JPWO2017130878A1 - スイッチング増幅器 - Google Patents

スイッチング増幅器 Download PDF

Info

Publication number
JPWO2017130878A1
JPWO2017130878A1 JP2017564225A JP2017564225A JPWO2017130878A1 JP WO2017130878 A1 JPWO2017130878 A1 JP WO2017130878A1 JP 2017564225 A JP2017564225 A JP 2017564225A JP 2017564225 A JP2017564225 A JP 2017564225A JP WO2017130878 A1 JPWO2017130878 A1 JP WO2017130878A1
Authority
JP
Japan
Prior art keywords
vdd
voltage
cmos inverter
pmos transistor
nmos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017564225A
Other languages
English (en)
Inventor
知行 山瀬
知行 山瀬
真一 堀
真一 堀
真明 谷尾
真明 谷尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2017130878A1 publication Critical patent/JPWO2017130878A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/0948Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET using CMOS or complementary insulated gate field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Logic Circuits (AREA)
  • Amplifiers (AREA)

Abstract

本発明のスイッチング増幅器は、第1のPMOSトランジスタを含む第1のCMOSインバータ回路と、第2のPMOSトランジスタと、を備え、前記第1のPMOSトランジスタのソース端子と前記第2のPMOSトランジスタのドレイン端子とが接続され、前記第2のPMOSトランジスタのゲート端子への入力信号が変化する。

Description

本発明は、スイッチング増幅器に関し、特に、高い電圧に対応するスイッチング増幅器に関する。
携帯電話、無線LAN(Local Area Network)等の無線通信機器の送信部は、出力電力の大小にかかわらず、低消費電力で動作することが求められる。特に、送信部の最終段における電力増幅器は、無線通信機器全体の消費電力の50%以上を占めるため、より低消費電力で動作することが求められる。
近年、消費電力が少ない電力増幅器として、スイッチング増幅器が注目されている。スイッチング増幅器は、パルス波形信号を入力信号とし、入力信号の波形を維持したまま電力増幅することが可能である。
スイッチング増幅器を実現する手段として、インバータ回路がある。インバータ回路は、スイッチ回路の構成が容易なNMOS(N-channel type Metal Oxide Semiconductor)トランジスタおよびPMOS(P-channel type Metal Oxide Semiconductor)トランジスタの2つのトランジスタ素子で構成される。
図5は、一般的なCMOS(Complementary Metal Oxide Semiconductor)インバータ回路によるスイッチング回路500である。スイッチング回路500を構成するCMOSインバータ回路は、PMOSトランジスタMP51およびNMOSトランジスタMN51から構成される。
PMOSトランジスタMP51のドレイン端子は、NMOSトランジスタMN51のドレイン端子に接続される。これらドレイン端子からスイッチング回路500の出力端子がとられる。PMOSトランジスタMP51のゲート端子は、NMOSトランジスタMN51のゲート端子に接続される。これらゲート端子からスイッチング回路500の入力端子がとられる。PMOSトランジスタMP51のソース端子は、電源電圧VDDに接続される。NMOSトランジスタMN51のソース端子は接地される。入力端子にハイレベルの電圧(VDD)が供給された場合、PMOSトランジスタMP51は非導通状態、NMOSトランジスタMN51は導通状態となり、出力端子はローレベルの電圧(0V)を出力する。逆に、入力端子にローレベルの電圧(0V)が供給された場合、PMOSトランジスタMP51は導通状態、NMOSトランジスタMN51は非導通状態となり、出力端子はハイレベルの電圧(VDD)を出力する。
一般的なCMOSインバータ回路を用いたスイッチング回路500は、入力端子に供給される電圧に応じて、電源レベル(VDD)または接地レベル(0V)の電圧を出力する。
非特許文献1には、上記のCMOSインバータ回路を使用し、高電圧を出力するスイッチング増幅器の一例が記載されている。
図6は、非特許文献1に記載のスイッチング増幅器600の回路図である。スイッチング増幅器600は、最終段の各トランジスタのソース端子に供給する電圧と、最終段のCMOSインバータの入力端子に供給する電圧とを変化させる。これによって、スイッチング増幅器600は、各トランジスタを耐圧(絶縁破壊電圧またはブレークダウン電圧を意味する。以下、VDDと表記する。)の範囲内で動作させつつ、VDDの3倍の電圧振幅を出力する。
特許文献1や特許文献2では、低いブレークダウン電圧を有するトランジスタを用いつつ、このブレークダウン電圧の2倍や3倍といった高い電圧を出力できる高出力電圧生成用半導体回路が、提案されている。特許文献3では、トランジスタの耐圧を上げることなく、各トランジスタの耐圧を超える振幅の出力信号を出力できる出力回路が、提案されている。
特開平10−215166号公報 特開平11−234116号公報 特開平11−346150号公報
Y. Kim, W. Bae and D. Jeong,"A 10-Gb/s 6-Vpp Differential Modulator Driver in 65-nm CMOS,"in IEEE ISCAS,pp.1869-1872,June 2014.
関連技術における問題点は、スイッチング増幅器600は、消費電力を抑えつつ、VDDの3倍を超える電圧振幅を出力できない点である。
その理由を以下に述べる。各トランジスタにおける端子間の電位差は、各トランジスタの耐圧であるVDD以下である必要がある。スイッチング増幅器600の出力電圧を上げるために、各トランジスタまたはCMOSインバータへ高電圧が入力された場合、この電位差はVDDを超えてしまう(すなわち、トランジスタは破綻する)。また、トランジスタの破綻を防ぐために、各トランジスタが高耐圧のものへ変更されるとともに、各トランジスタまたはCMOSインバータへ高電圧が入力された場合、スイッチング増幅器600の消費電力は増加してしまう。以上の理由により、スイッチング増幅器600は、消費電力を抑えつつ、VDDの3倍を超える電圧を出力することができない。
本発明の目的は、スイッチング増幅器が、消費電力を抑えつつ、VDDの3倍を超える電圧振幅を出力することである。
本発明の一態様におけるスイッチング増幅器は、第1のPMOSトランジスタを含む第1のCMOSインバータ回路と、前記第1のPMOSトランジスタと直列に接続される第2のPMOSトランジスタと、を備え、前記第2のPMOSトランジスタのゲート端子の入力電圧が変化する。
本発明における効果は、スイッチング増幅器が、消費電力を抑えつつ、VDDの3倍を超える電圧振幅を出力できる点である。
図1は、本発明の第1の実施の形態におけるスイッチング増幅器100の構成を示す回路図である。 図2は、本発明の第2の実施の形態におけるスイッチング増幅器200の構成を示す回路図である。 図3は、本発明の第3の実施の形態におけるスイッチング増幅器300の構成を示す回路図である。 図4は、本発明の第4の実施の形態におけるスイッチング増幅器400の構成を示すブロック図である。 図5は、一般的なCOMSインバータ回路によるスイッチング回路500の構成を示す回路図である。 図6は、非特許文献1に記載のスイッチング増幅器600の構成を示す回路図である。
次に、本発明を実施するための形態について図面を参照して詳細に説明する。なお、各図面及び明細書記載の各実施の形態において、同様の機能を備える構成要素には同様の符号が与えられている。
[第1の実施の形態]
図1は、本発明の第1の実施の形態におけるスイッチング増幅器100の構成を示す回路図である。
図1を参照すると、本発明の第1の実施の形態におけるスイッチング増幅器100は、PMOSトランジスタMP11およびNMOSトランジスタMN11から構成されるCMOSインバータ101と、PMOSトランジスタMP12と、NMOSトランジスタMN12と、を備える。スイッチング増幅器100の出力は、CMOSインバータ101の出力である。CMOSインバータ101は、図5に示したスイッチング回路500を構成するCMOSインバータ回路と同様の構成であるため、詳細な説明は省略される。
第1の実施の形態におけるスイッチング増幅器100は、PMOSトランジスタMP12およびNMOSトランジスタMN12のゲート端子への入力電圧をそれぞれ変化させる。これによって、スイッチング増幅器100は、各トランジスタ(MP11、MP12、MN11およびMN12)を耐圧(絶縁破壊電圧またはブレークダウン電圧を意味する。以下、VDDと表記する。)の範囲内で動作させつつ、高電圧を出力することができる。すなわち、スイッチング増幅器100は、消費電力を抑えつつ、VDDの3倍を超える電圧振幅を出力可能である。
以下、第1の実施の形態におけるスイッチング増幅器100が備える各構成要素について説明する。
CMOSインバータ101は、PMOSトランジスタMP11およびNMOSトランジスタMN11から構成される。CMOSインバータ101の入力端子は、可変の電圧を供給する信号入力1に接続される。CMOSインバータ101の出力端子は、スイッチング増幅器100の出力である信号出力1に接続される。CMOSインバータ101は、信号入力1とPMOSトランジスタMP11およびNMOSトランジスタMN11のソース端子に入力される信号との値に基づいて、出力する電圧を変化させる。
PMOSトランジスタMP12は、PMOSトランジスタMP11に直列に接続される。すなわち、PMOSトランジスタMP12のドレイン端子は、PMOSトランジスタMP11のソース端子に接続される。PMOSトランジスタMP12のゲート端子は、可変の電圧を供給する信号入力2に接続される。また、PMOSトランジスタMP12のソース端子は、可変の電圧を供給する信号入力3に接続される。
NMOSトランジスタMN12は、NMOSトランジスタMN11に直列に接続される。すなわち、NMOSトランジスタMN12のドレイン端子は、NMOSトランジスタMN11のソース端子に接続される。NMOSトランジスタMN12のゲート端子は、可変の電圧を供給する信号入力4に接続される。また、NMOSトランジスタMN12のソース端子は、可変の電圧を供給する信号入力5に接続される。
本実施の形態において、信号入力1が供給する電圧はVDD×1〜VDD×3、信号入力2が供給する電圧はVDD×2〜VDD×3、信号入力3が供給する電圧はVDD×2〜VDD×4、信号入力4が供給する電圧はVDD×1〜VDD×2、信号入力5が供給する電圧は0V〜VDD×2である。
本実施の形態において、CMOSインバータ101は、0V〜VDD×4の電圧を出力する。すなわち、スイッチング増幅器100は、VDDの3倍を超える、VDD×4の電圧振幅を出力可能である。
以下、表1を参照し、図1の動作について説明する。
Figure 2017130878
まず、スイッチング増幅器100の出力がハイレベル、すなわち、信号出力1またはCMOSインバータ101の出力が、CMOSインバータ101においてハイレベルであるVDDの4倍の電圧(VDD×4)の場合(条件1)について説明する。
信号入力3またはPMOSトランジスタMP12のソース端子への入力は、VDDの4倍の電圧(VDD×4)であり、信号入力2またはPMOSトランジスタMP12のゲート端子への入力は、VDDの3倍の電圧(VDD×3)である。このとき、PMOSトランジスタMP12は導通状態となるため、PMOSトランジスタMP12においてハイレベルであるVDD×4がPMOSトランジスタMP11のソース端子へ入力される。
信号入力5またはNMOSトランジスタMN12のソース端子への入力は、VDDの2倍の電圧(VDD×2)であり、信号入力4またはNMOSトランジスタMN12のゲート端子への入力は、VDDの2倍の電圧(VDD×2)である。このとき、NMOSトランジスタMN12およびNMOSトランジスタMN11は非導通状態となる。したがって、NMOSトランジスタMN12−NMOSトランジスタMN11間には、スイッチング増幅器100の出力電圧であるVDD×4と、NMOSトランジスタMN12のソース端子への入力電圧であるVDD×2との差電圧が分圧された電位が加わる。つまり、NMOSトランジスタMN12−NMOSトランジスタMN11間にはVDDの3倍の電圧(VDD×3)が供給される。
信号入力1またはCMOSインバータ101への入力は、CMOSインバータ101においてローレベルであるVDDの3倍の電圧(VDD×3)であり、NMOSトランジスタMN11のソース端子への入力は、VDDの3倍の電圧(VDD×3)である。このとき、PMOSトランジスタMP11が導通状態、NMOSトランジスタMN11が非導通状態となるため、CMOSインバータ101は、CMOSインバータ101においてハイレベルであるVDD×4を、信号出力1として出力する。つまり、スイッチング増幅器100の出力がハイレベルである条件1において、スイッチング増幅器100で使用する各トランジスタの端子間には差電圧としてVDDの1倍(VDD×1)以上の電圧が加わることはない。すなわち、スイッチング増幅器100で使用する各トランジスタは、高電圧を供給されても耐圧内で動作することができる。したがって、スイッチング増幅器100は、消費電力を抑えつつ、VDDの3倍を超える電圧振幅を出力できる。
次に、スイッチング増幅器100の出力がローレベル、すなわち、信号出力1またはCMOSインバータ101の出力が、CMOSインバータ101においてローレベルである接地電圧(0V)の場合(条件2)について説明する。
信号入力3またはPMOSトランジスタMP12のソース端子への入力は、VDDの2倍の電圧(VDD×2)であり、信号入力2またはPMOSトランジスタMP12のゲート端子への入力は、VDDの2倍の電圧(VDD×2)である。このとき、PMOSトランジスタMP12およびPMOSトランジスタMP11は非導通状態となる。したがって、PMOSトランジスタMP12−PMOSトランジスタMP11間には、スイッチング増幅器100の出力電圧である接地電圧(0V)と、PMOSトランジスタMP12のソース端子への入力電圧であるVDD×2との差電圧が分圧された電位が加わる。つまり、PMOSトランジスタMP12−PMOSトランジスタMP11間には、VDDの1倍の電圧(VDD×1)が供給される。
信号入力5またはNMOSトランジスタMN12のソース端子への入力は、接地電圧(0V)であり、信号入力4またはNMOSトランジスタMN12のゲート端子への入力は、VDDの1倍の電圧(VDD×1)である。このとき、NMOSトランジスタMN12は導通状態となるため、PMOSトランジスタMP12においてローレベルである0VがPMOSトランジスタMP11のソース端子へ入力される。
信号入力1またはCMOSインバータ101への入力は、CMOSインバータ101においてハイレベルであるVDDの1倍の電圧(VDD×1)であり、NMOSトランジスタMN11のソース端子への入力は0Vである。このとき、PMOSトランジスタMP11が非導通状態、NMOSトランジスタMN11が導通状態となるため、CMOSインバータ101は、CMOSインバータ101においてローレベルである0Vを、信号出力1として出力する。
第1の実施の形態におけるスイッチング増幅器100は、最終段の信号出力部にCMOSインバータ101を設ける。すなわち、スイッチング増幅器100の信号出力1は、CMOSインバータ101の出力に等しい。CMOSインバータ101が有するPMOSトランジスタMP11は、PMOSトランジスタMP12と直列に接続されている。同様に、CMOSインバータ101が有するNMOSトランジスタMN11は、NMOSトランジスタMN12と直列に接続されている。このPMOSトランジスタMP12およびNMOSトランジスタMN12のゲート端子に可変電圧が供給されることによって、スイッチング増幅器100は、各トランジスタ(MP11、MP12、MN11およびMN12)を耐圧の範囲内で動作させつつ、高電圧を出力することができる。すなわち、スイッチング増幅器100は、消費電力を抑えつつ、VDDの3倍を超える電圧振幅を出力可能である。本実施の形態において、スイッチング増幅器100は、VDDの4倍の電圧振幅を出力可能である。しかし、当然のことながら、スイッチング増幅器100は信号入力1乃至信号入力5の値を変更することによって、より大きな電圧振幅を出力可能である。
[第2の実施の形態]
図2は、本発明の第2の実施の形態におけるスイッチング増幅器200の構成を示す回路図である。
図2を参照すると、スイッチング増幅器200は、第1の実施の形態のスイッチング増幅器100の構成に加えて、CMOSインバータ202と、CMOSインバータ203と、PMOSトランジスタMP23と、NMOSトランジスタMN23と、を備える。CMOSインバータ202は、PMOSトランジスタMP24およびNMOSトランジスタMN24から構成される。CMOSインバータ203は、PMOSトランジスタMP25およびNMOSトランジスタMN25から構成される。CMOSインバータ202およびCMOSインバータ203は、図5に示したスイッチング回路500を構成するCMOSインバータ回路と同様の構成であるため、詳細な説明は省略される。
第2の実施の形態におけるスイッチング増幅器200は、第1の実施の形態における信号入力3および信号入力5を実現するための構成が具体的に示されている点で、第1の実施の形態のスイッチング増幅器100と相違する。すなわち、第2の実施の形態では、VDD×2〜VDD×4の電圧をPMOSトランジスタMP12のソース端子に供給するための構成、および0V〜VDD×2の電圧をNMOSトランジスタMN12のソース端子に供給するための構成が説明される。
以下、第2の実施の形態におけるスイッチング増幅器200が備える各構成要素について説明する。ただし、第1の実施の形態と重複する部分の説明は省略される。
PMOSトランジスタMP23は、PMOSトランジスタMP12に直列に接続される。すなわち、PMOSトランジスタMP23のドレイン端子は、PMOSトランジスタMP12のソース端子に接続される。PMOSトランジスタMP23のゲート端子には、VDD×3の電圧が供給される。
PMOSトランジスタMP23とPMOSトランジスタMP12とPMOSトランジスタMP11とは、この順に直列に接続されており、3段の縦積みPMOSトランジスタ群210を構成する。本実施の形態では、信号出力1からVDD×4の電圧振幅を出力するため、縦積みPMOSトランジスタ群210は3段で構成される。つまり、信号出力1からVDD×Nの電圧振幅を出力する場合、縦積みPMOSトランジスタ群210は、(N−1)段で構成される。
CMOSインバータ202は、PMOSトランジスタMP24およびNMOSトランジスタMN24から構成される。CMOSインバータ202の入力端子は、可変の電圧を供給する信号入力6に接続される。CMOSインバータ202の出力端子は、PMOSトランジスタMP23のソース端子に接続される。PMOSトランジスタMP24のソース端子には、VDD×4の電圧が供給される。NMOSトランジスタMN24のソース端子には、VDD×3の電圧が供給される。CMOSインバータ202は、信号入力5の値に基づいて、出力する電圧を変化させる。
NMOSトランジスタMN23は、NMOSトランジスタMN12に直列に接続される。すなわち、NMOSトランジスタMN23のドレイン端子は、NMOSトランジスタMN12のソース端子に接続される。NMOSトランジスタMN23のゲート端子には、VDD×1の電圧が供給される。
NMOSトランジスタMN23とNMOSトランジスタMN12とNMOSトランジスタMN11とは、この順に直列に接続されており、3段の縦積みNMOSトランジスタ群220を構成する。本実施の形態では、信号出力1からVDD×4の電圧振幅を出力するため、縦積みNMOSトランジスタ群220は3段で構成される。つまり、信号出力1からVDD×Nの電圧振幅を出力する場合、縦積みNMOSトランジスタ群220は、(N−1)段で構成される。
CMOSインバータ203は、PMOSトランジスタMP25およびNMOSトランジスタMN25から構成される。CMOSインバータ203の入力端子は、可変の電圧を供給する信号入力7に接続される。CMOSインバータ203の出力端子は、NMOSトランジスタMN23のソース端子に接続される。NMOSトランジスタMN25のソース端子には、0Vの電圧が供給される。PMOSトランジスタMP25のソース端子には、VDD×1の電圧が供給される。CMOSインバータ203は、信号入力7の値に基づいて、出力する電圧を変化させる。
本実施の形態において、信号入力6が供給する電圧はVDD×3〜VDD×4、信号入力7が供給する電圧は0V〜VDD×1である。
本実施の形態において、CMOSインバータ101は、0V〜VDD×4の電圧を出力する。すなわち、スイッチング増幅器200は、VDDの3倍を超える、VDD×4の電圧振幅を出力可能である。
以下、表2を参照し、図2の動作について説明する。ただし、表1と同様の動作の説明は省略される。
Figure 2017130878
まず、スイッチング増幅器200の出力がハイレベル、すなわち、信号出力1またはCMOSインバータ101の出力が、CMOSインバータ101においてハイレベルであるVDDの4倍の電圧(VDD×4)の場合(条件1)について説明する。
信号入力6すなわちCMOSインバータ202への入力は、CMOSインバータ202においてローレベルであるVDDの3倍の電圧(VDD×3)であり、PMOSトランジスタMP24のソース端子への入力がVDDの4倍の電圧(VDD×4)、NMOSトランジスタMN24のソース端子への入力がVDDの3倍の電圧(VDD×3)である。このとき、PMOSトランジスタMP24は導通状態、NMOSトランジスタMN24は非導通状態となるため、CMOSインバータ202においてハイレベルであるVDD×4がPMOSトランジスタMP23のソース端子へ入力される。
PMOSトランジスタMP23のゲート端子への入力は、VDDの3倍の電圧(VDD×3)である。このとき、PMOSトランジスタMP23は導通状態となるため、PMOSトランジスタMP23においてハイレベルであるVDD×4がPMOSトランジスタMP12のソース端子に入力される。
信号入力7またはCMOSインバータ203への入力は、CMOSインバータ203においてローレベルである接地電圧(0V)であり、PMOSトランジスタMP25のソース端子への入力がVDDの1倍の電圧(VDD×1)、NMOSトランジスタMN25のソース端子への入力が接地電圧(0V)である。このとき、PMOSトランジスタMP25は導通状態、NMOSトランジスタMN25は非導通状態となるため、CMOSインバータ203においてハイレベルであるVDD×1がNMOSトランジスタMN23のソース端子へ入力される。
NMOSトランジスタMN23のゲート端子への入力は、VDDの1倍の電圧(VDD×1)である。このとき、NMOSトランジスタMN23、NMOSトランジスタMN12およびNMOSトランジスタMN11は全て非導通状態となる。したがって、各トランジスタ間には、スイッチング増幅器200の出力電圧であるVDD×4とCMOSインバータ203の出力電圧であるVDD×1との差電圧が分圧された電位が加わる。つまり、NMOSトランジスタMN23−NMOSトランジスタMN12間にはVDDの2倍の電圧(VDD×2)が供給され、NMOSトランジスタMN12−NMOSトランジスタMN11間にはVDDの3倍の電圧(VDD×3)が供給される。
次に、スイッチング増幅器200の出力がローレベル、すなわち、信号出力1またはCMOSインバータ101の出力が、CMOSインバータ101においてローレベルである接地電圧(0V)の場合(条件2)について説明する。
信号入力6またはCMOSインバータ202への入力は、CMOSインバータ202においてハイレベルであるVDDの4倍の電圧(VDD×4)であり、PMOSトランジスタMP24への入力がVDDの4倍の電圧(VDD×4)、NMOSトランジスタMN24への入力がVDDの3倍の電圧(VDD×3)である。このとき、PMOSトランジスタMP24は非導通状態、NMOSトランジスタMN24は導通状態となるため、CMOSインバータ202においてローレベルであるVDD×3がPMOSトランジスタMP23のソース端子へ入力される。
PMOSトランジスタMP23のゲート端子への入力は、VDDの3倍の電圧(VDD×3)である。このとき、PMOSトランジスタMP23、PMOSトランジスタMP12およびPMOSトランジスタMP11は全て非導通状態となる。したがって、各トランジスタ間には、スイッチング増幅器200の出力電圧である0VとCMOSインバータ202の出力電圧であるVDD×3との差電圧が分圧された電位が加わる。つまり、PMOSトランジスタMP23−PMOSトランジスタMP12間にはVDDの2倍の電圧(VDD×2)、PMOSトランジスタMP12−PMOSトランジスタMP11間にはVDDの1倍の電圧(VDD×1)が供給される。
信号入力7またはCMOSインバータ203への入力は、CMOSインバータ203においてハイレベルであるVDDの1倍の電圧(VDD×1)であり、PMOSトランジスタMP25のソース端子への入力がVDDの1倍の電圧(VDD×1)、NMOSトランジスタMN25のソース端子への入力が接地電圧(0V)である。このとき、PMOSトランジスタMP25は非導通状態、NMOSトランジスタMN25は導通状態となるため、CMOSインバータ203においてローレベルである0VがNMOSトランジスタMN23のソース端子へ入力される。
NMOSトランジスタMN23のゲート端子への入力は、VDDの1倍の電圧(VDD×1)である。このとき、NMOSトランジスタMN23は導通状態となるため、NMOSトランジスタMN23においてローレベルである0VがNMOSトランジスタMN12のソース端子に入力される。
第2の実施の形態におけるスイッチング増幅器200は、上記の構成によって、VDD×2〜VDD×4の電圧をPMOSトランジスタMP12のソース端子に供給する構成、および0V〜VDD×2の電圧をNMOSトランジスタMN12のソース端子に供給する構成を実現し、かつ、スイッチング増幅器200が使用する各トランジスタ(MP11、MP12、MP23乃至MP25、MN11、MN12およびMN23乃至MN25)を耐圧の範囲内で動作させることができる。すなわち、スイッチング増幅器200は、消費電力を抑えつつ、VDDの3倍を超える電圧振幅(本実施の形態ではVDD×4)を出力可能である。
[第3の実施の形態]
図3は、本発明の第3の実施の形態におけるスイッチング増幅器300の構成を示す回路図である。
図3を参照すると、スイッチング増幅器300は、第2の実施の形態のスイッチング増幅器200の構成に加えて、CMOSインバータ304と、CMOSインバータ305と、CMOSインバータ306と、を備える。CMOSインバータ304は、PMOSトランジスタMP36およびNMOSトランジスタMN36から構成され、CMOSインバータ305は、PMOSトランジスタMP37およびNMOSトランジスタMN37から構成され、CMOSインバータ306は、PMOSトランジスタMP38およびNMOSトランジスタMN38から構成される。CMOSインバータ304乃至306各々は、図5に示したスイッチング回路500を構成するCMOSインバータ回路と同様の構成であるため、詳細な説明は省略される。
第3の実施の形態におけるスイッチング増幅器300は、第2の実施の形態における信号入力2と信号入力1と信号入力4とを実現するための構成が具体的に示されている点で、第2の実施の形態のスイッチング増幅器200と相違する。すなわち、第3の実施の形態では、VDD×2〜VDD×3の電力をPMOSトランジスタMP12のゲート端子に供給するための構成と、VDD×1〜VDD×3の電力をCMOSインバータ101に供給するための構成と、VDD×1〜VDD×2の電力をNMOSトランジスタMN12のゲート端子に供給するための構成と、が説明される。
以下、第3の実施の形態におけるスイッチング増幅器300が備える各構成要素について説明する。ただし、第2の実施の形態と重複する部分の説明は省略される。
CMOSインバータ304は、PMOSトランジスタMP36およびNMOSトランジスタMN36から構成される。CMOSインバータ304の入力端子は、可変の電圧を供給する信号入力8に接続される。CMOSインバータ304の出力端子は、PMOSトランジスタMP12のゲート端子およびPMOSトランジスタMP37のソース端子(後述)に接続される。PMOSトランジスタMP36のソース端子には、VDD×3の電圧が供給される。NMOSトランジスタMN36のソース端子には、VDD×2の電圧が供給される。CMOSインバータ304は、信号入力8の値に基づいて、出力する電圧を変化させる。
CMOSインバータ305は、PMOSトランジスタMP37およびNMOSトランジスタMN37から構成される。CMOSインバータ305の入力端子には、VDD×2の電圧が供給される。CMOSインバータ305の出力端子は、CMOSインバータ101の入力端子に接続される。PMOSトランジスタMP37のソース端子にはCMOSインバータ304の出力電圧が供給される。NMOSトランジスタMN37のソース端子には、CMOSインバータ306(後述)の出力電圧が供給される。CMOSインバータ305は、PMOSトランジスタMP37およびNMOSトランジスタMN37のソース端子に入力される信号の値に基づいて、出力する電圧を変化させる。
CMOSインバータ306は、PMOSトランジスタMP38およびNMOSトランジスタMN38から構成される。CMOSインバータ306の入力端子は、可変の電圧を供給する信号入力9に接続される。CMOSインバータ306の出力端子は、NMOSトランジスタMN12のゲート端子およびNMOSトランジスタMN37のソース端子に接続される。PMOSトランジスタMP38のソース端子には、VDD×2の電圧が供給される。NMOSトランジスタMN38のソース端子には、VDD×1の電圧が供給される。CMOSインバータ306は、信号入力9の値に基づいて、出力する電圧を変化させる。
本実施の形態において、信号入力8が供給する電圧はVDD×2〜VDD×3、信号入力9が供給する電圧はVDD×1〜VDD×2である。
本実施の形態において、CMOSインバータ101は、0V〜VDD×4の電圧を出力する。すなわち、スイッチング増幅器100は、VDDの3倍を超える、VDD×4の電圧振幅を出力可能である。
以下、表3を参照し、図3の動作について説明する。ただし、表1または表2と同様の動作の説明は省略される。
Figure 2017130878
まず、スイッチング増幅器300の出力がハイレベル、すなわち、信号出力1またはCMOSインバータ101の出力が、CMOSインバータ101においてハイレベルであるVDDの4倍の電圧(VDD×4)の場合(条件1)について説明する。
信号入力8またはCMOSインバータ304への入力は、CMOSインバータ304においてローレベルであるVDDの2倍の電圧(VDD×2)であり、PMOSトランジスタMP36のソース端子への入力がVDDの3倍の電圧(VDD×3)、NMOSトランジスタMN36のソース端子への入力がVDDの2倍の電圧(VDD×2)である。このとき、PMOSトランジスタMP36は導通状態、NMOSトランジスタMN36は非導通状態となるため、CMOSインバータ304においてハイレベルであるVDD×3が、PMOSトランジスタMP12のゲート端子およびPMOSトランジスタMP37のソース端子へ入力される。
CMOSインバータ305への入力は、CMOSインバータ305においてローレベルであるVDDの2倍の電圧(VDD×2)であり、PMOSトランジスタMP37のソース端子への入力がVDDの3倍の電圧(VDD×3)、NMOSトランジスタMN37のソース端子への入力がVDDの2倍の電圧(VDD×2)である。このとき、PMOSトランジスタMP37は導通状態、NMOSトランジスタMN37は非導通状態となるため、CMOSインバータ305においてハイレベルであるVDD×3がCMOSインバータ101へ入力される。
信号入力9またはCMOSインバータ306への入力は、CMOSインバータ306においてローレベルであるVDDの1倍の電圧(VDD×1)であり、PMOSトランジスタMP38のソース端子への入力がVDDの2倍の電圧(VDD×2)、NMOSトランジスタMN38のソース端子への入力がVDDの1倍の電圧(VDD×1)である。このとき、PMOSトランジスタMP38は導通状態、NMOSトランジスタMN38は非導通状態となるため、CMOSインバータ306においてハイレベルであるVDD×2がNMOSトランジスタMN12のゲート端子およびNMOSトランジスタMN37のソース端子へ入力される。
次に、スイッチング増幅器300の出力がローレベル、すなわち、信号出力1またはCMOSインバータ101の出力が、CMOSインバータ101においてローレベルである接地電圧(0V)の場合(条件2)について説明する。
信号入力8またはCMOSインバータ304への入力は、CMOSインバータ304においてハイレベルであるVDDの3倍の電圧(VDD×3)であり、PMOSトランジスタMP36のソース端子への入力がVDDの3倍の電圧(VDD×3)、NMOSトランジスタMN36のソース端子への入力がVDDの2倍の電圧(VDD×2)である。このとき、PMOSトランジスタMP36は非導通状態、NMOSトランジスタMN36は導通状態となるため、CMOSインバータ304においてローレベルであるVDD×2が、PMOSトランジスタMP12のゲート端子およびPMOSトランジスタMP37のソース端子へ入力される。
CMOSインバータ305への入力は、CMOSインバータ305においてハイレベルであるVDDの2倍の電圧(VDD×2)であり、PMOSトランジスタMP37のソース端子への入力がVDDの2倍の電圧(VDD×2)、NMOSトランジスタMN37のソース端子への入力がVDDの電圧(VDD×1)である。このとき、PMOSトランジスタMP37は非導通状態、NMOSトランジスタMN37は導通状態となるため、CMOSインバータ305においてローレベルであるVDD×1がCMOSインバータ101へ入力される。
信号入力9またはCMOSインバータ306への入力は、CMOSインバータ306においてハイレベルであるVDDの2倍の電圧(VDD×2)であり、PMOSトランジスタMP38のソース端子への入力がVDDの2倍の電圧(VDD×2)、NMOSトランジスタMN38のソース端子への入力がVDDの1倍の電圧(VDD×1)である。このとき、PMOSトランジスタMP38は非導通状態、NMOSトランジスタMN38は導通状態となるため、CMOSインバータ306においてローレベルであるVDD×1がNMOSトランジスタMN12のゲート端子およびNMOSトランジスタMN37のソース端子へ入力される。
NMOSトランジスタMN23のゲート端子への入力はVDD×1である。このとき、NMOSトランジスタMN23は導通状態となるため、0VがNMOSトランジスタMN12のソース端子へ入力される。
第3の実施の形態におけるスイッチング増幅器300は、上記の構成によって、VDD×2〜VDD×3の電圧をPMOSトランジスタMP12のゲート端子に供給する構成、VDD×1〜VDD×3の電圧をCMOSインバータ101に入力する構成、およびVDD×1〜VDD×2の電圧をNMOSトランジスタMN12のゲート端子に供給する構成を実現し、かつ、スイッチング増幅器300が使用する各トランジスタ(MP11、MP12、MP23乃至MP25、MP36乃至MP38、MN11、MN12、MN23乃至MN25およびMN36乃至MN38)を耐圧の範囲内で動作させることができる。すなわち、スイッチング増幅器300は、消費電力を抑えつつ、VDDの3倍を超える電圧振幅(本実施の形態ではVDD×4)を出力可能である。
[第4の実施の形態]
図4は、本発明の第4の実施の形態におけるスイッチング増幅器400の構成を示すブロック図である。
図4を参照すると、スイッチング増幅器400は、第3の実施の形態のスイッチング増幅器300の構成に加えて、遅延調整回路41乃至44を備える。
遅延調整回路41乃至44は、信号入力10乃至13の遅延量ΔTをそれぞれ調整し、信号入力10乃至13のスキューを低減させる。遅延調整回路41乃至44は、信号入力10乃至13のスキューを調整した後の信号である信号入力6、8、9および7をそれぞれスイッチング増幅器300に入力する。
本実施の形態において、遅延調整回路は信号入力10乃至13各々に対して1つ備えられるものとした。しかし、遅延調整回路の構成はこれに限定されない。例えば、遅延調整回路は、多入力多出力型のものを1つ備える構成としてもよいし、遅延調整回路41乃至44のうち少なくとも1つが備えられる構成としてもよい。
第4の実施の形態におけるスイッチング増幅器400は、第1乃至第3の実施の形態と同様に、消費電力を抑えつつ、VDDの3倍を超える電圧振幅(本実施の形態ではVDD×4)を出力可能である。さらに、スイッチング増幅器400は、遅延調整回路を備えることによって信号入力のスキューを低減できるため、高速なスイッチング動作を実現できる。
以上、各実施の形態および具体例を参照して本発明を説明したが、本発明は上記実施の形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しえる様々な変更をすることができる。
また、本発明の各実施の形態における各構成要素は、その機能をハードウェア的に実現することはもちろん、コンピュータとプログラムとで実現することができる。プログラムは、磁気ディスクや半導体メモリなどのコンピュータ可読記録媒体に記録されて提供され、コンピュータの立ち上げ時などにコンピュータに読み取られる。この読み取られたプログラムは、そのコンピュータの動作を制御することにより、そのコンピュータを前述した各実施の形態における構成要素として機能させる。
この出願は、2016年1月26日に出願された日本出願特願2016−11979号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
本発明の活用例として、消費電力を抑えつつ、VDDの3倍を超える電圧振幅を出力できるスイッチング増幅器がある。
100、200、300、400 スイッチング増幅器
101、202、203、304、305、306 CMOSインバータ
MP11、MP12、MP23〜MP25、MP36〜MP38 PMOSトランジスタ
MN11、MN12、MN23〜MN25、MN36〜MN38 NMOSトランジスタ
210 縦積みPMOSトランジスタ群
220 縦積みNMOSトランジスタ群
41、42、43、44 遅延調整回路

Claims (6)

  1. 第1のPMOSトランジスタを含む第1のCMOSインバータ回路と、
    第2のPMOSトランジスタと、を備え、
    前記第1のPMOSトランジスタのソース端子と前記第2のPMOSトランジスタのドレイン端子とが接続され、
    前記第2のPMOSトランジスタのゲート端子への入力信号が変化することを特徴とするスイッチング増幅器。
  2. 第3のPMOSトランジスタと、
    第2のCMOSインバータ回路と、をさらに備え、
    前記第2のPMOSトランジスタのソース端子と前記第3のPMOSトランジスタのドレイン端子とが接続され、
    前記第3のPMOSトランジスタのソース端子と前記第2のCMOSインバータ回路の出力端子とが接続されることを特徴とする請求項1に記載のスイッチング増幅器。
  3. 第3のCMOSインバータ回路と、
    第4のPMOSトランジスタを含む第4のCMOSインバータ回路と、をさらに備え、
    前記第3のCMOSインバータ回路の出力端子は、前記第2のPMOSトランジスタのゲート端子および前記第4のPMOSトランジスタのソース端子に接続され、
    前記第4のCMOSインバータ回路の出力端子は、前記第1のCMOSインバータ回路の入力端子に接続されることを特徴とする請求項2に記載のスイッチング増幅器。
  4. 前記第2のCMOSインバータ回路および前記第3のCMOSインバータ回路への入力信号が変化することを特徴とする請求項3に記載のスイッチング増幅器。
  5. 第2のNMOSトランジスタと、
    第3のNMOSトランジスタと、
    第5のCMOSインバータ回路と、
    第6のCMOSインバータ回路と、をさらに備え、
    前記第1のCMOSインバータ回路は第1のNMOSトランジスタをさらに含み、
    前記第1のNMOSトランジスタのソース端子と前記第2のNMOSトランジスタのドレイン端子とが接続され、
    前記第2のNMOSトランジスタのソース端子と前記第3のNMOSトランジスタのドレイン端子とが接続され、
    前記第3のNMOSトランジスタのソース端子と前記第5のCMOSインバータ回路の出力端子とが接続され、
    前記第4のCMOSインバータ回路は第4のNMOSトランジスタをさらに含み、
    前記第6のCMOSインバータ回路の出力端子は、前記第2のNMOSトランジスタのゲート端子および前記第4のNMOSトランジスタのソース端子に接続されることを特徴とする請求項3に記載のスイッチング増幅器。
  6. 1または複数の遅延調整回路をさらに備え、
    前記1または複数の遅延調整回路各々の出力は、前記第2、前記第3、前記第5または前記第6のCMOSインバータ回路の少なくともいずれか1つに入力されることを特徴とする請求項5に記載のスイッチング増幅器。
JP2017564225A 2016-01-26 2017-01-23 スイッチング増幅器 Pending JPWO2017130878A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016011979 2016-01-26
JP2016011979 2016-01-26
PCT/JP2017/002053 WO2017130878A1 (ja) 2016-01-26 2017-01-23 スイッチング増幅器

Publications (1)

Publication Number Publication Date
JPWO2017130878A1 true JPWO2017130878A1 (ja) 2018-11-15

Family

ID=59397855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017564225A Pending JPWO2017130878A1 (ja) 2016-01-26 2017-01-23 スイッチング増幅器

Country Status (2)

Country Link
JP (1) JPWO2017130878A1 (ja)
WO (1) WO2017130878A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240088845A1 (en) * 2022-09-13 2024-03-14 Qualcomm Incorporated High voltage driver for digital power amplifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074191A (ja) * 2005-09-06 2007-03-22 Fujitsu Ltd 半導体装置
JP4987292B2 (ja) * 2005-12-20 2012-07-25 ティーピーオー、ホンコン、ホールディング、リミテッド 回路装置
US7868657B1 (en) * 2009-07-22 2011-01-11 Qualcomm, Incorporated High voltage logic circuits

Also Published As

Publication number Publication date
WO2017130878A1 (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
US10664430B2 (en) Reconfigurable transmitter
US9484888B2 (en) Linear resistor with high resolution and bandwidth
US9024665B2 (en) Transmitter with voltage and current mode drivers
US7391825B2 (en) Comparator circuit having reduced pulse width distortion
JP5580350B2 (ja) ドライバ回路
CN106716942B (zh) 用于数字地消除串扰的装置和方法
US9209821B2 (en) Apparatus for generating quadrature clock phases from a single-ended odd-stage ring oscillator
US8963638B2 (en) Operational amplifier circuit
US8957708B2 (en) Output buffer and semiconductor device
EP3041141B1 (en) I/o driving circuit and control signal generating circuit
WO2017130878A1 (ja) スイッチング増幅器
US9621163B2 (en) Current steering level shifter
WO2015094198A1 (en) Low power electrostatic discharge robust linear driver
US10404312B2 (en) Signal processing apparatus
US10348538B2 (en) Transmitter performing an equalizing operation
JP6845680B2 (ja) アナログスイッチ回路
CN108736878B (zh) 电压电平移位器
JP6340191B2 (ja) 電力増幅器
WO2019118199A1 (en) Amplifier having a switchable current bias circuit
US11677359B2 (en) Circuit which reuses current to synthesize negative impedance
US20130135037A1 (en) Voltage multiplying circuit, signal switch chip and impedance adjusting method thereof
JP2011239184A (ja) 差動増幅回路及びそれを用いたレベル変換回路
JP2018078362A (ja) 増幅回路、送信回路及び駆動電流生成方法
JP2015119230A (ja) パルス信号生成装置