JPWO2017145453A1 - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JPWO2017145453A1
JPWO2017145453A1 JP2018500988A JP2018500988A JPWO2017145453A1 JP WO2017145453 A1 JPWO2017145453 A1 JP WO2017145453A1 JP 2018500988 A JP2018500988 A JP 2018500988A JP 2018500988 A JP2018500988 A JP 2018500988A JP WO2017145453 A1 JPWO2017145453 A1 JP WO2017145453A1
Authority
JP
Japan
Prior art keywords
word line
wiring
dummy word
channel mos
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018500988A
Other languages
English (en)
Other versions
JP6687719B2 (ja
Inventor
石井 雄一郎
雄一郎 石井
田中 信二
信二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Publication of JPWO2017145453A1 publication Critical patent/JPWO2017145453A1/ja
Application granted granted Critical
Publication of JP6687719B2 publication Critical patent/JP6687719B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/418Address circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • G11C5/063Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/14Word line organisation; Word line lay-out
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/18Peripheral circuit regions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/02Arrangements for writing information into, or reading information out from, a digital store with means for avoiding parasitic signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Static Random-Access Memory (AREA)

Abstract

半導体記憶装置は、行列状に配置された複数のメモリセルと、メモリセル行に対応して設けられたワード線と、ワード線が形成される金属配線層に隣接する金属配線層に形成されるダミーワード線と、ワード線を駆動するワードドライバ回路と、ワード線とダミーワード線との間の線間容量に基づいてワード線を昇圧するダミーワードドライバ回路とを備える。

Description

本開示は、半導体記憶装置に関し、特に、昇圧回路に関する。
一般的に、昇圧回路は、与えられた電源電圧レベルを越える昇圧電圧を発生するため、半導体集積回路装置における様々な回路において用いられる。
特許文献1には、ダイナミックランダムアクセスメモリ(以下「DRAM」という)、スタティックランダムアクセスメモリ(以下「SRAM」という)などの半導体メモリに適用可能な昇圧回路が提案されている。
特開平6−187788号公報
一方で、特許文献1に従う方式では、ワード線を昇圧するために別途昇圧用の容量の大きい容量素子を設ける必要があり、そのレイアウトを工夫する必要があるという課題がある。
この発明は、上記のような課題を解決するためになされたもので、簡易な方式でワード線を効率的に昇圧することが可能な半導体記憶装置を提供することを目的とする。
一実施例によれば、半導体記憶装置は、行列状に配置された複数のメモリセルと、メモリセル行に対応して設けられたワード線と、ワード線が形成される金属配線層に隣接する金属配線層に形成されるダミーワード線と、ワード線を駆動するワードドライバ回路と、ワード線とダミーワード線との間の線間容量に基づいてワード線を昇圧するダミーワードドライバ回路とを備える。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
一実施例によれば、ワード線と、ダミーワード線との間の線間容量に基づいて簡易な方式でワード線を昇圧することが可能である。
実施形態1に基づく半導体記憶装置の外観構成図である。 実施形態1に基づくメモリアレイMAおよび周辺回路の構成を説明する図である。 実施形態1に基づくメモリアレイMAの構成を説明する図である。 実施形態1に基づく周辺回路の回路構成を説明する図である。 実施形態1に基づくワード線WLを活性化するタイミングチャートを説明する図である。 実施形態1に基づきプレーナトランジスタを用いた場合のメモリアレイMAのメモリセルMCのレイアウト構成(その1)を説明する図である。 実施形態1に基づくメモリアレイMAのメモリセルMCのレイアウト構成(その2)を説明する図である。 実施形態1に基づくフィンFETの3次元構造を説明する図である。 実施形態1に基づきフィンFETを用いた場合のメモリアレイMAのメモリセルMC#のレイアウト構成(その1)を説明する図である。 実施形態1に基づきフィンFETを用いた場合のメモリアレイMAのメモリセルMC#のレイアウト構成(その2)を説明する図である。 実施形態1に基づくメモリセルMCおよびMC#の断面構造(X方向)を説明する図である。 実施形態1に基づくメモリセルMCおよびMC#の断面構造(Y方向)を説明する図である。 実施形態1に基づく金属配線層の関係を説明する概略図である。 実施形態1の変形例に基づく配線(第2層〜第4層)のメモリセルMC#のレイアウト構成について説明する図である。 実施形態1の変形例2に基づく配線(第2層〜第4層)のメモリセルMC#のレイアウト構成について説明する図である。 実施形態1の変形例3に基づく配線(第2層〜第4層)のメモリセルMC#のレイアウト構成について説明する図である。 実施形態1の変形例4に基づく周辺回路の回路構成を説明する図である。 実施形態2に基づく周辺回路の回路構成を説明する図である。 実施形態2に基づくワード線WLを活性化するタイミングチャートを説明する図である。 実施形態3に基づく周辺回路の回路構成を説明する図である。 実施形態4に基づく半導体装置CHIPの外観構成図である。
実施形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、その説明は繰り返さない。
(実施形態1)
図1は、実施形態1に基づく半導体記憶装置の外観構成図である。
図1に示されるように、半導体記憶装置は、ドライバ&デコーダ17と、メモリアレイMAと、制御部19と、I/O回路群2とを含む。なお、デコーダは、アドレスデコーダを簡略化したものである。
制御部19は、半導体記憶装置の各機能ブロックを制御する。具体的には、制御部19は、アドレス信号の入力に基づいてロウアドレス信号をドライバ&デコーダ17に出力する。また、制御部19は、I/O回路群2を駆動するための各種の信号を出力する。
メモリアレイMAは、行列状に配置された複数のメモリセルを有する。メモリアレイMAのメモリセルは、書き換え可能に設けられる。
本例においては、メモリセル行にそれぞれ対応して設けられる複数のワード線WLと、複数のワード線WLと並行に設けられる複数のダミーワード線DWLとが設けられる。
ドライバ&デコーダ17は、メモリアレイMAの行列状に配置されたメモリセルのメモリセル行にそれそれ対応して設けられたワード線WLおよびダミーワード線DWLを駆動する。
I/O回路群2は、複数のI/O回路で構成され、メモリアレイMAへのデータ読出あるいはデータ書込を行う入出力回路として設けられる。
図2は、実施形態1に基づくメモリアレイMAおよび周辺回路の構成を説明する図である。
図2に示されるように、本例においては、メモリアレイMAと、メモリアレイMAに設けられたワード線WLおよびダミーワード線DWLを駆動するドライバの構成について説明する。
メモリアレイMAは、行列状に配置された複数のメモリセルMCを有する。各メモリセルMCは、後述するが駆動トランジスタ、転送トランジスタおよび負荷素子とにより構成されたスタティック型メモリセルである。
本例においては、一例として2行4列のメモリセルMCが示されている。
メモリアレイMAのメモリセル行にそれぞれ対応して複数のワード線WLが設けられる。
また、メモリアレイMAのメモリセル行にそれぞれ対応して複数のダミーワード線DWLが設けられる。
ドライバ&デコーダ17の構成として、ワード線WLに対応して設けられるワード線ドライバWDと、ダミーワード線DWLに対応して設けられるダミーワード線ドライバDWDと、アドレスデコーダ20とが設けられる。
アドレスデコーダ20は、ロウアドレス信号をデコードしたデコード信号をワード線ドライバWDに出力する。ワード線ドライバWDは、ロウアドレス信号に基づくデコード信号に従って選択されたワード線WLを活性化させる。
制御部19は、ワード線WLを昇圧するための制御信号BSTをダミーワード線ドライバDWDに出力する。
アドレスデコーダ20は、ロウアドレス信号をデコードしたデコード信号をダミーワード線ドライバDWDに出力する。ダミーワード線ドライバDWDは、ロウアドレス信号に基づくデコード信号と制御信号BSTに従ってダミーワード線DWLを駆動する。
メモリアレイMAのメモリセル列にそれぞれ対応して複数のビット線対BL,/BLが設けられる。本例においては、4列のメモリセル列が示されている。4列のメモリセル列に対応して設けられた4個のビット線対が設けられる。
I/O回路群2は、4列のうちの1つの列を選択する選択回路や、センスアンプ、ライトドライバ、ビット線プリチャージ回路等を含む。
図3は、実施形態1に基づくメモリアレイMAの構成を説明する図である。
図3には、メモリセルMCの構成が示されている。メモリセルMCは、2つの転送トランジスタAT0,AT1と、駆動トランジスタNT0,NT1と、負荷トランジスタPT0,PT1(負荷素子)とから構成される。
転送トランジスタAT0,AT1は、対応するワード線WLと電気的に接続されている。転送トランジスタAT0,AT1は、メモリセルMCのデータ読出あるいはデータ書込を実行する際に活性化されたワード線WLに従って導通する。
また、ダミーワード線DWLがワード線WLに並行に配置される。
図4は、実施形態1に基づく周辺回路の回路構成を説明する図である。
図4に示されるように、ここでは、ワード線ドライバWDと、ダミーワード線ドライバDWDと、アドレスデコーダ20とが示されている。
アドレスデコーダ20は、NAND回路21と、インバータ22とを含む。
NAND回路21は、ロウアドレス信号XU,XL,XGの入力を受けて、そのNANDN論理演算結果をデコード信号WLNとして出力する。
アドレスデコーダ20は、インバータ22を介するデコード信号WLNの反転信号をダミーワード線ドライバDWDおよびワード線ドライバWDに出力する。
ワード線ドライバWDは、NAND回路35と、インバータ36と、PチャネルMOSトランジスタ37と、NチャネルMOSトランジスタ38とを含む。
PチャネルMOSトランジスタ37およびNチャネルMOSトランジスタ38は、電源電圧VDDと接地電圧VSSとの間に設けられ、その接続ノードは、ワード線WLと接続される。
PチャネルMOSトランジスタ37のゲートは、NAND回路35の出力信号の入力を受ける。NチャネルMOSトランジスタ38のゲートは、インバータ22および36を介してデコード信号WLNの入力を受ける。NAND回路35は、インバータ30を介する制御信号BSTの反転信号と、インバータ22を介するデコード信号WLNの反転信号との入力を受けて、そのNAND論理演算結果をPチャネルMOSトランジスタ37のゲートに出力する。
ダミーワード線ドライバDWDは、インバータ30,31と、NAND回路32と、PチャネルMOSトランジスタ33と、NチャネルMOSトランジスタ34と、容量素子6とを含む。
インバータ30は、制御信号BSTの入力を受けて、その反転信号をインバータ31およびNAND回路35の一方の入力ノードに出力する。
NAND回路32は、インバータ30,31を介して制御信号BSTの入力と、インバータ22を介するデコード信号WLNの反転信号との入力を受けてそのNAND論理演算結果を出力する。
PチャネルMOSトランジスタ33およびNチャネルMOSトランジスタ34は、電源電圧VDDと接地電圧VSSとの間に設けられ、その接続ノードは、ダミーワード線DWLと接続される。PチャネルMOSトランジスタ33およびNチャネルMOSトランジスタ34のゲートは、NAND回路32の出力信号の入力を受ける。
容量素子6は、NチャネルMOSトランジスタで構成される。NチャネルMOSトランジスタのソースおよびドレインは、ワード線WLと接続される。ゲートはダミーワード線DWLと接続されている。また、PチャネルMOSトランジスタで構成するようにしても良い。
初期状態において、デコード信号WLNは、「H」レベルに設定される。
したがって、NチャネルMOSトランジスタ38のゲートは、「H」レベルに設定される。NチャネルMOSトランジスタ38は、オン状態となり、ワード線WLは、接地電圧VSSと接続される。
また、制御信号BSTは、「L」レベルに設定されている。したがって、NAND回路32は、「H」レベルの信号を出力する。これに伴いNチャネルMOSトランジスタ34は、オン状態となり、ダミーワード線DWLは、接地電圧VSSと接続される。
一方、ロウアドレス信号XU,XL,XGが「H」レベルに設定されことに伴い、NAND回路21は、デコード信号WLNを「L」レベルに設定する。これに伴い、NチャネルMOSトランジスタ38のゲートは、「L」レベルに設定される。したがって、NチャネルMOSトランジスタ38はオフ状態となる。NAND回路35は、インバータ22を介するデコード信号WLNの反転信号およびインバータ30を介する制御信号BSTの反転信号に基づいて、「L」レベルの信号をPチャネルMOSトランジスタ37に出力する。これに伴い、PチャネルMOSトランジスタ37は、オン状態となり、ワード線WLは、電源電圧VDDと接続される。すなわち、ワード線WLは、活性化される。
次に、制御信号BSTが「H」レベルに設定されることに伴い、NAND回路35は、「H」レベルを出力する。これに伴い、PチャネルMOSトランジスタ37は、オフ状態となり、ワード線WLはハイインピーダンス状態(Hi−z)となる。
また、NAND回路32は、「L」レベルを出力する。これに伴い、PチャネルMOSトランジスタ33は、オン状態となる。これに伴い電源電圧VDDは、ダミーワード線DWLと接続される。すなわち、ダミーワード線DWLは、活性化される。
ダミーワード線DWLとワード線WLとの間には、容量素子6が設けられている。また、上述したようにダミーワード線DWLとワード線WLとは並行に配置されており配線間容量を有する。したがって、容量素子6および配線間容量に基づいてダミーワード線DWLが活性化された場合にワード線WLが昇圧(ブースト)される。
ワード線WLを昇圧することにより、書込マージンおよび読出マージンを向上させることが可能となる。
なお、本例においては、容量素子6および配線間容量に基づいてダミーワード線DWLが活性化された場合にワード線WLを昇圧(ブースト)する構成について説明するが、容量素子6を設けずダミーワード線DWLのみとする構成としても良い。
図5は、実施形態1に基づくワード線WLを活性化するタイミングチャートを説明する図である。
図5に示されるように、時刻T1にロウアドレス信号XU,XL,XGが「H」レベルに設定されことに伴い、ワード線WLが活性化される。次に時刻T2に制御信号BSTが「H」レベルに設定されることに伴い、ワード線WLがブーストされて昇圧される。
時刻T3にロウアドレス信号XU,XL,XGが「L」レベルに設定されことに伴い、ワード線WLが非活性化される。
図6は、実施形態1に基づきプレーナトランジスタを用いた場合のメモリアレイMAのメモリセルMCのレイアウト構成(その1)を説明する図である。
図6(A)には、配線(第1層)、コンタクトホール,多結晶シリコン(ポリシリコン),拡散領域で構成されたメモリセルMCの基盤領域のレイアウト構成が示されている。
メモリセルMCは、中央部にPチャネルMOSトランジスタが形成される。また、その両側にNチャネルMOSトランジスタが形成される。
駆動トランジスタNT0,NT1はNチャネルMOSトランジスタとして形成される。また、負荷トランジスタPT0,PT1は、PチャネルMOSトランジスタとして形成される。転送トランジスタAT0,AT1は、NチャネルMOSトランジスタとして形成される。
駆動トランジスタNT0は、N型拡散領域100よりなるソースおよびドレインとこれらの間に配置されるポリシリコンで形成されたゲート128とを有している。駆動トランジスタNT0のソースとなるN型拡散領域100は、コンタクトホール110を介して配線111と結合されている。配線111は、上層の金属配線層を介して接地電圧VSSと電気的に結合される。
転送トランジスタAT0は、N型拡散領域100からなるソースおよびドレインとこれらの間に配置されるポリシリコンで形成されるゲート134とを有する。このゲートは、コンタクトホール112を介して配線113と結合されている。配線113は、上層の金属配線層を介してワード線WLと電気的に結合される。また、転送トランジスタAT0のソースとなるN型拡散領域100は、コンタクトホール115を介して配線114と電気的に結合される。配線114は、上層の金属配線層を介してビット線BLに電気的に結合される。
駆動トランジスタNT0および転送トランジスタAT0の共通のドレインとなるN型拡散領域100は、コンタクトホール116を介して配線117と電気的に結合される。配線117は、ローカル配線118を介して負荷トランジスタPT1のゲート119と電気的に結合される。また、ローカル配線118は、負荷トランジスタPT0のドレインとなるP型拡散領域102とも電気的に結合される。
転送トランジスタAT1は、N型拡散領域106よりなるソースおよびドレインとこれらの間に配置されるポリシリコンで形成されたゲート135とを有する。このゲート135は、コンタクトホール122を介して配線123と結合されている。配線123は、上層の金属配線層を介してワード線WLと電気的に結合される。また、転送トランジスタAT1のソースとなるN型拡散領域106は、コンタクトホール124を介して配線125と電気的に結合される。配線124は、上層の金属配線層を介してビット線/BLと電気的に結合される。
駆動トランジスタNT1は、N型拡散領域106よりなるソースおよびドレインとこれらの間に配置されるポリシリコンで形成されたゲート119とを有する。NチャネルMOSトランジスタNT1のソースとなるN型拡散領域106は、コンタクトホール121を介して配線120と電気的に結合される。配線120は、上層の金属配線層を介して接地電圧VSSと電気的に結合される。
駆動トランジスタNT1および転送トランジスタAT1の共通のドレインとなるN型拡散領域106は、コンタクトホール131を介して配線130と電気的に結合される。配線130は、ローカル配線129を介して負荷トランジスタPT0のゲート128と電気的に結合される。また、ローカル配線129は、負荷トランジスタPT1のドレインとなるP型拡散領域104とも電気的に結合される。
負荷トランジスタPT1は、P型拡散領域104よりなるソースおよびドレインとこれらの間に配置されるポリシリコンで形成されたゲート119とを有している。ゲート119は、駆動トランジスタNT1と共有している。負荷トランジスタPT1のソースとなるP型拡散領域104は、コンタクトホール132を介して配線132と結合されている。配線132は、上層の金属配線層を介して電源電圧VDDと電気的に結合される。
負荷トランジスタPT0は、P型拡散領域102よりなるソースおよびドレインとこれらの間に配置されるポリシリコンで形成されたゲート128とを有している。ゲート128は、駆動トランジスタNT0と共有している。負荷トランジスタPT0のソースとなるP型拡散領域102は、コンタクトホール126を介して配線127と結合されている。配線127は、上層の金属配線層を介して電源電圧VDDと電気的に結合される。
図6(B)には、配線(第2層)、ビアとで構成されたメモリセルMCのレイアウト構成が示されている。
X方向に沿ってビット線BLを形成する配線144が設けられる。配線144は、ビア145を介して配線114と接続される。
X方向に沿ってビット線/BLを形成する配線150が設けられる。配線150は、ビア149を介して配線125と接続される。
X方向に沿って、電源電圧VDDを供給する配線148が設けられる。配線148は、ビア146,147を介して配線127,133とそれぞれ接続される。
X方向に沿って配線142が設けられる。配線142は、ビア143を介して配線113と接続される。配線142は、上層の金属配線層を介してワード線WLと接続される。
X方向に沿って配線140が設けられる。配線140は、ビア141を介して配線111と接続される。配線140は、上層の金属配線層を介して接地電圧VSSと接続される。
X方向に沿って配線152が設けられる。配線152は、ビア151を介して配線122と接続される。配線152は、上層の金属配線層を介してワード線WLと接続される。
X方向に沿って配線154が設けられる。配線154は、ビア153を介して配線120と接続される。配線154は、上層の金属配線層を介して接地電圧VSSと接続される。
図7は、実施形態1に基づくメモリアレイMAのメモリセルMCのレイアウト構成(その2)を説明する図である。
図7(A)には、配線(第3層)、ビアとで構成されたメモリセルMCのレイアウト構成が示されている。
Y方向に沿って接地電圧VSSを供給する配線160が設けられる。配線160は、ビア161を介して配線140と接続される。
Y方向に沿ってワード線WLを形成する配線162が設けられる。配線162は、ビア163,164を介して配線142,152とそれぞれ接続される。
Y方向に沿って接地電圧VSSを供給する配線165が設けられる。配線165は、ビア166を介して配線154と接続される。
図7(B)には、配線(第4層)、ビアとで構成されたメモリセルMCのレイアウト構成が示されている。
Y方向に沿って接地電圧を供給する配線170,176が設けられる。
配線170は、ビア171,172を介して配線160と電気的に結合される。
配線176は、ビア175,177を介して配線176と電気的に結合される。
また、Y方向に沿ってダミーワード線DWLを形成する配線174が設けられる。
配線174は、配線162の上層に配置される。
当該構成により配線162と配線174との間の配線間に配線間容量が生じることになる。
図8は、実施形態1に基づくフィンFETの3次元構造を説明する図である。
実施形態1に基づき、フィントランジスタ(フィンFET)を用いた場合のメモリアレイMAのメモリセルMC#の構造を説明する。
図8に示されるように、フィンFETは、たとえば、P型半導体基板SUB上に設けられた複数のフィンF1,F2を含む。各フィンF1,F2は、基板平面に沿ってX方向に延在する。各フィンF1,F2は、半導体基板SUBの表面を選択的にエッチングすることによって形成される。隣り合うフィンFの間(フィンF1,F2が形成されていない部分)には、たとえば、CVD(Chemical Vapor Deposition)法を用いて形成されたシリコン酸化膜が素子分離膜として設けられている。
ゲート電極Gは、ゲート絶縁膜GIを介して各フィンF1,F2の上面および側面を覆うように形成される。ゲート電極Gは、フィンF1,F2と交差する方向であるY方向に延在する。ゲート電極Gには、たとえば、多結晶シリコンのような半導体、窒化チタンのような導電性化合物、タングステンなどの単体金属、またはこれらのいずれかの積層膜などが用いられる。
ゲート電極Gの形成後にゲート電極Gをマスクとして不純物をフィンFに注入することによって、ゲート電極Gによって囲まれたチャネル領域以外の部分にソース領域およびドレイン領域(不図示)が形成される。ここで、PMOS(P-channel Metal Oxide Semiconductor)トランジスタを作製する場合には、フィンFがN型ウェル上に形成されるとともに、フィンFにP型不純物が注入される。NMOS(N-channel MOS)トランジスタを作製する場合には、フィンFがP型基板またはP型ウェル上に形成されるとともに、フィンFにN型不純物が注入される。
これらのソース領域およびドレイン領域の上面および側面とオーミック接触するように、例えばタングステンなどの金属を用いてY方向に延在するローカル配線(LIC:Local Inter-Connect)LAが形成される。すなわち、ローカル配線LAは、それぞれソース電極あるいはドレイン電極として機能する。ゲート配線G、ソース電極あるいはドレイン電極は、さらに、X方向に延在するローカル配線(不図示)と直接的に接続されたり、図示しない層間絶縁層に形成されたビアホールを介して上層の金属配線層(不図示)と接続される。
図9は、実施形態1に基づきフィンFETを用いた場合のメモリアレイMAのメモリセルMC#のレイアウト構成(その1)を説明する図である。
図9(A)には、配線(第1層)、ビアおよびローカル配線,多結晶シリコン(ポリシリコン),フィンで構成されたメモリセルMC#の基盤領域のレイアウト構成が示されている。
メモリセルMC#は、中央部にPチャネルMOSトランジスタが形成される。また、その両側にNチャネルMOSトランジスタが形成される。
駆動トランジスタNT0は、フィン200および201を有する。
フィン200および201は、ゲート電極と同様に立体的に立てた状態となるように形成される。駆動トランジスタNT0は、ソースおよびドレインとこれらの間に配置されるポリシリコンで形成されたゲート220とを有している。フィン200および201は、駆動トランジスタNT0のソースとなるローカル配線206と結合されている。ローカル配線206は、ビア219を介して配線214と電気的に結合される。配線214は、上層の金属配線層を介して接地電圧VSSと電気的に結合される。
転送トランジスタAT0は、駆動トランジスタNT0とフィン200および201を共有する。転送トランジスタAT0は、ソースおよびドレインとこれらの間に配置されるポリシリコンで形成されたゲート221とを有している。転送トランジスタAT0のソースとなるフィン200,201は、ローカル配線211と結合されている。ローカル配線211は、ビア223を介してビット線BLを形成する配線215と電気的に結合される。ゲート221は、ビア222を介して配線231と結合されている。配線231は、上層の金属配線層を介してワード線WLと電気的に結合される。
駆動トランジスタNT0および転送トランジスタAT0の共通のドレインとなるフィン200,201は、ローカル配線209と電気的に結合される。ローカル配線209は、ローカル配線301を介して負荷トランジスタPT1のゲート229と電気的に結合される。ローカル配線209は、負荷トランジスタPT0のドレインとなるフィン205とも電気的に結合される。
転送トランジスタAT1は、フィン203および204を有する。
フィン203および204は、ゲート電極と同様に立体的に立てた状態となるように形成される。転送トランジスタAT1は、ソースおよびドレインとこれらの間に配置されるポリシリコンで形成されたゲート228とを有している。転送トランジスタAT1のソースとなるフィン203,204は、ローカル配線208と結合されている。ローカル配線208は、ビア226を介してビット線/BLを形成する配線217と電気的に結合される。
駆動トランジスタNT1は、転送トランジスタAT1とフィン203および204を共有する。駆動トランジスタNT1は、ソースおよびドレインとこれらの間に配置されるポリシリコンで形成されたゲート229とを有している。駆動トランジスタNT1のソースとなるフィン203,204は、ローカル配線213と結合されている。ローカル配線213は、ビア230を介して配線232と電気的に結合される。配線232は、上層の金属配線層を介して接地電圧VSSと電気的に結合される。
駆動トランジスタNT1および転送トランジスタAT1の共通のドレインとなるフィン203,204は、ローカル配線210と電気的に結合される。ローカル配線210は、ローカル配線302を介して負荷トランジスタPT0のゲート220と電気的に結合される。ローカル配線210は、負荷トランジスタPT1のドレインとなるフィン202とも電気的に結合される。
負荷トランジスタPT0は、フィン205よりなるソースおよびドレインとこれらの間に配置されるポリシリコンで形成されたゲート220とを有している。ゲート220は、駆動トランジスタNT0と共有している。負荷トランジスタPT0のソースとなるフィン205は、ローカル配線207と電気的に結合される。ローカル配線207は、ビア225を介して電源電圧VDDの供給を受ける配線216と電気的に結合される。
負荷トランジスタPT1は、フィン202よりなるソースおよびドレインとこれらの間に配置されるポリシリコンで形成されたゲート229とを有している。ゲート229は、駆動トランジスタNT1と共有している。負荷トランジスタPT1のソースとなるフィン202は、ローカル配線212と電気的に結合される。ローカル配線212は、ビア224を介して電源電圧VDDの供給を受ける配線216と電気的に結合される。
図10は、実施形態1に基づきフィンFETを用いた場合のメモリアレイMAのメモリセルMC#のレイアウト構成(その2)を説明する図である。
図10(A)には、配線(第2層)、ビアとで構成されたメモリセルMC#のレイアウト構成が示されている。
Y方向に沿って接地電圧を供給する配線240,244が設けられる。
配線240は、ビア241を介して配線214と電気的に結合される。
配線244は、ビア245を介して配線232と電気的に結合される。
Y方向に沿って、ワード線WLを形成する配線246が設けられる。
配線246は、ビア242を介して配線231と電気的に結合される。また、配線246は、ビア243を介して配線218と電気的に結合される。
当該構成により、図7のメモリセルMC#を用いた場合には、図6のメモリセルMCと比較して1層少ない金属配線層のレイアウトで形成することが可能である。
図10(B)には、配線(第3層)、ビアとで構成されたメモリセルMCのレイアウト構成が示されている。
Y方向に沿って接地電圧を供給する配線250,256が設けられる。
配線250は、ビア251,252を介して配線240と電気的に結合される。
配線256は、ビア255,257を介して配線244と電気的に結合される。
また、Y方向に沿ってダミーワード線DWLを形成する配線254が設けられる。
配線254は、配線246の上層に配置される。
当該構成により配線246と配線254との間の配線間に配線間容量が生じることになる。
図11は、実施形態1に基づくメモリセルMCおよびMC#の断面構造(X方向)を説明する図である。
図11(A)および図11(B)は、フィンFETを用いた場合のメモリセルMC#の断面構造(X方向)を説明する図である。
図11(C)および図11(D)は、プレーナトランジスタを用いた場合のメモリセルMCの断面構造(X方向)を説明する図である。
図11(A)は、図9(A)のレイアウト構造と同様であるのでその詳細な説明は繰り返さない。
図11(B)を参照して、図11(A)のP−P#線のX方向における断面構造が示されている。
フィンFETを用いた場合のメモリセルMC#の場合には、配線(第1層)を用いてビット線BLが形成され、配線(第2層)を用いてワード線WLおよび接地線VSSが形成される。また、配線(第3層)を用いてダミーワード線DWLが形成される。
図11(C)は、図6(A)のレイアウト構造と同様であるのでその詳細な説明は繰り返さない。
図11(D)を参照して、図11(C)のQ−Q#線のX方向における断面構造が示されている。
プレーナトランジスタを用いた場合のメモリセルMCの場合には、配線(第2層)を用いてビット線BLが形成され、配線(第3層)を用いてワード線(WL)および接地線VSSが形成される。また、配線(第4層)を用いてダミーワード線DWLが形成される。
図12は、実施形態1に基づくメモリセルMCおよびMC#の断面構造(Y方向)を説明する図である。
図12(A)および図12(B)は、フィンFETを用いた場合のメモリセルMC#の断面構造(Y方向)を説明する図である。
図12(C)および図12(D)は、プレーナトランジスタを用いた場合のメモリセルMCの断面構造(Y方向)を説明する図である。
図12(A)は、図9(A)のレイアウト構造と同様であるのでその詳細な説明は繰り返さない。
図12(B)を参照して、図12(A)のR−R#線のY方向における断面構造が示されている。
フィンFETを用いた場合のメモリセルMC#の場合には、配線(第1層)を用いてビット線BLおよび電源線VDDが形成され、配線(第2層)を用いてワード線(WL)が形成される。また、配線(第3層)を用いてダミーワード線DWLが形成される。
図12(C)は、図6(A)のレイアウト構造と同様であるのでその詳細な説明は繰り返さない。
図12(D)を参照して、図12(C)のS−S#線のY方向における断面構造が示されている。
プレーナトランジスタを用いた場合のメモリセルMCの場合には、配線(第2層)を用いてビット線BLおよび電源線VDDが形成され、配線(第3層)を用いてワード線(WL)および接地線VSSが形成される。また、配線(第4層)を用いてダミーワード線DWLが形成される。
プレーナトランジスタを用いた場合のメモリセルMCでは、配線111,117,114等は第1層が用いられるのに対し、フィンFETを用いた場合のメモリセルMC#では、対応する配線206,209,211等は、第1層の下方にゲートと並んで配置されるローカル配線が用いられる。
これによりメモリセルMC#では第1層の配線を用いてビット線BLおよび電源線VDDを形成することが可能となる。
したがって、フィンFETを用いた場合のメモリセルMC#の構成の場合には、プレーナトランジスタを用いた場合のメモリセルMCと比較して配線層の数を減少させることが可能である。
図13は、実施形態1に基づく金属配線層の関係を説明する概略図である。
図13に示されるように、図1の半導体記憶装置を例に挙げて説明する。
ドライバ&デコーダ17、制御部19、I/O回路群2は、第3層(M3)までの金属配線層のレイアウトを用いて形成する。
メモリセルMC#を利用した場合には、メモリアレイMAは、第3層(M3)まで金属配線層のレイアウトを用いて形成することが可能である。
実施形態1においては、一例として第3層(M3)の金属配線層を用いてダミーワード線DWLを形成する。
当該構成により、本実施形態1に係るダミーワード線DWLを形成する場合であっても、メモリセルMC#を用いて作成する場合には、配線層の数を増加させることなく形成することが可能である。
(変形例1)
図14は、実施形態1の変形例に基づく配線(第2層〜第4層)のメモリセルMC#のレイアウト構成について説明する図である。
図14に示されるように、Y方向に沿ってワード線WLを形成する配線(第2層)246の上空に金属配線層(第3層)にダミーワード線DWLを形成する配線(第3層)346を設ける。Y方向に沿ってダミーワード線DWLを形成する配線346は、ワード線WLを形成する配線と並行に配置される。
ダミーワード線DWLとワード線を並行に隣接して配置することにより線間容量を増大させることが可能である。
当該構成により半導体記憶装置全体で金属配線層をさらに追加することなくダミーワード線DWLを配置することが可能である。
配線346と交互にY方向に沿って接地電圧VSSを供給する配線(第3層)340,344が設けられる。これらの配線は接地電圧VSSを供給する配線(第2層)240,244の上空に設けられる。当該配線340,344は配線ビアVIAを介して第2層の配線240,244と電気的に結合される。また、金属配線層(第4層)にX方向沿って接地電圧VSSを供給する配線400,402が設けられる。当該配線400,402は、配線ビアVIAを介して第3層の配線340,344等と電気的に結合される。
ワード線WLおよびダミーワード線DWLと交互に接地電圧VSSを供給する配線を設けることにより、ワード線WLおよびダミーワード線DWLは、Y方向に沿って配置される接地電圧VSSを供給する配線により囲まれた構造となる。
これにより、ワード線WLおよびダミーワード線DWLを外乱(ノイズ)からシールドすることが可能となり、安定的に動作させることが可能となる。
(変形例2)
図15は、実施形態1の変形例2に基づく配線(第2層〜第4層)のメモリセルMC#のレイアウト構成について説明する図である。
図15に示されるように、図14の構成と比較して、ダミーワード線DWLの配線長を変更した場合が示されている。
具体的には、配線346について、配線346Aと、配線346Bとに分割した場合が示されている。
ダミーワード線DWLの配線長を調整することによりワード線WLとの間の線間容量を調整することが可能である。
(変形例3)
図16は、実施形態1の変形例3に基づく配線(第2層〜第4層)のメモリセルMC#のレイアウト構成について説明する図である。
図16に示されるように、図14の構成と比較して、ダミーワード線DWLの配線幅を変更した場合が示されている。
具体的には、配線346について、配線346Cに変更した場合が示されている。
具体的には、配線346Cは、配線幅の太い領域と、細い領域とを有する。レイアウトを工夫することにより配線幅を一定ではなく、可能な限り配線幅を太くすることにより、ワード線WLとの間の線間容量を調整することが可能である。
(変形例4)
図17は、実施形態1の変形例4に基づく周辺回路の回路構成を説明する図である。
図17に示されるように、ここでは、ワード線ドライバWD#と、ダミーワード線ドライバDWD#と、アドレスデコーダ20#とが示されている。
アドレスデコーダ20は、NAND回路21を含む。
NAND回路21は、ロウアドレス信号XU,XL,XGの入力を受けて、そのNANDN論理演算結果をデコード信号WLNとして出力する。
アドレスデコーダ20は、デコード信号WLNの反転信号をダミーワード線ドライバDWD#およびワード線ドライバWD#に出力する。
ワード線ドライバWD#は、PチャネルMOSトランジスタ37,39と、NチャネルMOSトランジスタ38とを含む。
PチャネルMOSトランジスタ39および37と、NチャネルMOSトランジスタ38は、電源電圧VDDと接地電圧VSSとの間に直列に設けられ、PチャネルMOSトランジスタ37とNチャネルMOSトランジスタ38との間の接続ノードは、ワード線WLと接続される。
PチャネルMOSトランジスタ37およびNチャネルMOSトランジスタ38のゲートは、デコード信号WLNの入力を受ける。
PチャネルMOSトランジスタ39のゲートは、NOR回路41の出力信号の入力を受ける。
ダミーワード線ドライバDWD#は、NOR回路41と、インバータ40と、PチャネルMOSトランジスタ33と、NチャネルMOSトランジスタ34と、容量素子6とを含む。
初期状態において、デコード信号WLNは、「H」レベルに設定される。
したがって、NチャネルMOSトランジスタ38のゲートは、「H」レベルに設定される。NチャネルMOSトランジスタ38は、オン状態となり、ワード線WLは、接地電圧VSSと接続される。
また、制御信号BSTNは、「H」レベルに設定されている。したがって、NOR回路41は、その反転信号である「L」レベルの信号を出力する。これに伴いPチャネルMOSトランジスタ39は、オン状態となる。一方、インバータ40は、「H」レベルの信号を出力する。したがって、ダミーワード線DWLは、接地電圧VSSと接続される。
一方、ロウアドレス信号XU,XL,XGが「H」レベルに設定されことに伴い、NAND回路21は、デコード信号WLNを「L」レベルに設定する。これに伴い、PチャネルMOSトランジスタ37は、オン状態となる。これに伴い、ワード線WLは、電源電圧VDDと接続される。すなわち、ワード線WLは、活性化される。
次に、制御信号BSTNが「L」レベルに設定されることに伴い、NOR回路41は、「H」レベルを出力する。これに伴い、インバータ40は、「L」レベルを出力する。これに伴い、PチャネルMOSトランジスタ33は、オン状態となる。これに伴い電源電圧VDDは、ダミーワード線DWLと接続される。すなわち、ダミーワード線DWLは、活性化される。また、PチャネルMOSトランジスタ39は、オフ状態となり、ワード線WLはハイインピーダンス状態(Hi−z)となる。
ダミーワード線DWLとワード線WLとの間には、容量素子6が設けられている。また、上述したようにダミーワード線DWLとワード線WLとは並行に配置されており配線間容量を有する。したがって、容量素子6および配線間容量に基づいてダミーワード線DWLが活性化された場合にワード線WLが昇圧(ブースト)される。
ワード線WLを昇圧することにより、書込マージンおよび読出マージンを向上させることが可能となる。
図4の構成と比較すると、NAND回路およびインバータ等を削減することが可能となる。したがって、部品点数を少なくしてレイアウト面積を縮小することが可能である。
(実施形態2)
上記の実施形態1においては、ワード線WLに対してダミーワード線DWLを用いて正の昇圧(ブースト)を実行する場合について説明したが、実施形態2においては、降圧する場合について説明する。
図18は、実施形態2に基づく周辺回路の回路構成を説明する図である。
図18に示されるように、実施形態2に基づく周辺回路は、図4の構成と比較してダミーワード線ドライバDWDをダミーワード線ドライバDWDPに置換した点が異なる。
ダミーワード線ドライバDWDPは、ダミーワード線ドライバDWDと比較して、インバータ60をさらに追加した点が異なる。その他の構成については同様であるのでその詳細な説明については繰り返さない。
具体的には、インバータ60は、NAND回路32の出力を受けて、その反転信号をPチャネルMOSトランジスタ33およびNチャネルMOSトランジスタ34のゲートに出力する。
初期状態において、デコード信号WLNは、「H」レベルに設定される。
したがって、NチャネルMOSトランジスタ38のゲートは、「H」レベルに設定される。NチャネルMOSトランジスタ38は、オン状態となり、ワード線WLは、接地電圧VSSと接続される。
また、制御信号BSTは、「L」レベルに設定されている。したがって、NAND回路35には、その反転信号である「H」レベルの信号が出力される。また、NAND回路32は、「H」レベルの信号を出力する。インバータ60は、「L」レベルの信号を出力する。これに伴いPチャネルMOSトランジスタ33がオン状態となり、ダミーワード線DWLは、電源電圧VDDと接続される。
一方、ロウアドレス信号XU,XL,XGが「H」レベルに設定されことに伴い、NAND回路21は、デコード信号WLNを「L」レベルに設定する。これに伴い、NチャネルMOSトランジスタ38のゲートは、「L」レベルに設定される。したがって、NチャネルMOSトランジスタ38はオフ状態となる。NAND回路35は、インバータ22を介するデコード信号WLNの反転信号およびインバータ30を介する制御信号BSTの反転信号に基づいて、「L」レベルの信号をPチャネルMOSトランジスタ37に出力する。これに伴い、PチャネルMOSトランジスタ37は、オン状態となり、ワード線WLは、電源電圧VDDと接続される。すなわち、ワード線WLは、活性化される。
次に、制御信号BSTが「H」レベルに設定されることに伴い、NAND回路35は、「H」レベルを出力する。これに伴い、PチャネルMOSトランジスタ37は、オフ状態となり、ワード線WLはハイインピーダンス状態(Hi−z)となる。
また、NAND回路32は、「L」レベルを出力する。インバータ60は、「H」レベルの信号を出力する。これに伴い、NチャネルMOSトランジスタ34は、オン状態となる。これに伴い接地電圧VSSは、ダミーワード線DWLと接続される。
ダミーワード線DWLとワード線WLとの間には、容量素子6が設けられている。また、上述したようにダミーワード線DWLとワード線WLとは並行に配置されており配線間容量を有する。したがって、容量素子6および配線間容量に基づいてダミーワード線DWLが活性化された場合にワード線WLが電源電圧VDDより降圧される。
図19は、実施形態2に基づくワード線WLを活性化するタイミングチャートを説明する図である。
図19に示されるように、時刻T1にロウアドレス信号XU,XL,XGが「H」レベルに設定されことに伴い、ワード線WLが活性化される。
また、ダミーワード線DWLは、「H」レベルに設定されている。
次に時刻T4に制御信号BSTが「H」レベルに設定されることに伴い、ワード線WLが降圧される。
時刻T5にロウアドレス信号XU,XL,XGが「L」レベルに設定されことに伴い、ワード線WLが非活性化される。
当該方式により、ワード線WLを降圧することによりメモリセルのデータ保持マージンを改善することが可能である。
(実施形態3)
図20は、実施形態3に基づく周辺回路の回路構成を説明する図である。
図20に示されるように、ここでは、メモリセル行毎にワードドライバユニットWDUが設けられている場合が示されている。ワードドライバユニットWDUは、ワード線WLを駆動するワード線ドライバWDQと、ダミーワード線DWLを駆動するダミーワード線ドライバDWDQと、アドレスデコーダ20から構成されている。
アドレスデコーダ20は、NAND回路21と、インバータ22とを含む。
NAND回路21は、ロウアドレス信号XU,XL,XGの入力を受けて、そのNANDN論理演算結果をデコード信号WLNとして出力する。インバータ22は、デコード信号WLNの反転信号をワード線ドライバWDQおよびダミーワード線ドライバDWDQに出力する。
ワード線ドライバWDQは、インバータ36と、PチャネルMOSトランジスタ37と、NチャネルMOSトランジスタ38とを含む。
PチャネルMOSトランジスタ37およびNチャネルMOSトランジスタ38は、電源電圧VDDと接地電圧VSSとの間に直列に設けられ、PチャネルMOSトランジスタ37とNチャネルMOSトランジスタ38との間の接続ノードは、ワード線WLと接続される。PチャネルMOSトランジスタ37およびNチャネルMOSトランジスタ38のゲートは、インバータ22および36を介するデコード信号WLNの入力を受ける。
PチャネルMOSトランジスタ37のソースは、電源線LCVDDと接続される。
ダミーワード線ドライバDWDQは、NAND回路32と、PチャネルMOSトランジスタ33と、NチャネルMOSトランジスタ34と、容量素子6とを含む。
NAND回路32は、制御信号BSTの入力と、インバータ22を介するデコード信号WLNの反転信号との入力を受けてそのNAND論理演算結果を出力する。
PチャネルMOSトランジスタ33およびNチャネルMOSトランジスタ34は、電源電圧VDDと接地電圧VSSとの間に設けられ、その接続ノードは、ダミーワード線DWLと接続される。PチャネルMOSトランジスタ33およびNチャネルMOSトランジスタ34のゲートは、NAND回路32の出力信号の入力を受ける。
容量素子6は、NチャネルMOSトランジスタで構成される。NチャネルMOSトランジスタのソースおよびドレインは、ワード線WLと接続される。ゲートはダミーワード線DWLと接続されている。また、PチャネルMOSトランジスタで構成しても良い。
電源線LCVDDは、電源回路50と接続される。
電源回路50は、PチャネルMOSトランジスタ43と、キャパシタ44とを含む。
PチャネルMOSトランジスタ43は、電源電圧VDDと、電源線LCVDDとの間に設けられ、そのゲートは、制御信号BSTの入力を受ける。キャパシタ44は、PチャネルMOSトランジスタ43のゲートおよびドレインの間に接続される。キャパシタ44は、電源線LCVDDの電位を安定させる安定化容量として設けられる。
電源線LCVDDは、各メモリセル行毎に設けられたワードドライバユニットWDUに対して共通に設けられる。
初期状態において、デコード信号WLNは、「H」レベルに設定される。
したがって、NチャネルMOSトランジスタ38のゲートは、「H」レベルに設定される。NチャネルMOSトランジスタ38は、オン状態となり、ワード線WLは、接地電圧VSSと接続される。
また、制御信号BSTは、「L」レベルに設定されている。PチャネルMOSトランジスタ43は、オン状態であり、電源線LCVDDは、電源電圧VDDと接続されている。
一方、ロウアドレス信号XU,XL,XGが「H」レベルに設定されことに伴い、NAND回路21は、デコード信号WLNを「L」レベルに設定する。これに伴い、PチャネルMOSトランジスタ37は、オン状態となる。これン伴い、ワード線WLは、電源電圧VDDと接続される。すなわち、ワード線WLは、活性化される。
次に、制御信号BSTが「H」レベルに設定されることに伴い、PチャネルMOSトランジスタ43がオフする。これにより電源線LCVDDは電源電圧VDDから切り離され、ワード線WLはハイインピーダンス状態(Hi−z)となる。
また、NAND回路32は、「L」レベルを出力する。これに伴い、PチャネルMOSトランジスタ33がオン状態となる。これに伴いダミーワード線DWLは電源電圧VDDと接続される。すなわち、ダミーワード線DWLは、活性化される。
ダミーワード線DWLとワード線WLとの間には、容量素子6が設けられている。また、上述したようにダミーワード線DWLとワード線WLとは並行に配置されており配線間容量を有する。したがって、容量素子6および配線間容量に基づいてダミーワード線DWLが活性化された場合にワード線WLが昇圧(ブースト)される。
ワード線WLを昇圧することにより、書込マージンおよび読出マージンを向上させることが可能となる。
図4の構成と比較すると、NAND回路およびインバータ等を削減することが可能となる。したがって、部品点数を少なくしてレイアウト面積を縮小することが可能である。
図21は、実施形態4に基づく半導体装置CHIPの外観構成図である。
図21を参照して、半導体装置CHIPはメモリアレイMA1,MA2を含んで構成される。メモリアレイの周辺回路は省略されている。
メモリアレイMA1は、K行L列に配置されたメモリセル、メモリセル行にそれぞれ対応して設けられた複数のワード線WL1およびダミーワード線DWL1を含む。
メモリアレイMA2は、M行N列に配置されたメモリセル、メモリセル行にそれぞれ対応して設けられた複数のワード線WL2およびダミーワード線DWL2を含む。
一般にSoCやマイコンなどに搭載されるエンベイデッドメモリは必要なメモリサイズに応じてメモリコンパイラにより生成される。
メモリアレイMA1ではL列のメモリセルに応じた長さのワード線WL1が、メモリアレイMA2ではN列のメモリセルに応じた長さのワード線WL2がそれぞれ生成される。
ダミーワード線をワード線と並行に配置された配線として定義することで、ダミーワード線をメモリコンパイラで生成することが可能となる。
ダミーワード線DWL1はL列のメモリセルに応じた長さとして生成される。NがLより小さい場合、ダミーワード線DWL2はN列のメモリセルに応じ、DWL1より短い長さとして生成される。
これにより、メモリコンパイラを用いて、ワード線の長さに応じた、配線間容量の生成が可能となる。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
2 I/O回路群、6 容量素子、17 ドライバ&デコーダ、19 制御部、20 アドレスデコーダ、50 電源回路、MA メモリアレイ。

Claims (10)

  1. 行列状に配置された複数のメモリセルと、
    メモリセル行に対応して設けられたワード線と、
    前記ワード線が形成される金属配線層に隣接する金属配線層に形成されるダミーワード線と、
    前記ワード線を駆動するワードドライバ回路と、
    前記ワード線と前記ダミーワード線との間の線間容量に基づいて前記ワード線を昇圧するダミーワードドライバ回路とを備える、半導体記憶装置。
  2. 前記ダミーワードドライバ回路は、前記ワード線と前記ダミーワード線と間に設けられた容量素子をさらに含む、請求項1記載の半導体記憶装置。
  3. 前記ダミーワード線は、前記ワード線と並行に配置される、請求項1記載の半導体記憶装置。
  4. 前記ダミーワード線と前記ワード線との長さは異なる、請求項1記載の半導体記憶装置。
  5. 前記ダミーワード線の少なくとも一部の幅は、前記ワード線の幅よりも太く形成される、請求項1記載の半導体記憶装置。
  6. 前記ダミーワード線は、前記ワード線を駆動しない場合には固定電圧に設定される、請求項1記載の半導体記憶装置。
  7. 前記メモリセルは、SRAM(Static Random Access Memory)セルである、請求項1記載の半導体記憶装置。
  8. 前記SRAMセルは、フィントランジスタで構成される、請求項7記載の半導体記憶装置。
  9. 前記ワードドライバ回路は、前記ワード線を昇圧する場合には、前記ワード線をハイインピーダンス状態に設定する、請求項1記載の半導体記憶装置。
  10. 行列状に配置された複数のメモリセルと、
    メモリセル行に対応して設けられたワード線と、
    前記ワード線が形成される金属配線層に隣接する金属配線層に形成されるダミーワード線と、
    第1および第2の制御信号に基づいて前記ワード線を駆動するワードドライバ回路と、
    前記第1および第2の制御信号に基づいて前記ワード線と前記ダミーワード線との間の線間容量に基づいて前記ワード線を昇圧するダミーワードドライバ回路とを備える、半導体記憶装置。
JP2018500988A 2016-02-25 2016-11-14 半導体記憶装置 Active JP6687719B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/055563 WO2017145312A1 (ja) 2016-02-25 2016-02-25 半導体記憶装置
JPPCT/JP2016/055563 2016-02-25
PCT/JP2016/083675 WO2017145453A1 (ja) 2016-02-25 2016-11-14 半導体記憶装置

Publications (2)

Publication Number Publication Date
JPWO2017145453A1 true JPWO2017145453A1 (ja) 2018-11-01
JP6687719B2 JP6687719B2 (ja) 2020-04-28

Family

ID=59685001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018500988A Active JP6687719B2 (ja) 2016-02-25 2016-11-14 半導体記憶装置

Country Status (7)

Country Link
US (1) US10658028B2 (ja)
EP (1) EP3422350B1 (ja)
JP (1) JP6687719B2 (ja)
KR (1) KR102555677B1 (ja)
CN (1) CN108431894B (ja)
TW (1) TW201740381A (ja)
WO (2) WO2017145312A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7086795B2 (ja) * 2018-09-03 2022-06-20 ルネサスエレクトロニクス株式会社 半導体装置
US10943670B1 (en) * 2019-08-29 2021-03-09 Arm Limited Dummy wordline design techniques
US11189336B2 (en) * 2019-10-30 2021-11-30 Taiwan Semiconductor Manufacturing Company, Ltd. Word line driving device for minimizing RC delay
US11170830B2 (en) * 2020-02-11 2021-11-09 Taiwan Semiconductor Manufacturing Company Limited Word line driver for low voltage operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241058A (ja) * 2003-02-07 2004-08-26 Matsushita Electric Ind Co Ltd 半導体記憶装置
US20150085568A1 (en) * 2013-09-26 2015-03-26 Qualcomm Incorporated Read/write assist for memories

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709783B2 (ja) 1992-12-17 1998-02-04 三菱電機株式会社 昇圧回路
JPH10154393A (ja) * 1996-11-22 1998-06-09 Mitsubishi Electric Corp スタティック型半導体記憶装置
KR101274205B1 (ko) * 2007-07-13 2013-06-14 삼성전자주식회사 비휘발성 메모리 소자의 동작 방법
US20140112062A1 (en) 2012-10-23 2014-04-24 Lsi Corporation Method and system for an adaptive negative-boost write assist circuit for memory architectures
US9245602B2 (en) 2013-12-10 2016-01-26 Broadcom Corporation Techniques to boost word-line voltage using parasitic capacitances
US9607685B2 (en) * 2015-07-30 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Memory array with strap cells
US9552854B1 (en) * 2015-11-10 2017-01-24 Intel Corporation Register files including distributed capacitor circuit blocks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241058A (ja) * 2003-02-07 2004-08-26 Matsushita Electric Ind Co Ltd 半導体記憶装置
US20150085568A1 (en) * 2013-09-26 2015-03-26 Qualcomm Incorporated Read/write assist for memories

Also Published As

Publication number Publication date
US20180366184A1 (en) 2018-12-20
WO2017145312A1 (ja) 2017-08-31
KR20180118601A (ko) 2018-10-31
CN108431894B (zh) 2022-10-28
EP3422350B1 (en) 2022-01-05
EP3422350A1 (en) 2019-01-02
JP6687719B2 (ja) 2020-04-28
US10658028B2 (en) 2020-05-19
EP3422350A4 (en) 2019-10-23
TW201740381A (zh) 2017-11-16
CN108431894A (zh) 2018-08-21
KR102555677B1 (ko) 2023-07-17
WO2017145453A1 (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP4427847B2 (ja) ダイナミック型ramと半導体装置
JP3853513B2 (ja) ダイナミック型ram
US6891742B2 (en) Semiconductor memory device
JP3085455B2 (ja) スタティックram
US7729195B2 (en) Semiconductor memory device having split word line driver circuit with layout patterns that provide increased integration density
JP4149170B2 (ja) 半導体記憶装置
TWI774018B (zh) 半導體記憶裝置
US11133057B2 (en) Memory array with bit-lines connected to different sub-arrays through jumper structures
JP6687719B2 (ja) 半導体記憶装置
WO2001073846A1 (en) Semiconductor device
JP4079522B2 (ja) 半導体集積回路装置
US10706902B2 (en) Semiconductor device
US6677633B2 (en) Semiconductor device
JPH11163291A (ja) 半導体集積回路装置
JP4125540B2 (ja) 半導体装置
US10706917B2 (en) Semiconductor memory device
JP4949451B2 (ja) ダイナミック型ramと半導体装置
JP2005064165A (ja) 半導体集積回路装置
US8422326B2 (en) Semiconductor device having sense amplifier
JP2940175B2 (ja) デコーダ回路
JPH1154726A (ja) ダイナミック型ram
JPH08139204A (ja) 半導体集積回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200402

R150 Certificate of patent or registration of utility model

Ref document number: 6687719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150