以下、添付図面に従って本発明の好ましい実施の形態について詳説する。本明細書では、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
[用語の説明]
本明細書における平行の用語は、交差するものの、平行と同様の作用効果を得ることが可能な実質的な平行が含まれる。
直交の用語は、90度未満の角度、又は90度を超える角度で交差するものの、直交と同様の作用効果を得ることが可能な実質的な直交が含まれる。
同一の用語は、相違点が存在するものの、同様の作用効果を得ることが可能な実質的な同一が含まれる。
[インクジェット記録装置の説明]
<全体構成>
図1はインクジェット記録装置の全体構成図である。本明細書では、インクと液体とは、相互に読み替えることが可能である。また、吐出は、打滴、画像形成、又は画像記録と同義である。
図1に示したインクジェット記録装置10は、枚葉の用紙Sにインクを用いてインクジェット方式で画像を描画するインクジェット記録装置である。
インクジェット記録装置10は、主として、給紙部12、処理液付与部14、処理液乾燥処理部16、描画部18、インク乾燥処理部20、及び排紙部24を備えている。以下、各部を詳細に説明する。
<給紙部>
給紙部12は、給紙台30、サッカー装置32、給紙ローラ対34、フィーダボード36、前当て38、及び給紙ドラム40を備えている。フィーダボード36はリテーナ36A、及びガイドローラ36Bを備えている。
リテーナ36A、及びガイドローラ36Bは、フィーダボード36の用紙Sが搬送される搬送面に配置される。前当て38はフィーダボード36と給紙ドラム40との間に配置される。
給紙ドラム40は、回転軸40Bに平行となる方向を長手方向とする円筒形状を有している。給紙ドラム40は長手方向について、用紙Sの全長を超える長さを有している。給紙ドラム40の回転軸40Bの方向は図1の紙面を貫く方向である。
ドラムとは円筒形状を有し、媒体の少なくとも一部を保持して円筒形状の中心軸について回転させることに起因して、媒体を円筒形状の外周面に沿って搬送させる搬送部材である。
給紙ドラム40はグリッパー40Aを備えている。グリッパー40Aは、複数の爪、爪台、及びグリッパー軸を備えている。なお、複数の爪、爪台、及びグリッパー軸の図示は省略する。
グリッパー40Aの複数の爪は、給紙ドラム40の回転軸40Bに平行となる方向に沿って配置される。複数の爪の基端部はグリッパー軸に揺動可能に支持される。複数の爪の配置間隔、及び複数の爪が配置される領域の長さは、用紙Sのサイズに応じて決められている。
爪台は給紙ドラム40の回転軸40Bに平行となる方向を長手方向とする部材である。給紙ドラム40の長手方向について、爪台の長さは複数の爪が配置される領域の長さ以上とされる。爪台は複数の爪の先端部と対向する位置に配置される。
給紙部12は、給紙台30に積載された用紙Sを一枚ずつ処理液付与部14へ給紙する。給紙台30の上に積載された用紙Sは、サッカー装置32を用いて上から順に一枚ずつ引き上げられて、給紙ローラ対34に給紙される。
給紙ローラ対34に給紙される用紙Sは、フィーダボード36に載置され、フィーダボード36を用いて搬送される。フィーダボード36を用いて搬送される用紙Sは、リテーナ36A、及びガイドローラ36Bを用いてフィーダボード36の搬送面に押し付けられ、凹凸が矯正される。
フィーダボード36を用いて搬送される用紙Sは、先端を前当て38に当接することに起因して傾きが矯正される。フィーダボード36を用いて搬送される用紙Sは、給紙ドラム40に受け渡される。
給紙ドラム40に受け渡された用紙Sは、給紙ドラム40のグリッパー40Aを用いて先端部が把持される。給紙ドラム40を回転させることに起因して、用紙Sは給紙ドラム40の外周面に沿って搬送される。給紙ドラム40を用いて搬送される用紙Sは処理液付与部14へ受け渡される。なお、給紙ドラム40を省略して、フィーダボード36から処理液付与部へ用紙Sを直接受け渡してもよい。
<処理液付与部>
処理液付与部14は、処理液ドラム42、及び処理液付与装置44を備えている。処理液ドラム42はグリッパー42Aを備えている。グリッパー42Aには給紙ドラム40のグリッパー40Aと同様の構成を適用することができる。
図1に示した処理液ドラム42は、給紙ドラム40の直径の二倍の直径を有している。処理液ドラム42はグリッパー42Aが二か所に配置されている。二か所のグリッパー42Aの配置位置は、処理液ドラム42の外周面42Cにおいて半周分ずらされた位置である。
処理液ドラム42は用紙Sを支持する外周面42Cに、用紙Sを固定させる構成を有している。処理液ドラム42の外周面42Cに用紙Sを固定する構成の例として、処理液ドラム42の外周面42Cに複数の吸着穴を備え、複数の吸着穴に負圧を作用させる構成が挙げられる。
処理液ドラム42には、上記以外は給紙ドラム40と同様の構成を適用することができる。符号42Bは処理液ドラム42の回転軸である。
処理液付与装置44にはローラ塗布方式を適用することができる。ローラ塗布方式の処理液付与装置44として、処理液槽、計量ローラ、及び塗布ローラが備えられる構成を採用しうる。
処理液槽は処理液供給流路を介して処理液タンクから供給された処理液が貯留される。計量ローラは処理液槽に貯留された処理液を計量する。計量ローラは計量された処理液を塗布ローラへ転写する。塗布ローラは用紙Sへ処理液を塗布する。
グリッパー42Aを用いて用紙Sの先端を把持した状態において処理液ドラム42を回転させることに起因して、用紙Sは処理液ドラム42の外周面42Cに沿って搬送される。処理液ドラム42の外周面42Cに沿って搬送される用紙Sは、処理液付与装置44を用いて処理液が付与される。処理液が付与された用紙Sは処理液乾燥処理部16へ送られる。
用紙Sに付与される処理液は、後段の描画部18で用紙Sに吐出させるインク中の色材を凝集させる機能、又はインクの色材を不溶化させる機能を有している。用紙Sに処理液を付与してインクを吐出させることに起因して、汎用の用紙を用いても着弾干渉等を起こすことなく、高品位な画像形成を行うことができる。
処理液付与部14を用いて処理液が付与された用紙Sは、処理液乾燥処理部16へ受け渡される。
<処理液乾燥処理部>
処理液乾燥処理部16は、処理液乾燥処理ドラム46、用紙搬送ガイド48、及び処理液乾燥処理ユニット50を備えている。処理液乾燥処理ドラム46はグリッパー46Aを備えている。グリッパー46Aには給紙ドラム40のグリッパー40Aと同様の構成を適用することができる。
図1に示した処理液乾燥処理ドラム46は給紙ドラム40の直径の二倍の直径を有している。処理液乾燥処理ドラム46はグリッパー46Aが二か所に配置されている。二か所のグリッパー46Aの配置位置は、処理液乾燥処理ドラム46の外周面46Cにおいて半周分ずらされた位置である。
処理液乾燥処理ドラム46の上記以外の構成には、給紙ドラム40と同様の構成を適用することができる。符号46Bは処理液乾燥処理ドラム46の回転軸である。
用紙搬送ガイド48は処理液乾燥処理ドラム46の外周面46Cと対向する位置に配置される。用紙搬送ガイド48は処理液乾燥処理ドラム46の下側に配置される。
処理液乾燥処理ユニット50は処理液乾燥処理ドラム46の内部に配置される。処理液乾燥処理ユニット50は処理液乾燥処理ドラム46の外部に向けて風を送風する送風部、及び風を加熱する加熱部を備えている。図示の都合上、送風部、及び加熱部の符号を省略する。
処理液付与部14から処理液乾燥処理部16へ受け渡された用紙Sは、処理液乾燥処理ドラム46のグリッパー46Aを用いて先端を把持される。
用紙Sは、用紙搬送ガイド48を用いて、処理液が塗布された面の反対側の面が支持される。用紙搬送ガイド48を用いて支持される際に、用紙Sは、処理液が塗布された面が処理液乾燥処理ドラム46の外周面46Cに向けた状態とされる。
用紙Sは、処理液乾燥処理ドラム46を回転させることに起因して、処理液乾燥処理ドラム46の外周面46Cに沿って搬送される。
処理液乾燥処理ドラム46を用いて搬送される用紙Sであり、用紙搬送ガイド48を用いて支持される用紙Sは、処理液乾燥処理ユニット50から加熱された風が吹き当てられて乾燥処理が施される。
用紙Sに乾燥処理が施されることに起因して、用紙Sに付与された処理液中の溶媒成分が除去され、用紙Sの処理液が付与された面に処理液層が形成される。処理液乾燥処理部16を用いて乾燥処理が施された用紙Sは描画部18へ受け渡される。
<描画部>
描画部18は、描画ドラム52、用紙押さえローラ54、インクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、インクジェットヘッド56K、及びインラインセンサ58を備えている。描画ドラム52はグリッパー52Aを備えている。
グリッパー52Aは描画ドラム52の外周面52Cに設けられた凹部の内部に配置される。グリッパー52Aの配置以外の構成には給紙ドラム40のグリッパー40Aと同様の構成を適用することができる。
描画ドラム52は処理液乾燥処理ドラム46と同様にグリッパー52Aが二か所に配置されている。二か所のグリッパー52Aの配置には処理液乾燥処理ドラム46と同様の配置を適用することができる。
描画ドラム52は、用紙Sを支持する外周面52Cに吸着穴を備えている。吸着穴は用紙Sを吸着支持する媒体支持領域に配置される。なお、吸着穴、及び媒体支持領域の図示を省略する。
描画ドラム52の上記以外の構成には、給紙ドラム40と同様の構成を適用することができる。符号52Bは描画ドラム52の回転軸である。描画ドラム52は、用紙搬送部の構成要素の一例である。
用紙押さえローラ54は円筒形状を有している。用紙押さえローラ54の長手方向は描画ドラム52の回転軸52Bに平行となる方向である。用紙押さえローラ54は長手方向について用紙Sの全長を超える長さを有している。
用紙押さえローラ54は、描画ドラム52における用紙Sの搬送方向について、用紙Sの受け渡し位置の下流側であり、インクジェットヘッド56Cの上流側に配置される。以下の説明において、用紙Sの搬送方向は、用紙搬送方向、又は媒体搬送方向と記載することがある。
インクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kは、インクジェット方式を用いてインクを吐出させるノズル部を備えている。なお、ノズル部の図示は省略する。
ここで、液体吐出ヘッドの符号に付されたアルファベットは、インクの色を表している。Cはシアンを表している。Mはマゼンタを表している。Yはイエローを表している。Kはブラックを表している。
インクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kは、描画ドラム52の上側に配置される。インクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kは、用紙搬送方向に沿って、用紙搬送方向の上流側から、インクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kの順に配置される。
インラインセンサ58は用紙搬送方向についてインクジェットヘッド56Kの下流側の位置に配置される。インラインセンサ58は撮像素子、撮像素子の周辺回路、及び光源を備えている。
撮像素子はCCDイメージセンサやCMOSイメージセンサなどの固体撮像素子を適用することが可能である。なお、撮像素子、撮像素子の周辺回路、及び光源の図示を省略する。CCDはCharge Coupled Deviceの省略語である。CMOSはComplementary Metal-Oxide Semiconductorの省略語である。
撮像素子の周辺回路は、撮像素子の出力信号の処理回路を備えている。処理回路として、撮像素子の出力信号からノイズ成分を除去するフィルタ回路、増幅回路、又は波形整形回路などが挙げられる。なお、フィルタ回路、増幅回路、又は波形整形回路の図示を省略する。
光源はインラインセンサの読取対象物に照明光を照射可能な位置に配置される。光源にはLEDやランプなどを適用することができる。LEDはlight emitting diodeの省略語である。
処理液乾燥処理部16から描画部18へ受け渡された用紙Sは、描画ドラム52のグリッパー52Aを用いて先端が把持される。描画ドラム52のグリッパー52Aを用いて先端が把持された用紙Sは描画ドラム52の回転に起因して、描画ドラム52の外周面52Cに沿って搬送される。
用紙Sは用紙押さえローラ54の下を通過する際に、描画ドラム52の外周面52Cに押し当てられる。用紙押さえローラ54の下を通過した用紙Sは、インクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kの直下において、インクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kのそれぞれから吐出させたカラーインクを用いて画像が形成される。
インクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kを用いて画像が形成された用紙Sは、インラインセンサ58の読取領域において、インラインセンサ58を用いて画像が読み取られる。インラインセンサ58の読取信号は、図3に示すシステムコントローラ100へ送られる。
インラインセンサ58を用いて画像が読み取られた用紙Sは描画部18からインク乾燥処理部20へ受け渡される。インラインセンサ58を用いた画像読取の結果から、吐出異常の有無の判断が可能である。
<インク乾燥処理部>
インク乾燥処理部20は、チェーングリッパー64、インク乾燥処理ユニット68、ガイドプレート72を備えている。チェーングリッパー64は第一スプロケット64A、第二スプロケット64B、チェーン64C、及び複数のグリッパー64Dを備えている。
チェーングリッパー64は、一対の第一スプロケット64A、及び第二スプロケット64Bに、一対の無端状のチェーン64Cが巻き掛けられた構造を有している。図1には、一対の第一スプロケット64A、及び第二スプロケット64B、並びに一対のチェーン64Cのうち、一方のみが図示されている。
チェーングリッパー64は、一対のチェーン64Cの間に複数のグリッパー64Dが配置される構造を有している。また、チェーングリッパー64は用紙搬送方向における複数の位置に複数のグリッパー64Dが配置される構造を有している。図1には、一対のチェーン64Cの間に配置される複数のグリッパー64Dのうち、一つのグリッパー64Dのみが図示されている。
図1に示したチェーングリッパー64は、用紙Sを水平方向に沿って搬送する水平搬送領域、及び用紙Sを斜め上方向に搬送する傾斜搬送領域が含まれる。
インク乾燥処理ユニット68はチェーングリッパー64における用紙Sの搬送経路の上側の位置に配置される。インク乾燥処理ユニット68の構成例として、ハロゲンヒータ、赤外線ヒータ等の熱源を含む構成が挙げられる。インク乾燥処理ユニット68の他の構成例として、熱源を用いて熱せられた空気を用紙Sへ吹き付けるファンを含む構成が挙げられる。インク乾燥処理ユニット68は熱源、及びファンを含む構成とされてもよい。
ガイドプレート72の詳細な図示を省略するが、ガイドプレート72は板状の部材が適用される。ガイドプレート72は用紙搬送方向と直交する方向について、用紙Sの全長を超える長さを有している。
ガイドプレート72は、チェーングリッパー64を用いた用紙Sの水平搬送領域における搬送経路に沿って配置される。ガイドプレート72は、チェーングリッパー64を用いる用紙Sの搬送経路の下側の位置に配置される。ガイドプレート72は用紙搬送方向について、インク乾燥処理ユニット68の処理領域の長さに対応する長さを有している。
インク乾燥処理ユニット68の処理領域の長さに対応する長さとは、インク乾燥処理ユニット68の処理の際に、ガイドプレート72が用いられる用紙Sの支持が可能なガイドプレート72の長さである。
例えば、用紙搬送方向について、インク乾燥処理ユニット68の処理領域の長さとガイドプレート72の長さを同一にする態様が挙げられる。ガイドプレート72は、用紙Sを吸着支持する機能を備えてもよい。
描画部18からインク乾燥処理部20に受け渡された用紙Sは、グリッパー64Dを用いて先端が把持される。第一スプロケット64A、及び第二スプロケット64Bの少なくともいずれか一方を、図1における時計回りに回転させてチェーン64Cを走行させることに起因して、用紙Sはチェーン64Cの走行経路に沿って搬送される。
用紙Sがインク乾燥処理ユニット68の処理領域を通過する際に、用紙Sに対してインク乾燥処理ユニット68を用いてインク乾燥処理が施される。インク乾燥処理ユニット68を用いてインク乾燥処理が施された用紙Sは、チェーングリッパー64を用いて搬送され、排紙部24へ送られる。
図1に示したチェーングリッパー64は、用紙搬送方向におけるインク乾燥処理ユニット68の下流側の位置において、用紙Sを図1における左斜め上方向へ搬送させる。用紙Sを図1における左斜め上方向へ搬送させる傾斜搬送領域の搬送経路には、ガイドプレート73が配置される。
ガイドプレート73は、ガイドプレート72と同様の部材を適用することができる。ここでは、ガイドプレート73の構造、及び機能の説明を省略する。
<排紙部>
排紙部24は、排紙台76を備えている。排紙部24における用紙Sの搬送にはチェーングリッパー64が適用される。
排紙台76はチェーングリッパー64を用いる用紙Sの搬送経路の下側の位置に配置される。排紙台76は図示しない昇降機構を含む構成が可能である。排紙台76は、積載される用紙Sの増減に応じて昇降させて、最上位に位置する用紙Sの高さを一定に保つことができる。
排紙部24は画像形成の一連の処理がされた用紙Sを回収する。用紙Sが排紙台76の位置に到達すると、グリッパー64Dは用紙Sの把持を開放する。用紙Sは排紙台76に積載される。
図1では、処理液付与部14、及び処理液乾燥処理部16を備えたインクジェット記録装置10を示したが、処理液付与部14、及び処理液乾燥処理部16が省略される態様も可能である。
また、図1では、描画後の用紙Sを搬送する構成としてチェーングリッパー64を例示したが、描画後の用紙Sを搬送する構成には、ベルト搬送、又は搬送ドラム搬送など他の搬送形態が適用されてもよい。
<電気機器格納部>
インクジェット記録装置10は、第一筐体80、及び第二筐体82を備えている。第一筐体80、及び第二筐体82は、電気機器が格納される電気機器格納部として機能する。電気機器の例として、直流電源装置、及びコンピュータなどが挙げられる。電気機器は、電気回路基板がケースに格納されていてもよいし、電気回路基板がケースに非格納でもよい。
第一筐体80は、用紙搬送方向における描画部18の下流側の位置であり、排紙部24の上流側の位置に配置される。第二筐体82は、排紙部24の上側の位置に配置される。第一筐体80、及び第二筐体82の詳細は後述する。
<第一筐体、及び第二筐体の配置例>
図2は第一筐体、及び第二筐体の配置例を示したインクジェット記録装置の斜視図である。図2では、図1に示したインクジェット記録装置10の外観を示している。なお、図2では、図1に示した給紙部12の図示を省略する。
図2に示した第一筐体80は、直方体形状を有している。第一筐体80は、金属材料を適用可能である。第一筐体80は、描画部18に配置される。ここでいう描画部18は、カバー18Aの内側が含まれる。描画部18は、カバー18Aの外側が含まれていてもよい。カバー18Aの外側の例として、描画部18の動作に起因して発生する異物が、第一筐体80に進入しうる第一筐体80の位置が挙げられる。
図2に示した第一筐体80は、描画部18を覆うカバー18Aの内側に配置される。描画部18は、画像形成を行う画像形成部の一態様である。カバー18Aは、画像形成部を覆う第一カバーの一態様である。
図示は省略するが、第一筐体80は、交流電源の入力端子、及び直流電源の出力端子を備えていてもよい。交流電源の入力端子、及び直流電源の出力端子は、図示しない電気配線が接続されてもよい。
図2に示した第二筐体82は、直方体形状を有している。第二筐体82は、金属材料を適用可能である。第二筐体82は、排紙部24に配置される。ここでいう排紙部24は、カバー20Aの内側が含まれる。排紙部24は、カバー20Aの外側が含まれていてもよい。カバー20Aの外側の例として、排紙部24の動作に起因して発生する異物が、第二筐体82に進入しうる第二筐体82の位置が挙げられる。
図2に示し第二筐体82は、排紙部24の内側の位置に配置される。排紙部24は、用紙を集積させる用紙集積部の一態様である。カバー24Aは、用紙集積部を覆う第二カバーの一態様である。
第二筐体82は、交流電源の入力端子、直流電源の出力端子、及び電気信号の入出力端子を備えていてもよい。交流電源の入力端子、直流電源の出力端子、及び電気信号の入出力端子は、電気配線が接続されてもよい。
第一筐体80の形状、及び大きさは、第一筐体80の内部に格納される電気機器の大きさ、及び電気機器の数量等に応じて決められている。第二筐体82についても同様である。第一筐体80は、電気機器が格納される筐体の一態様である。第二筐体82は、電気機器が格納される筐体の一態様である。
<制御系の説明>
図3は制御系の概略構成を示すブロック図である。図3に示したインクジェット記録装置10は、システムコントローラ100を備えている。システムコントローラ100は、CPU105、ROM106、及びRAM107を備えている。
図3に示したROM106、及びRAM107は、CPU105の外部に配置されてもよい。CPUはCentral Processing Unitの省略語である。ROMはRead Only Memoryの省略語である。RAMはRandom Access Memoryの省略語である。
システムコントローラ100は、インクジェット記録装置10の各部を統括的に制御する全体制御部として機能する。また、システムコントローラ100は、各種演算処理を行う演算部として機能する。システムコントローラ100は、プログラムを実行して、インクジェット記録装置10の各部を制御してもよい。
更に、システムコントローラ100は、ROM106、及びRAM107などのメモリにおけるデータの読み出し、及びデータの書き込みを制御するメモリーコントローラとして機能する。
インクジェット記録装置10は、通信部102、画像メモリ104、搬送制御部110、給紙制御部112、処理液付与制御部114、処理液乾燥制御部116、描画制御部118、インク乾燥制御部120、排紙制御部124、及びファン制御部126を備えている。
通信部102は、図示しない通信インターフェースを備えている。通信部102は通信インターフェースと接続されたホストコンピュータ103との間でデータの送受信を行う
ことができる。
画像メモリ104は、画像データを含む各種データの一時記憶部として機能する。画像メモリ104は、システムコントローラ100を通じてデータの読み書きが行われる。通信部102を介してホストコンピュータ103から取り込まれた画像データは、一旦画像メモリ104に格納される。
搬送制御部110は、インクジェット記録装置10における用紙Sの搬送部11の動作を制御する。図3に示した搬送部11には、図1に示した処理液ドラム42、処理液乾燥処理ドラム46、描画ドラム52、及びチェーングリッパー64が含まれる。搬送部11は、媒体相対移動部の一態様である。
図3に示した給紙制御部112は、システムコントローラ100からの指令に応じて給紙部12の動作を制御する。給紙制御部112は、用紙Sの供給開始動作、及び用紙Sの供給停止動作などを制御する。
処理液付与制御部114は、システムコントローラ100からの指令に応じて処理液付与部14の動作を制御する。処理液付与制御部114は、処理液の付与量、及び付与タイミングなどを制御する。
処理液乾燥制御部116は、システムコントローラ100からの指令に応じて処理液乾燥処理部16を動作させる。処理液乾燥制御部116は、乾燥温度、乾燥気体の流量、及び乾燥気体の噴射タイミングなどを制御する。
描画制御部118は、システムコントローラ100からの指令に応じて、描画部18の動作を制御する。描画制御部118は、図1に示したインクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kのインク吐出を制御する。
図3に示した描画制御部118は、図示しない画像処理部を備えている。画像処理部は入力画像データからドットデータを形成する。画像処理部は、図示しない色分解処理部、色変換処理部、補正処理部、及びハーフトーン処理部を備えている。
色分解処理部は、入力画像データに対して色分解処理を施す。例えば、入力画像データがRGBで表されている場合、入力画像データがR、G、及びBの色ごとのデータに分解される。ここで、Rは赤を表す。Gは緑を表す。Bは青を表す。
色変換処理部は、R、G、及びBに分解された色ごとの画像データを、インク色に対応するC、M、Y、Kに変換する。ここで、Cはシアンを表す。Mはマゼンタを表す。Yはイエローを表す。Kはブラックを表す。
補正処理部では、C、M、Y、及びKに変換された色ごとの画像データに対して補正処理を施す。補正処理の例として、ガンマ補正処理、濃度むら補正処理、又は異常記録素子補正処理などが挙げられる。
ハーフトーン処理部は、例えば、0から255といった多階調数で表された画像データを、二値、又は入力画像データの階調数未満の三値以上の多値で表されるドットデータに変換する。
ハーフトーン処理部を用いたハーフトーン処理は、予め決められたハーフトーン処理規則が適用される。ハーフトーン処理規則の例として、ディザ法、又は誤差拡散法などが挙げられる。ハーフトーン処理規則は、画像記録条件、又は画像データの内容等に応じて変更されてもよい。
描画制御部118は、図示しない波形生成部、波形記憶部、及び駆動回路を備えている。波形生成部は駆動電圧の波形を生成する。波形記憶部は駆動電圧の波形を記憶する。駆動回路はドットデータに応じた駆動波形を有する駆動電圧を生成する。駆動回路は駆動電圧を、図1に示したインクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kへ供給する。
すなわち、画像処理部を用いた処理を経て生成されたドットデータに基づいて、各画素位置の吐出タイミング、インク吐出量が決められ、かつ、ドットデータに基づいて、各画素位置の吐出タイミング、インク吐出量に応じた駆動電圧、各画素の吐出タイミングを決める制御信号が生成される。
駆動電圧、及び制御信号は、インクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kへ供給される。駆動電圧、及び制御信号に基づいて、インクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kから吐出させたインクを用いて、用紙Sはドットが記録される。
インク乾燥制御部120は、システムコントローラ100からの指令に応じてインク乾燥処理部20の動作を制御する。インク乾燥制御部120は、乾燥気体温度、乾燥気体の流量、又は乾燥気体の噴射タイミングなどを制御する。
排紙制御部124は、システムコントローラ100からの指令に応じて排紙部24の動作を制御する。排紙制御部124は、図1に示した排紙台76が昇降機構を含む場合に、用紙Sの増減に応じて昇降機構の動作を制御する。
ファン制御部126は、システムコントローラ100からの指令に応じてファン26の動作制御を行う。ファン制御部126は、ファン26の動作開始タイミング、動作停止タイミング、及び回転数を制御する。
図3に示したファン26は、図1、及び図2に示した第一筐体80、並びに図1、及び図2に示した第二筐体82に取り付けられる複数のファンが含まれる。図1、及び図2では、複数のファンの図示を省略する。第一筐体80に取り付けられた複数のファンは、図4に符号220を付して図示する。第二筐体82に取り付けられた複数のファンは、図9に符号320を付して図示する。
図3に示したインクジェット記録装置10は、操作部130、表示部132、パラメータ記憶部134、及びプログラム格納部136を備えている。
操作部130は、操作ボタン、キーボード、又はタッチパネル等の操作部材を備えている。操作部130は複数の種類の操作部材が含まれていてもよい。なお、操作部材の図示を省略する。
操作部130を介して入力された情報は、システムコントローラ100に送られる。システムコントローラ100は、操作部130から送出された情報に応じて各種処理を実行させる。
表示部132は、液晶パネル等の表示装置、及びディスプレイドライバーを備えている。図3では、表示装置、及びディスプレイドライバーの図示を省略する。表示部132はシステムコントローラ100からの指令に応じて、装置の各種設定情報、又は異常情報などの各種情報を表示装置に表示させる。
パラメータ記憶部134は、インクジェット記録装置10に使用される各種パラメータが記憶される。パラメータ記憶部134に記憶されている各種パラメータは、システムコントローラ100を介して読み出され、装置各部に設定される。
プログラム格納部136は、インクジェット記録装置10の各部に使用されるプログラムが格納される。プログラム格納部136に格納されている各種プログラムは、システムコントローラ100を介して読み出され、装置各部において実行される。
図3に示したインクジェット記録装置10は、検出部140を備えている。図3に示した検出部140は、インクジェット記録装置10の各部に備えられるセンサ、及びセンサの周辺回路が含まれている。
検出部140の例として、温度センサ、圧力センサ、及び位置検出センサ等が含まれる。また、検出部140は、各種センサから出力される検出信号の処理回路が含まれていても よい。
図3に示したインクジェット記録装置10は、フィルタ管理部142を備えている。フィルタ管理部142は、後述するフィルタ管理方法のプログラムを実行し、フィルタ部を管理する。フィルタ部は、図4に符号240を付して図示する。フィルタ部は、図7に符号340を付して図示する。
図3では、機能ごとに各部を列挙している。図3に示した各部は適宜、統合、分離、兼用、又は省略が可能である。
図3に示した各種の処理部のハードウエア的な構造は、以下に示す各種のプロセッサである。各種のプロセッサには、CPU、PLD、及びASICなどが含まれる。処理部の例として、図3に示した各種の処理部は、実質的に処理を担うものの、名称に処理部の用語が使用されていない場合がある。制御部などの用語が使用される場合も、各種の処理部の概念に含まれうる。
図3に示した各種の処理部の例として、搬送制御部110、給紙制御部112、及び描画制御部118などが挙げられる。なお、制御部は、英語表記を用いてprocessing unitと記載されるものが含まれる。プロセッサは英語表記を用いてprocessorと記載されるものが含まれる。
CPUは、ソフトウエアを実行して各種の処理部として機能する汎用的なプロセッサである。ソフトウエアは、プログラムと読み替えることが可能である。PLDは、製造後に回路構成を変更可能なプロセッサである。PLDの例として、FPGAが挙げられる。PLDはProgrammable Logic Deviceの省略語である。FPGAはField Programmable Gate Arrayの省略語である。
ASICは、特定の処理を実行させるために専用に設計された回路構成を有するプロセッサ、又は専用電気回路である。ASICはApplication Specific Integrated Circuitの省略語である。
一つの処理部は、上記した各種のプロセッサのうちの一つで構成されていてもよい。一つの処理部は、同じ種類の二つ以上のプロセッサ、又は異なる種類の二つ以上のプロセッサを用いて構成されてもよい。同じ種類の二つ以上のプロセッサの例として、複数のFPGAが挙げられる。異なる種類の二つ以上のプロセッサの例として、CPU、及びFPGAの組み合わせが挙げられる。
また、一つのプロセッサを用いて複数の処理部を構成してもよい。一つのプロセッサを用いて複数の処理部を構成する例として、一つ以上のCPU、及びソフトウエアの組合せを用いて一つのプロセッサを構成し、一つのプロセッサが複数の処理部として機能する態様が挙げられる。具体例として、サーバ、及びクライアントなどのコンピュータが挙げられる。
複数の処理部を一つのプロセッサで構成する他の例として、複数の処理部を含むシステム全体の機能を一つのICチップで実現するプロセッサを使用する態様が挙げられる。具体例として、システムオンチップが挙げられる。システムオンチップは英語表記を用いてSystem On Chip、又はSoCと記載されるものが含まれる。なお、ICはIntegrated Circuitの省略語である。
このように、図3に示した各種の処理部は、ハードウエア的な構造として、上記した各種のプロセッサを一つ以上用いて構成される。
更に、上記した各種のプロセッサのハードウエア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路である。なお、電気回路は英語表記を用いてcircuitryと記載されるものが含まれる。
図3に示した各種の記憶部の具体例として、メモリ、記憶素子、又は記憶装置が挙げられる。図3に示したプログラム格納部136の例として、各種のプログラムが格納されている記憶装置が挙げられる。
[インクジェットヘッドの構造]
インクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kは、同一の構造を適用してもよい。以下、インクジェットヘッド56C、インクジェットヘッド56M、インクジェットヘッド56Y、及びインクジェットヘッド56Kを区別する必要がない場合は、符号を省略してインクジェットヘッドと記載する。
<全体構成>
インクジェットヘッドは、用紙Sの搬送方向と直交する方向である用紙Sの幅方向について複数のヘッドモジュールを繋ぎ合わせた構造を有していてもよい。インクジェットヘッドを構成する複数のヘッドモジュールは同一の構造を適用してもよい。また、ヘッドモジュールは単体でも液体吐出ヘッドとして機能させることが可能であってもよい。
なお、本明細書では、用紙Sの搬送方向は、用紙搬送方向と記載することがある。用紙Sの幅方向は用紙幅方向と記載することがある。
インクジェットヘッドは、用紙幅方向における用紙Sの全長以上の長さにわたって、複数のノズル部が配置されたライン型の液体吐出ヘッドであってもよい。ノズル部は、液体吐出面に形成されたノズル開口、及びノズル開口と接続されるノズル連通路を含んでいてもよい。液体吐出面は、図1に示した描画ドラム52の外周面52Cと対向する面である。
<ヘッドモジュールの構造>
ヘッドモジュールは、液体吐出面に反対の上側に、インク供給室、及びインク循環室等からなるインク供給ユニットを有していてもよい。インク供給室は、供給側個別流路を介してインクタンクに接続されてもよい。インク循環室は、回収側個別流路を介して回収タンクに接続されてもよい。
一つのヘッドモジュールの液体吐出面には、二次元配置が適用されて複数のノズル開口が配置されてもよい。ヘッドモジュールは、媒体搬送方向と直交する方向に対して角度βの傾きを有するV方向に沿った長辺側の端面と、媒体搬送方向に対して角度αの傾きを持つW方向に沿った短辺側の端面とを有する平行四辺形の平面形状とされてもよい。
ヘッドモジュールは、V方向に沿う行方向、及びW方向に沿う列方向について、複数のノズル開口がマトリクス配置されてもいてもよい。
ノズル開口の配置は、媒体搬送方向と直交する方向に沿う行方向、及び媒体搬送方向と直交する方向に対して斜めに交差する列方向に沿って複数のノズル開口が配置されてもよい。
ノズル開口のマトリクス配置とは、複数のノズル開口を媒体搬送方向と直交する方向に投影させて、複数のノズル開口を媒体搬送方向と直交する方向に沿って配置させた媒体搬送方向と直交する方向の投影ノズル列において、ノズル開口の配置間隔が均一となるノズル開口の配置である。
<吐出方式>
ヘッドモジュールは、圧電素子を用いて圧力室のインクを加圧して、ノズル開口からインクを吐出させるピエゾジェット方式を適用してもよい。ヘッドモジュールは、ヒータを用いて圧力室のインクを加熱し、膜沸騰現象を利用してノズル開口からインクを吐出させるサーマル方式を適用してもよい。
本明細書におけるノズル部はノズル開口を含む概念を表している。本明細書においてノズル開口とノズル部とは、読み替えることが可能である。
[第一筐体の詳細な説明]
<全体構成>
図4は第一筐体の内部構造を示した斜視図である。図4に示した第一筐体80は、直方体形状を有している。図4は、裏面板が取り外された状態の第一筐体80を裏面の側から見た図である。
以下、第一筐体80の正面、裏面、側面、上面、及び底面は、第一筐体80を図1に示した第一筐体80が配置される位置に配置した状態における、第一筐体80の正面、裏面、側面、上面、及び底面を表すこととする。第二筐体82についても同様である。
第一筐体80の側面板200は、吸気口202、及び排気口204が形成される。排気口204は、吸気口202よりも上側の位置に形成される。換言すると、吸気口202は、排気口204よりも底面板206に近い位置に配置される。
吸気口202から底面板206までの距離は、埃、及び塵等の堆積物の進入を抑制する観点から決められる。吸気口202から排気口204までの距離は、第一筐体80の内部において十分な気体の量を確保する観点から決められる。第一筐体80の側面は、吸気口、及び排気口が形成される壁面の一態様である。
吸気口202は、複数のファン220が取り付けられる。複数のファン220は、第一筐体80の正面板210から裏面板に向かう方向に沿って配置される。図4では、裏面板に最も近いファン220は実線を用いて図示し、他のファン220は点線を用いて図示する。
複数のファン220は、第一筐体80の内部の側の面に取り付けられる。複数のファン220は、吸気口202の内部に取り付けられていてもよいし、第一筐体80の外部の側の面に取り付けられていてもよい。
複数のファン220は、第一筐体80の外部から内部へ向けて送風する。そうすると、第一筐体80の内部の圧力が第一筐体80の外部の圧力を超え、第一筐体80の内部が陽圧化される。ファン220は第一ファンの一態様である。ファン220を用いて第一筐体80への吸気は、冷却方法を構成する吸気工程の一態様である。排気口204からの排気は、冷却方法を構成する排気工程の一態様である。
吸気口202は、フィルタ部240が取り付けられる。フィルタ部240は、導電性物質捕集フィルタ242、及び粗塵フィルタ244を備えている。排気口204は、粗塵フィルタ250が取り付けられる。排気口204は、フィルタ部240と同様に、粗塵フィルタ250と導電性物質捕集フィルタ242とを組み合わせてもよい。フィルタ部240、及び粗塵フィルタ250の詳細は後述する。
導電性物質捕集フィルタ242は第一フィルタの一態様である。粗塵フィルタ244は第二フィルタの一態様である。粗塵フィルタ250は第三フィルタの一態様である。フィルタ部240を用いた異物の捕集は、冷却方法を構成する捕集工程の一態様である。導電性物質捕集フィルタ242を用いた導電性物質の捕集は、捕集工程を構成する第一捕集工程の一態様である。粗塵フィルタ244を用いた異物の捕集は、捕集工程を構成する第二捕集工程の一態様である。
第一筐体80の内部は、三階構造を有している。第一筐体80の一階部260、及び第一筐体80の二階部262は、複数の直流電源装置270が配置される。第一筐体80の三階部264は、複数のヒューズ272が配置される。
直流電源装置270は、電気機器の一態様である。ヒューズ272は、電気機器の一態様である。
複数の直流電源装置270、及びヒューズ272は、第一筐体80の内部に発生させた空気の流れを用いて強制冷却がされる。複数の直流電源装置270、及びヒューズ272の発熱に起因して温められた空気は、第一筐体80の内部の上側へ移動する。
第一筐体80の内部の上側へ移動した空気は、第一筐体80の内部から外部への空気の流れに起因して、排気口204を介して第一筐体80外部へ排出される。図4に符号280を付して一点鎖線を用いて図示した矢印線は、第一筐体80の内部の空気の流れを示している。なお、図4に示した符号208は第一筐体80の上面板を表している。
<フィルタ部の構造>
図5はフィルタ部の拡大図である。フィルタ部240は、導電性物質捕集フィルタ242、及び粗塵フィルタ244が、側面板200の側から導電性物質捕集フィルタ242、及び粗塵フィルタ244の順に配置されている。
フィルタ部240は、ケース246を備えている。導電性物質捕集フィルタ242、粗塵フィルタ244はケース246を用いて支持される。ケース246は、ねじ等の接合部材を用いて、側面板200に着脱可能に構成されている。
導電性物質捕集フィルタ242とファン220との間には、ファン220の風が導電性物質捕集フィルタ242の全面に広がる距離を設けることが好ましい。導電性物質捕集フィルタ242とファン220との間の距離の例として、30ミリメートルが挙げられる。導電性物質捕集フィルタ242とファン220との間の距離は、15ミリメートル以上、45ミリメートルとしてもよい。
フィルタ部240のメンテナンスの観点から、フィルタ部240は、第一筐体80の外部に取り付けられることが好ましい。
<フィルタ部の機能>
フィルタ部240は、図1に示した用紙Sに由来する物質、インクジェット記録装置10の設置環境に由来する物質、及びインクジェット記録装置10の印刷に由来する物質などを捕集する。
用紙Sに由来する物質の例として、紙粉が挙げられる。インクジェット記録装置10の設置環境に由来する物質の例として、インクジェット記録装置10の設置環境を加湿する際に使用される加湿ミストに含まれる物質が挙げられる。加湿ミストに含まれる物質の例として、次亜塩素酸カルシウムが挙げられる。加湿ミストは、筐体が配置される環境における水分の一態様である。
インクジェット記録装置10の印刷に由来する物質の例として、印刷がされた用紙Sのスタッキング抑制用のパウダーが挙げられる。パウダーに含まれる物質の例として、タルク、及び炭酸カルシウムが挙げられる。
コート紙を用いて印刷が実行されたインクジェット記録装置10において、図1に示したフィルタ部240が取り付けられていない第一筐体80の内部から採取された粉体の成分を分析した結果、金属酸化物、硝酸塩、二酸化ケイ素、松脂、水酸化物、及びスチレンブタジエンゴムなどが検出された。粉体の成分分析は、赤外線分光分析を用いた。
また、X線分析法、又はX線光電分析法を用いて、上記の粉体を解析した結果、炭素、酸素、ナトリウム、マグネシウム、アルミニウム、ケイ素、硫黄、塩素、カリウム、カルシウム、臭素、スズ、及びリンが検出された。
更に、イオンクロマトグラフィーを用いて、上記の粉体を解析した結果、ナトリウムイオン、カリウムイオン、マグネシウムイオン、カリウムイオン、硫酸イオン、硝酸イオン、塩酸イオン、塩素イオン、及び炭酸水素イオンが検出された。
図5に示したフィルタ部240は、上記に列挙した物質のうち、より多くの種類の物質を捕集する機能を有することが好ましい。また、フィルタ部240は、使用されるインク等の液体、使用される用紙等の媒体に応じて、インクジェット記録装置の使用環境に含まれる可能性がある物質を捕集する機能を有することが好ましい。
<導電性物質捕集フィルタ>
図5に示した導電性物質捕集フィルタ242は、主として、導電性物質を捕集する機能を有している。導電性物質とは、吸湿に起因して導電性を発現する物質である。導電性物質の例として、潮解性物質が挙げられる。潮解性物質の例として、塩化物が挙げられる。
導電性物質捕集フィルタ242の例として、耐塩フィルタが挙げられる。耐塩フィルタは、液状化した塩化物を吸収するろ材を備えている。耐塩フィルタのろ材の例として、液状化した塩化物の膜状化を抑制して、液状化した塩化物の捕集に起因する圧力損失の増加を抑制する機能を有するろ材が挙げられる。
なお、導電性物質捕集フィルタ242は、粗塵フィルタ244を通過した物質を捕集してもよい。導電性物質捕集フィルタ242は、非導電性物質を捕集してもよい。
導電性物質捕集フィルタ242が導電性物質を捕集し、第一筐体80の内部への導電性物質の進入が抑制される。そうすると、吸湿して導電性が発現した導電性物質の電気機器への付着に起因する電気機器の故障が抑制される。
<粗塵フィルタ>
図5に示した粗塵フィルタ244は、導電性物質捕集フィルタ242の吸気側において、導電性物質捕集フィルタ242の圧力損失の増加の原因となりうる物質を捕集する。粗塵フィルタ244は、導電性物質捕集フィルタ242のプレフィルタとして機能する。
これにより、導電性物質捕集フィルタ242の圧力損失の増加が抑制され、導電性物質捕集フィルタ242の長寿命化が可能となる。導電性物質捕集フィルタ242、及び粗塵フィルタ244は、第一筐体80の内部に取り付けられてもよい。
導電性物質捕集フィルタ242、及び粗塵フィルタ244が第一筐体80の内部に取り付けられる場合、ファン220の送風方向における上流側の位置に粗塵フィルタ244が取り付けられ、かつ、ファン220の送風方向における下流側の位置に導電性物質捕集フィルタ242が取り付けられる。
ファン220を挟んで、ファン220の吸気側に粗塵フィルタ244が取り付けられ、かつ、ファン220の排気側に導電性物質捕集フィルタ242が取り付けられてもよい。すなわち、フィルタ部240は、ファン220を内蔵してもよい。
粗塵フィルタ244の例として、導電性物質捕集フィルタ242と比較して、初期圧力損失が小さいエアフィルタが挙げられる。初期圧力損失は、使用前の状態である初期状態のフィルタの圧力損失である。
粗塵フィルタ244の具体例として、厚さが10ミリメートル以上20ミリメートル以下、標準風速が1.5メートル毎秒の条件において、初期圧力損失が5.0パスカル以上20.0パスカル以下のフィルタが挙げられる。
圧力損失は、標準風速、又は定格風速を適用して、フィルタの気体の流れ方向における上流側の気体の圧力から、下流側の気体の圧力を減算して算出可能である。標準風速、又は定格風速は、圧力損失の試験条件として、予め決められる風速である。圧力損失は微差圧計を用いて測定可能である。なお、標準風速、及び定格風速の単位は、メートル毎秒である。圧力損失の単位はパスカルである。
粗塵フィルタ244の他の例として、捕集可能な物質のサイズが導電性物質捕集フィルタ242よりも大きいエアフィルタが挙げられる。例えば、試験に用いられる粒子の直径が10マイクロメートル以上20マイクロメートル以下であり、質量法を用いて測定した平均捕集効率が20パーセント以上90パーセント以下のエアフィルタが挙げられる。
粗塵フィルタ244の材料の例として、塩化ビニリデン系の繊維、アルミ箔、ポリエーテル系ポリウレタン、ポリエステル系ポリウレタンフォーム、及びポリ塩化ビニリデン系プラスチックなどが挙げられる。
粗塵フィルタ244は、初期状態の圧力損失が第一フィルタの初期状態の圧力損失以下の第二フィルタの一態様である。また、粗塵フィルタ244は、初期状態の捕集効率が第一フィルタの初期状態の捕集効率以下の第二フィルタの一態様である。
図4に示した粗塵フィルタ250は、フィルタ部240の粗塵フィルタ244と同様の構造を有するフィルタ、及びフィルタ部240の粗塵フィルタ244と同様の機能を有するフィルタなどを適用可能である。粗塵フィルタ250は、ファン220の停止期間において、排気口204から第一筐体80の内部へ進入可能な異物を捕集する。粗塵フィルタ244が捕集可能な異物は、少なくともフィルタ部240を用いて捕集可能な物質が含まれる。
粗塵フィルタ250は、支持枠251を用いて支持される。粗塵フィルタ250は、側面板200の内側の面に取り付けられる。粗塵フィルタ250は、側面板200の外側の面に取り付けられてもよい。粗塵フィルタ250は、初期状態の圧力損失が第一フィルタの初期状態の圧力損失以下の第三フィルタの一態様である。粗塵フィルタ250は、初期状態の捕集効率が第一フィルタの初期状態の捕集効率以下である第三フィルタの一態様である。
本実施形態では、複数のファン220に対して一つのフィルタ部240を備える態様を例示したが、一つのファン220に対して一つのフィルタ部240を備える態様も可能である。また、ファン220とフィルタ部240とを一体に構成してもよい。
<第一筐体に格納される電気機器の構成例>
図6は第一筐体に格納される電気機器の構成例を示したブロック図である。第一筐体80は、複数の直流電源装置270、及び複数のヒューズ272が格納されている。直流電源装置270は、交流電源を入力として、直流電源を出力する電気機器である。
交流電源の例として、三相の230ボルト、単相の200ボルト、及び単相の100ボルトなどが挙げられる。直流電源装置270の出力電圧の例として、48ボルト、24ボルト、及び5ボルトが挙げられる。ヒューズ272の規格は、電気接続される電気機器に設定される遮断電流に応じて決められる。
本実施形態に例示したヒューズは、ブレーカーなど他の電力遮断部材と置き替えることが可能である。図6では図示を省略するが、図4に示した複数のヒューズ272は、交流電源を伝送する電気配線に接続されてもよい。
図6に示すように、第一筐体80は、図1に示したインクジェット記録装置10の各部に対して、電力を供給する電気機器が備えられる電源ボックスとして機能している。装置各部の例として、電磁弁、センサ、照明、及び各種電気機器などが挙げられる。
[第二筐体の詳細な説明]
図7は第二筐体の一方の側面の側の内部構造を示した斜視図である。図7は第二筐体82の一方の側面板を外した状態が図示されている。図7に示した第二筐体82は、図4に示した第一筐体80と比較して、格納される電気機器の一部が相違している。
また、図7に示した第二筐体82は、図4に示した第一筐体80と比較して、図7に示した排気口304の位置が相違している。すなわち第二筐体82は、上面板308に排気口304が形成されている。
更に、図7に示した第二筐体82は、二つの排気口304を備えている。換言すると、第二筐体82は、一方の側面の側、及び図8に示す他方の側面の側のそれぞれに、排気口304を備えている。なお、符号350は排気口304に備えられる粗塵フィルタを示している。粗塵フィルタ350は、図7に示した粗塵フィルタ250と同様の機能を有している。排気口304は、排気口204同様に、粗塵フィルタ350と導電性物質捕集フィルタ242とを組み合わせてもよい。
第二筐体82の側面は、吸気口が形成される壁面の一態様である。第二筐体82の上面は、排気口が形成される壁面の一態様である。ファン320は第一ファンの一態様である。導電性物質捕集フィルタ342は第一フィルタの一態様である。粗塵フィルタ344は第二フィルタの一態様である。粗塵フィルタ350は第三フィルタの一態様である。
吸気口302からの吸気は、冷却方法を構成する吸気工程の一態様である。排気口304からの排気は、冷却方法を構成する排気工程の一態様である。フィルタ部440を用いた異物の捕集は、冷却方法を構成する捕集工程の一態様である。導電性物質捕集フィルタ342を用いた導電性物質の捕集は、捕集工程を構成する第一捕集工程の一態様である。粗塵フィルタ344を用いた異物の捕集は、捕集工程を構成する第二捕集工程の一態様である。
図7に示した第二筐体82の一方の側面の側は、電気機器として、複数の電磁接触器374が格納されている。電磁接触器374は、電気回路の接続状態と切断状態とを切り替える電気機器である。電磁接触器374は、制御信号に基づいて電気接点の接触と非接触とを切り替えるリレーが含まれる。
図7に示した第二筐体82は、一階部360、二階部362、及び三階部364のそれぞれに、複数の電磁接触器374が配置される。電磁接触器374は、電気信号を伝送する電気信号配線の切り替えを実行する。電磁接触器374は、電源装置、及びモータ等へ電力を伝送する電力配線の切り替えを伝送してもよい。
図7に示した第二筐体82は、正面板310に吸気口302が形成される。吸気口302は、図7に図示しない複数のファンが取り付けられる。複数のファンは、図9に符号320を付して図示する。
図7に示した第二筐体82は、吸気口302にフィルタ部340が取り付けられる。図7に示したフィルタ部340は、図4に示したフィルタ部240と同様に、図7に示した粗塵フィルタ344、及び図7に図示しない導電性物質捕集フィルタを備えている。導電性物質捕集フィルタは、図9に符号344を付して図示する。
図7に符号380を付して一点鎖線を用いて図示した矢印線は、第二筐体82の一方の側面の側における内部の空気の流れを示している。符号306は、第二筐体82の底面板を示している。符号312は、第二筐体82の裏面板を示している。
図8は第二筐体の他方の側面の側の内部構造を示した斜視図である。図8は第二筐体82の他方の側面板を外した状態が図示されている。第二筐体82の他方の側面の側は、仕切板305を用いて、図7に示した一方の側と隔てられている。
図8に示した第二筐体82の他方の側面の側は、電気機器として、直流電源装置370、及びコンピュータ376が格納される。図8に符号382を付して一点鎖線を用いて図示した矢印線は、第二筐体82の他方の側面の側における内部の空気の流れを示している。
図9は第二筐体のフィルタ部の拡大図である。図9に示したフィルタ部340は、図5に示したフィルタ部240と同様に、導電性物質捕集フィルタ342、及び粗塵フィルタ344を備えている。
図9に示した導電性物質捕集フィルタ342の配置は、図5に示した第一筐体80のフィルタ部240に備えられる導電性物質捕集フィルタ242の配置と同様である。また、図9に示した導電性物質捕集フィルタ342の機能は、図5に示した第一筐体80のフィルタ部240に備えられる導電性物質捕集フィルタ242の機能と同様である。
図9に示した粗塵フィルタ344の配置は、図5に示した第一筐体80のフィルタ部240に備えられる粗塵フィルタ244の配置と同様である。また、図9に示した粗塵フィルタ344の機能は、図5に示した第一筐体80のフィルタ部240に備えられる粗塵フィルタ244の機能と同様である。ここでは、図9に示した導電性物質捕集フィルタ342、及び粗塵フィルタ344の説明を省略する。
図9に示した複数のファン320は、第二筐体82の外部の側の面に取り付けられる。複数のファン320は、フィルタ部340のケース346を用いて覆われる。複数のファン320は、吸気口302の内部に取り付けられていてもよいし第二筐体82の内部の側の面に取り付けられていてもよい。
複数のファン320は、第二筐体82の上面板308から底面板306へ向かう上下方向に沿って配置される。また、複数のファン320は、第二筐体82の正面板310から裏面板312へ向かう方向に沿って配置される。
図9では、第二筐体82の上面板308、底面板306、正面板310、及び裏面板312の図示を省略する。第二筐体82の上面板308、底面板306、正面板310、及び裏面板312は、図7、及び図8に図示する。なお、図9の符号300は、第二筐体82の側面板を示している。
<第二筐体に格納される電気機器の構成例>
図10は第二筐体に格納される電気機器の構成例を示したブロック図である。第二筐体82は、複数の直流電源装置370、複数の電磁接触器374、及びコンピュータ376が格納されている。図10に示したMCは、電磁接触器を表す英語表記であるElectromagnetic Contactorの省略語である。
コンピュータ376は、図2に示したホストコンピュータ103として機能することが可能である。コンピュータ376から出力された指令信号は、図10に示した電気配線377を介して装置各部へ伝送される。
図10に示した例では、コンピュータ376と接続される電気配線377は、電磁接触器374が接続される。図7に示した電磁接触器374は、コンピュータ376以外の制御機器の出力信号配線に接続されてもよい。
電磁接触器374は、指令信号のオンオフを実行するスイッチとして機能する。電磁接触器374は、図示しない電気配線を介して入力される制御信号に基づいて、各電気配線377を介して制御信号を伝送するか否かを切り替える。
直流電源装置370は、図6に示した直流電源装置270と同様の機能を有している。ここでは、直流電源装置370の図示は省略する。直流電源装置370と接続される電気配線379は、ヒューズ、及びブレーカー等の電気遮断器が接続されてもよい。
図6に示した第一筐体80における電気機器の構成、及び図10に示した第二筐体82における電気機器の構成は一例であり、追加、及び削除等の変更が可能である。
[作用効果]
上記の如く構成されたインクジェット記録装置10によれば、電気機器が格納される第一筐体80の吸気口302にフィルタ部240を備える。フィルタ部240は、導電性物質捕集フィルタ242を備える。これにより、電気機器の故障の原因となりうる導電性物質の捕集が可能である。
第一筐体80の吸気口302にファン220を備え、第一筐体80の外部の空気を第一筐体80の内部へ導入する。これにより、第一筐体80の内部が陽圧化されることに起因して、第一筐体80の内部への異物の進入が抑制される。
吸気口202の上側の位置に排気口204を備える。これにより、第一筐体80の内部における下から上へ向く空気の流れを発生させることに起因して、第一筐体80の内部に格納される電気機器の効率のよい強制冷却が可能である。
フィルタ部240は、導電性物質捕集フィルタ242の外側に粗塵フィルタ244を備える。これにより、粗塵フィルタ244を用いて導電性物質捕集フィルタ242の圧力損失の増加の原因となりうる物質が捕集されることに起因して、導電性物質捕集フィルタ242の長寿命化に寄与する。
更に、導電性物質を含有する環境において、電気機器の強制冷却が可能となる。これにより、電気機器の強制冷却に起因して電気機器の高集積配置が可能となり、第一筐体80の小型化が可能である。
図7、及び図8に示した第二筐体82についても、上述した第一筐体80と同様の作用効果を得ることが可能である。
[第一変形例]
次に、第一変形例について説明する。以下に説明する第一変形例は、図4に示した第一筐体80について説明する。なお、第一変形例は図7に示した第二筐体82にも適用可能である。第二変形例から第五変形例についても同様である。
図11は第一変形例の一例の説明図である。図11に示した第一筐体80は、異物が少ない領域に配置されている。図11に示した第一筐体80は、仕切部材400を用いて、異物の発生源402と隔てた位置に配置されている。
異物の発生源402の例として、図1に示した描画ドラム52などの用紙Sの搬送部、及び排紙台76等が挙げられる。異物が少ない領域として、図1に示した描画部18を覆うカバー18Aの外側、及び図1に示した排紙部24を覆うカバー24Aの外側が挙げられる。
図12は第一変形例の他の例の説明図である。図12に示した第一筐体80は、吸気口202の近傍に遮蔽部材410が配置されている。吸気口202の近傍は、遮蔽部材410の配置に起因して、吸気口202から異物の進入を抑制する効果が得られる範囲である。
遮蔽部材410は、吸気口202から一定の距離を離して配置される。吸気口202から一定の距離は、吸気口202から第一筐体80の内部への吸気を阻害せず、かつ、吸気口202から第一筐体80の内部への異物の進入を抑制する効果が得られる距離である。
第一変形例によれば、吸気口202から第一筐体80の内部への異物の進入が抑制される。これにより、電気機器の冷却効率の向上が可能となる。また、導電性物質捕集フィルタ242の長寿命化に寄与する。
[第二変形例]
図13は第二変形例の一例の説明図である。第二変形例に係る第一筐体80Aは、第一筐体80Aの内部にファン411を備えている。図13には、第一筐体80Aが、複数のファン411を備える態様を図示した。なお、図13では、ファン411の送風方向は、上向きである。図13に符号412を付した矢印線は、ファン411の送風方向である。ファン411の送風方向は、図13に符号412を付した矢印線を用いて図示した方向を鉛直上方向とした場合に、鉛直上方向とのなす角度が90度未満の斜め上方向であってもよい。
図14は第二変形例の他の一例の説明図である。図14に示した第一筐体80Bは、ファン414、及び規制部材416を備えている。ファン414の送風方向は、鉛直上向きと直交する方向である、符号418を付した矢印線は、ファン414の送風方向を表している。
規制部材416は、ファン414の送風方向を横向きから上向きへ変える機能を有している。図14に示した規制部材416は、平板状である。規制部材416は、球面などの曲面を有する部材でもよい。規制部材416は、ファン220を用いた直流電源装置270への送風を規制しない形状、及び配置が好ましい。ファン414は、筐体の内部において上側に向けて送風する第二ファンの一態様である。
第二変形例によれば、図13に示した第一筐体80A、及び図14に示した第一筐体80Bの内部に上昇気流を発生させる。これにより、図13に示した第一筐体80A、及び図14に示した第一筐体80Bの内部の冷却効率の向上が可能となる。
[第三変形例]
図15は第三変形例の説明図である。図15に示した直流電源装置270Aは、図4に示した第一筐体80、及び図7に示した第二筐体82に備えられている。ファン420の送風方向は、図4に示した第一筐体80、及び図7に示した第二筐体82に備えられる状態において、上向きである。図15に符号422を付した矢印線は、ファン420の送風方向を表している。
図7に示したコンピュータ376など、他の電気機器についても、図4に示した第一筐体80、及び図7に示した第二筐体82に備えられる状態において、上向きの送風方向を有するファンを備えることが好ましい。ファン420は、筐体の上側に向けて送風する第三ファンの一態様である。
第三変形例によれば、図4に示した第一筐体80、及び図7に示した第二筐体82に上昇気流を発生させる。これにより、図4に示した第一筐体80、及び図7に示した第二筐体82の冷却効率の向上が可能となる。また、直流電源装置270A自身の冷却効率の向上にも寄与する。
[第四変形例]
図16は第四変形例の説明図である。図16に示した第一筐体80は、発熱体430との間に隙間432を空けて配置されている。発熱体430の例として、ヒータ等の熱源が挙げられる。隙間432は、発熱体から一定の距離の一例である。
第一筐体80と発熱体430との隙間は、発熱体430の温度、及び第一筐体80の冷却効率の観点から決められる。換言すると、第一筐体80と発熱体430との間の一定距離は、発熱体430が発生させる熱が、第一筐体80の内部の温度上昇への影響が低減化されるか否かの観点から決めることが可能である。
特に、吸気口202は、熱の影響が少ない位置に配置されることが好ましい。また、第一筐体80と発熱体430との間の隙間432に断熱部材434を備えてもよい。断熱部材434は、少なくとも、吸気口202の近傍に配置されていればよい。断熱部材434は、発熱体430に密着させてもよい。
断熱部材434は、吸気口202から一定の距離離して配置される。吸気口202から一定の距離は、吸気口202から第一筐体80の内部への吸気を阻害せず、かつ、第一筐体80の断熱効果が得られる距離である。
第四変形例によれば、第一筐体80が熱源から隙間を空けて配置される。これにより、第一筐体80の冷却効率の向上が可能である。本変形例は、図7に示した第二筐体82にも適用可能である。
[第五変形例]
次に、第五変形例について説明する。第五変形例では、図4に示した直流電源装置270等の電気機器に使用される電気基板の全表面、又は通電部が、アクリル、ウレタン、及びシリコン等の絶縁性を有する材料を用いてコーティングされる。コーティングは被覆の一態様である。
電気基板は、電気回路基板に電気部品が搭載されている状態、及び電気回路基板に電気部品が搭載されていない状態の両者が含まれる。
第五変形例によれば、導電性物質が電気機器に付着し、吸湿に起因して導電性物質に導電性が発現した場合でも、短絡に起因する電気機器の故障を抑制しうる。
以上説明した第一変形例から第五変形例は、適宜組み合わせることが可能である。
[第一実施形態に係るフィルタ管理方法]
図17は第一実施形態に係るフィルタ管理方法の手順を示したフローチャートである。以下に説明する第一実施形態に係るフィルタ管理方法は、筐体内部の発熱部の温度を監視し、発熱部の温度が閾値以上の場合に、警告を発し、フィルタ部の交換を指示する。
筐体とは、図4に示した第一筐体80、及び図7に示した第二筐体82の総称である。筐体内部の発熱部は、筐体内部に備えられる電気機器のうち、最も温度が高くなる電気機器とすることが可能である。
ここでいうフィルタ部は、図4に示したフィルタ部240、及び図7に示したフィルタ部340の総称である。第一実施形態に係るフィルタ管理方法では、図4に示したフィルタ部240と図7に示したフィルタ部340とを個別に管理してもよいし、一括して管理してもよい。
図17の内部温度測定工程S10では、図3に示した検出部140は、筐体内部の発熱部の温度を測定する。検出部140の例として、筐体内部に備えられる温度センサが挙げられる。温度センサは接触式でもよいし、非接触式でもよい。図17の内部温度測定工程S10において測定された筐体内部の発熱部の温度の情報は、図3に示したフィルタ管理部142へ送られる。
図17の外部温度測定工程S12では、図3に示した検出部140は、図1に示したインクジェット記録装置10の外部の温度を測定する。図3に示した検出部140の例として、図1に示したインクジェット記録装置10の外部に備えられる温度センサが挙げられる。図17の内部温度測定工程S10において測定された、図1に示したインクジェット記録装置10の外部の温度の情報は、図3に示したフィルタ管理部142へ送られる。
図17の内部温度測定工程S10、及び外部温度測定工程S12は、並行して実行されてもよい。内部温度測定工程S10において、筐体内部の発熱部の温度が測定され、かつ、外部温度測定工程S12において、図1に示したインクジェット記録装置10の外部の温度が測定された後に、図17の温度補正工程S14へ進む。
温度補正工程S14では、図3に示したフィルタ管理部142は図1に示したインクジェット記録装置10の外部の温度を用いて、筐体内部の発熱部の温度を補正する。筐体内部の発熱部の温度の補正例として、筐体内部の発熱部の温度から図1に示したインクジェット記録装置10の外部の温度を減算する補正が挙げられる。筐体内部の発熱部の温度の他の補正例として、筐体内部の発熱部の温度に対して、図1に示したインクジェット記録装置10の外部の温度に応じた補正係数を乗算する補正が挙げられる。
図17の温度補正工程S14において、筐体内部の発熱部の温度が補正された後に、判定工程S16へ進む。判定工程S16では、図3に示したフィルタ管理部142は、補正後の筐体内部の発熱部の温度が、閾値温度以上であるか否かを判定する。本実施形態では、閾値温度として45℃を適用する。閾値温度は、筐体の冷却効率の観点から決められる任意の温度を適用可能である。
図17の判定工程S16において、補正後の筐体内部の発熱部の温度が、閾値温度以下の場合はNo判定となる。No判定の場合は、内部温度測定工程S10へ戻り、内部温度測定工程S10から判定工程S16の各工程が繰り返し実行される。
一方、判定工程S16において、補正後の筐体内部の発熱部の温度が、閾値温度以上の場合はYes判定となる。Yes判定の場合、フィルタ部の性能が低下した結果、ファンを用いた冷却の効果が弱くなり、筐体内部の発熱部の温度が上昇したと考えられる。なお、ここでいうファンは、図4に示した複数のファン220、及び図7に示した複数のファン320の総称である。
そうすると、フィルタ部を交換してフィルタ部の性能を回復させて、ファンを用いた冷却の効果を回復させることが必要となる。Yes判定の場合は、警告通知工程S18へ進む。
警告通知工程S18では、図3に示したフィルタ管理部142は、表示部132を用いて警告を通知する。ここでいう警告は、筐体の内部の発熱部の温度上昇を報知する警告でもよいし。フィルタ部の性能低下を報知する警告でもよい。警告は、文字情報、音情報などを適用することが可能である。音情報は、音声情報、及び警告音を含む概念である。
図17の警告通知工程S18において、警告が通知された後に、フィルタ交換指示工程S20へ進む。フィルタ交換指示工程S20では、図3に示したフィルタ管理部142は、表示部132を用いてフィルタ部の交換を指示する。フィルタ部の交換指示は、文字情報でもよいし、音声情報でもよい。
図17の警告通知工程S18、及びフィルタ交換指示工程S20では、図3に示したフィルタ管理部142は、表示部132の同一の画面を用いて、警告を通知し、かつ、フィルタ部の交換を指示してもよい。
図17のフィルタ交換指示工程S20において、フィルタ部の交換指示が実行された後に、図3に示したフィルタ管理部142は、図17に示したフィルタ管理方法の手順を終了する。
図3に示した検出部140は、温度測定部の構成要素の一例である。フィルタ管理部142は、筐体の内部の温度が閾値以上の場合に、交換時期の報知対象のフィルタの交換時期であることを報知するフィルタ交換時期報知部の構成要素の一例である。表示部132は、フィルタ交換時期報知部の構成要素の一例である。
[第一実施形態に係るフィルタ管理方法の作用効果]
第一実施形態に係るフィルタ管理方法によれば、筐体内部の発熱部の温度情報に基づき、警告を実行し、かつ、フィルタ部の交換を指示する。これにより、フィルタ部を寿命まで使用することが可能となり、フィルタ部の消耗量の削減が可能である。
第一実施形態に係るフィルタ管理方法は、導電性物質捕集フィルタ242、及び粗塵フィルタ244の少なくともいずれかに適用してもよい。第一実施形態に係るフィルタ管理方法は粗塵フィルタ250に適用してもよい。
以下に説明する第一実施形態に係るフィルタ管理方法の変形例、第二実施形態に係るフィルタ管理方法、第三実施形態に係るフィルタ管理方法、及び第四実施形態に係るフィルタ管理方法についても同様である。
[第一実施形態に係るフィルタ管理方法の変形例]
筐体内部の発熱部の温度測定に代わり、又はこれと併用して、排気口を通過する前の空気流の温度、及び排気口を通過した後の空気流の温度の少なくともいずれかを検出してもよい。排気口は、図4に示した排気口204、及び図7に示した排気口304の総称である。
排気口を通過した後の空気流の温度を測定する場合は、図17の外部温度測定工程S12、及び温度補正工程S14は省略可能である。
判定工程S16における閾値温度は、筐体内部の発熱部の温度を測定する場合と同一でもよい。判定工程S16における閾値温度は、筐体内部の発熱部の温度を測定する場合と比較して低くしてもよい。
第一実施形態に係るフィルタ管理方法の変形例は、第一実施形態に係るフィルタ管理方法と同様の作用効果を得ることが可能である。
[第二実施形態に係るフィルタ管理方法]
図18は第二実施形態に係るフィルタ管理方法の手順を示したフローチャートである。第二実施形態に係るフィルタ管理方法では、筐体の差圧を監視し、筐体の差圧が閾値以上の場合に、警告は発し、フィルタ部の交換を指示する。ここでいう筐体の差圧は、筐体の圧力損失と読み替えてもよい。
図18の差圧測定工程S30では、図3に示した検出部140は、筐体の差圧を測定する。筐体の差圧は、筐体内部の圧力から筐体外部の圧力を減算して算出することが可能である。図18の外圧は、筐体外部の圧力を表している。検出部140の例として、圧力センサが挙げられる。図18の差圧測定工程S30において測定された差圧の情報は、図3に示したフィルタ管理部142へ送られる。
図18の差圧測定工程S30において、筐体の差圧が測定された後に、判定工程S32へ進む。判定工程S32では、図3に示したフィルタ管理部142は、筐体の差圧が閾値の差圧以上であるか否かを判定する。本実施形態では、閾値の差圧として、初期状態の差圧の二倍を適用する。図18の初期差圧は、初期状態の差圧を表している。
図18の判定工程S32において、測定された差圧が初期の差圧の二倍未満の場合はNo判定となる。No判定の場合は、差圧測定工程S30へ戻り、筐体の差圧の監視が継続される。
一方、判定工程S32において、測定された差圧が初期の差圧の二倍以上の場合はYes判定となる。Yes判定の場合は、フィルタ部の性能が低下した結果、筐体内部の圧力が低下して、差圧の測定値が低下したと考えられる。そうすると、フィルタ部を交換してフィルタ部の性能を回復させることが必要となる。Yes判定の場合は、警告通知工程S34へ進む。
警告通知工程S34は、図17の警告通知工程S18と同様である。ここでの説明は省略する。図18の警告通知工程S34において、警告が通知された後に、フィルタ交換指示工程S36へ進む。フィルタ交換指示工程S36は、図17のフィルタ交換指示工程S20と同様である。ここでの説明は省略する。
図18のフィルタ交換指示工程S36において、フィルタ部の交換指示が実行された後に、図3に示したフィルタ管理部142は、図18に示したフィルタ管理方法の手順を終了する。
図3に示した検出部140は、圧力測定部の構成要素の一例である。フィルタ管理部142は、差圧が閾値以上の場合に、交換時期の報知対象のフィルタの交換時期であることを報知するフィルタ交換時期報知部の構成要素の一例である。表示部132は、フィルタ交換時期報知部の構成要素の一例である。
[第二実施形態に係るフィルタ管理方法の作用効果]
第二実施形態に係るフィルタ管理方法によれば、筐体の差圧に基づき、警告を実行し、かつ、フィルタ部の交換を指示する。これにより、フィルタ部を寿命まで使用することが可能となり、フィルタ部の消耗量の削減が可能である。
第一実施形態に係るフィルタ管理方法と、第二実施形態に係るフィルタ管理方法とを併用した場合、フィルタの性能低下、ファンの故障、及び温度センサの故障の判別が可能である。
図17の判定工程S16、及び図18の判定工程S32の両者がYes判定の場合は、フィルタの性能低下と判定することが可能である。一方、図17の判定工程S16がYes判定であり、かつ、図18の判定工程S32がNo判定の場合は、ファンの故障と判定することが可能である。
図17の判定工程S16がNo判定であり、かつ、図18の判定工程S32がYes判定の場合は、温度センサの故障と判定することが可能である。
[第三実施形態に係るフィルタ管理方法]
図19は第三実施形態に係るフィルタ管理方法の手順を示したフローチャートである。第三実施形態に係るフィルタ管理方法では、吸気口における風量を監視し、吸気口における風量が閾値以下の場合に、警告は発し、フィルタ部の交換を指示する。風量は、単位時間当たりのファンが発生させる空気の流れの体積で表される。風量の単位の例として立方メートル毎分が挙げられる。
また、ファンの風量に基づいて、ファンの故障の有無を判定する。ファンの故障が発生している場合は、警告を発し、ファンの交換を指示する。
吸気口とは、図4に示した吸気口202、及び図7に示した吸気口302の総称である。吸気口における風量とは、筐体の内部において測定される風量である。
図19の風量測定工程S40では、図3に示した検出部140は、吸気口における風量を測定する。検出部140の例として、風量計が挙げられる。図19の風量測定工程S40において測定された吸気口における風量の情報は、図3に示したフィルタ管理部142へ送られる。
図19の風量測定工程S40において、吸気口における風量が測定された後に、第一判定工程S42へ進む。第一判定工程S42では、図3に示したフィルタ管理部142は、吸気口における風量が、第一閾値以下の風量であるか否かを判定する。本実施形態では、第一閾値の風量として、初期状態の風量の20パーセントを適用する。図19の初期風量は、初期状態の風量を表している。
図19の第一判定工程S42において、測定された吸気口における風量が初期の風量の20パーセントを超える場合はNo判定となる。No判定の場合は、風量測定工程S40へ戻り、吸気口における風量の監視が継続される。
一方、第一判定工程S42において、測定された吸気口における風量が初期の風量の20パーセント以下の場合はYes判定となる。Yes判定の場合は、フィルタ部の性能低下、又はファンの性能低下が疑われる。Yes判定の場合は、第二判定工程S44へ進む。
第二判定工程S44では、図3に示したフィルタ管理部142は、風量測定工程S40において測定された吸気口における風量が第二閾値以下の風量であるか否かを判定する。本実施形態では、第二閾値の風量としてゼロを適用する。風量がゼロの状態は、ファンか停止している状態である。
図19の第二判定工程S44において、測定された吸気口における風量がゼロの場合はYes判定となる。Yes判定の場合は、ファン故障通知工程S46へ進む。
ファン故障通知工程S46では、図3に示したファン制御部126は、表示部132を用いて、ファンが故障していること通知する。通知は、文字情報、音情報などを適用することが可能である。
ファン故障通知工程S46において、図3に示したフィルタ管理部142が表示部132を用いてファンが故障していること通知した後に、図19のファン交換指示工程S48へ進む。
ファン交換指示工程S48では、図3に示したファン制御部126は、表示部132を用いてファンの交換を指示する。ファンの交換指示は、文字情報でもよいし、音声情報でもよい。
図19のファン故障通知工程S46、及びファン交換指示工程S48では、図3に示したファン制御部126は、表示部132の同一の画面を用いて、警告を通知し、かつ、ファンの交換を指示してもよい。
図19のファン交換指示工程S48において、ファンの交換指示が実行された後に、図3に示したフィルタ管理部142は、図17に示したフィルタ管理方法の手順を終了する。
一方、第二判定工程S44において、測定された吸気口における風量がゼロを超える場合はYes判定となる。Yes判定の場合は、警告通知工程S50へ進む。
警告通知工程S50は、図17の警告通知工程S18と同様である。ここでの説明は省略する。図19の警告通知工程S50において、警告が通知された後に、フィルタ交換指示工程S52へ進む。フィルタ交換指示工程S52は、図17のフィルタ交換指示工程S20と同様である。ここでの説明は省略する。
図19のフィルタ交換指示工程S52において、フィルタ部の交換指示が実行された後に、図3に示したフィルタ管理部142は、図19に示したフィルタ管理方法の手順を終了する。
本実施形態では、ファンの故障の有無を判定する第二閾値として、風量ゼロを例示した。冷却効率低下抑制の観点から、第二閾値は、ゼロ以外の風量を設定してもよい。第一閾値未満である第二閾値の例として、第一閾値に対して、0を超え1未満の係数を乗算した値が挙げられる。
図3に示した検出部140は、筐体へ流入する風量を測定する風量測定部の構成要素の一例である。フィルタ管理部142は、風量が第一閾値以下の場合に、交換時期の報知対象のフィルタの交換時期であることを報知するフィルタ交換時期報知部の構成要素の一例である。表示部132は、フィルタ交換時期報知部の構成要素の一例である。
[第三実施形態に係るフィルタ管理方法の作用効果]
第三実施形態に係るフィルタ管理方法によれば、吸気口における風量に基づき、警告を実行し、かつ、フィルタ部の交換を指示する。これにより、フィルタ部を寿命まで使用することが可能となり、フィルタ部の消耗量の削減が可能である。
また、吸気口における風量に基づき、ファンの故障の有無の判定が可能である。ファンが故障している場合は、警告を実行し、かつファンの交換を指示する。これにより、ファンの停止に起因する筐体内部の冷却効率の低下の抑制が可能である。
[第四実施形態に係るファン制御方法]
図20は第四実施形態に係るファン制御方法の手順を示したフローチャートである。第四実施形態に係るファン制御方法は、図1に示したインクジェット記録装置10の状態が印刷実行期間であるか、又は印刷非実行期間であるかに応じて、ファンの駆動個数を切り替える。
図20の状態判定工程S60では、図3に示したファン制御部126は、インクジェット記録装置10の状態が印刷実行期間であるか、又は印刷非実行期間であるかを判定する。インクジェット記録装置10の状態の判定は、インクジェット記録装置10の各部の稼働状態を用いて判定してもよいし、オペレータの入力情報を用いて判定してもよい。例えば、インクジェット記録装置10の状態の判定は、印刷実行期間の場合に有効となるフラグを参照してもよい。
図20の状態判定工程S60において、図3に示したファン制御部126が印刷実行期間であると判定した場合はYes判定となる。Yes判定の場合は、図20の第一条件設定工程S62へ進む。
第一条件設定工程S62では、図3に示したファン制御部126は、ファンの駆動個数を印刷実行期間駆動個数に設定する。図20には、印刷実行期間駆動個数の例として、3個を例示する。ファンの駆動個数が3個とは、図4に示した第一筐体80の場合、全数に相当する。
図20の第一条件設定工程S62において、図3に示したファン制御部126がファンの駆動個数を設定すると、図20のファン停止指令判定工程S66へ進む。
一方、状態判定工程S60において、図3に示したファン制御部126が印刷非実行期間であると判定した場合はNo判定となる。No判定の場合は、図20の第二条件設定工程S64へ進む。
第二条件設定工程S64では、図3に示したファン制御部126は、ファンの駆動個数を印刷非実行期間駆動個数に設定する。図20には、印刷実行期間駆動個数の例として、2個を例示する。ファンの駆動個数が2個とは、0個以上印刷実行期間駆動個数未満の個数に相当する。
第二条件設定工程S64において、図3に示したファン制御部126がファンの駆動個数を設定すると、図20のファン停止指令判定工程S66へ進む。ファン停止指令の一例として、図3に示したファン26を強制的に停止させる指令、及び装置の稼働停止に起因するファン26への電源供給を停止させる指令などが挙げられる。ファン停止指令は、複数のファンを一括して停止させてもよいし、複数のファンを個別に停止させてもよい。
ファン停止指令判定工程S66では、図3に示したファン制御部126は、ファンを停止させる命令を取得したか否かを判定する。
図20のファン停止指令判定工程S66において、図3に示したファン制御部126がファンを停止させる命令を取得した場合はYes判定となる。Yesの場合は、図3に示したファン制御部126は、図20に示したファン制御方法の手順を終了する。
一方、ファン停止指令判定工程S66において、図3に示したファン制御部126がファンを停止させる命令を取得していない場合はNo判定となる。Noの場合は、状態判定工程S60へ進み、図3に示したファン制御部126は、図20の状態判定工程S60からファン停止指令判定工程S66までの各工程を繰り返し実行する。
図3に示したファン制御部126は、ファン交換時期報知部の構成要素の一例である。表示部132は、ファン交換時期報知部の構成要素の一例である。
[第四実施形態に係るファン制御方法の作用効果]
第四実施形態に係るファン制御方法によれば、印刷非実行期間のファン駆動個数を印刷実行期間のファン駆動個数未満とする。これにより、ファンの駆動に起因する筐体内部への異物の進入が抑制され、フィルタ部の長寿命化が可能となる。更に、ファンの駆動に起因する消費電力の削減に寄与する。
[ファンの風量の説明]
ファンの風量の下限は、筐体の内部の電気機器の冷却に必要な風量の条件から決められる。一方、冷却効率の向上を狙ってファンの風量を相対的に大きくした場合、単位時間当たりに吸気口を通過する空気流の体積が増加する。そうすると、筐体の内部へ異物が進入する確率が高くなる。また、フィルタの寿命が相対的に短くなる。
そこで、フィルタの異物の捕集効率、及びフィルタの寿命等の観点から、ファンの風量の上限を決めておき、一定の冷却効率を見たし、かつ、一定の捕集効率、及び一定の寿命を満たすファンの風量の範囲を決めるとよい。
本明細書では、液体吐出装置の一例としてインクジェット記録装置が例示されているが、液体吐出装置は、グラフィック用途のインクジェット記録装置に限定されず、工業用途である電気配線形成、マスクパターン形成を行うインクジェット方式のパターン形成装置に対しても広く適用することが可能である。
以上説明した本発明の実施形態は、本発明の趣旨を逸脱しない範囲で、適宜構成要件を変更、追加、削除することが可能である。本発明は以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で当該分野の通常の知識を有する者により、多くの変形が可能である。