008121429A (ja) 筒内直接噴射式内燃機関
JP4161789B2 (ja) 燃料噴射制御装置
WO2016194184A1 (ja) 内燃機関制御装置及び内燃機関制御方法
JP6252661B1 (ja) 予混合圧縮着火式エンジン
JP6835217B2 (ja) 内燃機関の制御方法及び制御装置
JP4492399B2 (ja) 筒内直接噴射式火花点火内燃機関の制御装置および制御方法
JP3873560B2 (ja) 内燃機関の燃焼制御装置
US11085393B2 (en) Control method and control device for internal combustion engine
JP2008184970A (ja) ガソリンエンジンの制御装置
JP2017078344A (ja) 内燃機関の制御装置
JP4618181B2 (ja) 予混合圧縮自己着火型のガソリン内燃機関
JP6631574B2 (ja) 予混合圧縮着火式エンジン
JP4281647B2 (ja) 筒内直接噴射式火花点火内燃機関の制御装置
JP2007192235A (ja) 火花点火内燃機関の制御装置及び方法
JP2019105224A (ja) 予混合圧縮着火式エンジン
JP4311300B2 (ja) 筒内直接噴射式火花点火内燃機関の制御装置
JP2001207850A (ja) 内燃機関の燃焼制御装置
JP2006177181A (ja) 筒内直接噴射式火花点火内燃機関の制御装置
JP2016008601A (ja) 内燃機関
CN116733651A (zh) 内燃机
JP2019105225A (ja) 予混合圧縮着火式エンジン
JP2006283679A (ja) 筒内直接噴射式火花点火内燃機関の制御装置
JP2006017062A (ja) 筒内直接噴射式火花点火内燃機関の制御装置
JP2006177178A (ja) 筒内直接噴射式火花点火内燃機関の制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191031

A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20191031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R151 Written notification of patent or utility model registration

Ref document number: 6835216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151