JPWO2017199598A1 - 吸着剤、二酸化炭素の除去方法、二酸化炭素除去装置、及び、二酸化炭素除去システム - Google Patents

吸着剤、二酸化炭素の除去方法、二酸化炭素除去装置、及び、二酸化炭素除去システム Download PDF

Info

Publication number
JPWO2017199598A1
JPWO2017199598A1 JP2018518140A JP2018518140A JPWO2017199598A1 JP WO2017199598 A1 JPWO2017199598 A1 JP WO2017199598A1 JP 2018518140 A JP2018518140 A JP 2018518140A JP 2018518140 A JP2018518140 A JP 2018518140A JP WO2017199598 A1 JPWO2017199598 A1 JP WO2017199598A1
Authority
JP
Japan
Prior art keywords
carbon dioxide
adsorbent
gas
concentration
dioxide removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2018518140A
Other languages
English (en)
Inventor
真裕 青嶌
真裕 青嶌
保彦 吉成
保彦 吉成
俊勝 嶋崎
俊勝 嶋崎
中村 英博
英博 中村
晃平 吉川
晃平 吉川
大剛 小野寺
大剛 小野寺
金枝 雅人
雅人 金枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2017199598A1 publication Critical patent/JPWO2017199598A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3491Regenerating or reactivating by pressure treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/95Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying specially adapted for specific purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

二酸化炭素を含有する処理対象ガスから二酸化炭素を除去するために用いられる吸着剤であって、セリウム酸化物を含有し、前記セリウム酸化物の格子定数が0.5415nm以上である、吸着剤。

Description

本発明は、吸着剤、二酸化炭素の除去方法、二酸化炭素除去装置、及び、二酸化炭素除去システムに関する。
近年、温室効果ガスの排出による地球温暖化が世界的な問題となっている。温室効果ガスとしては、二酸化炭素(CO)、メタン(CH)、フロン類(CFCs等)などが挙げられる。温室効果ガスの中でも二酸化炭素の影響が最も大きく、二酸化炭素(例えば、火力発電所、製鉄所等から排出される二酸化炭素)の除去方法の構築が求められている。
また、二酸化炭素は人体に影響を与えることが知られており、例えば、二酸化炭素を高濃度に含むガスを吸引した場合には、眠気、健康被害等を引き起こす。人の密度が高い空間(ビル、車輛等)においては、人の呼気により室内の二酸化炭素濃度(以下、場合により「CO濃度」という)が上昇しやすく、換気することでCO濃度を調整する場合がある。
室内空気と外気とを素早く換気するためには、ブロア等の送風装置を稼働させる必要がある。また、外から取り込む空気(外気)は温度及び湿度が調整されていないため、夏季には冷房を稼働させ、冬季には暖房を稼働させる必要がある。これらの理由から、室内のCO濃度上昇は、空調に伴う消費電力の増加の要因となっている。
換気による室内の二酸化炭素の減少量(CO減少量)は、下記式で表される。下記式において、左辺のCO減少量が、人の呼気によるCO増加量と同等であればCO濃度を一定に保つことができる。
CO減少量=(室内のCO濃度−外気のCO濃度)×換気量
しかしながら、近年では、外気のCO濃度が増加しているため、室内とのCO濃度差が小さくなっている。そのため、CO濃度を調整するために必要な換気量も増加している。今後、外気のCO濃度が更に増加した場合、換気によるCO濃度の調整では消費電力が増加すると考えられる。
前記課題は、外気との換気により生じるものである。そのため、換気以外の方法を用いて二酸化炭素を選択的に除去できれば、換気量を低減でき、結果として、空調に伴う消費電力を低減できる可能性がある。
また、空気の存在する外気から遮蔽された空間(宇宙ステーション、潜水艇等)においては、外気と室内空気との換気が困難であるため、換気以外の方法により二酸化炭素を選択的に除去する必要がある。
前記課題の解決策としては、例えば、化学吸収法、物理吸収法、膜分離法、吸着分離法、深冷分離法等により二酸化炭素を除去する方法が挙げられる。例えば、CO吸着剤(以下、単に「吸着剤」という。)を用いて二酸化炭素を分離及び回収する方法(CO分離回収法)が挙げられる。吸着剤としては、例えば、ゼオライトが知られている(例えば、下記特許文献1参照)。
特開2000−140549号公報
ところで、吸着剤を用いた二酸化炭素の除去方法に対しては、二酸化炭素の除去効率を向上させる観点から、吸着剤に対する二酸化炭素の吸着量を向上させることが求められている。
本発明は、前記事情に鑑みてなされたものであり、二酸化炭素の吸着量を向上させることが可能な吸着剤を提供することを目的とする。また、本発明は、前記吸着剤を用いた二酸化炭素の除去方法、二酸化炭素除去装置、及び、二酸化炭素除去システムを提供することを目的とする。
本発明に係る吸着剤は、二酸化炭素を含有する処理対象ガスから二酸化炭素を除去するために用いられる吸着剤であって、セリウム酸化物を含有し、前記セリウム酸化物の格子定数が0.5415nm以上である。
本発明に係る吸着剤によれば、吸着剤に対する二酸化炭素の吸着量を向上させることができる。このような吸着剤は、CO吸着性(二酸化炭素の吸着性、二酸化炭素の捕捉能)に優れている。
ところで、ゼオライト等の従来の吸着剤を用いる方法では、処理対象ガスのCO濃度が低い場合において、二酸化炭素の除去効率が低下する傾向がある。一方、本発明に係る吸着剤によれば、処理対象ガスのCO濃度が低い場合において、吸着剤に対する二酸化炭素の吸着量を向上させることができる。このような吸着剤によれば、処理対象ガスのCO濃度が低い場合において、効率的に二酸化炭素を除去することができる。
前記セリウム酸化物の含有量は、吸着剤の全質量基準で90質量%以上であることが好ましい。この場合、二酸化炭素の吸着量を更に向上させることができる。
本発明に係る二酸化炭素の除去方法は、上述した吸着剤を、二酸化炭素を含有する処理対象ガスに接触させて二酸化炭素を吸着剤に吸着させる工程を備える。本発明に係る二酸化炭素の除去方法によれば、吸着剤に対する二酸化炭素の吸着量を向上させることが可能であり、二酸化炭素の除去効率を向上させることができる。
前記処理対象ガスのCO濃度は、5000ppm以下であってもよく、1000ppm以下であってもよい。
本発明に係る二酸化炭素除去装置は、上述した吸着剤を備える。本発明に係る二酸化炭素除去装置によれば、二酸化炭素の除去効率を向上させることができる。
本発明に係る二酸化炭素除去システムは、上述した吸着剤二酸化炭素除去装置を備える。本発明に係る二酸化炭素除去システムによれば、二酸化炭素の除去効率を向上させることができる。
本発明によれば、吸着剤に対する二酸化炭素の吸着量を向上させることができる。特に、本発明によれば、処理対象ガスのCO濃度が低い場合において、吸着剤に対する二酸化炭素の吸着量を向上させることができる。
図1は、CO吸着性を説明するための図である。 図2は、二酸化炭素除去システムの一実施形態を示す模式図である。 図3は、二酸化炭素除去システムの他の一実施形態を示す模式図である。 図4は、セリウム酸化物のXRDチャートを示す図である。 図5は、吸着脱離試験の測定結果を示す図である。
本明細書において、「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本明細書において、「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
<吸着剤>
本実施形態に係る吸着剤(二酸化炭素捕捉剤)は、セリウム酸化物(酸化セリウム)を含有し、前記セリウム酸化物の格子定数が0.5415nm以上である。本実施形態に係る吸着剤は、二酸化炭素を含有する処理対象ガス(処理の対象となるガス)から二酸化炭素を除去(例えば回収)するために用いられる。
本発明者らは、鋭意検討の結果、0.5415nm以上の格子定数を有するセリウム酸化物を含有する吸着剤が優れたCO吸着性を有することを見いだした。
本実施形態に係る吸着剤が優れたCO吸着性を有する原因は明らかではないが、下記のとおりであると推察される。すなわち、セリウム酸化物の結晶の歪みが大きくなるほど、セリウム酸化物の格子定数は増加する。セリウム酸化物の結晶の歪みの原因としては、セリウム酸化物の酸素欠損等が考えられる。セリウム酸化物の表面において酸素欠損が生じると、二酸化炭素の酸素原子がセリウム酸化物の酸素欠損部位に捕捉され、セリウム酸化物と二酸化炭素とが強く結合しやすい。このようなセリウム酸化物は、二酸化炭素を吸着しやすいため、CO吸着性に優れると推察される。
例えば、セリウム酸化物がCeOを含む場合について、図1を用いて説明する。セリウム酸化物の格子定数が小さく、酸素欠損が生じていない場合、図1(a)に示すように、二酸化炭素の炭素原子がCeOの一つの酸素原子に結合する。一方、セリウム酸化物の格子定数が大きく、酸素欠損が生じている場合、図1(b)に示すように、二酸化炭素の酸素原子がセリウム酸化物の酸素欠損部位に捕捉される。そして、二酸化炭素の炭素原子が複数の酸素原子に結合した状態で二酸化炭素がセリウム酸化物に吸着されるため、セリウム酸化物と二酸化炭素とが強く結合しやすいと推察される。
セリウム酸化物としては、CeOx(x=1.5〜2.0)等が挙げられ、具体的には、CeO、Ce等が挙げられる。
吸着剤におけるセリウム酸化物の含有量は、吸着剤の全質量基準で、30質量%以上であってもよく、40質量%以上であってもよく、45質量%以上であってもよく、50質量%以上であってもよく、70質量%以上であってもよく、90質量%以上であってもよい。吸着剤は、セリウム酸化物からなる態様(セリウム酸化物の含有量が吸着剤の全質量基準で実質的に100質量%である態様)であってもよい。セリウム酸化物の前記含有量が多いほど、二酸化炭素の吸着量を更に向上させることができる。セリウム酸化物の含有量は、例えば、吸着剤を得るための原料におけるセリウム化合物の含有量によって調整することができる。
吸着剤に含有されるセリウム酸化物の格子定数は、二酸化炭素の吸着量が向上する観点から、0.5415nm以上である。セリウム酸化物の格子定数は、例えば、CeOの格子定数である。セリウム酸化物の格子定数は、セリウム酸化物の結晶性の調整(例えば、原料の焼成温度の調整)、セリウム以外の希土類元素の添加等により調整することができる。
セリウム酸化物の格子定数は、例えば、走査範囲5°≦2θ≦100°のX線回折測定により得られる回折ピークから求められる格子定数である。セリウム酸化物の格子定数は、例えば、株式会社リガク製の広角X線回折測定装置(商品名:RINT2500HL)を用いて、下記条件のX線回折測定により得ることができる。
X線源:Cu
X線出力:50kV−250mA
光学系:モノクロメータ付き集中ビーム
走査軸:2θ/θ
走査モード:連続
走査範囲:5°≦2θ≦100°
走査速度:0.5°/分
サンプリング:0.01°
セリウム酸化物の格子定数は、二酸化炭素の吸着量が更に向上する観点から、0.5420nm以上が好ましく、0.5422nm以上がより好ましく、0.5425nm以上が更に好ましく、0.5426nm以上が特に好ましく、0.5427nm以上が極めて好ましく、0.5428nm以上が非常に好ましい。セリウム酸化物の格子定数は、0.5440nm以下であってもよく、0.5435nm以下であってもよく、0.5430nm以下であってもよく、0.5429nm以下であってもよい。
吸着剤の形状としては、粉状、ペレット状、粒状、ハニカム状等が挙げられる。吸着剤の形状は、必要となる反応速度、圧力損失、吸着剤の吸着量、吸着剤に吸着されるガス(吸着ガス)の純度(CO純度)等を勘案して決定すればよい。
<吸着剤の製造方法>
本実施形態に係る吸着剤の製造方法は、例えば、セリウム化合物(セリウムの炭酸塩、セリウムの炭酸水素塩、セリウムのシュウ酸塩、セリウムの水酸化物等)を含む原料を焼成する焼成工程を備える。このような吸着剤の製造方法では、セリウム化合物を含む原料を焼成することにより、当該セリウム化合物を分解し、且つ、セリウムを酸化する。前記セリウム化合物は、ランタニド(セリウムを除く。ランタン、ネオジム、プラセオジム等)、鉄、ナトリウムなどを含んでいてもよい。
セリウム化合物は、例えば、セリウムイオンと、炭酸イオン及び炭酸水素イオンからなる群より選ばれる少なくとも一種のイオンと、を含む化合物であってもよい。セリウムの炭酸塩は、例えば、セリウムイオンと、炭酸イオンと、を含む化合物である。セリウムの炭酸水素塩は、例えば、セリウムイオンと、炭酸水素イオンと、を含む化合物である。
セリウムの炭酸塩としては、炭酸セリウム、オキシ炭酸セリウム等が挙げられる。セリウムの炭酸水素塩としては、炭酸水素セリウム等が挙げられる。セリウム化合物は、二酸化炭素の吸着量が更に向上する観点から、炭酸セリウム、炭酸水素セリウム及びオキシ炭酸セリウムからなる群より選ばれる少なくとも一種の塩であってもよい。セリウムの炭酸塩は、炭酸水素アンモニウムと硝酸セリウムとを反応させることにより得られてもよい。
原料は、セリウム化合物以外の他の化合物を含んでいてもよい。他の化合物としては、例えば、ランタニド(セリウムを除く。ランタン、ネオジム、プラセオジム等)、鉄、ナトリウムなどを含む化合物が挙げられる。セリウム化合物は、公知の方法により作製することができる。また、セリウム化合物として、市販されている化合物を用いてもよい。
セリウム化合物の含有量は、原料の全質量基準で、40質量%以上であってもよく、45質量%以上であってもよく、50質量%以上であってもよく、90質量%以上であってもよく、99質量%以上であってもよい。セリウム化合物を含む原料は、セリウム化合物からなる態様(セリウム化合物の含有量が原料の全質量基準で実質的に100質量%である態様)であってもよい。セリウム化合物の前記含有量が多いほど、二酸化炭素の吸着量を更に向上させることができる。
焼成工程における焼成温度は、セリウム化合物を分解できる温度であれば特に限定されない。焼成温度は、セリウム化合物の分解が進行しやすいことから吸着剤の製造時間を短縮できる観点から、150℃以上であってもよく、175℃以上であってもよく、200℃以上であってもよく、225℃以上であってもよい。焼成温度は、セリウム酸化物の焼結が起こりにくいことから吸着剤の比表面積が大きくなりやすい観点から、600℃以下であってもよく、500℃以下であってもよく、400℃以下であってもよく、350℃以下であってもよく、300℃以下であってもよい。これらの観点から、焼成温度は、150〜600℃であってもよく、175〜500℃であってもよく、150〜400℃であってもよく、200〜400℃であってもよく、200〜350℃であってもよく、225〜300℃であってもよい。
焼成工程における焼成時間は、例えば、10分以上であってもよい。焼成時間は、例えば、10時間以下であってもよく、3時間以下であってもよく、1時間以下であってもよい。
焼成工程は、一段階で行ってもよく、二段階以上の多段階で行ってもよい。なお、多段階の焼成を行う場合、少なくとも一つの段階が前記焼成温度及び/又は焼成時間であることが好ましい。焼成工程は、例えば、空気雰囲気下、酸素雰囲気下又は還元雰囲気下で行うことができる。
焼成工程では、乾燥した原料を焼成してもよい。また、焼成工程では、原料を含む溶液(例えば、セリウム化合物が溶解した溶液)を加熱することにより、溶媒を除去すると共に原料を焼成してもよい。
本実施形態に係る吸着剤の製造方法は、焼成前の原料を所定の形状(例えば、後述する吸着剤の形状)に成形する工程を備えていてもよく、焼成後の原料を所定の形状に成形する工程を備えていてもよい。
<二酸化炭素の除去方法>
本実施形態に係る二酸化炭素の除去方法は、本実施形態に係る吸着剤を、二酸化炭素を含有する処理対象ガスに接触させて二酸化炭素を当該吸着剤に吸着させる吸着工程を備える。
処理対象ガスにおけるCO濃度は、処理対象ガスの全体積基準で5000ppm以下(0.5体積%以下)であってもよい。本実施形態に係る二酸化炭素の除去方法によれば、CO濃度が5000ppm以下である場合において、効率的に二酸化炭素を除去することができる。このような効果が奏される理由は、明らかでないが、以下の通りであると本発明者らは推察している。吸着工程では、二酸化炭素がセリウム酸化物の表面に物理吸着するのではなく、二酸化炭素がセリウム酸化物の表面と化学結合することにより二酸化炭素が吸着剤に吸着されると考えられる。この場合、本実施形態に係る二酸化炭素の除去方法では、吸着剤への吸着における二酸化炭素の分圧依存性が小さく、処理対象ガスのCO濃度が5000ppm以下であっても、効率的に二酸化炭素を除去することが可能であると推察される。
CO濃度は、CO濃度が低い場合であっても効率的に二酸化炭素を除去する効果が確認されやすい観点から、処理対象ガスの全体積基準で、2000ppm以下であってもよく、1500ppm以下であってもよく、1000ppm以下であってもよく、800ppm以下であってもよい。CO濃度は、二酸化炭素の除去量が多くなりやすい観点から、処理対象ガスの全体積基準で、100ppm以上であってもよく、200ppm以上であってもよく、400ppm以上であってもよい。これらの観点から、CO濃度は、処理対象ガスの全体積基準で、100〜5000ppmであってもよく、100〜2000ppmであってもよく、100〜1500ppmであってもよく、100〜1000ppmであってもよく、200〜1000ppmであってもよく、400〜1000ppmであってもよく、400〜800ppmであってもよい。なお、労働安全衛生法の事務所衛生基準規則において室内のCO濃度は5000ppm以下に調整されるべきことが規定されている。また、CO濃度が1000ppmを超える場合には眠気を誘発することが知られており、建築物環境衛生管理基準においてCO濃度は1000ppm以下に調整されるべきことが規定されている。そのため、CO濃度が5000ppm又は1000ppmを超過しないように換気することでCO濃度を調整する場合がある。処理対象ガスにおけるCO濃度は、前記範囲に限られず、500〜5000ppmであってもよく、750〜5000ppmであってもよい。
処理対象ガスは、二酸化炭素を含有するガスであれば特に限定されず、二酸化炭素以外のガス成分を含有していてもよい。二酸化炭素以外のガス成分としては、水(水蒸気、HO)、酸素(O)、窒素(N)、一酸化炭素(CO)、SOx、NOx、揮発性有機物(VOC)等が挙げられる。処理対象ガスの具体例としては、例えば、ビル、車輛等の室内における空気が挙げられる。吸着工程において、処理対象ガスが水、一酸化炭素、SOx、NOx、揮発性有機物等を含有する場合、これらのガス成分は吸着剤に吸着される場合がある。
ところで、ゼオライト等の従来の吸着剤では、処理対象ガスが水を含有する場合にCO吸着性が大幅に低下する傾向がある。そのため、従来の吸着剤を用いる方法において吸着剤のCO吸着性を向上させるためには、処理対象ガスを吸着剤に接触させる前に処理対象ガスから水分を取り除く除湿工程を行う必要がある。除湿工程は、例えば、除湿装置を用いて行われるため、設備の増加及びエネルギー消費量の増加につながる。一方、本実施形態に係る吸着剤は、処理対象ガスが水を含有する場合であっても、従来の吸着剤と比較して優れたCO吸着性を有する。そのため、本実施形態に係る二酸化炭素の除去方法では、除湿工程が不要であり、処理対象ガスが水を含有する場合であっても効率的に二酸化炭素を除去することができる。
処理対象ガスの露点は、0℃以上であってもよい。処理対象ガスの相対湿度は、30%以上であってもよく、50%以上であってもよく、80%以上であってもよい。
吸着工程において処理対象ガスを吸着剤に接触させる際の吸着剤の温度Tを調整することにより、二酸化炭素の吸着量を調整することができる。温度Tが高いほど吸着剤のCO吸着量が少なくなる傾向がある。温度Tは、−20〜100℃であってもよく、10〜40℃であってもよい。
吸着剤の温度Tは、吸着剤を加熱又は冷却することにより調整されてもよく、加熱及び冷却を併用してもよい。また、処理対象ガスを加熱又は冷却することにより間接的に吸着剤の温度Tを調整してもよい。吸着剤を加熱する方法としては、熱媒(例えば、加熱されたガス又は液体)を直接吸着剤に接触させる方法;伝熱管等に熱媒(例えば、加熱されたガス又は液体)を流通させ、伝熱面からの熱伝導により吸着剤を加熱する方法;電気的に発熱させた電気炉等により吸着剤を加熱する方法などが挙げられる。吸着剤を冷却する方法としては、冷媒(例えば、冷却されたガス又は液体)を直接吸着剤に接触させる方法;伝熱管等に冷媒(例えば、冷却されたガス又は液体)を流通させ、伝熱面からの熱伝導により冷却する方法などが挙げられる。
吸着工程において、吸着剤の存在する雰囲気の全圧(例えば、吸着剤を含む容器内の全圧)を調整することにより、二酸化炭素の吸着量を調整することができる。全圧が高いほど吸着剤のCO吸着量が多くなる傾向がある。全圧は、二酸化炭素の除去効率が更に向上する観点から、1気圧以上が好ましい。全圧は、省エネルギーの観点から、10気圧以下であってもよく、2気圧以下であってもよく、1.3気圧以下であってもよい。全圧は、5気圧以上であってもよい。
吸着剤の存在する雰囲気の全圧は、加圧又は減圧することにより調整されてもよく、加圧及び減圧を併用してもよい。全圧を調整する方法としては、ポンプ、コンプレッサー等により機械的に圧力を調整する方法;吸着剤の周辺雰囲気の圧力とは異なる圧力を有するガスを導入する方法などが挙げられる。
本実施形態に係る二酸化炭素の除去方法では、吸着剤をハニカム状の基材に担持して用いてもよく、吸着剤を容器に充填して用いてもよい。吸着剤の使用方法は、必要となる反応速度、圧力損失、吸着剤の吸着量、吸着剤に吸着されるガス(吸着ガス)の純度(CO純度)等を勘案して決定すればよい。
吸着剤を容器に充填して用いる場合、吸着ガス中の二酸化炭素の純度を高める場合には、空隙率が小さいほど好ましい。この場合、空隙内に残留する二酸化炭素以外のガス量が少なくなるため、吸着ガス中の二酸化炭素の純度を高めることができる。一方、圧力損失を小さくする場合には、空隙率が大きいほど好ましい。
本実施形態に係る二酸化炭素の除去方法は、前記吸着工程後に、二酸化炭素を吸着剤から脱着(脱離)させる脱着工程を更に備えていてもよい。
二酸化炭素を吸着剤から脱着させる方法としては、吸着量の温度依存性を利用する方法(温度スイング法。温度変化に伴う吸着剤の吸着量差を利用する方法);吸着量の圧力依存性を利用する方法(圧力スイング法。圧力変化に伴う吸着材の吸着量差を利用する方法)等が挙げられ、これらの方法を併用してもよい(温度・圧力スイング法)。
吸着量の温度依存性を利用する方法では、例えば、脱着工程における吸着剤の温度を吸着工程よりも高くする。吸着剤を加熱する方法としては、上述した吸着工程において吸着剤を加熱する方法と同様の方法;周辺の排熱を利用する方法等が挙げられる。加熱に要するエネルギーを抑える観点からは、周辺の排熱を利用することが好ましい。
吸着工程における吸着剤の温度Tと、脱着工程における吸着剤の温度Tとの温度差(T−T)は、省エネルギーの観点から、200℃以下であってもよく、100℃以下であってもよく、50℃以下であってもよい。温度差(T−T)は、吸着剤に吸着した二酸化炭素を脱着しやすい観点から、10℃以上であってもよく、20℃以上であってもよく、30℃以上であってもよい。脱着工程における吸着剤の温度Tは、例えば、40〜300℃であってもよく、50〜200℃であってもよく、80〜120℃であってもよい。
吸着量の圧力依存性を利用する方法では、吸着剤の存在する雰囲気の全圧(例えば、吸着剤を含む容器内の全圧)が高いほどCO吸着量が多くなることから、吸着工程の全圧よりも脱着工程の全圧が低圧となるように変化させることが好ましい。全圧は、加圧又は減圧することにより調整されてもよく、加圧及び減圧を併用してもよい。全圧を調整する方法としては、例えば、上述した吸着工程と同様の方法が挙げられる。脱着工程における全圧は、CO脱離量が多くなる観点から、周辺大気の圧力(例えば1気圧)であってもよく、1気圧未満であってもよい。
脱着工程により脱着して回収された二酸化炭素は、そのまま外気に排出してもよいが、二酸化炭素を利用する分野において再利用してもよい。例えば、温室栽培向けハウス等では、CO濃度を高めることで植物の成長が促進されることから、CO濃度を1000ppmレベルに高める場合があるため、回収された二酸化炭素を、CO濃度を高めることに再利用してもよい。
吸着剤にSOx、NOx、煤塵等が吸着した場合、吸着工程における吸着剤のCO吸着性が低下する可能性があるため、処理対象ガスはSOx、NOx、煤塵等を含有しないことが好ましい。処理対象ガスがSOx、NOx、煤塵等を含有する場合(例えば、処理対象ガスが、石炭火力発電所等から排出される排ガスである場合)、本実施形態に係る二酸化炭素の除去方法は、吸着剤のCO吸着性を保持しやすい観点から、吸着工程の前に、処理対象ガスからSOx、NOx、煤塵等の不純物を除去する不純物除去工程を更に備えることが好ましい。不純物除去工程では、吸着剤を加熱することにより、吸着剤に吸着した不純物を除去することができる。また、不純物除去工程は、脱硝装置、脱硫装置、脱塵装置等の除去装置を用いて行うことが可能であり、これらの装置の下流側において、処理対象ガスを吸着剤に接触させることができる。
脱着工程後の吸着剤は、再度、吸着工程に用いることができる。本実施形態に係る二酸化炭素の除去方法では、脱着工程後、吸着工程及び脱着工程を繰り返し行ってもよい。脱着工程において吸着剤を加熱した場合、上述の方法により吸着剤を冷却して吸着工程に用いてもよい。二酸化炭素を含有するガス(例えば、二酸化炭素を含有する処理対象ガス)を吸着剤に接触させることにより吸着剤を冷却してもよい。
本実施形態に係る二酸化炭素の除去方法は、CO濃度の管理が必要な密閉された空間において好適に実施することができる。CO濃度の管理が必要な空間としては、例えば、ビル;車輛;自動車;宇宙ステーション;潜水艇;食品又は化学製品の製造プラント等が挙げられる。本実施形態に係る二酸化炭素の除去方法は、特に、CO濃度が5000ppm以下に制限される空間(例えば、ビル、車輛等の人の密度が高い空間)において好適に実施することができる。また、食品又は化学製品等の製造時において二酸化炭素が悪影響を与える可能性があることから、本実施形態に係る二酸化炭素の除去方法は、食品又は化学製品の製造プラント等において好適に実施することができる。
<二酸化炭素除去装置及び二酸化炭素除去システム>
本実施形態に係る二酸化炭素除去システムは、本実施形態に係る二酸化炭素除去装置を備える。例えば、本実施形態に係る二酸化炭素除去システムは、本実施形態に係る二酸化炭素除去装置と、当該二酸化炭素除去装置を統括的に制御するための制御手段と、を備える。本実施形態に係る二酸化炭素除去システム(空調システム等)は、本実施形態に係る二酸化炭素除去装置(空調装置等)を複数備えていてもよい。本実施形態に係る二酸化炭素除去システムは、複数の二酸化炭素除去装置の運転を統括的に制御する制御部を備えていてもよい。本実施形態に係る二酸化炭素除去装置は、本実施形態に係る吸着剤を備えている。
本実施形態に係る二酸化炭素除去システム及び二酸化炭素除去装置では、例えば、反応容器内に導入された処理対象ガスが、反応容器内に配置された吸着剤に接触することで、二酸化炭素が吸着剤に吸着する。本実施形態に係る二酸化炭素除去システム及び二酸化炭素除去装置は、空調対象空間における二酸化炭素濃度を下げるために用いられてもよく、プラント等から外気に排出されるガス中の二酸化炭素濃度を下げるために用いられてもよい。空調対象空間は、例えば、ビル;車輛;自動車;宇宙ステーション;潜水艇;食品又は化学製品の製造プラント等であってもよい。
本実施形態に係る二酸化炭素除去装置は、空調装置であってもよい。本実施形態に係る空調装置は、二酸化炭素を含有する処理対象ガスを含む空調対象空間に用いられる空調装置である。本実施形態に係る空調装置は、空調対象空間に接続された流路を備え、処理対象ガスに含まれる二酸化炭素を除去する除去部(二酸化炭素除去部)が流路に配置されている。本実施形態に係る空調装置において、本実施形態に係る吸着剤が除去部に配置されており、吸着剤が処理対象ガスに接触して二酸化炭素が吸着剤に吸着する。本実施形態によれば、空調対象空間の処理対象ガスを吸着剤に接触させて二酸化炭素を吸着剤に吸着させる吸着工程を備える空調方法が提供される。なお、二酸化炭素を含有する処理対象ガスの詳細は、上述した二酸化炭素の除去方法における処理対象ガスと同様である。
以下、図2及び図3を用いて、二酸化炭素除去システム及び二酸化炭素除去装置の例として、空調システム及び空調装置について説明する。
図2に示すように、空調システム200は、空調装置100と、制御装置(制御部)110と、を備えている。空調装置100は、流路10と、排気ファン(排気手段)20と、濃度測定器(濃度測定部)30と、電気炉(温度制御手段)40と、コンプレッサー(圧力制御手段)50と、を備えている。
流路10は、二酸化炭素を含有する処理対象ガス(室内ガス)を含む空調対象空間Rに接続されている。流路10は、流路部10aと、流路部10bと、除去部(流路部。二酸化炭素除去部)10cと、流路部10dと、流路部(循環流路)10eと、流路部(排気流路)10fとを有しており、除去部10cは、流路10に配置されている。空調装置100は、反応容器として除去部10cを備えている。流路10には、除去部10cにおける処理対象ガスの流入の有無を調整するバルブ70aと、処理対象ガスの流れ方向を調整するバルブ70bとが配置されている。
流路部10aの上流端は、空調対象空間Rに接続されており、流路部10aの下流端は、バルブ70aを介して流路部10bの上流端に接続されている。除去部10cの上流端は、流路部10bの下流端に接続されている。除去部10cの下流端は、流路部10dの上流端に接続されている。流路10における流路部10dより下流側は、流路部10e及び流路部10fに分岐している。流路部10dの下流端は、バルブ70bを介して流路部10eの上流端及び流路部10fの上流端に接続されている。流路部10eの下流端は、空調対象空間Rに接続されている。流路部10fの下流端は、外気に接続されている。
除去部10cには、本実施形態に係る吸着剤である吸着剤80が配置されている。吸着剤80は、除去部10cの中央部に充填されている。除去部10cには、吸着剤80を介して2つの空間が形成されており、除去部10cは、上流側の空間S1と、吸着剤80が充填された中央部S2と、下流側の空間S3とを有している。空間S1は、流路部10a,10b及びバルブ70aを介して空調対象空間Rに接続されており、二酸化炭素を含有する処理対象ガスが空調対象空間Rから除去部10cの空間S1に供給される。除去部10cに供給された処理対象ガスは、中央部S2を経由して空間S1から空間S3へ移動した後、除去部10cから排出される。
空調対象空間Rから排出された処理対象ガスは、除去部10cにおいて二酸化炭素の少なくとも一部が除去される。二酸化炭素が除去された処理対象ガスは、バルブ70bを調整することにより、空調対象空間Rに戻されてもよく、空調装置100の外部における外気へ排出されてもよい。例えば、空調対象空間Rから排出された処理対象ガスは、上流から下流にかけて、流路部10a、流路部10b、除去部10c、流路部10d及び流路部10eを経由して空調対象空間Rに流入することができる。また、空調対象空間Rから排出された処理対象ガスは、上流から下流にかけて、流路部10a、流路部10b、除去部10c、流路部10d及び流路部10fを経由して外気に排出されてもよい。
排気ファン20は、空調対象空間Rにおける処理対象ガスの排出位置に配置されている。排気ファン20は、処理対象ガスを空調対象空間Rから排出して除去部10cへ供給する。
濃度測定器30は、空調対象空間Rの二酸化炭素濃度を測定する。濃度測定器30は、空調対象空間R内に配置されている。
電気炉40は、空調装置100の除去部10cの外部に配置されており、吸着剤80の温度を昇温させることができる。コンプレッサー50は、空調装置100の除去部10cに接続されており、除去部10c内の圧力を調整することができる。
制御装置110は、空調装置100の統括的な運転制御を行うことが可能であり、例えば、濃度測定器30で測定される二酸化炭素濃度に基づいて、除去部10cにおける処理対象ガスの流入の有無を制御することができる。具体的には、呼気等により空調対象空間R内の二酸化炭素濃度が上昇して所定濃度に達したことが濃度測定器30により検出された場合、濃度測定器30から制御装置110に濃度情報が送信される。濃度情報を受信した制御装置110は、バルブ70aを開放すると共に、除去部10cから排出されるガスが流路部10d及び流路部10eを介して空調対象空間Rに流入するように調整する。そして、制御装置110は、排気ファン20を稼働させて、空調対象空間Rから処理対象ガスを除去部10cへ供給する。さらに、制御装置110は、必要に応じて、電気炉40及び/又はコンプレッサー50を稼働させて、吸着剤80の温度、除去部10c内の圧力等を調整する。
除去部10cに供給された処理対象ガスが中央部S2を経由して空間S1から空間S3へ移動するに際して、処理対象ガスが吸着剤80に接触し、処理対象ガス中の二酸化炭素が吸着剤80に吸着する。これにより、処理対象ガスから二酸化炭素が除去される。この場合、二酸化炭素が除去されたガスは、流路部10d及び流路部10eを介して空調対象空間Rに供給される。
吸着剤80に吸着した二酸化炭素は、吸着剤80から脱着させることなく、吸着剤80に吸着した状態で回収されてもよく、吸着剤80から脱着させて回収してもよい。脱着工程においては、電気炉40及び/又はコンプレッサー50を稼働させて吸着剤80の温度、除去部10c内の圧力等を調整することにより、上述した温度スイング法、圧力スイング法等により、吸着剤80から二酸化炭素を脱着させることができる。この場合、例えば、バルブ70bは、除去部10cから排出されるガス(脱着した二酸化炭素を含有するガス)が流路部10fを介して外気に排出されるように調整されており、必要に応じて、排出される二酸化炭素を回収することができる。
図3に示すように、空調システム210は、第1の空調装置100aと、第2の空調装置100bと、制御装置(制御部)110と、制御装置(制御部)120と、を備えている。制御装置120は、第1の空調装置100a及び第2の空調装置100bにおける上述の制御装置110を制御することにより、第1の空調装置100a及び第2の空調装置100bの空調運転を統括的に制御する。例えば、制御装置120は、第1の空調装置100a及び第2の空調装置100bの空調運転を同条件で行うように調整してもよく、第1の空調装置100a及び第2の空調装置100bの空調運転を異なる条件で行うように調整してもよい。制御装置120は、除去部10cにおける処理対象ガスの流入の有無等に関する情報を制御装置110に送信することができる。
二酸化炭素除去装置及び二酸化炭素除去システムは、前記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。例えば、二酸化炭素除去装置の制御部の制御内容は、反応容器における処理対象ガスの流入の有無を制御することに限られず、制御部は、反応容器における処理対象ガスの流入量を調整してもよい。
空調装置において、排気ファンに代えて送風機を用いて処理対象ガスを反応容器へ供給してもよく、自然対流により処理対象ガスが反応容器へ供給される場合には、排気手段を用いなくてもよい。また、温度制御手段及び圧力制御手段は、電気炉及びコンプレッサーに限定されるものでなく、吸着工程及び脱着工程において上述した各種の手段を用いることができる。温度制御手段は、加熱手段に限られず、冷却手段であってもよい。
空調装置において、空調対象空間、二酸化炭素除去部、排気手段、温度制御手段、圧力制御手段、濃度測定部等のそれぞれは、一つに限られるものではなく、複数配置されていてもよい。空調装置は、処理対象ガスの露点及び相対湿度を調整するための調湿器;空調対象空間の湿度を測定する湿度測定器;脱硝装置、脱硫装置、脱塵装置等の除去装置などを備えていてもよい。
以下、実施例及び比較例を用いて本発明の内容を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。
<吸着剤の準備>
(実施例1)
次の手順により炭酸セリウム(Ce(CO・8HO)20gを空気中で焼成した。まず、電気炉にて120℃まで5℃/分で昇温した後、120℃で1時間温度を保持した。その後、焼成温度300℃まで5℃/分で昇温した後、当該温度(300℃)で1時間温度を保持した。これにより、吸着剤を得た。
(実施例2)
炭酸水素アンモニウムと硝酸セリウム水溶液とを混合することにより炭酸セリウムを得た。次に、ろ過及び洗浄により炭酸セリウムを単離した後、120℃で1時間温度を保持した。その後、焼成温度300℃まで5℃/分で昇温した後、当該温度(300℃)で1時間温度を保持した。これにより、吸着剤を得た。
(実施例3)
炭酸セリウムに代えてシュウ酸セリウム(Ce(H・9HO)を用いたこと以外は実施例1と同様にして吸着剤を得た。
(比較例1)
市販の酸化セリウムを吸着剤として用いた。
<吸着剤の物性測定>
実施例及び比較例の吸着剤を用いて、X線回折測定によりセリウム酸化物の格子定数を測定した。株式会社リガク製の広角X線回折測定装置(商品名:RINT2500HL)を用いて、下記条件に基づきX線回折測定を行った。CeOの回折ピークが観察された。次に、回折ピークのプロファイルフィッティングを行うことにより、複数の回折ピークの積分幅及び回折角を算出した。そして、回折ピークを用いて、最小二乗法によりセリウム酸化物の格子定数を算出した。測定結果を表1に示す。実施例1のXRDチャートを図4に示す。
X線源:Cu
X線出力:50kV−250mA
光学系:モノクロメータ付き集中ビーム
走査軸:2θ/θ
走査モード:連続
走査範囲:5°≦2θ≦100°
走査速度:0.5°/分
サンプリング:0.01°
<実験A:二酸化炭素の吸着量の測定>
実施例及び比較例の吸着剤を用いて、二酸化炭素の吸着量を測定した。
まず、直径40mmの金型を使用して、吸着剤をプレス機により200kgfでペレット化した。次いで、ペレットを破砕した後、篩を用いて粒状(粒径:0.5〜1.0mm)に整粒した。その後、メスシリンダーを用いて吸着剤1.0mLを量りとり、石英ガラス製の反応管中に固定した。
次いで、前処理として、反応管に150mL/分でヘリウム(He)を流通させながら、電気炉を用いて吸着剤の温度を200℃まで昇温させた後、200℃で1時間保持した。これにより、不純物、及び、吸着剤に吸着したガスを除去した。
次いで、吸着剤の温度が50℃になるまで冷却した後、電気炉で吸着剤の温度を50℃に保ちながら、COパルス吸着試験によりCO吸着量を測定した。COパルス吸着試験は、具体的には、下記方法により行った。測定結果を表1に示す。
[COパルス吸着試験]
サンプルガスとして、12体積%のCOと88体積%のHeとを含む混合ガス10mLを用いた。当該サンプルガスをパルス状で4分おきに2分間導入した。この際、反応管内の全圧を1気圧に調整した。次いで、反応管の出口のCO濃度をガスクロマトグラフ(キャリアガス:He)により測定した。反応管の出口で測定されるCO濃度が飽和するまでサンプルガスの導入を継続した。CO濃度が飽和するまでに吸着した二酸化炭素量(単位:g)からCO吸着量(単位:g/L)を求めた。
Figure 2017199598
表1に示されるように、セリウム酸化物の格子定数が0.5415nm以上である場合に、優れたCO吸着量が得られることがわかる。
<実験B:二酸化炭素の吸着脱離試験>
実施例1の吸着剤を用いて、昇温脱離測定(TPD:Temperature Programmed Desorption Measurement)により各温度におけるCO脱離量を以下の手順で測定した。
まず、直径40mmの金型を使用して、吸着剤をプレス機により500kgfでペレット化した。次いで、ペレットを破砕した後、篩を用いて粒状(粒径:0.5〜1.0mm)に整粒した。その後、吸着剤1.0mLを量りとり、吸着剤を反応管中に固定した。続いて、大気下において120℃で吸着剤を乾燥させた。
次いで、吸着工程として、吸着剤の温度を20℃に調整しつつ、800ppmのCOと、He(バランスガス)と、2.3体積%の水分(HO)とを含む混合ガスを60cm/minの流量で反応管に流通させた(反応管内の全圧:1気圧)。なお、水分は、ガスをバブラーに流通させることで導入した。反応管の出口ガスのCO濃度をガスクロマトグラフによって分析し、吸着飽和に達するまで混合ガスを流通させた。
次いで、脱離工程として、吸着工程と同様の混合ガスを流通ガスとして60cm/minの流量で反応管に流通させつつ、電気炉を用いて吸着剤の温度を2℃/minで20℃から200℃まで昇温した(反応管内の全圧:1気圧)。反応管の出口ガスのCO濃度を測定することでCO脱離量(出口ガスのCO濃度−800ppm)を算出した。CO脱離量は、出口ガスのCO濃度から混合ガスのCO濃度を除外することで算出した。測定結果を図5に示す。
図5に示すように、濃度800ppmで吸着剤に吸着した二酸化炭素が、温度の上昇に伴い吸着剤から脱離することが確認された。
10…流路、10a,10b,10d,10e,10f…流路部、10c…除去部、20…排気ファン、30…濃度測定器(濃度測定部)、40…電気炉、50…コンプレッサー、70a,70b…バルブ、80…吸着剤、100,100a,100b…空調装置(二酸化炭素除去装置)、110,120…制御装置(制御部)、200,210…空調システム(二酸化炭素除去システム)、R…空調対象空間、S1,S3…空間、S2…中央部。

Claims (7)

  1. 二酸化炭素を含有する処理対象ガスから二酸化炭素を除去するために用いられる吸着剤であって、
    セリウム酸化物を含有し、
    前記セリウム酸化物の格子定数が0.5415nm以上である、吸着剤。
  2. 前記セリウム酸化物の含有量が、吸着剤の全質量基準で90質量%以上である、請求項1に記載の吸着剤。
  3. 請求項1又は2に記載の吸着剤を、二酸化炭素を含有する処理対象ガスに接触させて二酸化炭素を前記吸着剤に吸着させる工程を備える、二酸化炭素の除去方法。
  4. 前記処理対象ガスの二酸化炭素濃度が5000ppm以下である、請求項3に記載の二酸化炭素の除去方法。
  5. 前記処理対象ガスの二酸化炭素濃度が1000ppm以下である、請求項3に記載の二酸化炭素の除去方法。
  6. 請求項1又は2に記載の吸着剤を備える、二酸化炭素除去装置。
  7. 請求項6に記載の二酸化炭素除去装置を備える、二酸化炭素除去システム。
JP2018518140A 2016-05-16 2017-03-31 吸着剤、二酸化炭素の除去方法、二酸化炭素除去装置、及び、二酸化炭素除去システム Withdrawn JPWO2017199598A1 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2016098200 2016-05-16
JP2016098200 2016-05-16
JP2016098203 2016-05-16
JP2016098203 2016-05-16
JP2016129064 2016-06-29
JP2016129064 2016-06-29
JP2016167643 2016-08-30
JP2016167643 2016-08-30
PCT/JP2017/013638 WO2017199598A1 (ja) 2016-05-16 2017-03-31 吸着剤、二酸化炭素の除去方法、二酸化炭素除去装置、及び、二酸化炭素除去システム

Publications (1)

Publication Number Publication Date
JPWO2017199598A1 true JPWO2017199598A1 (ja) 2019-03-14

Family

ID=60325823

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018518140A Withdrawn JPWO2017199598A1 (ja) 2016-05-16 2017-03-31 吸着剤、二酸化炭素の除去方法、二酸化炭素除去装置、及び、二酸化炭素除去システム
JP2018518141A Withdrawn JPWO2017199599A1 (ja) 2016-05-16 2017-03-31 吸着剤、二酸化炭素の除去方法、二酸化炭素除去装置、及び、二酸化炭素除去システム
JP2018518283A Pending JPWO2017199908A1 (ja) 2016-05-16 2017-05-15 吸着剤、二酸化炭素の除去方法、二酸化炭素除去器、及び空調装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2018518141A Withdrawn JPWO2017199599A1 (ja) 2016-05-16 2017-03-31 吸着剤、二酸化炭素の除去方法、二酸化炭素除去装置、及び、二酸化炭素除去システム
JP2018518283A Pending JPWO2017199908A1 (ja) 2016-05-16 2017-05-15 吸着剤、二酸化炭素の除去方法、二酸化炭素除去器、及び空調装置

Country Status (7)

Country Link
US (3) US20190151821A1 (ja)
EP (3) EP3459624A4 (ja)
JP (3) JPWO2017199598A1 (ja)
CN (3) CN109153002A (ja)
CA (3) CA3024077A1 (ja)
TW (1) TW201806667A (ja)
WO (3) WO2017199599A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102248613B1 (ko) * 2019-07-29 2021-05-07 한국과학기술연구원 아민계 이산화탄소 흡착제용 금속산화물 촉매, 이를 포함하는 아민계 이산화탄소 흡착제 및 흡탈착 장치
JP7092717B2 (ja) * 2019-08-08 2022-06-28 フタバ産業株式会社 二酸化炭素施用装置
CN110452743B (zh) * 2019-09-04 2020-06-05 西安凯尔文石化助剂制造有限公司 一种高效脱硫剂

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2559754A1 (fr) * 1984-02-20 1985-08-23 Rhone Poulenc Spec Chim Oxyde cerique a nouvelles caracteristiques morphologiques et son procede d'obtention
FR2596381B1 (fr) * 1986-03-26 1988-05-27 Rhone Poulenc Chimie Oxydes ceriques a nouvelles caracteristiques morphologiques et leur procede d'obtention
FR2608583B1 (fr) * 1986-12-19 1990-12-07 Rhone Poulenc Chimie Oxyde cerique a nouvelles caracteristiques morphologiques et son procede d'obtention
US5279789A (en) * 1988-12-23 1994-01-18 Rhone-Poulenc Chimie Ceric oxide particulates having improved morphology
JPH0975714A (ja) * 1995-09-07 1997-03-25 Matsushita Electric Ind Co Ltd 二酸化炭素ガス吸着剤及び二酸化炭素ガス交換器
JP2000140549A (ja) 1998-11-09 2000-05-23 Tosoh Corp 二酸化炭酸の除去方法
CN102271803B (zh) * 2008-11-11 2014-02-05 昆士兰大学 一种制备用于在高温下co2俘获的吸附剂的方法
JP2011173059A (ja) * 2010-02-24 2011-09-08 Hitachi Ltd 二酸化炭素吸着材及びこれを用いた二酸化炭素回収装置
JP5457962B2 (ja) * 2010-07-20 2014-04-02 株式会社日立製作所 二酸化炭素捕捉材
JP5681460B2 (ja) * 2010-11-29 2015-03-11 株式会社日立製作所 二酸化炭素捕捉材
JP5589996B2 (ja) * 2011-09-12 2014-09-17 株式会社日立製作所 二酸化炭素捕捉材
US9248426B2 (en) * 2012-02-02 2016-02-02 Samsung Electronics Co., Ltd. Adsorbent for carbon dioxide, method of preparing the same, and capture module for carbon dioxide
CN103831077B (zh) * 2012-11-23 2016-09-14 黄炳照 陶瓷材料、二氧化碳的吸附方法及二氧化碳的转化方法
CN103521162A (zh) * 2013-10-11 2014-01-22 南京理工大学 铈改性的钙基双功能颗粒、制备方法及其应用
JP2015150500A (ja) * 2014-02-14 2015-08-24 日立化成株式会社 二酸化炭素捕捉材及びこれを用いた二酸化炭素回収装置
WO2015125355A1 (ja) * 2014-02-21 2015-08-27 シャープ株式会社 二酸化炭素濃度制御装置および電子機器
CN104566693A (zh) * 2014-12-29 2015-04-29 浙江信立实业有限公司 一种中央空调空气净化系统及方法
CN104785195A (zh) * 2015-04-03 2015-07-22 天津大学 掺杂惰性组分的氧化钙基高温二氧化碳吸附剂材料及制备方法

Also Published As

Publication number Publication date
WO2017199908A1 (ja) 2017-11-23
EP3459624A1 (en) 2019-03-27
WO2017199598A1 (ja) 2017-11-23
WO2017199599A1 (ja) 2017-11-23
EP3459625A1 (en) 2019-03-27
CN109153000A (zh) 2019-01-04
CA3024086A1 (en) 2017-11-23
US20190217241A1 (en) 2019-07-18
CN109153002A (zh) 2019-01-04
JPWO2017199599A1 (ja) 2019-03-14
TW201806667A (zh) 2018-03-01
US20190151821A1 (en) 2019-05-23
CN109153001A (zh) 2019-01-04
EP3459624A4 (en) 2020-01-15
CA3024077A1 (en) 2017-11-23
JPWO2017199908A1 (ja) 2019-03-14
CA3024074A1 (en) 2017-11-23
EP3459625A4 (en) 2020-01-22
EP3459626A1 (en) 2019-03-27
EP3459626A4 (en) 2020-01-22
US20190255509A1 (en) 2019-08-22

Similar Documents

Publication Publication Date Title
WO2017199598A1 (ja) 吸着剤、二酸化炭素の除去方法、二酸化炭素除去装置、及び、二酸化炭素除去システム
WO2017199920A1 (ja) 空調装置、空調システム、二酸化炭素の除去方法、吸着剤及び二酸化炭素除去器
WO2018003323A1 (ja) 吸着剤及びその製造方法、二酸化炭素の除去方法、二酸化炭素除去器、並びに、空調装置
WO2017199919A1 (ja) 吸着剤、二酸化炭素の除去方法、二酸化炭素除去器、及び、空調装置
JP2018065069A (ja) 吸着剤及びその製造方法、二酸化炭素の除去方法、並びに、空調装置
WO2017199917A1 (ja) 吸着剤及びその製造方法、二酸化炭素の除去方法、二酸化炭素除去器、並びに、空調装置
JP2018034088A (ja) 吸着剤、二酸化炭素の除去方法、及び、空調装置
JP2018065068A (ja) 吸着剤及びその製造方法、二酸化炭素の除去方法、並びに、空調装置
JP2018001074A (ja) 吸着剤及びその製造方法、二酸化炭素の除去方法、並びに、空調装置
JP2018038940A (ja) 吸着剤、二酸化炭素の除去方法、及び、空調装置
JP2018051505A (ja) 吸着体の製造方法、及び、二酸化炭素の除去方法
JP2019094229A (ja) 液状組成物及びその製造方法
JP2018051504A (ja) 吸着剤、当該吸着剤を備える吸着体、これらの製造方法、及び、二酸化炭素の除去方法
JP2021023879A (ja) 吸着剤及びその製造方法、並びに二酸化炭素の除去方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200302