JPWO2018003554A1 - レドックスフロー電池、電気量の測定システム、及び電気量の測定方法 - Google Patents

レドックスフロー電池、電気量の測定システム、及び電気量の測定方法 Download PDF

Info

Publication number
JPWO2018003554A1
JPWO2018003554A1 JP2018525058A JP2018525058A JPWO2018003554A1 JP WO2018003554 A1 JPWO2018003554 A1 JP WO2018003554A1 JP 2018525058 A JP2018525058 A JP 2018525058A JP 2018525058 A JP2018525058 A JP 2018525058A JP WO2018003554 A1 JPWO2018003554 A1 JP WO2018003554A1
Authority
JP
Japan
Prior art keywords
electrolyte
electrode
cell
amount
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018525058A
Other languages
English (en)
Other versions
JP6924389B2 (ja
Inventor
恭裕 内藤
恭裕 内藤
雍容 董
雍容 董
秀旗 宮脇
秀旗 宮脇
吉恭 川越
吉恭 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPWO2018003554A1 publication Critical patent/JPWO2018003554A1/ja
Application granted granted Critical
Publication of JP6924389B2 publication Critical patent/JP6924389B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

正極電解液及び負極電解液が供給される電池セルと、正極電解液及び負極電解液の少なくとも一方の電解液について、所定量の電解液を放電させたときの電気量を測定する電気量の測定システムとを備え、電気量の測定システムは、正極電解液及び負極電解液のうち、電気量の測定対象である一方の電解液が供給される作用極と、測定対象ではない他方の電解液が供給される対極とを備える電解セルと、電解セル外において測定対象である一方の電解液に接して配置される基準電極と、基準電極の電位に基づいて設定されると共に、作用極に含まれる一方の電解液を全電解可能な電圧を電解セルに印加して、この一方の電解液の電気量を測定する測定装置とを備えるレドックスフロー電池。

Description

本発明は、レドックスフロー電池、電気量の測定システム、及び電気量の測定方法に関する。
本出願は、2016年7月1日出願の日本出願第2016−131827号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を援用するものである。
蓄電池の一つに、特許文献1に記載されるような、電解液を電極に供給して電池反応を行うレドックスフロー電池(以下、RF電池と呼ぶことがある)がある。
特許文献1は、効率よく、高い信頼性でRF電池を運転するために、クーロメトリー法によって電気量を測定し、測定した電気量に基づいて充電状態(SOC;state of charge)を把握することを開示する。また、特許文献1は、電気量の測定に、作用極と対極と参照電極とを備える三極式の電解セルを用いること、参照電極にAg/AgCl電極を用いることを開示する。
特開平09−101286号公報
本開示の一態様に係るレドックスフロー電池は、
正極電解液及び負極電解液が供給される電池セルと、
前記正極電解液及び前記負極電解液の少なくとも一方の電解液について、所定量の電解液を放電させたときの電気量を測定する電気量の測定システムとを備え、
前記電気量の測定システムは、
前記正極電解液及び前記負極電解液のうち、前記電気量の測定対象である一方の電解液が供給される作用極と、前記測定対象ではない他方の電解液が供給される対極とを備える電解セルと、
前記電解セル外において前記測定対象である一方の電解液に接して配置される基準電極と、
前記基準電極の電位に基づいて設定されると共に、前記作用極に含まれる前記一方の電解液を全電解可能な電圧を前記電解セルに印加して、この一方の電解液の前記電気量を測定する測定装置とを備える。
本開示の一態様に係る電気量の測定システムは、
レドックスフロー電池の電池セルに供給される正極電解液及び負極電解液の少なくとも一方の電解液について、所定量の電解液を放電させたときの電気量を測定するものであり、
前記正極電解液及び前記負極電解液のうち、前記電気量の測定対象である一方の電解液が供給される作用極と、前記測定対象ではない他方の電解液が供給される対極とを備える電解セルと、
前記電解セル外において前記測定対象である一方の電解液に接して配置される基準電極と、
前記基準電極の電位に基づいて設定されると共に、前記作用極に含まれる前記一方の電解液を全電解可能な電圧を前記電解セルに印加して、この一方の電解液の前記電気量を測定する測定装置とを備える。
本開示の一態様に係る電気量の測定方法は、
レドックスフロー電池の電池セルに供給される正極電解液及び負極電解液のうち、一方の電解液を、前記電池セルとは独立した電解セルを構成する作用極に供給すると共に、他方の電解液を、前記電解セルを構成する対極に供給する工程と、
前記電解セルに各電解液が供給された状態で、設定電圧を前記電解セルに印加して、前記作用極に含まれる一方の電解液を放電させたときの電気量を測定する工程とを備え、
前記設定電圧は、前記電解セル外において、前記一方の電解液に接して配置される基準電極の電位に基づいて、前記作用極に含まれる前記一方の電解液を全電解可能な電圧とする。
実施形態1のレドックスフロー電池の概略構成図である。 実施形態1のレドックスフロー電池に備えられるセルスタックの一例を示す概略構成図である。 試験例1において測定した電気量と充電状態(SOC)の理論値との関係を示すグラフである。 試験例1において測定した電気量に基づいて求めた充電状態(SOC)の測定値と、充電状態(SOC)の理論値との関係を示すグラフである。 Ag/AgCl電極における経時的な電位変化を示すグラフである。 Hg/HgSO電極における経時的な電位変化を示すグラフである。
[本開示が解決しようとする課題]
レドックスフロー電池の長期的な使用に際して、充電状態(SOC)を長期に亘り精度よく監視することが望まれる。
従来の三極式の電解セルを用いたクーロメトリー法では、電気量を高精度に測定できる。そのため、測定した電気量に基づいてSOCを高精度に求められて、SOCを精度よく把握できる。しかし、Ag/AgCl電極は、長期使用には不向きである。Ag/AgCl電極では、その内部液が経時的に電解液中に混入すること(コンタミネーション)が避けられず、図5に示すようにAg/AgCl電極の電位が2日〜3日ぐらいで急激に低下して、参照電極として実質的に使用できなくなるからである。図5のグラフの横軸が経過日数(日)、縦軸が電位(任意単位)を示す(この点は後述する図6のグラフも同様)。
その他の従来の参照電極として、例えばHg/HgSO電極がある。Hg/HgSO電極も、Ag/AgCl電極と同様に、図6に示すように電位が2日〜3日ぐらいで急激に低下するため、長期使用には不向きである。
その他の従来のSOCの測定方法として、回路電圧を用いる方法などがあるが、クーロメトリー法は測定精度、正確性の観点から好ましい。また、電解液種(活物質種)や運転条件などによっては、正極電解液のSOCと負極電解液のSOCとの間で大きなずれが生じる場合があり、大きなずれが生じる前に運転条件などを調整することが望まれる。そのため、正極電解液のSOCと負極電解液のSOCとを別々に把握できることが望まれるが、クーロメトリー法であればこの要求に対応できる。このことからも、クーロメトリー法が好ましいと期待される。
そこで、充電状態を長期に亘り精度よく監視できるレドックスフロー電池を提供することを本発明の目的の一つとする。また、長期に亘り、レドックスフロー電池の充電状態の監視に利用できる電気量の測定システム、及び電気量の測定方法を提供することを本発明の他の目的の一つとする。
[本開示の効果]
本開示の一態様に係るレドックスフロー電池は、充電状態を長期に亘り精度よく監視できる。
また、本開示の一態様に係る電気量の測定システム及び本開示の一態様に係る電気量の測定方法は、長期に亘り、レドックスフロー電池の充電状態の監視に利用できる。
[本発明の実施の形態の説明]
最初に本発明の実施形態の内容を列記して説明する。
(1)本発明の一態様に係るレドックスフロー電池(RF電池)は、
正極電解液及び負極電解液が供給される電池セルと、
前記正極電解液及び前記負極電解液の少なくとも一方の電解液について、所定量の電解液を放電させたときの電気量を測定する電気量の測定システムとを備え、
前記電気量の測定システムは、
前記正極電解液及び前記負極電解液のうち、前記電気量の測定対象である一方の電解液が供給される作用極と、前記測定対象ではない他方の電解液が供給される対極とを備える電解セルと、
前記電解セル外において前記測定対象である一方の電解液に接して配置される基準電極と、
前記基準電極の電位に基づいて設定されると共に、前記作用極に含まれる前記一方の電解液を全電解可能な電圧を前記電解セルに印加して、この一方の電解液の前記電気量を測定する測定装置とを備える。
上記のRF電池は、Ag/AgCl電極やHg/HgSO電極といった一般的な参照電極を用いず、基準電極と、充電状態(SOC)の測定対象である電解液とを擬似的な参照電極としてクーロメトリー法によって電解液の電気量を測定する。このような上記のRF電池は、一般的な参照電極を用いる場合と異なり、上述の参照電極の内部液の混入といった不具合が生じず、電気量の測定にあたり、作用極の電位を規制する基準電位を長期に亘り適切に取得できる。基準電位とは、基準電極の電位であり、基準電極に接する電解液の電位である。この基準電極の電位に基づいて設定される全電解可能な電圧を電解セルに印加することで、作用極に含まれる電解液(所定量の電解液)を過不足なく放電できる結果、この所定量の電解液が有する電気量を高精度に測定できる。SOCは、測定された電気量を用いて演算によって求められるため(後述の式α参照)、SOCも高精度に求められる。従って、上記のRF電池は、長期に亘って、測定した電気量に基づいてSOCを精度よく監視できる。また、上記のRF電池は、電池セルに供給する電解液の一部(後述するように極少量でよい)を電解セルに供給して利用する構成であるため、インラインで連続的に電気量を測定可能であることからも、SOCの監視に適するといえる。更に、上記のRF電池は、電気量の測定に利用した電解液を電池セルへの供給液として再利用できることからも、長期使用に適する。なお、「全電解可能な電圧」とは、電解液を確実にSOCが0%の状態にできる電圧を意味する。
(2)上記のRF電池の一例として、
前記基準電極は、炭素材と有機材とを含有する複合材料から構成される板材を含む形態が挙げられる。
上記の複合材料は電解液に対する耐性に優れる。そのため、上記の形態は、基準電極の交換頻度を低減できて、長期に亘り基準電極を利用できる。
(3)上記のRF電池の一例として、
前記正極電解液はマンガンイオンを含む形態が挙げられる。
上記形態は、正極活物質としてマンガンイオンを含むことで、負極活物質にもよるが、特許文献1に記載されるV(バナジウム)系RF電池に比較して高い起電力を有するRF電池を構築することができる。
(4)上記のRF電池の一例として、
前記負極電解液はチタンイオンを含む形態が挙げられる。
上記形態は、負極活物質としてチタンイオンを含むことで、正極活物質にもよるが上述のV系RF電池に比較して高い起電力を有するRF電池を構築することができる。
(5)本発明の一態様に係る電気量の測定システムは、
レドックスフロー電池の電池セルに供給される正極電解液及び負極電解液の少なくとも一方の電解液について、所定量の電解液を放電させたときの電気量を測定するものであり、
前記正極電解液及び前記負極電解液のうち、前記電気量の測定対象である一方の電解液が供給される作用極と、前記測定対象ではない他方の電解液が供給される対極とを備える電解セルと、
前記電解セル外において前記測定対象である一方の電解液に接して配置される基準電極と、
前記基準電極の電位に基づいて設定されると共に、前記作用極に含まれる前記一方の電解液を全電解可能な電圧を前記電解セルに印加して、この一方の電解液の前記電気量を測定する測定装置とを備える。
上記の電気量の測定システムは、上述の一般的な参照電極を用いず、基準電極と、SOCの測定対象であるRF電池の電解液とを擬似的な参照電極としてクーロメトリー法によって電解液の電気量を測定する。このような上記の電気量の測定システムは、RF電池に組み付けることで、上述のように電気量の測定にあたり、作用極の電位を規制する基準電位を長期に亘り適切に取得でき、作用極に含まれる電解液(所定量の電解液)を過不足なく放電できる結果、最終的に電気量を高精度に測定できる。また、上述のようにSOCも高精度に求められる。従って、上記の電気量の測定システムは、RF電池に組み付けられることで、長期に亘ってSOCの監視に利用できる。
(6)本発明の一態様に係る電気量の測定方法は、
レドックスフロー電池の電池セルに供給される正極電解液及び負極電解液のうち、一方の電解液を、前記電池セルとは独立した電解セルを構成する作用極に供給すると共に、他方の電解液を、前記電解セルを構成する対極に供給する工程と、
前記電解セルに各電解液が供給された状態で、設定電圧を前記電解セルに印加して、前記作用極に含まれる一方の電解液を放電させたときの電気量を測定する工程とを備え、
前記設定電圧は、前記電解セル外において、前記一方の電解液に接して配置される基準電極の電位に基づいて、前記作用極に含まれる前記一方の電解液を全電解可能な電圧とする。
上記の電気量の測定方法は、上述の一般的な参照電極を用いず、基準電極とSOCの測定対象であるRF電池の電解液とを擬似的な参照電極としてクーロメトリー法によって電解液の電気量を測定する。このような上記の電気量の測定方法は、上記電解液の電気量の測定にあたり、作用極の電位を規制する基準電位を長期に亘り適切に取得でき、作用極に含まれる電解液を過不足なく放電できる結果、最終的に電気量を高精度に測定できる。また、上述のようにSOCも高精度に求められる。従って、上記の電気量の測定方法は、長期に亘ってSOCの監視に利用できる。上記の電気量の測定方法の実施には、例えば、上述の(5)の電気量の測定システムを好適に利用できる。
[本発明の実施形態の詳細]
以下、図面を適宜参照して、本発明の実施形態に係るレドックスフロー電池(RF電池)、実施形態に係る電気量の測定システム、実施形態に係る電気量の測定方法の具体例を説明する。図中、同一符号は同一名称物を示す。
[実施形態1]
図1,図2を参照して、実施形態1のRF電池1及び実施形態1の電気量の測定システム2を説明する。図1において正極タンク16内及び負極タンク17内に示すイオンは、各極の電解液中に含むイオン種の一例を示す。
(RF電池の概要)
実施形態1のRF電池1は、正極電解液及び負極電解液が供給される電池セル10と、正極電解液及び負極電解液の少なくとも一方の電解液について、所定量の電解液を放電させたときの電気量を測定する電気量の測定システム2(実施形態1の電気量の測定システム2)とを備える。また、RF電池1は、一般に、電池セル10に正極電解液、負極電解液を循環供給する循環機構を備える。このようなRF電池1は、代表的には、交流/直流変換器500や変電設備510などを介して、発電部300と、電力系統や需要家などの負荷400とに接続される。RF電池1は、発電部300を電力供給源として充電を行い、負荷400を電力提供対象として放電を行う。発電部300は、例えば、太陽光発電機、風力発電機、その他一般の発電所などが挙げられる。
実施形態1のRF電池1は、電気量の測定システム2を備えて、クーロメトリー法によって電解液の電気量を測定し、測定した電気量をSOCの監視パラメータとして利用する。RF電池1は、電気量の測定対象である電解液に接して配置される基準電極20を備えており、測定対象の電解液自体と基準電極20とを擬似的な参照電極として利用することを特徴の一つとする。以下、電池セル10及び電解液の循環機構の一例をまず説明し、次に電気量の測定システム2、電気量の測定方法を説明する。
(電池セル)
電池セル10は、正極電解液が供給される正極電極14と、負極電解液が供給される負極電極15と、正極電極14,負極電極15間に介在される隔膜11とを備える。
正極電極14,負極電極15は、電解液が供給されて、活物質(イオン)が電池反応を行う反応場であり、炭素材料の繊維集合体といった多孔体などが利用できる。
隔膜11は、正極電極14,負極電極15間を分離すると共に所定のイオンを透過する部材であり、イオン交換膜などが利用できる。
電池セル10は、代表的には図2に示すセルフレーム12を用いて構成される。
セルフレーム12は、双極板120と、双極板120の外周縁部を囲む枠体122とを備える。双極板120は、一方の面を正極電極14の配置面とし、他方の面を負極電極15の配置面とし、電流を流すが電解液を通さない導電性部材である。枠体122は、双極板120の各面に配置される正極電極14、負極電極15にそれぞれ供給する電解液の供給路と、正極電極14、負極電極15からそれぞれ排出される電解液の排出路とを備える絶縁性部材である。上記供給路は、給液孔124i,125iと、給液孔124i,125iから内側縁に至るスリットなどとを備える。上記排出路は、排液孔124o,125oと、内側縁から排液孔124o,125oに至るスリットなどとを備える。双極板120には、黒鉛などの炭素材と有機材とを含む導電性プラスチック板などが利用できる。枠体122の構成材料は、塩化ビニルなどの絶縁性樹脂が挙げられる。図2では矩形状の隔膜11、正極電極14、負極電極15、双極板120、矩形枠状の枠体122を例示するが、形状は適宜変更できる。
図1では単一の電池セル10を備える単セル電池を示すが、代表的には、複数の電池セル10を備える多セル電池が利用される。多セル電池では、図2に示すセルスタックと呼ばれる形態が利用される。
セルスタックは、代表的には、セルフレーム12と、正極電極14と、隔膜11と、負極電極15とが順に複数積層された積層体と、積層体を挟む一対のエンドプレート13,13と、エンドプレート13,13間を繋ぐ長ボルトなどの連結材130及びナットなどの締結部材とを備える。締結部材によってエンドプレート13,13間が締め付けられて積層状態が保持される。セルスタックにおける電池セル10の積層方向の両端に位置するセルフレームには双極板120に代えて集電板が配置されたものが利用される。
(循環機構)
循環機構は、図1に示すように正極電極14に循環供給する正極電解液を貯留する正極タンク16と、負極電極15に循環供給する負極電解液を貯留する負極タンク17と、正極タンク16と電池セル10との間を接続する配管162,164と、負極タンク17と電池セル10との間を接続する配管172,174と、電池セル10への供給側の配管162,172に設けられたポンプ160,170とを備える。配管162,164,172,174はそれぞれ、積層された複数のセルフレーム12の給液孔124i,125i及び排液孔124o,125oによって形成される電解液の流通管路に接続されて、各極の電解液の循環経路を構築する。
電池セル10及び循環機構の基本構成、構成材料などは、公知の構成、材料などを適宜利用できる。
(電解液)
電池セル10に供給する電解液は、金属イオンや非金属イオンなどの活物質と、硫酸、リン酸、硝酸、塩酸から選択される少なくとも1種の酸又は酸塩とを含む水溶液などが利用できる。正極電解液の一例としては、正極活物質としてマンガン(Mn)イオンを含むものが挙げられる。この場合、負極電解液は、例えば、負極活物質として、チタン(Ti)イオン、バナジウム(V)イオン、クロム(Cr)イオン、亜鉛(Zn)イオン、塩素(Cl)イオン、臭素(Br)イオン、及びスズ(Sn)イオンから選択される一種以上のイオンを含むものが挙げられる。負極電解液の一例としては、負極活物質としてチタンイオンを含むものが挙げられる。この場合、正極電解液は、例えば、正極活物質として、マンガンイオン、バナジウムイオン、鉄(Fe)イオン、セリウム(Ce)イオン、及びコバルト(Co)イオンから選択される一種以上のイオンを含むものが挙げられる。特に、正極電解液にマンガンイオンを含み、負極電解液にチタンイオンを含むMn/Ti系電解液を備えるMn/Ti系RF電池であれば、特許文献1に記載されるV系RF電池に比較して高い起電力を有するRF電池とすることができる。その他、正極活物質及び負極活物質として価数の異なるバナジウム(V)イオンを含むV系電解液(V系RF電池)、正極活物質として鉄(Fe)イオン、負極活物質としてクロム(Cr)イオンを含むFe/Cr系電解液(Fe/Cr系RF電池)などが挙げられる。即ち、RF電池に利用されている公知の電解液を利用できる。
Mn/Ti系RF電池などでは、長期の使用によって、正極電解液のSOCと負極電解液のSOCとにずれが生じ得る。このような場合でも、実施形態1の電気量の測定システムや電気量の測定方法を利用して、例えば正極電解液の電気量を測定して、正極電解液のSOCを監視すれば、大きなずれが生じる前に運転条件などを調整できる。両極のSOCを監視する場合には、正極電解液の電気量と負極電解液の電気量との双方を測定可能なように、図1に示すように正極電解液に接する基準電極24と、負極電解液に接する基準電極25とを備えるとよい。
(電気量の測定方法)
実施形態1の電気量の測定方法は、RF電池1の電池セル10に供給される正極電解液及び負極電解液のうち、SOCを監視したい一方の電解液を供給する作用極と、他方の電解液を供給する対極とを備え、電池セル10とは独立した電解セル21と、電解セル21外において電解液に接して配置される基準電極20とを用いて、上記SOCを監視したい電解液を所定量放電させたときの電気量を測定するものである。詳しくは、この電気量の測定方法は、上記一方の電解液を、電解セル21を構成する作用極に供給すると共に、上記他方の電解液を、電解セル21を構成する対極に供給する工程と、電解セル21に各電解液が供給された状態で、設定電圧を電解セル21に印加して、作用極に含まれる一方の電解液を放電させたときの電気量を測定する工程とを備える。上記の設定電圧とは、電解セル21外において、上記一方の電解液に接して配置される基準電極20の電位に基づいて、作用極に含まれる上記一方の電解液を全電解可能な電圧とする。設定電圧は、電気量の測定ごとに設定してもよいし、予め設定しておいてもよい。予め設定する場合には、後述するように、SOCを監視したい電解液と基準電極20とを用いて、全電解可能な電圧の範囲を実験的に求めておき、例えばこの範囲から選択することが挙げられる。電気量の測定ごとに設定する場合には、例えば基準電極20を用いて現在の電解液の電位を求め、上述の実験的に求めた範囲内で適宜調整することなどが挙げられる。この電気量の測定方法の実施には、以下の電気量の測定システム2を好適に利用できる。そのため、この電気量の測定方法の詳細な説明は、以下の電気量の測定システム2で行う。
(電気量の測定システム)
電気量の測定システム2は、RF電池1の電池セル10に供給される正極電解液及び負極電解液の少なくとも一方の電解液であってSOCを監視したい電解液について、所定量の電解液を放電させたときの電気量を測定するものであり、以下の電解セル21と、基準電極20と、測定装置22とを備える。
・電解セル
電解セル21は、正極電解液及び負極電解液のうち、電気量の測定対象である一方の電解液が供給される作用極と、電気量の測定対象ではない他方の電解液が供給される対極とを備える。測定対象が正極電解液である場合、作用極は電解セル21の正極電極214であり、対極は電解セル21の負極電極215である。測定対象が負極電解液である場合、作用極は電解セル21の負極電極215であり、対極は電解セル21の正極電極214である。電解セル21の正極電極214と負極電極215との間には隔膜211が介在される。電解セル21の基本構成、材質などは、上述の電池セル10と同様とすることができる。但し、電解セル21はSOCの監視に必要な電気量を測定できればよく、電解セル21の正極電極214,負極電極215の大きさは電池セル10の電極面積(電極における双極板120に対向配置される面の面積)よりも小さくてよい。電池セル10が多セル電池であっても、電解セル21は単セルでよい。電気量の測定は、上述の循環機構などを利用して供給されて作用極に含まれる電解液を利用して行う。そのため、電気量の測定に必要な電解液量は、作用極に含浸される程度の量、作用極を小さくすれば極少量(例えば、0.3cm以上2.0cm以下程度)とすることができる。電気量の測定に利用する電解液量が少ないほど(例えば1.0cm以下、更に0.5cm以下程度)、電気量の測定時間を短縮し易い。電気量の測定に利用する電解液量などに応じて、電解セル21の正極電極214,負極電極215の電極面積を調整することができ、例えば1cm以上9cm以下程度とすることができる。電解セル21は、電池セル10に供給される電解液の一部が供給可能に配置されていればよい。
放電させる電解液量を上述のように極少量とすれば、電気量の測定時間を短縮できる。例えば電気量の測定時間を5分間以下、更に3分間以下、2分間以下とすることができる。このような極短時間であれば、電解セル21に電解液を連続的に供給して、電気量を連続的に測定できるといえる。このような電気量の測定システム2を備えるRF電池1は、連続的な監視、リアルタイムのデータ把握などが可能である。
・流通路
電気量の測定システム2は、正極タンク16及び負極タンク17から電池セル10に供給される正極電解液及び負極電解液と同じ電解液を電解セル21に供給し、放電させた後、正極タンク16、負極タンク17にそれぞれ戻す流通路を備える。図1では、後述するように電池セル10に対する電解液の循環経路に対して、電解セル21に対する電解液の流通路を並列的に接続させた状態を示すが、直列的に接続させたり、独立させたりすることができる。独立形態では、例えば、正極タンク16や負極タンク17から電解セル21に各極の電解液を直接供給する配管を設けることが挙げられる。
この例に示す電解セル21に対する電解液の流通路は、電池セル10の正極側の循環機構を構成する正極側の配管162,164と電解セル21との間に配置される正極側の配管262,264と、電池セル10の負極側の循環機構を構成する配管172,174と電解セル21との間に配置される配管272,274とを備える。
電気量の測定システム2に備える正極側の配管262は、正極電解液を電解セル21に供給するための配管であり、正極側の配管162と電解セル21との間に接続される。この例では、正極側の配管162においてポンプ160よりも下流側に配管262を接続しており、ポンプ160によって電解セル21に正極電解液を導入する構成であるが、別途ポンプを設けることができる(この点は後述する負極側も同様)。配管264は、電解セル21から正極電解液を正極タンク16に戻すための配管であり、正極側の配管164と電解セル21との間に接続される。この例では、正極電解液は自動的に正極タンク16に戻される構成である(この点は後述する負極側も同様)。
電気量の測定システム2に備える負極側の配管272は、負極電解液を電解セル21に供給するための配管であり、負極側の配管172と電解セル21との間に接続される。この例では、負極側の配管172においてポンプ170よりも下流側に配管272を接続しており、ポンプ170によって電解セル21に負極電解液を導入する。配管274は、電解セル21から負極電解液を負極タンク17に戻すための配管であり、負極側の配管174と電解セル21との間に接続される。
・基準電極
基準電極20は、電解セル21外において測定対象である一方の電解液に接して配置されて、この一方の電解液と共に擬似的な参照電極として機能する。電気量の測定システム2では、一般的な参照電極であるAg/AgClなどとは異なり、測定対象である一方の電解液の電位を、この一方の電解液を放電させるための印加電圧の基準電位として利用する。そのため、参照電極の内部液と電解液との混合による不具合が生じない。但し、電気量の測定システム2では、上記印加電圧の基準電位が電解液のSOCや電解液種(活物質種など)に応じて変化し得る。しかし、本発明者らが検討した結果、以下の知見を得た。電解液種ごとに、一般的な参照電極を基準電位として、電解液を全電解可能な電圧を調べる。通常、電解液のSOCなどに応じて、全電解可能な電圧はある程度幅を有するため、この範囲を調べる。一般的な参照電極を基準電位として、電解液の電位を、基準電極を用いて調べる。通常、電解液のSOCに応じて電解液の電位は変化するため、結果として基準電極の電位が変動することから、この変動範囲を調べる。そして、上記参照電極を基準電位とした全電解可能な電圧の範囲(例、xボルト〜yボルト、x<y)を、基準電極の電位の変動範囲(例、αボルト〜βボルト、α<β)に照合する。こうすることで、基準電極を基準電位とする場合の全電解可能な電圧の範囲を設定できる(例、−(α−x)ボルト〜−(β−y)ボルト)。このように全電解可能な電圧の範囲を予め実験的に求めて設定しておき、測定対象である一方の電解液が供給される基準電極の電位に基づいて、上述の設定範囲を満たすように全電解可能な電圧を設定する。電気量の測定時にはこの設定電圧を電解セル21に印加する。こうすることで、作用極に含まれる一方の電解液を完全に放電でき、電気量を精度よく測定できるとの知見を得た。そこで、電気量の測定システム2は、測定対象と同じ電解液と基準電極20とによる擬似的な参照電極を備える構成とする。
基準電極20の使用状態(電解液に常時接する)、機能(電位取得)の観点から、基準電極20の構成材料は、電解液と反応せず、電解液に対する耐性(耐薬品性、耐酸性など)を有し、電気抵抗が小さい導電材料が挙げられる。例えば、基準電極20は、炭素材と有機材とを含有する複合材料から構成される板材を含むことができる。より具体的には、黒鉛などの導電性無機材(粉末や繊維など)とポリオレフィン系有機化合物や塩素化有機化合物などの有機材とを含む導電性プラスチックなどを板状に成形したものが挙げられる。このような複合材料からなる板材として、双極板120に用いられている導電性プラスチック板が挙げられる。双極板120用の導電性プラスチック板であれば入手が容易である上に、長期使用の実績があり、電解液に対する耐性などにも優れるため、基準電極20の交換頻度を低減できて、長期使用に適する。
測定対象が正極電解液のみである場合、基準電極20は電解セル21外であって正極電解液に接する任意の箇所に配置できる。測定対象が負極電解液のみである場合、基準電極20は電解セル21外であって負極電解液に接する任意の箇所に配置できる。基準電極20の配置箇所は、正極タンク16又は負極タンク17、電池セル10に接続される正極側の配管162,164又は負極側の配管172,174、電解セル21に接続される正極側の配管262,264又は負極側の配管272,274などが挙げられる。
この例の電気量の測定システム2は、正極電解液のSOC及び負極電解液のSOCの双方を監視可能なように正極用の基準電極24と、負極用の基準電極25との双方を備える。この例では、上流側の配管262,272にそれぞれ分岐管を設け、各分岐管の一端側の開口部を塞ぐように正極側の基準電極24、負極側の基準電極25を設けている。分岐管を設けることで、電解セル21への電解液の流通を阻害し難く、所定量の電解液を適切に供給できて電気量を精度よく測定できる上に、基準電極20の配置やシール作業などを行い易い。分岐管の長さは基準電極20が接触できれば短くてよく、適宜選択できる。
・測定装置
測定装置22は、測定対象である一方の電解液が供給される基準電極20の電位に基づいて設定されると共に、作用極に含まれる一方の電解液を全電解可能な電圧を電解セル21に印加して、この一方の電解液の電気量を測定する装置である。測定装置22には、市販のポテンショ/ガルバノスタットを利用できる。市販の装置を利用すれば、上述の基準電極20と、配管262,264,272,274と、後述の配線240,244,250,255と、市販の装置とを用意して適宜接続することで、実施形態1の電気量の測定システム2を簡単に構築できる。
電解セル21における作用極又は対極となる正極電極214,負極電極215にはそれぞれ配線(正極側の配線244、負極側の配線255)を接続し、各配線の一端を測定装置22の作用極用端子部(図示せず)、対極用端子部(図示せず)に接続する。また、擬似的な参照電極となる基準電極20にも配線(正極側の配線240,負極側の配線250)を接続し、配線の一端を測定装置22の参照電極用端子部(図示せず)に接続する。これらの配線240,244,250,255を介して、作用極、対極、擬似的な参照電極と測定装置22とが電気的に接続される。その結果、測定装置22は、作用極と対極間に所定の電圧を印加したり、電気信号の授受を行ったりすることができる。配線240,244,250,255はいずれも、銅線などの導体線を備える電線などが利用できる。
・流量調整部
この例の電気量の測定システム2は、作用極への電解液の流量を調整する流量調整部284,285を備える。流量調整部284,285には、適宜な調整機構、バルブ(例、リリーフ弁)などが利用できる。リリーフ弁などのバルブは、流量の調整が容易であり、例えば、電気量の測定時、電解液の供給を一時的に停止することなども容易に行える。
・SOC演算部
その他、電気量の測定システム2は、測定した電気量に基づいてSOCを演算するSOC演算部23を備えることができる。SOC演算部23には、市販のコンピュータなどを利用できる。図1では、SOC演算部23を測定装置22に外付けした状態を示すが、測定装置22に内蔵することもできる。SOC演算部23を備えることで、電気量の測定からSOCの演算までを自動的に行えて、作業者はSOCを容易に把握できる。
SOCは、測定した電気量を用いて、以下の式αによって求められる。
SOC(%)=[Q/(c×V×F)]×100…式α
式αにおいて、Qは電気量(C)、cは活物質濃度(mol/L)、Vは作用極に含まれる電解液の体積(L)、Fはファラデー定数(C/mol)である。単位における「L」はリットルである。
式αに示すようにSOCは電気量Qによって一義に求められるため、電気量Q自体をSOCの監視パラメータに利用できる。この場合、SOC演算部23を省略できる。
・測定手順
以下、SOCの監視対象を正極電解液とする場合を例に、実施形態1の電気量の測定方法、又は実施形態1の電気量の測定システム2によって、電気量を測定する手順を説明する。SOCの監視対象を負極電解液とする場合には、以下の説明の「正極」を「負極」に読み替えるとよい。
この例では、リリーフ弁などのバルブで構成される流量調整部284,285に所定の圧力が加わるとバルブが開き、所定流量で正極電解液が正極側の配管162,262を介して電解セル21の正極電極214に供給され、所定流量で負極電解液が負極側の配管172,272を介して電解セル21の負極電極215に供給される。供給に伴って圧力が下がるとバルブが閉じて、電解セル21内における電解液の流通が止められた状態(静止状態)になる。この電解セル21に各電解液が供給された状態で、測定装置22は、監視対象である一方の電解液(正極電解液)に接して配置される基準電極20(正極側の基準電極24)の電位に基づいて設定された設定電圧を電解セル21に印加して、上記所定量の正極電解液を放電させる。設定電圧は、作用極である正極電極214に含まれる正極電解液(所定量の電解液)を全電解可能な電圧とする。電解セル21の作用極(正極電極214)と対極(負極電極215)との間への電圧印加は、配線244,255を介して行える。測定装置22は、上記印加電圧による定電位電解によって、上記所定量の正極電解液を完全に放電させたときの電気量を測定する。この電気量によって、正極電解液の充電度合いの多寡を把握できる。測定した電気量を上述の式αに照合すれば又はSOC演算部23によって演算させれば、このときの正極電解液のSOCを把握できる。
放電後の正極電解液は、正極側の配管264,164を介して正極タンク16に戻される。このとき、正極タンク16に貯留される正極電解液と、戻された放電後の正極電解液(放電液)とが混ざるため、厳密にはSOCが変化し得る。しかし、電気量の測定に用いる電解液量を上述のように極少量とすれば、放電液の混合によるSOCの変動は実質的に無視できる。
SOCの監視対象を両極の電解液とする場合には、一極ずつ測定するとよい。例えば2分ごとに測定を行う場合、n回目の測定では、作用極を正極電極214とし、正極電解液の全電解に必要な電圧を印加し、次のn+1回目の測定では、作用極を負極電極215に切替え、負極電解液の全電解に必要な電圧を印加する。こうすることで、各極のSOCを4分ごとに把握できる。
(用途)
実施形態1のRF電池1は、(1)メガワット級(MW級)の大容量化が容易である、(2)長寿命である、(3)SOCを正確に監視可能である、(4)電池出力と電池容量とを独立して設計できて設計の自由度が高い、等の利点を有する。このような実施形態のRF電池1は、太陽光発電、風力発電などの自然エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした蓄電池に利用できる。また、RF電池1は、一般的な発電所に併設されて、電力系統の安定化用途、瞬低・停電対策や負荷平準化を目的とした蓄電池に利用できる。実施形態1の電気量の測定システム2は、RF電池に具備されて、SOCの監視に利用できる。実施形態1の電気量の測定方法は、RF電池におけるSOCの監視に利用できる。
(効果)
実施形態1のRF電池1は、基準電極20と測定対象である電解液とを擬似的な参照電極とし、電解セル21を含む実施形態1の電気量の測定システム2を備えて、クーロメトリー法によって電気量を測定する。このような実施形態1のRF電池1は、一般的な参照電極を用いた場合と異なり、作用極の電位を規制する基準電位を長期に亘って適切に取得でき、電解セル21の作用極に含まれる電解液を過不足なく放電できて、電気量を高精度に求められる。また、実施形態1のRF電池1は、電気量の測定システム2を具備するインラインシステムとするため、電気量の測定時間を短縮し易いこと、作用極の大きさを調整して電気量の測定に利用する電解液量を極少量に制御できることなどから、電気量を連続的に測定できる。従って、実施形態1のRF電池1は、測定した電気量に基づいてSOCを高精度に求められて、長期に亘り、SOCを精度よく、連続的に監視できる。
実施形態1の電気量の測定システム2は、RF電池1に組み付けられることで、上述のように、長期に亘り、SOCを精度よく、連続的に監視することに利用できる。実施形態1の電気量の測定方法は、RF電池1などに適用することで、上述のように長期に亘り、SOCを精度よく、連続的に監視することに利用できる。
実施形態1のRF電池1、実施形態1の電気量の測定システム2を備えるRF電池は、SOCを監視して、SOC(又は電気量)に基づいて運転条件などを調整できる。そのため、例えば、過充電や過放電を防止して信頼性をより高めることや、出力安定化や負荷平滑化の運転条件を最適化して、より一層効率的な運転制御を行うことなどに寄与すると期待される。また、この例のように正極電解液のSOCと負極電解液のSOCとの双方を監視可能であれば、両極のSOC間にずれが生じても、このずれを速やかに是正するように運転条件などを調整できる。そのため、両極のSOC間に大きなずれが生じたことに起因する過充電や過放電、その他の不具合などを防止できると期待される。
[試験例1]
実施形態1のRF電池を構築して、電気量の測定システムによって電気量を測定し、測定した電気量から求めたSOCと、SOCの理論値とを比較した。ここでは、正極電解液の電気量を測定した。
(電池セル)
ここでは、RF電池の電池セルに備える正極電極、及び負極電極はいずれも、市販のフェルト電極であって、電極面積が500cmのものである。隔膜は、市販の陰イオン交換膜である。
(電解液)
ここでは、電解液として、Mn/Ti系電解液を用いた。正極電解液は、マンガンイオンを含む硫酸水溶液であり、マンガンイオン濃度は1.0Mであり、硫酸イオン濃度は5.0Mである。負極電解液は、チタンイオンを含む硫酸水溶液であり、チタンイオン濃度は1.0M、硫酸イオン濃度は5.0Mである。濃度の単位「M」とは、体積モル濃度を意味する。
(電気量の測定システム)
電解セルに備える正極電極、隔膜、負極電極はいずれも市販品であり、上述の電池セルと同じ材質のものであるが、大きさが異なり、各極の電極の電極面積が1cmである。
基準電極には、RF電池の電池セルにおいて双極板に利用されている導電性プラスチック板を用いた。ここでは、2枚の導電性プラスチック板を用意して、両板間に配線の一端を挟み、配線の他端を測定装置に接続した。
流量調整部には、市販のバルブを用いた。
測定装置には、市販のポテンショ/ガルバノスタット(ソーラトロン社製、8chマルチスタット 1470E)を用いた。
電池セルを充電してSOCを変化させて、充電電気量(C)を測定し、この実測値を用いて、以下の式から、SOC(理論値)を求めた。その結果を表1に示す。
SOCの理論値=充電電気量/理論容量
理論容量=反応電子数×電解液の体積×モル濃度×ファラデー定数
ここでは、電気量の測定条件は、温度を25℃、電気量の測定に用いる電解液量を0.34cmとした。正極側の基準電極に基づいて正極電極を全電解可能な電圧を設定し(ここでは−1.1V以上−0.7V以下の範囲から選択)、設定した電圧を電解セルに印加して、作用極に含まれる正極電解液(ここでは0.34cm)を放電させて電気量Q(C)を測定した。ここでは、放電時に流れる電流量(mA)を調べて電流量が「−5mA」に達したとき、又は、電圧印加時間(t)を計測して「300秒」に達したとき、のいずれかを測定終了条件とした。測定結果を表1に示す。測定した電気量Qを上述の式αに代入して求めたSOCを、SOC(測定値)として表1に示す。
また、SOC(理論値、%)と測定した電気量Q(C)との関係を図3に、SOC(測定値、%)とSOC(理論値、%)との関係を図4に示す。図3の横軸がSOC(理論値、%)、縦軸が電気量(C)である。図4の横軸がSOC(測定値、%)、縦軸がSOC(理論値、%)である。
Figure 2018003554
表1,図3に示すように、SOC(理論値)と電気量Qとは相関しており、実質的に比例の関係にあるといえる。また、表1,図4に示すようにSOC(測定値)とSOC(理論値)とは相関しており、実質的に正比例の関係にあるといえる。この試験では、SOC(測定値)とSOC(理論値)との最大誤差は1.6%であり、平均誤差は0.17%と非常に小さい。このことから、測定した電気量Q及びこの電気量Qに基づいて求められるSOC(測定値)は、RF電池におけるSOCを高精度に示すパラメータであり、SOCの監視パラメータに好適に利用できることが示された。
また、実施形態1のRF電池や実施形態1の電気量の測定システムを備えるRF電池では、電解液自体の電位を、電解液の電気量の測定に際して所定量の電解液を完全に放電させるための印加電圧の基準に用いる。そのため、長期の使用に亘って、図5,図6に示すような参照電極の急激な電位低下が実質的に生じない。このことから、実施形態1のRF電池や実施形態1の電気量の測定システムを備えるRF電池、実施形態1の電気量の測定方法を適用するRF電池は、長期に亘り、電気量を高精度に測定でき、SOCを精度よく監視できることが示された。なお、図5,図6に示すグラフは、この試験で用いたMn/Ti系電解液を充電させて、SOCを20%とした充電液にAg/AgCl電極(図5参照)、又はHg/HgSO電極(図6参照)を接触させた状態で維持し、この参照電極の電位を経時的に測定した結果を示す(測定温度25℃)。この試験では、電位計測中、Ag/AgCl電極からは塩素ガスの発生が見られた。この点からも、Ag/AgCl電極は、長期使用に適さないと考えられる。
本発明は、これらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、以下の変更が可能である。
(1)実施形態1では、監視対象を正極電解液及び負極電解液の双方とし、正極用の基準電極24及び負極用の基準電極25を備える構成としたが、監視対象が正極電解液及び負極電解液のいずれか一極の電解液とする場合には、いずれか一方の基準電極20を備えるとよい。
(2)試験例1では、Mn/Ti系電解液を用いたが、V系電解液、Fe/Cr系電解液、その他の電解液に変更できる。
1 レドックスフロー電池(RF電池)
10 電池セル
11 隔膜
12 セルフレーム
120 双極板
122 枠体
124i,125i 給液孔
124o,125o 排液孔
13 エンドプレート
130 連結材
14 正極電極
15 負極電極
16 正極タンク
17 負極タンク
162,164,172,174,262,264,272,274 配管
160,170 ポンプ
2 電気量の測定システム
20,24,25 基準電極
21 電解セル
211 隔膜
214 正極電極(作用極/対極)
215 負極電極(作用極/対極)
22 測定装置
23 SOC演算部
240,250,244,255 配線
284,285 流量調整部
500 交流/直流変換器
510 変電設備
300 発電部
400 負荷

Claims (6)

  1. 正極電解液及び負極電解液が供給される電池セルと、
    前記正極電解液及び前記負極電解液の少なくとも一方の電解液について、所定量の電解液を放電させたときの電気量を測定する電気量の測定システムとを備え、
    前記電気量の測定システムは、
    前記正極電解液及び前記負極電解液のうち、前記電気量の測定対象である一方の電解液が供給される作用極と、前記測定対象ではない他方の電解液が供給される対極とを備える電解セルと、
    前記電解セル外において前記測定対象である一方の電解液に接して配置される基準電極と、
    前記基準電極の電位に基づいて設定されると共に、前記作用極に含まれる前記一方の電解液を全電解可能な電圧を前記電解セルに印加して、前記一方の電解液の前記電気量を測定する測定装置とを備えるレドックスフロー電池。
  2. 前記基準電極は、炭素材と有機材とを含有する複合材料から構成される板材を含む請求項1に記載のレドックスフロー電池。
  3. 前記正極電解液はマンガンイオンを含む請求項1又は請求項2に記載のレドックスフロー電池。
  4. 前記負極電解液はチタンイオンを含む請求項1から請求項3のいずれか1項に記載のレドックスフロー電池。
  5. レドックスフロー電池の電池セルに供給される正極電解液及び負極電解液の少なくとも一方の電解液について、所定量の電解液を放電させたときの電気量を測定するものであり、
    前記正極電解液及び前記負極電解液のうち、前記電気量の測定対象である一方の電解液が供給される作用極と、前記測定対象ではない他方の電解液が供給される対極とを備える電解セルと、
    前記電解セル外において前記測定対象である一方の電解液に接して配置される基準電極と、
    前記基準電極の電位に基づいて設定されると共に、前記作用極に含まれる前記一方の電解液を全電解可能な電圧を前記電解セルに印加して、前記一方の電解液の前記電気量を測定する測定装置とを備える電気量の測定システム。
  6. レドックスフロー電池の電池セルに供給される正極電解液及び負極電解液のうち、一方の電解液を、前記電池セルとは独立した電解セルを構成する作用極に供給すると共に、他方の電解液を、前記電解セルを構成する対極に供給する工程と、
    前記電解セルに各電解液が供給された状態で、設定電圧を前記電解セルに印加して、前記作用極に含まれる一方の電解液を放電させたときの電気量を測定する工程とを備え、
    前記設定電圧は、前記電解セル外において、前記一方の電解液に接して配置される基準電極の電位に基づいて、前記作用極に含まれる前記一方の電解液を全電解可能な電圧とする電気量の測定方法。
JP2018525058A 2016-07-01 2017-06-16 レドックスフロー電池、電気量の測定システム、及び電気量の測定方法 Active JP6924389B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016131827 2016-07-01
JP2016131827 2016-07-01
PCT/JP2017/022348 WO2018003554A1 (ja) 2016-07-01 2017-06-16 レドックスフロー電池、電気量の測定システム、及び電気量の測定方法

Publications (2)

Publication Number Publication Date
JPWO2018003554A1 true JPWO2018003554A1 (ja) 2019-04-18
JP6924389B2 JP6924389B2 (ja) 2021-08-25

Family

ID=60786016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018525058A Active JP6924389B2 (ja) 2016-07-01 2017-06-16 レドックスフロー電池、電気量の測定システム、及び電気量の測定方法

Country Status (7)

Country Link
US (1) US11005111B2 (ja)
EP (1) EP3480880B1 (ja)
JP (1) JP6924389B2 (ja)
KR (1) KR20190025557A (ja)
CN (1) CN109417184B (ja)
AU (1) AU2017290026A1 (ja)
WO (1) WO2018003554A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3215177U (ja) * 2017-12-21 2018-03-01 雄造 川村 電池装置
JP7248029B2 (ja) * 2018-07-30 2023-03-29 住友電気工業株式会社 レドックスフロー電池システム
WO2020130013A1 (ja) * 2018-12-18 2020-06-25 昭和電工株式会社 レドックスフロー電池及びその運転方法
CN110071315B (zh) * 2019-03-18 2021-11-26 中国电力科学研究院有限公司 一种控制液流电池储能系统混合电解液的方法和系统
US11539061B2 (en) * 2019-04-12 2022-12-27 Raytheon Technologies Corporation Cell for electrochemically determining active species concentrations in redox flow batteries
KR20240103561A (ko) * 2022-12-27 2024-07-04 스탠다드에너지(주) 레독스 배터리의 평가를 수행하는 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101286A (ja) * 1995-10-04 1997-04-15 Kashimakita Kyodo Hatsuden Kk バナジウムレドックスフロー電池用電解液のバナジウムイオンの価数と濃度の測定方法及びその装置
JP2009016217A (ja) * 2007-07-05 2009-01-22 Sumitomo Electric Ind Ltd レドックスフロー電池システム及びその運転方法
JP2013037857A (ja) * 2011-08-05 2013-02-21 Sumitomo Electric Ind Ltd レドックスフロー電池
WO2014184617A1 (en) * 2013-05-16 2014-11-20 Hydraredox Technologies Holdings Ltd. Estimation of the state of charge of a positive electrolyte solution of a working redox flow battery cell without using any reference electrode
JP2016085955A (ja) * 2014-10-29 2016-05-19 株式会社豊田中央研究所 フロー電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2417664B1 (en) * 2009-04-06 2017-04-05 24M Technologies, Inc. Fuel system using redox flow battery
CN101614794B (zh) * 2009-07-14 2011-08-17 清华大学 一种基于电位差参数的液流电池荷电状态在线检测方法
EP3032628B1 (en) * 2013-08-07 2019-03-20 Sumitomo Electric Industries, Ltd. Redox flow battery
US10833340B2 (en) * 2013-11-01 2020-11-10 Lockheed Martin Energy, Llc Apparatus and method for determining state of charge in a redox flow battery via limiting currents
CN103943876B (zh) * 2014-03-27 2017-11-03 上海电气集团股份有限公司 一种液流电池配套用管路结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101286A (ja) * 1995-10-04 1997-04-15 Kashimakita Kyodo Hatsuden Kk バナジウムレドックスフロー電池用電解液のバナジウムイオンの価数と濃度の測定方法及びその装置
JP2009016217A (ja) * 2007-07-05 2009-01-22 Sumitomo Electric Ind Ltd レドックスフロー電池システム及びその運転方法
JP2013037857A (ja) * 2011-08-05 2013-02-21 Sumitomo Electric Ind Ltd レドックスフロー電池
WO2014184617A1 (en) * 2013-05-16 2014-11-20 Hydraredox Technologies Holdings Ltd. Estimation of the state of charge of a positive electrolyte solution of a working redox flow battery cell without using any reference electrode
JP2016085955A (ja) * 2014-10-29 2016-05-19 株式会社豊田中央研究所 フロー電池

Also Published As

Publication number Publication date
AU2017290026A1 (en) 2019-01-24
KR20190025557A (ko) 2019-03-11
CN109417184A (zh) 2019-03-01
JP6924389B2 (ja) 2021-08-25
US11005111B2 (en) 2021-05-11
EP3480880A4 (en) 2019-08-14
EP3480880A1 (en) 2019-05-08
WO2018003554A1 (ja) 2018-01-04
EP3480880B1 (en) 2022-11-02
CN109417184B (zh) 2021-09-28
US20190165384A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP6924389B2 (ja) レドックスフロー電池、電気量の測定システム、及び電気量の測定方法
CN105794021B (zh) 使用入口/出口电势测量瞬时荷电状态的方法和设备
CN105723553B (zh) 测定氧化还原液流电池组中荷电状态和校准参比电极的方法
JP5772366B2 (ja) レドックスフロー電池
CN103999263B (zh) 用于锂电池单元的电解液计量装置
KR101494188B1 (ko) 측정 셀, 그를 이용한 측정 장치 및 레독스 플로우 전지
Ventosa et al. Operando studies of all-vanadium flow batteries: Easy-to-make reference electrode based on silver–silver sulfate
Mohamed et al. Estimating the state-of-charge of all-vanadium redox flow battery using a divided, open-circuit potentiometric cell
KR20190007573A (ko) 레독스 흐름 전지 및 이의 충전도 측정 방법
JP2017505513A (ja) フローバッテリにおける電解質の分配
JP2006147374A (ja) バナジウムレドックスフロー電池システムの運転方法
Suman et al. Developing Shunt-Current Minimized Soluble-Lead-Redox-Flow-Batteries
WO2020026655A1 (ja) レドックスフロー電池システム
EP3432402A1 (en) Method for operating at least one electrical energy storage device and electrical energy storage device
JP6654321B2 (ja) レドックスフロー電池の電極材料寿命試験装置および電極材料寿命試験方法
JP7286062B2 (ja) レドックスフロー電池セル、セルスタック、及びレドックスフロー電池システム
EP4224582A1 (en) Redox flow battery system and method for operating redox flow battery
JP2017174541A (ja) レドックスフロー電池の正・負極の過電圧測定方法およびその方法を行うための装置
TWI699927B (zh) 氧化還原液流電池、氧化還原液流電池用電極及電極之特性評估方法
Snyman State of charge and state of health estimation for lithium iron phosphate batteries
AU2019457171A1 (en) Redox-flow battery cell, cell stack, and redox-flow battery system
JP2021015015A (ja) 蓄電素子管理ユニット
JPH02181678A (ja) シャント電流測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210714

R150 Certificate of patent or registration of utility model

Ref document number: 6924389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150