JPWO2017195248A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JPWO2017195248A1
JPWO2017195248A1 JP2018516228A JP2018516228A JPWO2017195248A1 JP WO2017195248 A1 JPWO2017195248 A1 JP WO2017195248A1 JP 2018516228 A JP2018516228 A JP 2018516228A JP 2018516228 A JP2018516228 A JP 2018516228A JP WO2017195248 A1 JPWO2017195248 A1 JP WO2017195248A1
Authority
JP
Japan
Prior art keywords
refrigerant
evaluation value
heat exchanger
temperature
supercooling heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018516228A
Other languages
English (en)
Other versions
JP6605131B2 (ja
Inventor
耕平 上田
耕平 上田
アバスタリ
佐多 裕士
裕士 佐多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017195248A1 publication Critical patent/JPWO2017195248A1/ja
Application granted granted Critical
Publication of JP6605131B2 publication Critical patent/JP6605131B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/23High amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/24Low amount of refrigerant in the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2108Temperatures of a receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷凍装置は、冷媒回路と、インジェクション回路と、入口温度センサと、出口温度センサと、冷媒回路の動作を制御する制御装置とを有する。制御装置は、入口温度センサにおいて検知された入口温度及び出口温度センサにおいて検知された出口温度に基づいて、過冷却熱交換器の性能を示す評価値を算出する評価値算出部と、評価値算出部において算出された評価値に基づいて、冷媒量が不足しているか否かを判定する冷媒量判定部とを備える。

Description

本発明は、温度勾配がある冷媒を使用した際の冷媒不足の検知を行う冷凍装置に関するものである。
冷凍装置における冷媒量の過不足は、能力低下又は構成機器の損傷の原因になる。そこで、従来から冷凍装置に充填されている冷媒量の過不足を判定することが提案されている(例えば特許文献1参照)。特許文献1には、過冷却熱交換器の温度効率を算出し、算出した温度効率から冷媒量を推定して過不足を判定する冷凍空調装置が開示されている。この際、圧縮機の吐出側に設けた圧力センサにおいて吐出圧力が測定され、吐出圧力に基づき飽和ガス温度が求められ、飽和ガス温度と外気温度もしくは凝縮器の出口温度とにより温度効率が算出される。そして、温度効率が閾値を下回った場合、制御装置が冷媒不足であると判定する。
特開2010−223542号公報
ところで、冷凍装置に用いられる冷媒が、例えばR407C、R410A、DR55、N40(R448A)など温度勾配のある冷媒である場合、ガス飽和温度と液飽和温度との間で温度差が生じる。また、冷凍装置が室内側の圧縮機と室外側の凝縮器とに別筐体として構成されているいわゆるリモート式コンデンシングユニットである場合、圧縮機ユニットと凝縮器ユニットの間の配管を現地接続するため、圧縮機の吐出側と凝縮器の出口側との間では圧力損失が大きくなる。このような場合、特許文献1のような温度効率の算出が行われたときに、もしくは過冷却度が算出されたとき、温度効率及び過冷却度が実際の値よりも大きくなるため、温度効率及び過冷却度の算出精度が低くなり冷媒量の誤検知が生じる。
本発明は、上記のような課題を解決するためになされたものであり、冷媒量の過不足の判定に誤検知が生じるのを防止することができる冷凍装置を提供することを目的とする。
本発明の冷凍装置は、冷媒を圧縮する圧縮機と、圧縮機から吐出された冷媒を放熱して冷却する凝縮器と、凝縮器から流出した冷媒を過冷却する過冷却熱交換器と、過冷却熱交換器において過冷却された冷媒を減圧する減圧装置と、減圧装置において減圧膨張された冷媒を吸熱して蒸発させる蒸発器とが冷媒配管により接続された冷媒回路と、過冷却熱交換器と減圧装置との間から分岐し、過冷却熱交換器から流出した冷媒の一部を圧縮機へ流入するインジェクション回路と、凝縮器から過冷却熱交換器に流入する冷媒の入口温度を検知する入口温度センサと、過冷却熱交換器から減圧装置へ流出した冷媒の出口温度を検知する出口温度センサと、冷媒回路の動作を制御する制御装置とを有し、圧縮機と過冷却熱交換器と入口温度センサと出口温度センサとは、圧縮機ユニット内に配置されており、凝縮器は、圧縮機及び過冷却熱交換器に現地配管を介して接続され、圧縮機ユニットとは異なる凝縮器ユニット内に配置されたものであり、制御装置は、入口温度センサにおいて検知された入口温度及び出口温度センサにおいて検知された出口温度に基づいて、過冷却熱交換器の性能を示す評価値を算出する評価値算出部と、評価値算出部において算出された評価値に基づいて、冷媒量が不足しているか否かを判定する冷媒量判定部とを備える。
本発明の冷凍装置によれば、過冷却熱交換器の入口温度に基づいて温度効率を算出することにより、例えば温度勾配がある冷媒を使用した場合もしくは圧縮機と凝縮器とが別ユニットからなる場合であっても、複雑な制御を組むことなく、冷媒不足の判定を精度良く行うことができる。
本発明の実施の形態1に係る冷凍装置の冷媒回路図である。 本発明の実施の形態1における適正な冷媒量が充填されたときのp−h線図である。 図1の冷凍装置における制御装置の一例を示す機能ブロック図である。 本発明の実施の形態1における冷媒量不足時のp−h線図である。 図3の制御装置の動作例を示すフローチャートである。 従来の一体型の機種である冷凍装置の一例を示す冷媒回路図である。 図1の冷凍装置に温度勾配がある冷媒を用いた場合のp−h線図である。 図6の従来の冷凍装置に温度勾配がある冷媒を用いた場合のp−h線図である。 図1の冷凍装置の各位置における飽和温度を示すグラフである。 図6の従来の冷凍装置の各位置における飽和温度を示すグラフである。 本発明の実施の形態2に係る冷凍装置の制御装置における評価値の一例を示すグラフである。 本発明の実施の形態3に係る冷凍装置の制御装置の一例を示す機能ブロック図である。 図12の制御装置の動作例を示すフローチャートである。 図1に記載の冷凍装置の過冷却熱交換器14の温度効率と冷凍装置の運転条件との関係を説明する図である。
実施の形態1.
以下、図面を参照しながら本発明の冷凍装置の実施の形態について説明する。図1は、本発明の実施の形態1に係る冷凍装置の冷媒回路図である。図1の冷凍装置1は、例えば蒸気圧縮式の冷媒サイクル運転を行うことによって倉庫を冷却し、店舗で販売されている品物を冷却するものである。冷凍装置1は、熱源側ユニット10と負荷側ユニット20とを有し、さらに熱源側ユニット10は、圧縮機ユニット10Aと凝縮器ユニット10Bとを備える。そして、圧縮機ユニット10A、凝縮器ユニット10B及び負荷側ユニット20は、それぞれ独立したユニットからなっている。圧縮機ユニット10Aと凝縮器ユニット10Bとは、現地配管2a、2bを介して接続されており、圧縮機ユニット10Aと負荷側ユニット20とは、冷媒配管2c、2dを介して接続されている。
図1の冷凍装置1は、圧縮機11、凝縮器12、過冷却熱交換器14、減圧装置21、蒸発器22を備え、これらが冷媒配管によって接続されて冷媒が循環する冷媒回路が構成されている。このうち、圧縮機ユニット10Aには、圧縮機11及び過冷却熱交換器14が収容されている。また、負荷側ユニット20には、減圧装置21及び蒸発器22が収容されている。
圧縮機11は、冷媒を圧縮して吐出するものであり、運転容量を可変することが可能な圧縮機、または周波数固定の一定速圧縮機からなっている。圧縮機11は、たとえば運転容量を可変することが可能な圧縮機の場合はインバータにより制御されるモータによって駆動される容積式圧縮機から構成されている。また、圧縮機11は、スクロール圧縮機であり、スクロール圧縮室に中間圧部にインジェクションポートが設けられており、中間圧を測定する中間圧力センサ46を備えた構造であってもよい。なお、圧縮機11は、1台設置されている場合について例示しているが、負荷側ユニット20の負荷に応じて、2台以上の圧縮機11が並列に接続されたものであってもよい。また、圧縮機11がインバータ駆動をする仕様である場合、熱源側ユニット10には駆動周波数を変更するための圧縮機インバータ基板が搭載される。
凝縮器12は、例えば伝熱管と多数のフィンとを有するフィンアンドチューブ型熱交換器からなり、現地配管2aを介して圧縮機11の吐出側に接続されている。また、凝縮器ユニット10Bには、凝縮器12に送風を行うファン12aが設けられている。レシーバー13は、凝縮器12から流出した冷媒を一時的に貯留するとともに、液冷媒とガス冷媒とを分離させる機能を有する。過冷却熱交換器14は、凝縮器12から流出した冷媒を過冷却する冷媒間熱交換器であり、現地配管2b及びレシーバー13を介して凝縮器12に接続されている。過冷却熱交換器14は、例えば二重管熱交換器又はプレート式熱交換器等からなり、凝縮器12から流出した冷媒同士を熱交換する。
減圧装置21は、例えば電子膨張弁もしくは温度式膨張弁からなっており、過冷却熱交換器14において過冷却された冷媒を減圧膨張するとともに、冷媒回路を流れる冷媒流量を調整するものである。蒸発器22は、減圧装置21において減圧膨張された冷媒を吸熱して蒸発させる熱交換器であり、例えば伝熱管と多数のフィンにより構成されたフィンアンドチューブ型熱交換器からなっている。
なお、冷凍装置1において、冷媒との熱交換対象になる流体は空気であるが、これは水、冷媒、ブライン等でもよく、特にDR55もしくはN40(R448A)等のような温度勾配のある冷媒であってもよい。また、図1は負荷側ユニット20が1台の場合の構成例であるが、2台以上の複数でもよい。さらにそれぞれの負荷側ユニット20の容量が異なっていてもよいし、全てが同一容量でもよい。また減圧装置21は、負荷側ユニット20に内蔵する構成としたが、熱源側ユニット10に内蔵する構成としてもよい。
さらに、冷凍装置1は、例えば二重管等からなる過冷却熱交換器14と減圧装置21との間から分岐し、過冷却熱交換器14において熱交換された冷媒を圧縮機11へ流入するインジェクション回路15と、インジェクション回路15に流れる冷媒流量を調整する流量調整器16とを有する。流量調整器16は、例えば電子膨張弁等からなっており、制御装置30の制御に基づき、過冷却熱交換器14及びインジェクション回路15へ分岐する冷媒流量を調整する。
図2は本発明の実施の形態1における適正な冷媒量が充填されたときのp−h線図であり、図1及び図2を参照して冷凍装置1の動作例について説明する。はじめに、圧縮機11により圧縮された冷媒は高温高圧のガス冷媒になり(図2の点A→点A’→n→点B)、凝縮器12に流入する。凝縮器12に流入したガス冷媒は凝縮して液冷媒になり(図2の点B→点k)、レシーバー13内に一時的に貯留される。レシーバー13には負荷側ユニット20の運転負荷や、外気温度又は凝縮温度に応じて生じる冷媒回路内の余剰液冷媒が溜まる。その後、レシーバー13内の液冷媒は、過冷却熱交換器14において熱交換して過冷却される(図2の点k→点C)。過冷却された冷媒は減圧装置21において減圧されて低圧の気液二相冷媒になり蒸発器22に送られる(図2の点C→点D)。蒸発器22に送られた冷媒は例えば空気と熱交換し、ガス冷媒になり圧縮機11に流入する(図2の点D→点A)。
一方、過冷却熱交換器14から減圧装置21に向かう冷媒の一部は過冷却熱交換器14側に分岐する。この際、分岐した液冷媒は流量調整器16において減圧されて中間圧の二相冷媒になり、過冷却熱交換器14において熱交換され中間圧の冷媒になる(図2の点C→点m)。その後、中間圧になった冷媒はインジェクション回路15を介して圧縮機11のインジェクションポートに流入し(図2の点m→点n)、高圧である圧縮機11の吐出側の冷媒温度を下げる働きを行う。
上述した冷凍装置1の動作は制御装置30において制御されており、制御装置30は、各種センサにより検知された情報に基づいて圧縮機11等の動作の制御を行う。具体的には、冷凍装置1は、圧縮機11の吐出側に設けられ、圧縮機11から吐出される冷媒の吐出圧力値を検知する吐出圧力センサ41と、圧縮機11の吸入側に設けられ、圧縮機11に吸入される冷媒の圧力を検知する吸入圧力センサ42と、凝縮器12に送風される外気温度を検知する外気温度センサ43と、過冷却熱交換器14に流入する冷媒の温度を検出する入口温度センサ44と、過冷却熱交換器14から流出された液冷媒の出口温度Toutを検知する出口温度センサ45とを備える。
さらに、冷凍装置1は、流量調整器16と圧縮機11との間のインジェクション回路15(バイパス配管)上に設けられ、冷媒の中間圧力を検知する中間圧力センサ46とを有する。なお、中間圧力は、中間圧力センサ46を設けて検知する場合に限らず、制御装置30において吐出圧力センサ41により検知された吐出圧力と、吸入圧力センサ42により検知された吸入圧力とから公知の数式を用いて算出してもよい。
そして、制御装置30は、通常制御時において、各種センサからの情報に基づいて各構成機器を制御する。例えば、制御装置30は、冷媒サイクルの蒸発温度が目標値(例えば0℃)になるように、圧縮機11の運転周波数を制御する。すなわち、制御装置30は、蒸発温度が目標値より高い場合には運転周波数を上昇させ、目標値より低い場合には周波数を下降させるように、圧縮機11を制御する。また、制御装置30は、凝縮器12における凝縮温度が目標値(例えば45℃)と一致するように、ファン12aの回転数を制御する。すなわち、制御装置30は、凝縮温度が目標値より高い場合にはファン12aの回転数を大きくし、凝縮温度が目標値より低い場合はファン12aの回転数を小さくする。さらに、制御装置30は、吐出圧力から換算される圧縮機11から吐出される冷媒の吐出温度に基づいて、流量調整器16の開度を調整する。制御装置30は、吐出温度が高い場合は流量調整器16の開度を大きくし、吐出温度が低い場合は流量調整器16を閉じるように制御する。
特に、制御装置30は、入口温度Tin、出口温度Tout及び中間圧力Pmに基づいて、冷媒サイクル内の冷媒量が不足しているかを判定する機能を有する。図3は図1の冷凍装置における制御装置の一例を示す機能ブロック図である。図3の制御装置30は、その機能を実現する回路デバイスのようなハードウェア、もしくはマイコンやCPUのような演算装置と、その上で実行されるソフトウェアとにより構成されている。制御装置30は、評価値算出部31、冷媒量判定部32及び出力制御部33を備えている。
評価値算出部31は、入口温度センサ44において検知された入口温度Tinと、出口温度センサ45において検知された出口温度Toutとに基づいて、過冷却熱交換器14の温度効率を評価値Pとして算出するものである。評価値算出部31は、下記式(1)を用いて評価値Pを算出する。なお、下記式(1)において、中間圧飽和温度は、中間圧力センサ46において検知された中間圧力Pmを飽和温度に換算したものである。
[数1]
評価値P=(入口温度Tin−出口温度Tout)/(入口温度Tin−中間圧飽和温度) ・・・(1)
なお、評価値算出部31は、評価値Pを算出する際、式(1)に用いられる各温度は瞬間値であってもよいが、時間的に異なる複数の温度効率の移動平均をとることが望ましい。各温度の移動平均を取ることにより、冷媒サイクルの安定も考慮した冷媒量の判定を行うことができる。
また、式(1)において、中間圧飽和温度が用いた場合について例示しているが、評価値算出部31は、外気温度センサ43により検知された外気温度を用いて評価値Pを算出するようにしてもよい。この場合、評価値算出部31は、下記式(2)を用いて評価値Pを算出する。
[数2]
評価値P=(入口温度Tin−出口温度Tout)/(入口温度Tin−外気温度)・・・(2)
冷媒量判定部32は、評価値算出部31において算出された評価値Pを用いて冷媒不足であるかを判定するものである。冷媒量判定部32には予め設定閾値Prefが記憶されており、冷媒量判定部32は、評価値Pが設定閾値Prefより小さいとき(P<Pref)、冷媒量が不足していると判定する。設定閾値Prefは、予め記憶されている場合について例示しているが、リモコンや基板上のスイッチ類などの入力部から入力してもよいし、遠隔地からの通信により取得してもよい。
ここで、図4は本発明の実施の形態1における冷媒量不足時のp−h線図である。冷凍装置1における冷媒サイクルの冷媒量に不足が生じた場合、レシーバー13に余剰液冷媒が貯留している場合はその余剰液冷媒量が減少する。レシーバー13の余剰液冷媒が存在する間は、その他の要素機器の冷媒状態は、図3に示される状態と同じになる。しかしながら、さらに冷媒が漏洩すると、レシーバー13内の余剰液冷媒がなくなる。すると、凝縮器12の出口の冷媒状態が気液二相状態になる。その結果、過冷却熱交換器14の出口側のエンタルピが上昇し、図4の点C1の状態になり、図4のp−h線図の左側の低いエンタルピが全体的に高い値になる。その結果、過冷却度が小さくなり、温度効率は小さくなる。温度効率は、過冷却度に比べて運転条件による変動が小さいため、冷媒の漏れ量が少量でも冷媒不足を検知することができる。
図14は、図1に記載の冷凍装置の過冷却熱交換器14の温度効率と冷凍装置の運転条件との関係を説明する図である。図14において、横軸は、冷媒の冷媒量であり、縦軸は、過冷却熱交換器14の温度効率Tである。図14に示すように、冷媒量が少なくなり、冷媒量がEになってレシーバー13の余剰液冷媒が無くなると、過冷却熱交換器14の温度効率Tが低下する。そこで、温度効率Tが予め設定された温度効率閾値T1よりも小さくなったときに、冷媒が漏洩したと判定する。温度効率Tは、過冷却熱交換器14の性能を示すものであり、過冷却度に比べて冷凍装置1の運転条件による変動が小さいため、冷凍装置1の閾値の設定が容易になる。
図3の出力制御部33は、冷媒量判定部32において冷媒不足であると判定された場合、その旨を情報出力装置50等に出力するものである。なお、出力の方法は、制御装置30の基板上に配置されたLEDや液晶などの情報出力装置50での表示出力に限定されない。例えば、出力制御部33は、遠隔地への通信データ出力などを行ってもよいし、電話回線などを通じて、サービスマンへ異常発生を直接出力して報知してもよい。
図5は、図1の冷凍装置の動作例を示すフローチャートであり、図1から図5を参照して冷凍装置1の動作例について説明する。なお、以下に説明する冷媒量の判定は、機器設置初期の冷媒充填運転やメンテナンスのために冷媒を一度排出して再度充填する際などに適用してもよい。また、冷媒量判定運転は有線または無線での外部からの操作信号を制御装置30に伝えることにより実施してもよい。
はじめに、冷凍装置1の通常制御運転が行われ、制御装置30は各種センサにおいて検知された信号に基づき通常運転時の自動制御を行う(ステップST1)。例えば、制御装置30は、冷媒サイクルの各部の圧力及び温度等の運転データを測定し、凝縮温度、蒸発温度など目標値からの偏差などの制御値を演算し、ファン12a、流量調整器16及び減圧装置21を制御する。
通常運転時において、評価値算出部31により上記式(1)に基づいて評価値Pが算出される(ステップST2)。その後、冷媒量判定部32において、評価値Pが設定閾値Prefより小さいか否かが判定される(ステップST3)。評価値Pが設定閾値Pref以上である場合(ステップST3のNO)、冷媒不足ではないと判断して通常運転が継続される(ステップST1)。一方、評価値Pが設定閾値Prefより小さい場合(ステップST3のYES)、冷媒不足が生じていると判定する。すると、情報出力装置50から冷媒不足の旨の出力が行われる(ステップST4)。
上記実施の形態1によれば、過冷却熱交換器14の入口温度Tinに基づいて評価値Pを算出することにより、例えば温度勾配がある冷媒を使用した場合もしくは圧縮機11と凝縮器12とが別ユニットからなるリモート式コンデンシングユニットの場合であっても、制御の変更を行わずに、冷媒不足の判定を精度良く行うことができる。すなわち、例えば図1において、冷媒が現地配管2a、2bを通過する際の圧力損失等に起因して、評価値Pが実際の値よりも大きくなる。また、冷媒がDR55、N40等の温度勾配がある場合も同様に、評価値Pが実際の値よりも大きくなる。その結果、評価値Pの算出精度が低くなり冷媒量の誤検知が生じる。
ここで、図6は、従来の一体型の機種である冷凍装置の一例を示す冷媒回路図である。図6の従来の冷凍装置において、温度効率である評価値Pは下記式(3)で算出されている。なお、式(3)において、圧力値換算の飽和ガス温度は、吐出圧力センサ41において検知された吐出圧力から換算された値である。換言すれば、温度効率は、過冷却度を過冷却熱交換器14の高温側と低温側との最大温度差で割ったものになる。
[数3]
評価値P=(圧力値換算の飽和ガス温度−出口温度Tout)/(圧力値換算の飽和ガス温度−中間圧飽和温度) ・・・(3)
そして、リモート機種の場合、飽和ガス温度=48℃(図1の位置PT1)、出口温度Tout=33℃(図1の位置PT6)、中間圧飽和温度=25℃の条件のとき、式(3)から算出される評価値P=0.65になる。しかしながら、真の評価値Pは図1の位置PT6の飽和温度42℃(後述の図9及び図10参照)を用いて算出されるべきものであって、真の評価値P=0.53になる。このように、リモート機種の場合、評価値Pの実際の算出値と真値との差異が大きくなる。
特に、温度勾配がある冷媒(例えばDR55、R407C、R410A、N40(R448A)など)を使用する場合、ガス飽和温度と液飽和温度との間で温度差が生じる。図7は、図1の冷凍装置に温度勾配がある冷媒を用いた場合のp−h線図であり、図8は、図6の従来の冷凍装置に温度勾配がある冷媒を用いた場合のp−h線図である。図7及び図8からわかるように、温度勾配がある冷媒を用いたとき、図1のリモート機種は、図6の一体型の機種よりもガス飽和温度と液飽和温度との温度差が大きい。このため、リモート機種の場合、式(3)を用いると評価値Pの実際の算出値と真値との差異が大きくなってしまうため、ガス飽和温度を液飽和温度に変更する必要があり、制御が複雑になる。
また、リモート機種の場合、圧縮機11と凝縮器12との間の現地配管2a、2bは現地で接続されるため、一体型の機種に比べて圧縮機11の出口と過冷却熱交換器14の出口との間の圧力損失が大きくなる。図9は、図1の冷凍装置の各位置における飽和温度を示すグラフであり、図10は、図6の従来の冷凍装置の各位置における飽和温度を示すグラフである。図9において、圧縮機11の吐出側の位置PT1から凝縮器12の入口の位置PT2までの温度差ΔT1は、現地配管2aの圧力損失による温度差である。凝縮器12の入口の位置PT2から凝縮器12の出口の位置PT3までの温度差ΔT2は、上述した冷媒の温度勾配による温度差である。凝縮器12の出口の位置PT3からレシーバー13の入口の位置PT4までの温度差ΔT3は、現地配管2bの圧力損失による温度差である。なお、レシーバー13の入口の位置PT4から過冷却熱交換器14の出口側の位置PT6までの温度差ΔT4、ΔT5は冷媒回路内での圧力損失による温度差である。一方、図10においては、現地配管2a、2bでの圧力損失による温度差は生じず、冷媒回路内での圧力損失による温度差ΔT11、ΔT12、ΔT13が生じる。
このように、図1のリモート機種は、図6の一体型の機種よりも圧力損失が大きいことがわかる。また、現地の配管施工に依存する現地配管部分の圧力損失を正確に補正することは困難である。このため、温度効率値を正確に算出できずに誤検知もしくは不検知の可能性が高くなる。
そこで、図1のように過冷却熱交換器14の入口側に入口温度センサ44が設けられ、上記式(1)のように入口温度センサ44において検知された入口温度Tinに基づいて評価値Pが算出されることにより、実際の過冷却熱交換器14の評価値Pを精度良く算出し、冷媒量の判定の精度を高めることができる。具体的には、図1の位置PT1の入口温度Tin=42.5℃、出口温度Tout=33℃、中間圧飽和温度=25℃とすると、評価値Pである温度効率=(42.5−33)÷(42.5−25)=0.54になり、真値0.53とほぼ同等の値になる。このように、実際の過冷却熱交換器14の評価値Pを精度良く算出し、冷媒量の判定の精度を高めることができる。
実施の形態2.
図11は、本発明の実施の形態2に係る冷凍装置の制御装置における評価値の一例を示すグラフであり、図11を参照して冷媒量の判定について説明する。なお、図11において、図3の制御装置と同一の構成を有する部位には同一の符号を付してその説明を省略する。図11に示すように、評価値算出部31は、入口温度Tinと出口温度Toutに基づき、下記式(4)から過冷却度(サブクール量)を評価値P1として算出するものである。
[数4]
評価値P1(過冷却度)=入口温度Tin−出口温度Tout ・・・(4)
そして、冷媒量判定部32は、評価値P1として算出された過冷却度が、設定閾値P1refよりも小さい場合、冷媒量が不足していると判定するようになっている。
ここで、図11に示すように、冷媒量が少なくなり、レシーバー13に余剰液冷媒がなくなった時点(点E)で、過冷却熱交換器14の過冷却度は減少していく。レシーバー13の余剰液冷媒がなくなると、凝縮器12及び過冷却熱交換器14の冷媒状態が変化する。そこで、図3の評価値算出部31は、凝縮温度(入口温度Tin)と過冷却熱交換器14の出口温度Toutとの差である過冷却度を評価値P1として算出し、冷媒量判定部32は、評価値P1が設定閾値Prefよりも小さくなったとき、冷媒量が不足していると判定する。
図11に示すように、過冷却熱交換器14の過冷却度は、冷凍装置1の運転条件(外気温度、熱交換量、冷媒循環量等)に応じて、大きく変動する。過冷却度を利用して、冷媒量の不足の判定を行う場合には、誤判定とならないように、過冷却度閾値Sを低く設定する必要性がある。そのため、過冷却度が大きい条件では、冷媒量の不足を判定するまでに長時間を要し、例えば冷媒が漏洩している場合に、冷媒の漏洩量が多くなってしまう。
上記実施の形態2の場合であっても、実施の形態1と同様、過冷却熱交換器14の入口温度Tinに基づいて評価値P1を算出することにより、例えば温度勾配がある冷媒を使用した場合もしくは圧縮機11と凝縮器12とが別ユニットからなるリモート式コンデンシングユニットの場合であっても、複雑な制御を組むことなく、冷媒不足の判定を精度良く行うことができる。
すなわち、図6の一体型の機種においては、下記式(5)のように、過冷却度は吐出圧力センサ41において検知された吐出圧力値及び出口温度センサ45において検知された液冷媒の出口温度Toutから算出される。
[数5]
過冷却度=吐出圧力値から換算された飽和ガス温度−出口温度Tout ・・・(5)
しかしながら、図1のようなリモート機種において、評価値算出部31が上記式(5)を用いて過冷却度を算出した場合、上述した温度効率と同様、真値とセンサによる計測値との差が大きくなってしまう。例えば通常運転時において過冷却度が大きい場合には多量の冷媒が減少しないと冷媒不足であると判定することができない。一方、過冷却度が小さい場合、設定閾値P1refまでの裕度が小さいため、少しのバラツキが誤検知もしくは不検知につながってしまう。
また一体型の機種でも過冷却器が小さい機種で温度効率が小さい場合、また過冷却器が大きい場合でもインジェクション流量が小さく、温度効率が小さくなる条件では、上記式(5)で判定する場合があり、この場合もリモート機種の場合同様、温度効率は3つのパラメータから算出されるため、冷媒不足の指標値のバラツキ、ハンチングなどにより温度効率が実際の値との差異の割合が大きくなる。
例えばリモート機種において、吐出圧力値から換算された飽和ガス温度=48℃(図1の位置PT1)、出口温度Tout=33℃(図1の位置PT5)の条件とする。この条件下において評価値P1=(48−33)=15になる。一方、真値は図1の位置PT5の飽和温度42℃を用いて評価値P1=(42−33)=9.0になる。このように、リモート機種では過冷却度の真値との差異が大きくなる。
そこで、評価値算出部31は過冷却熱交換器14の入口に設置した入口温度センサ44を用いて過冷却度である評価値P1を算出する。この場合、図1の位置PT4の過冷却熱交換器の入口温度Tin=42.5℃、位置PT5の出口温度Tout=33℃とすると(図9参照)、過冷却度=(42.5−33)=9.5となり、真値9.0とほぼ同等の値になる。さらに、上述のように、過冷却度は2つのパラメータから算出されるものであるため、冷媒不足の指標値のバラツキ、誤検知もしくは不検知の可能性を低減させることができる。
実施の形態3.
図12は、本発明の実施の形態3に係る冷凍装置の制御装置の一例を示す機能ブロック図であり、図12を参照して制御装置130について説明する。なお、図12において、図3の制御装置と同一の構成を有する部位には同一の符号を付してその説明を省略する。図12の制御装置130が、図3の制御装置30と異なる点は、第1評価値P11及び第2評価値P12のいずれか一方を用いて冷媒不足を判定する点である。
図12の制御装置130において、評価値算出部131は、第1評価値P11を演算する第1評価値演算部131aと、第1評価値P11とは異なる第2評価値P12を演算する第2評価値演算部131bとを有している。第1評価値演算部131aは、図3の評価値算出部31と同様、上記式(1)もしくは(2)の温度効率の式から第1評価値P11を算出するものである。第2評価値演算部131bは、上記式(4)の過冷却度を求める式から第2評価値P12を算出するものである。
冷媒量判定部132は、評価値算出部131において算出された第1評価値P11又は第2評価値P12のいずれか一方を選択し、選択した第1評価値P11又は第2評価値P12を用いて冷媒不足を判定するものである。冷媒量判定部132は、たとえば、入口温度Tin(図1の位置PT5)から換算される飽和圧力と中間圧力センサ46により検知された中間圧との差圧ΔPrが、中間圧閾値ΔPrrefより小さい場合、第2評価値P12(過冷却度)を用いて冷媒不足の判定を行う。一方、冷媒量判定部132は、飽和圧力と中間圧との差圧ΔPrが中間圧閾値ΔPrref以上である場合、第1評価値P11(温度効率)を用いて冷媒不足の判定を行う。
冷媒量判定部132には、第1評価値P11を用いて判定を行うための第1評価閾値P11refと第2評価値P12を用いて判定を行うための第2評価閾値P12refとが記憶されている。そして、第1評価値P11が第1評価閾値P11refより小さい場合、冷媒量判定部132は冷媒不足であると判定する。同様に、第2評価値P12が第2評価閾値P12refより小さい場合、冷媒量判定部132は冷媒不足であると判定する。
なお、冷媒量判定部132は、図1の入口温度センサ44により検知された温度の飽和圧力と吸入圧力センサ42の絶対圧力との比(圧縮比)を判定値とし、設定閾値より小さいとき、第2評価値P12を用いて冷媒不足を判定することもできる。一方、冷媒量判定部132は、圧縮比が設定閾値以上であるとき、第1評価値P11を用いて冷媒不足の判定を行う。また、ほぼ凝縮温度とみなせる吐出圧力センサの飽和温度または入口温度Tinが、設定閾値よりも大きい場合は第1評価値P11、設定閾値よりも小さい場合は第2評価値P12を用いて冷媒不足を判定しても良い。
図13は、図12の制御装置の動作例を示すフローチャートであり、図12及び図13を参照して制御装置130における冷媒不足の判定について説明する。まず、図1の冷凍装置1の通常制御運転が行われ、制御装置130は各種センサにおいて検知された信号に基づき通常運転時の自動制御を行う(ステップST11)。その後、冷媒量判定部132において、第1評価値P11又は第2評価値P12のうち、いずれの評価値を用いるかが判断される(ステップST12)。例えば、差圧ΔPrが中間圧閾値ΔPrref以上の場合(ステップST12のNO)、評価値算出部131により上記式(1)又は式(2)に基づいて第1評価値P11が算出される(ステップST13)。そして、第1評価値P11が第1評価閾値P11refより小さいかが判定される(ステップST14)。第1評価値P11が第1評価閾値P11refより小さい場合(ステップST14のYES)、冷媒不足であると判定される。すると、情報出力装置50から冷媒不足の旨の出力が行われる(ステップST15)。
一方、差圧ΔPrが中間圧閾値ΔPrrefより小さい場合(ステップST12のYES)、第2評価値P12が算出される(ステップST16)。そして、第2評価値P12が第2評価閾値P12refより小さいか否かが判定される(ステップST17)。第2評価値P12が設定閾値P2refより小さい場合(ステップST17のYES)、冷媒不足が生じていると判定する。すると、情報出力装置50から冷媒不足の旨の出力が行われる(ステップST15)。
なお、図13において、第1評価値P11又は第2評価値P12のいずれを選択するかが判定された後に第1評価値P11又は第2評価値P12が算出される場合について例示しているが、第1評価値P11又は第2評価値P12が算出された後に第1評価値P11又は第2評価値P12のいずれかを選択するようにしてもよい。また、差圧ΔPrと中間圧閾値ΔPrrefとに基づいて評価値の選択が行われているが、上述したように、圧縮比に基づいて評価値の選択を行ってもよい。
一般的に差圧ΔPrが大きい場合、またはPT5の温度の飽和圧力と吸入圧力センサ42の絶対圧の比が大きい場合、または凝縮温度が高い場合は過冷却度、及び温度効率が大きくなる。この時、第1評価値P11(温度効率)による判定では冷媒の漏れ量が少量でも冷媒不足を検知することができる。第2評価値P12(過冷却度)による判定では冷媒が大量に漏れないと冷媒不足を検知することができない。したがって、第1評価値P11(温度効率)で判定する。
差圧ΔPrが小さい場合、またはPT5の温度の飽和圧力と吸入圧力センサ42の絶対圧の比が小さい場合、または凝縮温度が小さい場合は冷媒が適正量封入されていても過冷却度、及び温度効率は小さくなる。この時、第1評価値P11(温度効率)による判定ではパラメータが多いため、センサの検知誤差、圧損等の影響で過冷却度、及び温度効率が変動しやすく、誤検知の可能性が高くなる。したがって、パラメータの少ない第2評価値P12(過冷却度)で判定する。
上記実施の形態3によれば、第1評価値P11又は第2評価値P12のいずれかを用いて冷媒不足の判定を行うことにより、回路構成もしくは冷媒回路の状態に即した評価値を採用して冷媒不足の判定を行うことができるため、精度の良い判定を行うことができる。
本発明の実施の形態は、上記実施の形態に限定されず、種々の変更を行うことができる。例えば、上記の運転制御では、凝縮温度や蒸発温度を特定する制御はしていないが、例えば、凝縮温度、蒸発温度が一定になるように制御してもよいし、圧縮機11の運転周波数と熱源側ユニット10のファン12aの回転数を一定値として凝縮温度と蒸発温度制御を行わない運転や、凝縮温度もしくは蒸発温度のいずれか1つのみを目標値になるように制御してもよい。
このように冷凍装置の運転状態を一定の条件に制御することにより、過冷却熱交換器14の過冷却度に応じて変動する運転状態量の変動が小さくなり、設定閾値Pref、P1refの決定が容易となり、冷媒量不足の判定が行いやすくなる。
また、図5に示す冷媒不足の判定動作は、機器設置初期の冷媒充填運転や、メンテナンスのために冷媒を一度排出して再度充填する際などに適用してもよい。これにより、充填作業の時間短縮、作業者の負荷軽減を行なうことができる。
さらに、冷媒量の不足を検知する過冷却熱交換器14の性能を表す評価値Pを用いて行なうことにより、温度効率の運転状態による変動が少ないため、設定閾値Prefを容易に決定でき、なおかつ運転状態によらず早期に冷媒量の不足を検知することができる。
1 冷凍装置、2a、2b 現地配管、2c、2d 冷媒配管、10 熱源側ユニット、10A 圧縮機ユニット、10B 凝縮器ユニット、11 圧縮機、12 凝縮器、12a ファン、13 レシーバー、14 過冷却熱交換器、15 インジェクション回路、16 流量調整器、20 負荷側ユニット、21 減圧装置、22 蒸発器、30、130 制御装置、31、131 評価値算出部、32、132 冷媒量判定部、33 出力制御部、41 吐出圧力センサ、42 吸入圧力センサ、43 外気温度センサ、44 入口温度センサ、45 出口温度センサ、46 中間圧力センサ、50 情報出力装置、131a 第1評価値演算部、131b 第2評価値演算部、P、P1 評価値、Pref、P1ref 設定閾値、P11 第1評価値、P12 第2評価値、P11ref 第1評価閾値、P12ref 第2評価閾値、Pm 中間圧力、Tin 入口温度、Tout 出口温度。

Claims (8)

  1. 冷媒を圧縮する圧縮機と、前記圧縮機から吐出された冷媒を放熱して冷却する凝縮器と、前記凝縮器から流出した冷媒を過冷却する過冷却熱交換器と、前記過冷却熱交換器において過冷却された冷媒を減圧する減圧装置と、前記減圧装置において減圧膨張された冷媒を吸熱して蒸発させる蒸発器とが冷媒配管により接続された冷媒回路と、
    前記過冷却熱交換器と前記減圧装置との間から分岐し、前記過冷却熱交換器から流出した冷媒の一部を前記圧縮機へ流入するインジェクション回路と、
    前記凝縮器から前記過冷却熱交換器に流入する冷媒の入口温度を検知する入口温度センサと、
    前記過冷却熱交換器から前記減圧装置へ流出した冷媒の出口温度を検知する出口温度センサと、
    前記冷媒回路の動作を制御する制御装置と
    を有し、
    前記圧縮機と前記過冷却熱交換器と前記入口温度センサと前記出口温度センサとは、圧縮機ユニット内に配置されており、
    前記凝縮器は、前記圧縮機及び前記過冷却熱交換器に現地配管を介して接続され、前記圧縮機ユニットとは異なる凝縮器ユニット内に配置されたものであり、
    前記制御装置は、
    前記入口温度センサにおいて検知された入口温度及び前記出口温度センサにおいて検知された出口温度に基づいて、前記過冷却熱交換器の性能を示す評価値を算出する評価値算出部と、
    前記評価値算出部において算出された評価値に基づいて、冷媒量が不足しているか否かを判定する冷媒量判定部と
    を備えた冷凍装置。
  2. 前記評価値算出部は、入口温度と出口温度と中間圧力とを用いて前記過冷却熱交換器の温度効率を前記評価値として算出するものである請求項1に記載の冷凍装置。
  3. 前記凝縮器において熱交換される外気温度を検知する外気温度センサをさらに備え、
    前記評価値算出部は、入口温度と出口温度と外気温度とを用いて前記過冷却熱交換器の温度効率を前記評価値として算出するものである請求項1に記載の冷凍装置。
  4. 前記評価値算出部は、入口温度と出口温度とを用いて前記過冷却熱交換器における過冷却度を前記評価値として算出するものである請求項1に記載の冷凍装置。
  5. 前記冷媒量判定部は、前記評価値が設定閾値より小さい場合、冷媒が不足していると判定するものである請求項1〜4のいずれか1項に記載の冷凍装置。
  6. 冷媒を圧縮する圧縮機と、前記圧縮機から吐出された冷媒を放熱して冷却する凝縮器と、前記凝縮器から流出した冷媒を過冷却する過冷却熱交換器と、前記過冷却熱交換器において過冷却された冷媒を減圧する減圧装置と、前記減圧装置において減圧膨張された冷媒を吸熱して蒸発させる蒸発器とが冷媒配管により接続された冷媒回路と、
    前記過冷却熱交換器と前記減圧装置との間から分岐し、前記過冷却熱交換器から流出した冷媒の一部を前記圧縮機へ流入するインジェクション回路と、
    前記凝縮器から前記過冷却熱交換器に流入する冷媒の入口温度を検知する入口温度センサと、
    前記過冷却熱交換器から前記減圧装置へ流出した冷媒の出口温度を検知する出口温度センサと、
    前記冷媒回路の動作を制御する制御装置と
    を有し、
    前記制御装置は、
    前記入口温度と前記出口温度と中間圧力とを用いて前記過冷却熱交換器の温度効率を第1評価値として演算するとともに、前記入口温度と前記出口温度とを用いて前記過冷却熱交換器における過冷却度を第2評価値として演算する評価値算出部と、
    前記評価値算出部において算出された前記第1評価値又は前記第2評価値のうちいずれか一方を選択して前記冷媒が不足しているか否かを判定する冷媒量判定部と
    を備えた冷凍装置。
  7. 前記冷媒が不足している旨の情報を出力する情報出力装置をさらに備え、
    前記制御装置は、前記冷媒量判定部において冷媒量が不足していると判定された場合、前記情報出力装置に前記冷媒が不足している旨を出力させる出力制御部をさらに有する請求項1〜6のいずれか1項に記載の冷凍装置。
  8. 前記冷媒は、温度勾配のあるものである請求項1〜7のいずれか1項に記載の冷凍装置。
JP2018516228A 2016-05-09 2016-05-09 冷凍装置 Active JP6605131B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063741 WO2017195248A1 (ja) 2016-05-09 2016-05-09 冷凍装置

Publications (2)

Publication Number Publication Date
JPWO2017195248A1 true JPWO2017195248A1 (ja) 2018-11-08
JP6605131B2 JP6605131B2 (ja) 2019-11-13

Family

ID=60266508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018516228A Active JP6605131B2 (ja) 2016-05-09 2016-05-09 冷凍装置

Country Status (4)

Country Link
US (1) US11131490B2 (ja)
JP (1) JP6605131B2 (ja)
GB (1) GB2564312C (ja)
WO (1) WO2017195248A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094877B (zh) * 2017-09-14 2021-08-10 三菱电机株式会社 制冷循环装置以及制冷装置
CN109899278B (zh) * 2017-12-08 2021-09-03 丹佛斯(天津)有限公司 用于压缩机的控制器及控制方法、压缩机组件和制冷系统
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
WO2019123782A1 (ja) 2017-12-18 2019-06-27 ダイキン工業株式会社 冷媒を含む組成物、その使用、並びにそれを有する冷凍機及びその冷凍機の運転方法
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
WO2019123898A1 (ja) * 2017-12-18 2019-06-27 ダイキン工業株式会社 冷媒用または冷媒組成物用の冷凍機油、冷凍機油の使用方法、および、冷凍機油としての使用
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
JP7269499B2 (ja) * 2017-12-18 2023-05-09 ダイキン工業株式会社 冷凍サイクル装置
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
WO2019186647A1 (ja) * 2018-03-26 2019-10-03 三菱電機株式会社 冷凍装置
WO2019207618A1 (ja) * 2018-04-23 2019-10-31 三菱電機株式会社 冷凍サイクル装置および冷凍装置
JP6937935B2 (ja) * 2018-09-28 2021-09-22 三菱電機株式会社 冷凍サイクル装置
WO2020110289A1 (ja) * 2018-11-30 2020-06-04 日立ジョンソンコントロールズ空調株式会社 制御装置及び空気調和装置
CN113614473B (zh) * 2019-03-26 2022-12-20 三菱电机株式会社 室外机和具备该室外机的制冷循环装置
WO2020208714A1 (ja) 2019-04-09 2020-10-15 三菱電機株式会社 冷凍装置
DE102020130850B3 (de) 2020-11-23 2022-04-28 Viessmann Refrigeration Solutions Gmbh Verfahren zum Erkennen von Leckagen in einem Kältekreis einer Kompressionskältemaschine und Leckagedetektiersystem
CN112503813B (zh) * 2020-12-04 2022-03-18 珠海格力电器股份有限公司 一种空调器制冷剂的更换方法和装置
DE102021108124A1 (de) 2021-03-31 2022-10-06 Audi Aktiengesellschaft Verfahren zur Überwachung einer Kältemittelfüllmenge einer Kältemaschine, Kältemaschine und Kraftfahrzeug

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233505A (ja) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp 配管洗浄方法および配管洗浄装置
JP2008196829A (ja) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp 空気調和装置
JP2008309474A (ja) * 2008-09-29 2008-12-25 Mitsubishi Electric Corp 配管洗浄装置
JP2010002109A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 冷凍空調装置
JP2010007975A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd エコノマイザーサイクル冷凍装置
JP2010223542A (ja) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp 冷凍空調装置
JP2011012958A (ja) * 2010-10-22 2011-01-20 Mitsubishi Electric Corp 冷凍サイクル装置の制御方法
JP2011226704A (ja) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp 冷凍空調装置並びに冷凍空調システム
JP2012132639A (ja) * 2010-12-22 2012-07-12 Mitsubishi Electric Corp 冷凍装置
JP2015111047A (ja) * 2015-03-27 2015-06-18 三菱電機株式会社 冷凍装置
WO2015111222A1 (ja) * 2014-01-27 2015-07-30 三菱電機株式会社 冷凍装置
JP2016053461A (ja) * 2014-09-04 2016-04-14 ダイキン工業株式会社 空気調和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3940357B2 (ja) * 2000-09-15 2007-07-04 マイル・ハイ・エクウィップメント・カンパニー 静音製氷装置
JP2006309474A (ja) * 2005-04-28 2006-11-09 Pentel Corp 手書き筆跡入力装置
JP5188571B2 (ja) * 2008-04-30 2013-04-24 三菱電機株式会社 空気調和装置
EP3705800A3 (en) * 2012-07-03 2020-12-23 Samsung Electronics Co., Ltd. Diagnosis control method for an air conditioner
JP5579243B2 (ja) * 2012-10-26 2014-08-27 三菱電機株式会社 冷凍サイクル装置
JP6073651B2 (ja) * 2012-11-09 2017-02-01 サンデンホールディングス株式会社 車両用空気調和装置
US9803898B2 (en) * 2014-06-10 2017-10-31 Whirlpool Corporation Air conditioner with selectable supplemental compressor cooling

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233505A (ja) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp 配管洗浄方法および配管洗浄装置
JP2008196829A (ja) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp 空気調和装置
JP2010002109A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 冷凍空調装置
JP2010007975A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd エコノマイザーサイクル冷凍装置
JP2008309474A (ja) * 2008-09-29 2008-12-25 Mitsubishi Electric Corp 配管洗浄装置
JP2010223542A (ja) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp 冷凍空調装置
JP2011226704A (ja) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp 冷凍空調装置並びに冷凍空調システム
JP2011012958A (ja) * 2010-10-22 2011-01-20 Mitsubishi Electric Corp 冷凍サイクル装置の制御方法
JP2012132639A (ja) * 2010-12-22 2012-07-12 Mitsubishi Electric Corp 冷凍装置
WO2015111222A1 (ja) * 2014-01-27 2015-07-30 三菱電機株式会社 冷凍装置
JP2016053461A (ja) * 2014-09-04 2016-04-14 ダイキン工業株式会社 空気調和装置
JP2015111047A (ja) * 2015-03-27 2015-06-18 三菱電機株式会社 冷凍装置

Also Published As

Publication number Publication date
GB201815241D0 (en) 2018-10-31
GB2564312C (en) 2020-12-02
WO2017195248A1 (ja) 2017-11-16
US20190203995A1 (en) 2019-07-04
US11131490B2 (en) 2021-09-28
JP6605131B2 (ja) 2019-11-13
GB2564312B (en) 2020-11-11
GB2564312A (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP6605131B2 (ja) 冷凍装置
JP4864110B2 (ja) 冷凍空調装置
JP5334909B2 (ja) 冷凍空調装置並びに冷凍空調システム
US8555703B2 (en) Leakage diagnosis apparatus, leakage diagnosis method, and refrigeration apparatus
US9829231B2 (en) Refrigeration cycle apparatus
US20230134047A1 (en) Refrigeration cycle apparatus and refrigeration apparatus
JPWO2019053880A1 (ja) 冷凍空調装置
JP2021081187A (ja) 空気調和装置
US20210341170A1 (en) Air conditioning apparatus, management device, and connection pipe
JP6588626B2 (ja) 冷凍装置
JP6732862B2 (ja) 冷凍装置
JP2011012958A (ja) 冷凍サイクル装置の制御方法
CN107110586B (zh) 制冷装置
JP6590945B2 (ja) 冷凍装置
JP6848027B2 (ja) 冷凍装置
JP2020159687A (ja) 冷凍サイクル装置および冷凍装置
WO2023002520A1 (ja) 冷凍サイクル装置および冷凍空気調和装置
JP2020169807A (ja) 冷凍装置
WO2020255355A1 (ja) 室外ユニット、冷凍サイクル装置および冷凍機
JP2017194222A (ja) 空気調和機及び冷媒量判定方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191015

R150 Certificate of patent or registration of utility model

Ref document number: 6605131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250