JPWO2017068789A1 - 反射防止フィルムおよび機能性ガラス - Google Patents

反射防止フィルムおよび機能性ガラス Download PDF

Info

Publication number
JPWO2017068789A1
JPWO2017068789A1 JP2017546410A JP2017546410A JPWO2017068789A1 JP WO2017068789 A1 JPWO2017068789 A1 JP WO2017068789A1 JP 2017546410 A JP2017546410 A JP 2017546410A JP 2017546410 A JP2017546410 A JP 2017546410A JP WO2017068789 A1 JPWO2017068789 A1 JP WO2017068789A1
Authority
JP
Japan
Prior art keywords
layer
refractive index
silver
antireflection film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017546410A
Other languages
English (en)
Inventor
英正 細田
英正 細田
直希 小糸
直希 小糸
亮 松野
亮 松野
安田 英紀
英紀 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2017068789A1 publication Critical patent/JPWO2017068789A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

【課題】耐久性の高い反射防止フィルムおよび反射防止フィルムを備えた機能性ガラスを提供する。(10)と、透明基材(10)の一面側に設けられた反射防止層(30)と、透明基材(10)と反射防止層(30)との間に備えられた、ハードコート層(20)とを備え、 反射防止層(30)が、ハードコート層(20)側から、ハードコート層(20)の屈折率よりも大きい屈折率を有する高屈折率層(32)、バインダー(33)中に複数の銀ナノディスク(35)が分散されてなる銀ナノディスク層(36)、および高屈折率層(32)の屈折率よりも小さい屈折率を有する低屈折率層(38)をこの順に積層してなる。【選択図】図1

Description

本発明は、入射光に対する反射防止機能を有する反射防止フィルムおよびその反射防止フィルムが付与されてなる機能性ガラスに関するものである。
従来、ディスプレイのガラス面には、外部の光源や風景が映り込むことによる視認性の低下を防止するため、透明基材上に反射防止膜を備えた反射防止フィルムが付与されている。そのような可視光に対する反射防止膜としては、誘電体多層膜や、多層膜中に金属微粒子層からなる可視光波長吸収層などを備えた構成が知られている。
特許文献1には、反射防止フィルムとして、透明基材上に金属の平板粒子、特には銀ナノディスクを含有する金属微粒子含有層と誘電体層との積層体を備えたものが提案されている。かかる反射防止フィルムによれば、広帯域における低反射防止効果を得ることができる。
一方、特許文献2には、透明支持体上に反射防止機能層がハードコート層を介して備えられた構成の反射防止フィルムが開示されている。特許文献2において、ハードコート層は透明支持体の耐傷性を改善するために配置されるものであり、ハードコート層の機械的性能を改良して変形の少ない耐傷性支持体を提供する手法が提案されている。
特開2015−129909号公報 特開2001−310423号公報
特許文献1に記載の銀ナノディスクを含有する金属微粒子含有層と誘電体層との積層体を備えた反射防止フィルムは少ない積層数で非常に低い反射率を達成する技術である。
一方で、本発明者らが、特許文献1に記載の反射防止フィルムについて窓用フィルムとして用いる際の水拭きを想定した水介在時の耐擦傷性評価を行ったところ、剥がれの問題が生じていることが分かった。また、屋外への施行を想定した耐光試験の結果、長時間太陽光に曝された場合、反射防止フィルムが白濁し、透明性が低下する現象が生じる場合があることを見出した。また、この白濁の問題は、反射防止層中に金属微粒子含有層を備えた場合にのみ特異的に生じるものであることを見出した。
本発明は、上記事情に鑑み、反射防止特性が高く、かつ、屋外での長期間の使用に耐えられる高耐久性を有する反射防止フィルムを提供することを目的とする。また、本発明は高耐久性を有する反射防止フィルムを備えた機能性ガラスを提供することを目的とする。
本発明の反射防止フィルムは、透明基材、透明基材の一面側に設けられた反射防止層、および、透明基材と反射防止層との間に備えられた、ハードコート層とを備え、
反射防止層が、ハードコート層側から、ハードコート層の屈折率よりも大きい屈折率を有する高屈折率層、バインダー中に複数の銀ナノディスクが分散されてなる銀ナノディスク層、および高屈折率層の屈折率よりも小さい屈折率を有する低屈折率層をこの順に積層してなる。
ここで、ハードコート層とは鉛筆硬度試験(旧 JIS K5400 鉛筆引っかき試験)でHB以上の硬度を有する層のことである。ハードコート層を設けることで塗布加工時および本願反射防止フィルムの形態での、梱包・輸送、貼合や掃除による傷・剥がれの発生を防止することができる。
「銀ナノディスク」とは、2つの対向する主平面を有する平板状の粒子であり、主平面の円相当径が数nm〜数百nmの大きさであり、その主平面間の距離である厚みに対する円相当径の比であるアスペクト比が3以上の粒子をいう。
「銀ナノディスクが分散されてなる」とは、銀ナノディスクの80%以上が互いに孤立して配置されていることを意味する。「互いに孤立して配置」とは、最も近接した微粒子と1nm以上の間隔がある状態をいうものとする。孤立して配置されている微粒子の最隣接微粒子との間隔は10nm以上であることがより好ましい。
本発明の反射防止フィルムとしては、ハードコート層が水系樹脂組成物の硬化物からなることが好ましい。
ここで、水系樹脂としては、ポリウレタンまたはアクリル樹脂であることが好ましい。
ハードコート層の膜厚は1μm以上10μm以下であることが好ましい。
透明基材はポリエステルフィルムであることが好ましい。
銀ナノディスク層の平面視における銀ナノディスクの面積率が10%以上40%以下であることが好ましい。
低屈折率層はバインダー中に中空シリカが分散されてなることが好ましい。
本発明の機能性ガラスは、ガラス板と、
ガラス板の少なくとも一方の面に貼付された上述の本発明の反射防止フィルムとを備えてなる。
本発明の反射防止フィルムは、反射防止層中に銀ナノディスク層を備えていることにより、反射率が非常低い領域が広い波長域に亘る良好な反射防止特性を有する。また、透明基材と反射防止層との間にハードコート層を備えることにより、銀ナノディスク層を備えたことにより脆弱性がカバーされた、擦りや衝撃に対する耐性の高いフィルムである。さらに、ハードコート層を備えたことにより、長期間太陽光に曝された場合においても白濁の発生を抑制することができ、高い耐久性を実現することができる。
本発明の一実施形態の反射防止フィルムの構成示す概略断面図である。 銀ナノディスク層の平面視の走査型電子顕微鏡(SEM)画像である。 銀ナノディスクの一例を示す概略図である。 銀ナノディスクの他の一例を示す概略図である。 銀ナノディスクのアスペクト比毎の透過率の波長依存性のシミュレーションを示す図である。 本発明の反射防止フィルムにおいて、銀ナノディスクを含む銀ナノディスク層の存在状態を示した概略断面図であって、銀ナノディスクを含む銀ナノディスク層(基材の平面とも平行)と銀ナノディスクの主平面(円相当径Dを決定する面)とのなす角度(θ)を説明する図である。 銀ナノディスクを含む銀ナノディスク層の存在状態を示した概略断面図であって、銀ナノディスク層の反射防止構造の深さ方向における銀ナノディスクの存在領域を示す図である。 銀ナノディスクを含む銀ナノディスク層の存在状態の他の一例を示した概略断面図である。 本発明の機能性ガラスの一実施形態を示す概略図である。
以下、本発明の実施の形態を説明する。
図1は本発明の実施形態に係る反射防止フィルム1の概略構成を示す断面模式図である。図1に示すように、本実施形態の反射防止フィルム1は、透明基材10と、透明基材10の一面側に設けられた反射防止層30と、透明基材10と反射防止層30との間に備えられた、ハードコート層20とを備えている。そして、反射防止層30は、ハードコート層20側から、ハードコート層20の屈折率よりも大きい屈折率を有する高屈折率層32、バインダー33に複数の銀ナノディスク35が分散されてなる銀ナノディスク層36、および透明基材10の屈折率よりも小さい屈折率を有する低屈折率層38をこの順に積層してなる。
ハードコート層20は、既述の通り、鉛筆硬度試験でHB以上の硬度を有する層であり、このハードコート層20を透明基材10と反射防止層30との間に介在させることにより、梱包・輸送、貼合や掃除による傷や剥がれの発生を防止することが可能となる。
ハードコート層20は、透明性の観点から可視光領域に吸収を持たない材料で構成することが好ましい。ハードコート層20は金属酸化物等からなる粒子を含んでいてもよい。内部ヘイズを発生させない観点から、添加される粒子は層を構成する後述の樹脂に屈折率が近く、粒径が200nm以下であることが好ましい。また、ハードコート層の原材料としては、造膜助剤等の相溶化助剤の併用、あるいは相溶性が良い素材同士の選択が好適に用いられる。
ハードコート層20の屈折率は1.5以上1.6以下が好ましい。なお、ここでいう屈折率とは波長550nmでの数値である。特に断りがない限り、以下において屈折率は波長550nmにおける屈折率である。
ハードコート層20としては、上記条件を満たす層であればよく、その材料も特に限定されるものではない。目的に応じて適宜その種類も形成方法も選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型または光硬化型樹脂などが挙げられる。中でも、ウレタン系樹脂が好ましく、上層との結合形成の観点でシラノール基等の反応性基を側鎖に含有する素材がさらに好ましい。ハードコート層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、水介在時の耐傷性向上の観点から1μm以上が好ましく、塗布性および塗布層含有フィルムの剛性の観点から50μm以下が好ましく、10μm以下がより好ましい。
ハードコート層20は、特には、水系樹脂組成物の硬化物であることが好ましい。
ここで、水系樹脂組成物とは、含有される水系溶媒が除去されることにより、固化する性質を有する組成物をいうものとする。一般的な水系樹脂組成物の種類としては、乳化性・水溶性を有しない樹脂を界面活性剤などを用いて強制乳化させた強制乳化樹脂、自己乳化性を有する樹脂を乳化・分散させた自己乳化性樹脂、水溶性を有する樹脂を溶解させた水溶性樹脂などが挙げられる。強制乳化樹脂および自己乳化性樹脂は、組成物の段階で樹脂が粒子径を有した分散状態である。また、水溶性樹脂とは、組成物の段階で樹脂が粒子径を有さずに溶解状態であることをいう。
なお、ハードコート層が水系樹脂組成物の硬化物からなるものであることは、ハードコート層についての透過電子顕微鏡像(TEM像)を観察することにより、あるいは組成分析によって確認することができる。具体的には、強制乳化樹脂および自己乳化性樹脂などの分散物ではTEM像により乾燥膜表面に粒界が観察される。また、水溶性樹脂の場合には末端基や側鎖に親水基を多く含むので、分析によって判別することができる。また、水系樹脂組成物の硬化物においては重合開始剤が含まれていない点からも紫外線硬化型もしくは重合開始剤を要する熱硬化型の樹脂化合物とは区別されうる。
水系溶媒とは、主成分が水である分散媒のことであり、溶媒中に含まれる水の含量は、70%〜100%が好ましく、80%〜100%がより好ましい。水以外の溶媒としては、メタノールやエタノール、イソプロピルアルコール等のアルコール類、アセトンやメチルエチルケトン等のケトン類、N−メチルピロリドン(NMP)、テトラヒドロフラン、ブチルセロソルブ等のグリコールエーテル類等、水に溶解性を有する溶剤が好ましく用いられる。また、水系樹脂組成物におけるポリマーの分散安定性、塗布性、乾燥後の皮膜特性向上のために、界面活性剤、アンモニア、トリエチルアミン、N,−Nジメチルエタノールアミン等のアミン類を分散物に対して数%含んでもよい。
水系樹脂組成物中の樹脂の具体的例としてはポリエステル、ポリオレフィン、ポリエステル、アクリル樹脂、ポリウレタンなどが挙げられる。形成される塗膜の強度および透明性が良好であるという観点から、ポリウレタン、及びアクリル樹脂からなる群より選択される少なくとも1種の樹脂を含むことが好ましい。
(アクリル樹脂)
水系樹脂組成物中の樹脂として用いられるアクリル樹脂は、アクリロイル基及びメタクリロイル基から選ばれた少なくとも1つの基を有するモノマーを重合成分として含む樹脂であり、アクリル樹脂の総質量を100質量%とした場合に、重合させて形成される繰り返し単位の総質量が50質量%を超える樹脂であることが好ましい。ここで、アクリロイル基及びメタクリロイル基から選ばれた少なくとも1つの基を有するモノマーを、以下、適宜、「(メタ)アクリルモノマー」と称する。
アクリル樹脂は、(メタ)アクリルモノマーを単独重合するか又は他のモノマーと共重合させて得られる。
アクリル樹脂が(メタ)アクリルモノマーと他のモノマーとの共重合体である場合、(メタ)アクリルモノマーと共重合させる他のモノマーは、炭素−炭素二重結合を有するモノマーであればよく、エステル結合、ウレタン結合を有するモノマーであってもよい。
(メタ)アクリルモノマーと他のモノマーとの共重合体としては、ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれであってもよい。
ここで、アクリル樹脂には、ポリエステル溶液又はポリエステル分散液中で、(メタ)アクリルモノマーを単独重合又は他のモノマーと共重合して得られたポリマー、ポリウレタン溶液又はポリウレタン分散液中で、(メタ)アクリルモノマーを単独重合又は他のモノマーと共重合して得られたポリマー等の、アクリル樹脂以外の他のポリマー溶液又は分散液中で、(メタ)アクリルモノマーを単独重合又は他のモノマーと共重合して得られたポリマーであって、ポリエステル樹脂、ウレタン樹脂等の他のポリマーを含む混合物が含まれる。
アクリル樹脂は、ハードコート層と隣接する層との接着性をより向上させるため、ヒドロキシ基及びアミノ基から選ばれた少なくとも1つの基を有していてもよい。
アクリル樹脂の合成に使用しうる(メタ)アクリルモノマーの具体例としては、特に限定はない。代表的な(メタ)アクリルモノマーとして、例えば、(メタ)アクリル酸;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート等のアルキル(メタ)アクリレート;(メタ)アクリルアミド;ジアセトンアクリルアミド、N−メチロールアクリルアミド等のN−置換アクリルアミド;(メタ)アクリロニトリル;γ−メタクリロキシプロピルトリメトキシシラン等の珪素含有(メタ)アクリルモノマー等が挙げられる。
なお、市販品のアクリル樹脂を用いてもよい。ハードコート層に用いうるアクリル樹脂の市販品としては、ジュリマー(登録商標)ET−410(東亜合成化学(株)製)、AS−563A(商品名:ダイセルファインケム(株)製)、ボンロン(登録商標)XPS−002(三井化学(株)製)などが挙げられる。
(ポリウレタン樹脂)
ポリウレタン樹脂は、主鎖にウレタン結合を有するポリマーの総称であり、通常、ジイソシアネートとポリオールとの反応生成物である。
ポリウレタン樹脂の合成に用いうるジイソシアネートとしては、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)、トリジンジイソシアネート(TODI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)等が挙げられる。
ポリウレタン樹脂の合成に用いうるポリオールとしては、エチレングリコール、プロピレングリコール、グリセリン、ヘキサントリオール等が挙げられる。
水系樹脂組成物中の樹脂として用いられるポリウレタン樹脂としては、一般的なポリウレタン樹脂に加え、ジイソシアネートとポリオールの反応によって得られたポリウレタン樹脂に対し、鎖延長処理を施して分子量を増大させたポリウレタン樹脂を使用することができる。
ポリウレタン樹脂に関して述べたジイソシアネート、ポリオール、及び鎖延長処理については、例えば「ポリウレタンハンドブック」(岩田敬治編、日刊工業新聞社、昭和62年発行)に詳細に記載されており、「ポリウレタンハンドブック」に記載のポリウレタン樹脂及びその原料に係る記載は、目的に応じて本発明に適用しうる。
なお、市販品のポリウレタン樹脂を用いてもよい。市販品としては、スーパーフレックス(登録商標)470、210、150HS、150HF、エラストロン(登録商標)H−3(以上、第一工業製薬(株)製)、ハイドラン(登録商標)AP−20、AP−40F、WLS−210(以上、DIC(株)製)、タケラック(登録商標)W−6061、WS−5100、WS−4000、WSA−5920、オレスター(登録商標)UD−350(以上、三井化学(株)製)が挙げられる。これらの中でも、シラノール基含有の観点から、WS−5100、WS−4000が特に好ましい。
また、ハードコート層20中には、紫外線吸収剤を添加してもよい。紫外線吸収剤としては、特に限定されないが、トリアジン環を含む化合物を単独で、もしくは複数種以上混合した混合物を用いることが好ましい。ハードコート層20に紫外線吸収剤を含有することにより、反射防止フィルムが太陽光に長時間曝された場合における透明基材の黄変を抑制することができる。
ハードコート層20は、水系樹脂組成物を含む塗布液を透明基材上に塗布し、乾燥させることにより形成することが好ましい。このとき、塗布膜の厚みを乾燥膜厚が1μm以上10μm以下となるように調整するのが好ましい。
反射防止層30は、所定波長の入射光に対する反射防止機能を有する層であり、単層もしくは2層以上の複数層から構成される。反射防止層としては、反射防止機能を有する公知の層を特に制限なく適用することができる。
ここで、所定の波長の入射光とは、反射を防止したい波長の光であり、本発明においては、主として可視光(380nm〜780nm)を対象としている。反射防止機能としては、例えば、波長550nmの光に対して1%以下の反射率であることが好ましく、さらには、波長550nmの光に対して1%以下の反射率であり、かつ、反射率1%以下の波長域が100nm以上の範囲に亘っていることが好ましい。
反射防止層30は、既述の通り、少なくとも、高屈折率層32、銀ナノディスク層36、および低屈折率層38をこの順に積層してなる。
銀ナノディスク35のアスペクト比が3以上であれば、可視光域の光の吸収を抑制し、反射防止フィルムに入射した光の透過率を十分大きなものとすることができる。
銀ナノディスク層36において、銀ナノディスク35は主平面が、銀ナノディスク層の表面に対して0°〜30°の範囲で面配向しており、バインダー33中において互いに孤立して配置されており、面方向に導電路を形成していない。なお、銀ナノディスク同士は厚み方向において重なりを有さず、単層に配置されている。
反射防止層30中に銀ナノディスク層を備えることにより、非常に広い波長域に亘って反射率1%以下を実現することが可能となる。
一方で、本実施形態の反射防止フィルムの構成において、ハードコート層20を備えていない場合、通常試験される調湿環境(25℃50%環境等)での擦り、衝撃は問題ないが、降雨時等を想定した水との接触が続く環境下で擦りや衝撃を受けると銀ナノディスク層36と他の層との界面で剥がれが生じ、また太陽光の長時間曝されることによりフィルムが白濁する等の問題が生じることを本発明者らは見出した。このような問題は、銀ナノディスク層36を備えていない構成の反射防止層の場合には生じなかった。そして、本実施形態のようにハードコート層を反射防止層30と透明基材10との間に備えることにより、剥がれが生じるのを抑制し、かつ白濁を防止することができることを見出した(後記実施例参照)。剥がれや白濁の発生、抑制のメカニズムは明らかではないが、ハードコート層により銀ナノディスク層36に生じる応力の緩和等により、銀ナノディスク層とその両側に設けられる層との密着性を向上させる効果が生じていると推察される。
すなわち、本発明におけるハードコート層とは、銀ナノディスク層を備えた場合に生じ得る剥がれや白濁の抑制機能を有する層である。
以下において、反射防止フィルムの他の要素についてより詳細に説明する。
<透明基材>
透明基材10としては、所定波長λの入射光に対し光学的に透明なものであれば特に制限はなく、目的に応じて適宜選択することができる。透明基材10としては、可視光透過率が70%以上のもの、さらには可視光透過率が80%以上のものが好ましい。
透明基材10はフィルム状であればよく、単層構造であってもよいし、積層構造であってもよく、大きさは、用途に応じて定めればよい。
透明基材10としては、例えば、ポリエチレン、ポリプロピレン、ポリ4−メチルペンテン−1、ポリブテン−1等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂、ポリ塩化ビニル系樹脂、ポリフェニレンサルファイド系樹脂、ポリエーテルサルフォン系樹脂、系樹脂、ポリフェニレンエーテル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロースアセテート等のセルロース系樹脂などからなるフィルム又はこれらの積層フィルムが挙げられる。これらの中で、特にトリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルムが好適である。
透明基材10の厚みは、通常は10μm〜500μm程度である。透明基材10の厚みとしては、さらに10μm〜100μmであることが好ましく、20〜75μmであることがより好ましく、35〜75μmであることが特に好ましい。透明基材10の厚みが十分に厚いと、接着故障が起き難くなる傾向にある。また、透明基材10の厚みが十分に薄いと、反射防止膜として建材や自動車の窓ガラスに貼り合わせる際、材料としての腰が強過ぎず、施工し易くなる傾向にある。更に、透明基材10が十分に薄いことにより、可視光透過率が増加し、原材料費を抑制できる傾向にある。
透明基材10としてPETフィルムを用いる場合、剛性の観点から2軸延伸品を用いることが好ましい。PETフィルムは反射防止構造が形成される面に易接着層を備えることが好ましい。易接着層を備えるPETフィルムを用いることで、PETフィルムと積層される層との間に生じるフレネル反射を抑制することができ、より反射防止効果を高めることができるからである。易接着層の膜厚としては、反射を防止したい波長に対して、光路長が1/4となるようにすることが好ましい。さらに、易接着層の屈折率はPETフィルムの屈折率(2軸延伸品で1.66)より低く、ハードコート層の屈折率より高いことが好ましく、PETフィルムの屈折率とハードコート層の屈折率の中間付近(屈折率1.56〜1.6)にあることが特に好ましい。このような易接着層を備えるPETフィルムとして、東レ株式会社製ルミラー、東洋紡績株式会社製コスモシャインなどが挙げられる。
<銀ナノディスク層>
銀ナノディスク層36は、バインダー33中に複数の銀ナノディスク35が含有されてなる層である。図2は、銀ナノディスク層の平面視のSEM画像である。図2に示すように、銀ナノディスク35は互いに孤立して分散配置されている。
−銀ナノディスク−
既述の通り、銀ナノディスク層36に含まれる複数の銀ナノディスク35は、2つの対向する主平面を有する平板状の粒子である。銀ナノディスク35は、銀ナノディスク層36の一方の表面に偏析されていることが好ましい。
銀ナノディスク35の主平面の形状としては、例えば、六角形状、三角形状、円形状などが挙げられる。これらの中でも、可視光透過率が高い点で、主平面の形状が六角形以上の多角形状〜円形状であることが好ましく、図3に示すような六角形状または図4に示すような円形状であることが特に好ましい。
これら複数の形状の銀ナノディスクを2種以上混ぜて使用しても良い。
本明細書中、円形状とは、後述の平均円相当径の50%以上の長さを有する辺の個数が1個の銀ナノディスク当たり0個である形状のことを言う。円形状の銀ナノディスクとしては、透過型電子顕微鏡(TEM)で銀ナノディスクを主平面の上方から観察した際に、角が無く、丸い形状であれば特に制限はない。
本明細書中、六角形状とは、後述の平均円相当径の20%以上の長さを有する辺の個数が1個の銀ナノディスク当たり6個である形状のことを言う。なお、その他の多角形についても同様である。六角形状の銀ナノディスクとしては、透過型電子顕微鏡(TEM)で銀ナノディスクを主平面の上方から観察した際に、六角形状であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状の角が鋭角のものでも、鈍っているものでもよいが、可視光域の吸収を軽減し得る点で、角が鈍っているものであることが好ましい。角の鈍りの程度としては、特に制限はなく、目的に応じて適宜選択することができる。
[平均粒子径(平均円相当径)および変動係数]
円相当径は、個々の粒子の投影面積と等しい面積を有する円の直径で表される。個々の粒子の投影面積は、電子顕微鏡写真上での面積を測定し、撮影倍率で補正する公知の方法により得ることができる。また、平均粒子径(平均円相当径)は、200個の銀ナノディスクの円相当径Dの統計で粒径分布(粒度分布)が得られ、算術平均を計算することができる。銀ナノディスクの粒度分布における変動係数は、粒度分布の標準偏差を前述の平均粒子径(平均円相当径))で割った値(%)で求めることができる。
本発明の反射防止フィルムにおいて銀ナノディスクの粒度分布における変動係数としては、35%以下が好ましく、30%以下がより好ましく、20%以下が特に好ましい。変動係数は、35%以下であることが反射防止構造における可視光線の吸収を減らす観点から好ましい。
銀ナノディスクの大きさとしては、特に制限はなく、目的に応じて適宜選択することができ、平均粒子径は10〜500nmが好ましく、20〜300nmがより好ましく、50〜200nmがさらに好ましい。
[銀ナノディスクの厚み・アスペクト比]
本発明の反射防止フィルムでは、銀ナノディスクの厚みTは20nm以下であることが好ましく、2〜15nmであることがより好ましく、4〜12nmであることが特に好ましい。
粒子厚みTは、銀ナノディスクの主平面間距離に相当し、例えば、図5及び図6に示す通りである。粒子厚みTは、原子間力顕微鏡(AFM)や透過型電子顕微鏡(TEM)により測定することができる。
AFMによる平均粒子厚みの測定方法としては、例えば、ガラス基板に銀ナノディスクを含有する粒子分散液を滴下し、乾燥させて、粒子1個の厚みを測定する方法などが挙げられる。
TEMによる平均粒子厚みの測定方法としては、例えば、シリコン基板上に銀ナノディスクを含有する粒子分散液を滴下し、乾燥させた後、カーボン蒸着、金属蒸着による被覆処理を施し、集束イオンビーム(FIB)加工により断面切片を作成し、その断面をTEMによる観察することにより、粒子の厚み測定を行う方法などが挙げられる。
本発明において、銀ナノディスク35の直径(平均円相当径)Dの平均厚みTに対する比D/T(アスペクト比)は3以上であれば特に制限はなく、目的に応じて適宜選択することができるが、可視光線の吸収とヘイズを減らす観点から、3〜40が好ましく、5〜40がより好ましい。アスペクト比が3以上であれば可視光線の吸収を抑制でき、40未満であれば可視領域でのヘイズも抑制できる。
図5に円形状銀粒子のアスペクト比が変化した場合の透過率の波長依存性のシミュレーション結果を示す。円形状金属粒子として、厚みTを10nmとし、直径Dを80nm、120nm、160nm、200nm、240nmと変化させた場合について検討した。図5に示す通り、アスペクト比が大きくなるにつれて吸収ピーク(透過率のボトム)が長波長側にシフトし、アスペクト比が小さくなるにつれ吸収ピークは短波長側にシフトする。アスペクト比が3未満となると、吸収ピークが可視域近くなり、アスペクト比が1では吸収ピークは可視域となる。このようにアスペクト比が3以上であれば、可視光に対し透過率を向上させることができる。特にアスペクト比は5以上であることが好ましい。
[面配向]
銀ナノディスク層36中において、銀ナノディスクの主平面は銀ナノディスク層36の表面に対して0°〜30°の範囲で面配向している。すなわち、図6において、銀ナノディスク層36の表面と、銀ナノディスク35の主平面(円相当径Dを決める面)または主平面の延長線とのなす角度(±θ)が0°〜30°である。角度(±θ)が0°〜20°の範囲で面配向していることがより好ましく、0°〜10°の範囲で面配向していることが特に好ましい。反射防止フィルムの断面を観察した際、銀ナノディスク35は、図6に示す傾角(±θ)が小さい状態で配向していることがより好ましい。θが±30°を超えると、反射防止フィルムにおける可視光線の吸収が増加してしまう恐れがある。
また、上述の角度θが0°〜±30°の範囲で面配向している銀ナノディスクが、全銀ナノディスク数の50%以上であることが好ましく、70%以上であることがより好ましく、90%以上であることがさらに好ましい。
銀ナノディスク層の一方の表面に対して銀ナノディスクの主平面が面配向しているかどうかは、例えば、適当な断面切片を作製し、この切片における銀ナノディスク層及び銀ナノディスクを観察して評価する方法を採ることができる。具体的には、ミクロトーム、集束イオンビーム(FIB)を用いて反射防止フィルムの断面サンプルまたは断面切片サンプルを作製し、これを、各種顕微鏡(例えば、電界放射型走査電子顕微鏡(FE−SEM)、透過型電子顕微鏡(TEM)等)を用いて観察して得た画像から評価する方法などが挙げられる。
上述の通り作製した断面サンプルまたは断面切片サンプルの観察方法としては、サンプルにおいて銀ナノディスク層の一方の表面対して銀ナノディスクの主平面が面配向しているかどうかを確認し得るものであれば、特に制限はないが、例えば、FE−SEM、TEMなどを用いる方法が挙げられる。断面サンプルの場合は、FE−SEMにより、断面切片サンプルの場合は、TEMにより観察を行ってもよい。FE−SEMで評価する場合は、銀ナノディスクの形状と傾角(図6の±θ)が明瞭に判断できる空間分解能を有することが好ましい。
[銀ナノディスク層の厚み、銀ナノディスクの存在範囲]
図7および図8は、銀ナノディスク35の銀ナノディスク層36における存在状態を示した概略断面図である。
銀ナノディスク層36の塗布膜厚みは、塗布厚みを下げるほど、銀ナノディスクの面配向の角度範囲が0°に近づきやすくなり、可視光線の吸収を減らすことができることから100nm以下であることが好ましく、3〜50nmであることがより好ましく、5〜40nmであることが特に好ましい。
銀ナノディスク層36の塗布膜厚みdが銀ナノディスクの平均円相当径Dに対し、d>D/2の場合、銀ナノディスク35の80個数%以上が、銀ナノディスク層36の表面からd/2の範囲に存在することが好ましく、d/3の範囲に存在することがより好ましく、銀ナノディスクの60個数%以上が銀ナノディスク層の一方の表面に露出していることが更に好ましい。銀ナノディスクが銀ナノディスク層の表面からd/2の範囲に存在するとは、銀ナノディスクの少なくとも一部が銀ナノディスク層の表面からd/2の範囲に含まれていることを意味する。図7は、銀ナノディスク層の厚みdがd>D/2である場合を表した模式図であり、特に銀ナノディスクの80個数%以上がfの範囲に含まれており、f<d/2であることを表した図である。
また、銀ナノディスクが銀ナノディスク層の一方の表面に露出しているとは、銀ナノディスクの一方の表面の一部が、低屈折率層との界面位置となっていることを意味する。図8は銀ナノディスクの一方の表面が低屈折率層との界面に一致している場合を示す図である。
ここで、銀ナノディスク層中の銀ナノディスク存在分布は、例えば、反射防止フィルム断面をSEM観察した画像より測定することができる。
なお、銀ナノディスク層の塗布膜厚みdは銀ナノディスクの平均円相当径Dに対し、d<D/2の場合が好ましく、より好ましくはd<D/4であり、d<D/8がさらに好ましい。銀ナノディスク層の塗布膜厚みを下げるほど、銀ナノディスクの面配向の角度範囲が0°に近づきやすくなり、可視光線の吸収を減らすことができるため好ましい。
銀ナノディスク層における銀ナノディスクのプラズモン共鳴波長(図5における吸収ピーク波長)は、反射防止したい波長より長波である限り制限はなく、目的に応じて適宜選択することができるが、熱線を遮蔽するために、700nm〜2,500nmであることが好ましい。
[銀ナノディスクの面積率]
銀ナノディスク層に対して垂直方向から見たときの銀ナノディスク層の全投影面積Aに対する銀ナノディスクの面積の合計値Bの割合である面積率〔(B/A)×100〕としては、5%以上40%以下が好ましく、10%以上40%以下がより好ましい。上記の銀ナノディスクのアスペクト比3以上の条件を満たした上で、面積率を5%以上40%以下とすることで、反射防止構造の表面からと裏面からの反射率が変化し、表面と裏面で異なる反射率を得ることが出来る。
ここで、面積率は、例えば反射防止フィルムを上からSEM観察で得られた画像や、AFM(原子間力顕微鏡)観察で得られた画像を画像処理することにより測定することができる。
[銀ナノディスクの配列]
銀ナノディスク層における銀ナノディスクの配列は均一であることが好ましい。ここで言う配列の均一とは、各粒子に対する最近接粒子までの距離(最近接粒子間距離)を粒子の中心間距離で数値化した際、各々の粒子の最近接粒子間距離の変動係数(=標準偏差÷平均値)が小さいことを指す。最近接粒子間距離の変動係数は小さいほど好ましく、好ましくは30%以下、より好ましくは20%以下、より好ましくは10%以下、理想的には0%である。最近接粒子間距離の変動係数が大きい場合には、銀ナノディスク層内で銀ナノディスクの粗密や粒子間の凝集が生じ、ヘイズが悪化する傾向があるため好ましくない。最近接粒子間距離は銀ナノディスク層塗布面をSEMなどで観察することにより測定が可能である。
また、銀ナノディスク層と低屈折率層との境界は同様にSEMなどで観察して決定することができ、銀ナノディスク層の厚みdを決定することができる。なお、銀ナノディスク層に含まれるバインダーと同じ種類のバインダーを用いて、銀ナノディスク層の上に低屈折率層を形成する場合であっても、通常はSEM観察した画像によって銀ナノディスク層との境界を判別することができ、銀ナノディスク層の厚みdを決定することができる。なお、境界が明確でない場合には、最も基板から離れて位置されている平板金属の表面を境界と看做す。
[銀ナノディスクの合成方法]
銀ナノディスクの合成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、化学還元法、光化学還元法、電気化学還元法等の液相法などが六角形状乃至円形状の銀ナノディスクを合成し得るものとして挙げられる。これらの中でも、形状とサイズ制御性の点で、化学還元法、光化学還元法などの液相法が特に好ましい。六角形〜三角形状の銀ナノディスクを合成後、例えば、硝酸、亜硫酸ナトリウム等の銀を溶解する溶解種によるエッチング処理、加熱によるエージング処理などを行うことにより、六角形〜三角形状の銀ナノディスクの角を鈍らせて、六角形状乃至円形状の銀ナノディスクを得てもよい。
銀ナノディスクの合成方法としては、その他、予めフィルム、ガラスなどの透明基材の表面に種晶を固定後、平板に銀を結晶成長させてもよい。
本発明の反射防止フィルムにおいて、銀ナノディスクは、所望の特性を付与するために、更なる処理を施してもよい。更なる処理としては、例えば、高屈折率シェル層の形成、分散剤、酸化防止剤等の各種添加剤を添加することなどが挙げられる。
−バインダー−
銀ナノディスク層36におけるバインダー33は、ポリマーを含むことが好ましく、透明ポリマーを含むことがより好ましい。ポリマーとしては、例えば、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリアクリレート樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂、ゼラチンやセルロース等の天然高分子等の高分子などが挙げられる。その中でも、主ポリマーがポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂であることが好ましく、ポリエステル樹脂およびポリウレタン樹脂であることが銀ナノディスクの80個数%以上を銀ナノディスク層の表面からd/2の範囲に存在させやすい観点からより好ましい。
バインダーは2種以上を併用して使用しても良い。
ポリエステル樹脂の中でも、飽和ポリエステル樹脂であることが二重結合を含まないために優れた耐候性を付与できる観点からより特に好ましい。また、水溶性・水分散性の硬化剤等で硬化させることで高い硬度・耐久性・耐熱性を得られる観点から、分子末端に水酸基またはカルボキシル基を持つことがより好ましい。
ポリマーとしては、商業的に入手できるものを好ましく用いることもでき、例えば、互応化学工業(株)製の水溶性ポリエステル樹脂であるプラスコートZ−687やDIC(株)社製のポリエステルポリウレタン共重合品であるハイドランHW−350などを挙げることができる。
また、本明細書中、銀ナノディスク層に含まれる主ポリマーとは、銀ナノディスク層に含まれるポリマーの50質量%以上を占めるポリマー成分のことを言う。
銀ナノディスク層に含まれる銀ナノディスクに対するポリエステル樹脂およびポリウレタン樹脂の含有量が1〜10000質量%であることが好ましく、10〜1000質量%であることがより好ましく、20〜500質量%であることが特に好ましい。
バインダーの屈折率nは、1.4〜1.7であることが好ましい。
<低屈折率層>
低屈折率層38の屈折率は高屈折率層32の屈折率よりも小さい。また、透明基材10の屈折率よりも低いことが好ましい。低屈折率層の屈折率は1.40以下が好ましく、例えば、1.35程度とすればよい。低屈折率層の光学膜厚30nmから100nmであることが好ましく、例えば70nm程度とする。
低屈折率層38は、例えば、バインダー、屈折率制御粒子および界面活性剤を含有し、更に必要に応じてその他の成分を含む。
低反射率層のバインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型または光硬化型樹脂などが挙げられる。
屈折率制御粒子は、屈折率調整のために添加されるものであり、目的に応じて適宜選択することができ、例えば、中空シリカ等が挙げられる。
<高屈折率層>
高屈折率層32の屈折率はハードコート層の屈折率より大きければよいが、1.5超、特に1.6以上1.8以下であることが好ましい。高屈折率層の膜厚は、例えば、20〜30nm程度とすればよい。
高屈折率層32は、例えば、バインダー、金属酸化物微粒子、マット剤、及び界面活性剤を含有し、更に必要に応じてその他の成分を含有してなる。バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型又は光硬化型樹脂などが挙げられる。これらのうち、ウレタン系樹脂が好ましく、上層との結合形成の観点でシラノール基等の反応性基を側鎖に含有する素材がさらに好ましい。
金属酸化物微粒子の材料としては、バインダーの屈折率よりも大きな屈折率を持つ金属微粒子を用いる限り特に制限はなく、目的に応じて適宜選択することができ、例えば、錫ドープ酸化インジウム(以下、「ITO」と略記する。)、酸化亜鉛、酸化チタン、酸化ジルコニウム等が挙げられる。ヘイズ抑制および表面の平滑性の観点から一次粒子径20nm以下のものが好ましく、15nm以下のものがより好ましく、10nm以下がさらに好ましい。例として堺化学工業(株)製のSZR−CW(粒子径8nm)が挙げられる。
<その他の層・成分>
本発明の反射防止フィルムは、上記各層以外の層を備えていてもよい。
[赤外線吸収化合物含有層]
本発明の反射防止フィルムは、熱線を遮蔽するために、赤外領域に吸収を有する化合物を含有する赤外線吸収化合物含有層を有してもよい。以下、赤外領域に吸収を有する化合物を含有する層のことを、赤外線吸収化合物含有層ともいう。なお、赤外線吸収化合物含有層は、他の機能層の役割を果たしてもよい。
[粘着剤層]
本発明の反射防止フィルムは、粘着剤層(以下、粘着層ともいう)を有していてもよい。粘着層の形成に利用可能な材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルブチラール(PVB)樹脂、アクリル樹脂、スチレン/アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂、天然ゴム、合成ゴムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの材料からなる粘着層は、塗布やラミネートにより形成することができる。
さらに、粘着層には帯電防止剤、滑剤、ブロッキング防止剤などを添加してもよい。
粘着層の厚みとしては、0.1μm〜50μmが好ましい。
[バックコート層]
反射防止フィルムは、透明基材の反射防止層が形成された面とは反対側の面上に、バックコート層を有していてもよい。バックコート層としては、特に制限はなく、目的に応じて適宜選択することができるが、赤外領域に吸収を有する化合物を含む層としてもよく、後述の金属酸化物粒子含有層としてもよい。なお、透明基材としてPETフィルムを用いる場合、PETフィルムの易接着層をバックコート層として用いることも好適である。
[金属酸化物粒子]
本発明の反射防止フィルムは、熱線を遮蔽するために、少なくとも1種の金属酸化物粒子を含有していても良い。
金属酸化物粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、錫ドープ酸化インジウム(以下、「ITO」と略記する。)、アンチモンドープ酸化錫(以下、「ATO」と略記する。)、酸化亜鉛、アンチモン酸亜鉛、酸化チタン、酸化インジウム、酸化錫、酸化アンチモン、ガラスセラミックス、6硼化ランタン(LaB)、セシウムタングステン酸化物(Cs0.33WO、以下「CWO」と略記する。)などが挙げられる。これらの中でも、熱線吸収能力に優れ、平板粒子と組み合わせることにより幅広い熱線吸収能を有する反射防止構造が製造できる点で、ITO、ATO、CWO、6硼化ランタン(LaB)がより好ましく、1,200nm以上の赤外線を90%以上遮蔽し、可視光透過率が90%以上である点で、ITOが特に好ましい。
金属酸化物粒子の一次粒子の体積平均粒径としては、可視光透過率を低下させないため、0.1μm以下が好ましい。
金属酸化物粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、針状、板状などが挙げられる。
本実施形態の反射防止フィルム1の製造方法を簡単に説明する。
透明基材10を用意し、まず、透明基材10上にハードコート層20を形成する。ハードコート層の形成方法としては塗布法が好ましい。ハードコート層形成用の塗布液として、水溶性樹脂または水分散性樹脂と水とを少なくとも含む塗布液を調製し、その塗布液を透明基材上に塗布して乾燥させることによりハードコート層20を形成する。
次に、ハードコート層20上に高屈折率層32を形成する。高屈折率層の形成方法としては、塗布法が好ましい。高屈折率層形成用の塗布液を調製し、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法などを用いて、ハードコート層20上に高屈折率層形成用の塗布液を塗布する。その後、高屈折率層のバインダーを構成する樹脂に応じて光照射もしくは加熱して硬化させることにより高屈折率層32を得る。
次に、高屈折率層32上に銀ナノディスク層36を形成する。銀ナノディスク層の形成方法としては、特に制限はないが、塗布法またはLB膜法、自己組織化法、スプレー塗布などの方法で面配向させる方法が挙げられる。例えば、銀ナノディスク層形成用の塗布液として銀の平板粒子を含有する分散液(平板粒子分散液)を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する。その後、銀ナノディスク層のバインダーを構成する樹脂に応じて光照射もしくは加熱して硬化させることにより銀ナノディスク層を得る。
なお、面配向を促進するために、銀ナノディスク層形成用の塗布液を塗布後に、カレンダーローラーやラミローラーなどの圧着ローラーを通してもよい。
続いて、銀ナノディスク層36上に低屈折率層38を形成する。低屈折率層の形成方法としては、塗布法が好ましい。低屈折率層形成用の塗布液を調製し、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法などを用いて、銀ナノディスク層36上に低屈折率層形成用の塗布液を塗布する。その後、低屈折率層のバインダーを構成する樹脂に応じて光照射もしくは加熱して硬化させることにより低屈折率層38を得る。
以上の工程により、反射防止フィルム1を製造することができる。
本反射防止フィルムは、反射防止層に上述の銀ナノディスク層を備えることにより、フィルム表裏の反射率に非対称性を与えることができ、また、電波透過性を有するものとすることができる。
また、本反射防止フィルムは、ハードコート層を備えたことにより、水との接触が続く環境下での擦りや衝撃に対する耐性に優れ、屋外での長期間の使用においても透明性の低下(フィルムの白濁化)が抑制されている。
[機能性ガラス]
本発明の反射防止フィルムは、機能性を付与したいガラス板の表裏の少なくとも一方に貼付されて用いられる。すなわち、本発明の機能性ガラスとしては、少なくとも一方の面側に本発明の反射防止フィルムが貼付されてなるものである。
本発明の機能性ガラスの構成例を図9に示す。
本発明の機能性ガラス100は、ガラス板50と、ガラス板50の一方の面に貼付された第1の反射防止フィルム11と、ガラス板50の他方の面に貼付された第2の反射防止フィルム12とを備えている。第1および第2の反射防止フィルム11、12は、いずれも本発明の反射防止フィルムの一実施形態である。第1および第2の反射防止フィルム11、12は同一の反射条件を有するものであってもよいし、異なる反射条件を有するものであってもよい。低反射率層、高反射率層の材料や膜厚、銀ナノディスク層の厚み、および/または、銀ナノディスクの含有量等が異なれば、一般には反射条件(フィルム表裏における反射率、所望の反射率を有する波長域など)が異なる。
ガラス板50は、例えば、建築物の窓、ショーウィンドウ、あるいは車窓などの用途に適用されるガラスである。
第1および第2の反射防止フィルム11、12は、いずれも透明基材10の裏面に粘着剤層9が備えられ、その粘着剤層9を介してガラス板50の一方の面および他方の面に貼り付けられている。
本発明の反射防止フィルムを備えた機能性ガラスは反射防止フィルム貼付側からの可視光透過率が高く、視界がクリアである。また、電波透過性が高く、携帯電話の電波を妨げない。
窓ガラスに反射防止フィルムを貼り付ける場合には、反射防止フィルムの透明基材の反射防止層が形成されていない面側に、塗工あるいはラミネートにより粘着剤層を設け、あらかじめ窓ガラス表面と反射防止フィルムの粘着剤層表面に界面活性剤(主にノニオン系)を含んだ水溶液を噴霧してから、粘着剤層を介して窓ガラスに反射防止フィルムを設置すると良い。水分が蒸発するまでの間、粘着剤層の粘着力は落ちるため、ガラス表面では反射防止構造の位置の調整が可能である。窓ガラスに対する反射防止構造の貼り付け位置が定まった後、スキージー等を用いて窓ガラスと反射防止フィルムの間に残る水分をガラス中央から端部に向けて掃き出すことにより、窓ガラス表面に反射防止フィルムを固定できる。このようにして、窓ガラスに反射防止フィルムを設置することが可能である。
窓ガラスへの機能性の付与は、ガラス板にラミネーター設備を使って機械的に反射防止フィルムを貼り付ける加熱もしくは加圧ラミネートという手法によっても達成される。上部から過熱された金属ロールまたは耐熱性ゴムロール、下部からは室温または加熱された耐熱性ゴムロールにて挟まれるスリットエリアをガラス板が通っていくラミネーターを用意する。ガラス板の上に粘着剤面がガラス面と接触するように反射防止フィルムを乗せ、ラミネーターの上部ロールが反射防止フィルムを押し付けるようにセットして、ラミネーターを通す。粘着剤の種類によって適切なロール加熱温度を選んで貼れば、粘着力が強くなり、気泡も紛れ込まないように貼る事ができる。反射防止フィルムがロール状で供給できる場合は、加熱ロールに上部から連続的にテープ状フィルムを供給して、加熱ロールに90度程度のラップ角をもつようにした方が反射防止フィルムの粘着剤層がプレヒートを受けて貼り付けられやすくなり、気泡排除と粘着力アップの両方を高次元に達成できる。
以下、本発明の実施例および比較例について説明する。
まず、反射防止フィルムの実施例および比較例の作製に用いた各種塗布液の調製について説明する。
[ハードコート層形成用の塗布液]
(ハードコート層形成用の塗布液A−1)
ハードコート層形成用の塗布液A−1は、下記表1に示す材料を表1記載の配合比にて、バインダー、界面活性剤、造膜助剤および水を混合することにより調製した。
Figure 2017068789
(ハードコート層形成用の塗布液A−2)
ハードコート層形成用の塗布液A−2は、表2に示す材料を表2記載の配合比にて、バインダー、紫外線吸収剤、界面活性剤、造膜助剤および水を混合することにより調製した。
Figure 2017068789
[高屈折率層]
(高屈折率層用の塗布液B−1)
高屈折率層用の塗布液B−1を表3に示す材料および配合比で混合して調製した。
Figure 2017068789
(高屈折率層用の塗布液B−2)
高屈折率層用の塗布液B−2を表4に示す材料および配合比で混合して調製した。
Figure 2017068789
[銀ナノディスク層]
−銀ナノディスク分散液c1Aの調液−
NTKR−4(日本金属工業(株)製)製の反応容器にイオン交換水13Lを計量し、SUS316L製のシャフトにNTKR−4製のプロペラ4枚およびNTKR−4製のパドル4枚を取り付けたアジターを備えるチャンバーを用いて撹拌しながら、10g/Lのクエン酸三ナトリウム(無水物)水溶液1.0Lを添加して35℃に保温した。8.0g/Lのポリスチレンスルホン酸水溶液0.68Lを添加し、更に0.04Nの水酸化ナトリウム水溶液を用いて23g/Lに調製した水素化ホウ素ナトリウム水溶液0.041Lを添加した。0.10g/Lの硝酸銀水溶液13Lを5.0L/minで添加した。
10g/Lのクエン酸三ナトリウム(無水物)水溶液1.0Lとイオン交換水11Lを添加して、更に80g/Lのヒドロキノンスルホン酸カリウム水溶液0.68Lを添加した。撹拌を800rpmに上げて、0.10g/Lの硝酸銀水溶液8.1Lを0.95L/minで添加した後、30℃に降温した。
44g/Lのメチルヒドロキノン水溶液8.0Lを添加し、次いで、後述する40℃のゼラチン水溶液を全量添加した。撹拌を1200rpmに上げて、後述する亜硫酸銀白色沈殿物混合液を全量添加した。
調製液のpH変化が止まった段階で、1NのNaOH水溶液5.0Lを0.33L/minで添加した。その後、2.0g/Lの1−(m−スルホフェニル)−5−メルカプトテトラゾールナトリウム水溶液(NaOHとクエン酸(無水物)とを用いてpH=7.0±1.0に調節して溶解した)0.18Lを添加し、更に70g/Lの1,2−ベンズイソチアゾリン−3−オン(NaOHで水溶液をアルカリ性に調節して溶解した)0.078Lを添加した。このようにして銀ナノディスク分散液c1Aを調製した。
−ゼラチン水溶液の調製−
SUS316L製の溶解タンクにイオン交換水16.7Lを計量した。SUS316L製のアジターで低速撹拌を行いながら、脱イオン処理を施したアルカリ処理牛骨ゼラチン(GPC重量平均分子量20万)1.4kgを添加した。更に、脱イオン処理、蛋白質分解酵素処理、および過酸化水素による酸化処理を施したアルカリ処理牛骨ゼラチン(GPC重量平均分子量2.1万)0.91kgを添加した。その後40℃に昇温し、ゼラチンの膨潤と溶解を同時に行って完全に溶解させた。
−亜硫酸銀白色沈殿物混合液の調製−
SUS316L製の溶解タンクにイオン交換水8.2Lを計量し、100g/Lの硝酸銀水溶液8.2Lを添加した。SUS316L製のアジターで高速撹拌を行いながら、140g/Lの亜硫酸ナトリウム水溶液2.7Lを短時間で添加して、亜硫酸銀の白色沈澱物を含む混合液を調製した。この混合液は、使用する直前に調製した。
−銀ナノディスク分散液c1Bの調液−
前述の銀ナノディスク分散液c1Aを遠沈管に800g採取して、1NのNaOHおよび/または1Nの硫酸を用いて25℃でpH=9.2±0.2に調整した。遠心分離機(日立工機(株)製himacCR22GIII、アングルローターR9A)を用いて、35℃に設定して9000rpm60分間の遠心分離操作を行った後、上澄液を784g捨てた。沈殿した平板粒子に0.2mMのNaOH水溶液を加えて合計400gとし、撹拌棒を用いて手撹拌して粗分散液にした。これと同様の操作で遠沈管24本分の粗分散液を調製して合計9600gとし、SUS316L製のタンクに添加して混合した。更に、Pluronic31R1(BASF社製)の10g/L溶液(メタノール:イオン交換水=1:1(体積比)の混合液で希釈)を10cc添加した。プライミクス(株)製オートミクサー20型(撹拌部はホモミクサーMARKII)を用いて、タンク中の粗分散液混合物に9000rpmで120分間のバッチ式分散処理を施した。分散中の液温は50℃に保った。分散後、25℃に降温してから、プロファイルIIフィルター(日本ポール(株)製、製品型式MCY1001Y030H13)を用いてシングルパスの濾過を行った。
このようにして、分散液c1に脱塩処理および再分散処理を施して、銀ナノディスク分散液c1Bを調製した。
−銀ナノディスクの評価−
銀ナノディスク分散液c1Aの中には、六角形状乃至円形状および三角形状の銀ナノディスクが生成していることを確認した。なお、分散液c1A中においては、銀微粒子は全て銀ナノディスクであった。銀ナノディスク分散液c1AのTEM観察により得られた像を、画像処理ソフトImageJに取り込み、画像処理を施した。数視野のTEM像から任意に抽出した500個の粒子に関して画像解析を行い、同面積円相当径を算出した。これらの母集団に基づき統計処理した結果、平均直径は120nmであった。
銀ナノディスク分散液c1Bを同様に測定したところ、粒度分布の形状も含め銀ナノディスク分散液c1Aとほぼ同じ結果を得た。
銀ナノディスク分散液c1Bをシリコン基板上に滴下して乾燥し、平板粒子の個々の厚みをFIB−TEM法により測定した。銀ナノディスク分散液c1B中の平板粒子10個を測定して平均厚みは8nmであった。すなわち直径/厚みで表されるアスペクト比は15.0であった。
―銀ナノディスク分散液c2A及びc2Bの調液―
銀ナノディスク分散液c1A及びc2Bの調液において、平均厚み6nm、平均直径20nmとなるように、作製時の各溶液の濃度、加熱温度、及びpHを調整し、平板銀粒子分散液c2A及びc2Bを作製した。
(銀ナノディスク層用の塗布液C−1a〜fの調製)
銀ナノディスク層用の塗布液C−1aを表5に示す材料の配合比で混合して調製した。
Figure 2017068789
なお、塗布液C−1aについての上記配合比のうち銀ナノディスク分散液c1Bおよび水の量を銀ナノディスク層における銀ナノディスクの所望の面積率に応じて適宜調整し、銀ナノディスク層用の塗布液C−1b〜C−1fを別途作製した。
各塗布液C−1a〜C−1fについての銀ナノディスク分散液c1Bと水との配合比を下記表6に示す。単位は質量部である。
Figure 2017068789
(銀ナノディスク層用の塗布液C−2の調製)
上記塗布液C−1a〜fの調製において、銀ナノディスク分散液c1Bに代えて銀ナノディスク分散液c2Bを用いた以外は、塗布液C−1a〜fと同様にして塗布液C−2を得た。
(銀ナノディスク層用の塗布液C−3の調製)
銀ナノディスクの代わりに、銀ナノ球状粒子(直径20nmアスペクト比1)分散水溶液を用いた以外は、塗布液C−1a〜fと同様にして塗布液C−3を得た。
[低屈折率層]
(低屈折率層用の塗布液D−1)
低屈折率層用の塗布液D−1を表7に示す材料の配合比で混合して調製した。
Figure 2017068789
Figure 2017068789
なお、化合物M−1は特開2006−284761号公報の段落[0061]から[0097]に記載の方法により調製した。
(低屈折率層用の塗布液D−2)
低屈折率層用の塗布液D−2を表8に示す材料の配合比で混合して調製した。
Figure 2017068789
(低屈折率層用の塗布液D−3)
低屈折率層用の塗布液D−3を表9に示す材料の配合比で混合して調製した。
Figure 2017068789
(低屈折率層用の塗布液D−4)
低屈折率層用の塗布液D−4を表10に示す材料の配合比で混合して調製した。
Figure 2017068789
上記のようにして調製して得られた塗布液A−1、A−2、B−1、B−2、C−1a〜C−1f、C−2、C−3、およびD−1〜D−4を用い、本発明の反射防止フィルムの実施例および比較例をそれぞれ作製した。各実施例および比較例の層構成を纏めて表11に示す。
Figure 2017068789
各実施例および比較例の反射防止フィルムの作製方法について説明する。
[実施例1]
透明基材である易接着層付PET(ポリエチレンテレフタレート)フィルム(U403、膜厚50μm、東レ(株)製)の一面上に、ハードコート層の塗布液A−1を、ワイヤーバーを用いて、乾燥後の平均厚みが4μmとなるように塗布し、150℃で2分間乾燥させてハードコート層を形成した。
その後、高屈折率層の塗布液B−1を、ワイヤーバーを用いて、乾燥後の平均厚みが30nmとなるように塗布し、150℃で1分間加熱し、乾燥させて硬化させることにより高屈折率層を形成した。
次に、高屈折率層の表面に、銀ナノディスク層用の塗布液C−1cを、ワイヤーバーを用いて、乾燥後の平均厚みが30nmになるように塗布した。その後、130℃で1分間加熱し、乾燥、固化し、銀ナノディスク層を形成した。形成した銀ナノディスク層の上に、低屈折率層用の塗布液D−1を、ワイヤーバーを用いて、乾燥後の平均厚みが75nmになるように塗布し、130℃で1分間加熱し、乾燥硬化させて低屈折率層を形成した。
以上の工程により、PETフィルムからなる透明基材上に、ハードコート層、高屈折率層、銀ナノディスク層および低屈折率層がこの順に積層されてなる実施例1の反射防止フィルムを得た。
[実施例2−14、比較例4]
実施例1において、各層の塗布液、膜厚をそれぞれ表11に記載とした以外は実施例1と同様の方法により、実施例2−14、比較例4の反射防止フィルムを得た。すなわち、実施例2−14および比較例4として、PETフィルムからなる透明基材上に、ハードコート層、高屈折率層、銀ナノディスク層および低屈折率層が順に積層されてなる反射防止フィルムを得た。
[比較例1]
実施例1において、ハードコート層を形成せず、TACフィルムの表面上に高屈折率層を直接塗布した以外は実施例1と同様にして、比較例1の反射防止フィルムを得た。すなわち、比較例1として、PETフィルムからなる透明基材上に高屈折率層、銀ナノディスク層および低屈折率層が積層されてなる反射防止フィルムを得た。
[比較例2]
実施例1において、ハードコート層および高屈折率層を形成せず、TACフィルムの表面上に銀ナノディスク層を直接塗布した以外は実施例1と同様にして、比較例2の反射防止フィルムを得た。すなわち、比較例2として、PETフィルムからなる透明基材上に銀ナノディスク層および低屈折率層とからなる反射防止フィルムを得た。
[比較例3]
実施例1において、ハードコート層および高屈折率層を形成せず、さらに、銀ナノディスク層用塗布液中に銀ナノディスクを備えないバインダーのみとした塗布液をTACフィルムの表面上に直接塗布した以外は実施例1と同様にして、比較例3の反射防止フィルムを得た。すなわち、比較例3として、PETフィルムからなる透明基材上にバインダー層および低屈折率層とからなる反射防止フィルムを得た。
[比較例5]
実施例2において高屈折率層を形成する代わりに、以下の手順により屈折率1.35のフッ化マグネシウム層を形成した以外は同様にして比較例5の反射防止フィルムを得た。電子ビーム蒸発源を備えた真空蒸着装置を用いて、ハードコート層を形成した実施例1同様のPETフィルム上にフッ化マグネシウムを以下の条件下で蒸着した。真空蒸着装置にPETフィルムをセットした後、5×10−3Pa以下に真空排気した。フッ化マグネシウムの蒸発速度は、水晶振動子式膜厚計を用いてモニタリングした。PETフィルム最表層に得られるフッ化マグネシウム蒸着薄膜層の膜厚が30nmとなるよう、電子ビーム蒸発源の電子ビーム電流を調整してフッ化マグネシウムの蒸発速度を制御して、目的とするフッ化マグネシウム層を得た。
<評価>
各実施例および比較例について、耐光性(ヘイズ)、波長550nmにおける反射率および膜硬度を評価した。以下、各項目の測定方法および評価方法について説明する。
[耐光性試験]
各実施例および比較例の反射防止フィルムについて、促進耐候性試験機(アイスーパーUVテスターSUV−W161、岩崎電気(株)製)を用いて、照射照度90mW/cm、63℃50%RHの試験条件で170時間紫外光を低屈折率層側から照射し、試験前後のヘイズを測定した。
−ヘイズ−
各実施例および比較例の反射防止フィルムについて、ヘイズメーター(NDH5000、日本電色工業製)を用いてヘイズを測定した。ヘイズ測定は、反射防止フィルムの低屈折率層側がヘイズメーターの光源側となるように配置した状態で行った。
耐光試験前のヘイズ値は表12に示している。耐光試験後の試験片に関しては、ヘイズ測定および目視での黄変および白濁の評価を併せて行い、以下の評価基準にて評価を行った結果を表12に示している。
A:黄変および白濁がない
B:黄変あるが、白濁がない
C:黄変あり、ヘイズ3%以下の白濁がある
D:黄変あり、ヘイズ3%超20%未満の白濁がある
E:黄変あり、ヘイズ20%以上の白濁がある
[表面反射率]
各実施例および比較例の反射防止フィルムについて、低屈折率層とは逆の面(透明基材の裏面)に黒インキ(シャチハタ製 Artline_KR−20_black)を塗り、裏面の可視光領域の反射を除き、紫外可視近赤外分光計(V560、日本分光製)を用い、低屈折率層側から光を入射した際の、5°の正反射測定を実施し、波長450nmから650nmにおける反射率を測定して平均値を算出した。結果を表12に示す。なお、表面反射率の平均値としては、1.4%未満を目標値としている。
[耐傷性評価]
連続加重式引掻強度試験機(TYPE:18、新東科学(株)製)を用い、アズピュアワイパー(アズワン社製)を取り付け、純水を染み込ませたのち200g/cmの加重を掛けて、各実施例および比較例の反射防止フィルムの低屈折率層側の表面を5000往復させ、サンプルの磨耗状態を目視および光学顕微鏡下で観察した。下記の評価基準で耐傷性(膜硬度)の評価を行った。
A:擦った後が全く見えない状態である。
B:擦った後が擦り跡として認識できる。
C:擦った後が1mm以上の幅として認識できる。
[水を含ませない環境下の耐傷性評価]
連続加重式引掻強度試験機(TYPE:18、新東科学(株)製)を用い、アズピュアワイパー(アズワン社製)を取り付け、25℃50%の環境下1時間調湿したのち、水を含ませない環境下にて200g/cmの加重を掛けて、各実施例および比較例の反射防止フィルムの低屈折率層側の表面を5000往復させ、サンプルの磨耗状態を目視および光学顕微鏡下で観察した。結果、実施例および比較例いずれのサンプルにも傷は見られなかった。
この水を含ませない環境下における耐傷性評価の結果から、銀ナノディスク層を備えた反射防止フィルムであっても、水を含まない環境であれば、ハードコート層を備えずとも耐傷性に問題がないことが明らかである。
[視線集中率の評価]
各実施例および比較例の反射フィルムについて、視線集中率の評価を行った。
視線集中率は以下のようにして取得した。
反射防止フィルムを、建物の窓ガラス(幅1120mm、高さ2100mm)両面に貼付した。建物内および外の窓ガラス正面に、ある商品のサンプルを配置した。
晴天の日の午後、屋外照度90,000ルクス、室内照度2,000ルクスの条件において、建物外の窓ガラス正面から斜め10度の方向で3メートル離れた位置から、デジタルカメラを用い、建物の外部にあるサンプルからの反射画像と建物内部のサンプルの透過画像の両方が共存した画像を撮影した。
取得した画像を、DELLコンピュータ製24インチ液晶モニタ(G2410t)全面に10秒間表示し、被験者に提示した。画像を提示した際に、画像内で被験者が観察していた場所を、Tobii社製アイトラッカー(Tobii X2−30)を用い、座標の時系列データとして取得した。
取得した座標の時系列データを、マスワークス社製数値計算ソフトMATLABを用いて解析し、画像を表示した10秒間のうち、画像内で建物内部のサンプルを含む矩形の領域内を見ていた時間tを算出した。
同様の評価を、20代〜50代の男女十人に対して実施し、t/10の平均値を視線集中率として算出した。
下記の評価基準で視線集中率の評価を行った。A〜Bは実用上許容されるレベルであり、Cは実用に供し得ないレベルである。
A:視線集中率≧50%
B:50%>視線集中率≧25%
C:25%>視線集中率
各実施例および比較例についての上述の評価項目に関する評価結果を表12に示す。
Figure 2017068789
実施例1〜14については、十分に低い表面反射率が得られ、耐傷性が高く、耐光性も高いことが明らかになった。実施例1〜9、および12〜14のように銀ナノディスクの面積率が10%以上40%未満で、表面反射率が1%未満とより好ましい表面反射率特性を得ることができた。また、実施例7、12〜14のように、ハードコート層中に紫外線吸収剤を添加することにより、フィルムの黄変が抑制され、特に好ましいことが明らかになった。比較例1、2のようにハードコート層を備えていない構成では水との接触が続く環境下での耐傷性が低く、実用に耐えられないことが明らかである。比較例3、4のように銀ナノディスクを備えていないあるいは球状粒子を含む場合には、反射率が1.5%以上となっており、反射防止機能が不十分であった。このことは、反射防止機能の実使用形態での評価指標である視線集中率の結果からも明らかである。また、比較例3のように、銀ナノディスクを含まない場合、水との接触が続く環境下での耐傷性に問題がないこと、および銀ナノディスク量が多い実施例10で他の実施例よりもやや耐傷性が劣ることから、耐傷性の低下は銀ナノディスク層の存在に起因するものであることが明らかになった。また、比較例5では、ハードコート層の屈折率が高屈折率層よりも高くなっており、このとき表面反射率が大きくなり、かつ耐傷性が低くなることが分かった。
1、11、12 反射防止フィルム
10 透明基材
20 ハードコート層
30 反射防止層
32 高屈折率層
35 銀ナノディスク
36 銀ナノディスク層
38 低屈折率層
100 機能性ガラス
T 平板粒子の(平均)厚み
D 平板粒子の(平均)粒子径または(平均)円相当径

Claims (8)

  1. 透明基材、該透明基材の一面側に設けられた反射防止層、および前記透明基材と前記反射防止層との間に備えられたハードコート層を備え、
    前記反射防止層が、前記ハードコート層側から、該ハードコート層の屈折率よりも大きい屈折率を有する高屈折率層、バインダー中に複数の銀ナノディスクが分散されてなる銀ナノディスク層、および前記高屈折率層の屈折率よりも小さい屈折率を有する低屈折率層をこの順に積層してなる反射防止フィルム。
  2. 前記ハードコート層が水系樹脂組成物の硬化物からなる請求項1記載の反射防止フィルム。
  3. 前記水系樹脂組成物中の樹脂が、ポリウレタンまたはアクリル樹脂である請求項2記載の反射防止フィルム。
  4. 前記ハードコート層の膜厚が1μm以上10μm以下である請求項1から3いずれか1項記載の反射防止フィルム。
  5. 前記透明基材がポリエステルフィルムである請求項1から4いずれか1項記載の反射防止フィルム。
  6. 前記銀ナノディスク層の平面視における前記銀ナノディスクの面積率が10%以上40%以下である請求項1から5いずれか1項記載の反射防止フィルム。
  7. 前記低屈折率層が、バインダー中に中空シリカが分散されてなる請求項1から6いずれか1項記載の反射防止フィルム。
  8. ガラス板と、
    前記ガラス板の少なくとも一方の面に貼付された請求項1から7いずれか1項記載の反射防止フィルムとを備えた機能性ガラス。
JP2017546410A 2015-10-21 2016-10-21 反射防止フィルムおよび機能性ガラス Pending JPWO2017068789A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015207506 2015-10-21
JP2015207506 2015-10-21
PCT/JP2016/004648 WO2017068789A1 (ja) 2015-10-21 2016-10-21 反射防止フィルムおよび機能性ガラス

Publications (1)

Publication Number Publication Date
JPWO2017068789A1 true JPWO2017068789A1 (ja) 2018-07-26

Family

ID=58556808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017546410A Pending JPWO2017068789A1 (ja) 2015-10-21 2016-10-21 反射防止フィルムおよび機能性ガラス

Country Status (5)

Country Link
US (1) US20180239060A1 (ja)
JP (1) JPWO2017068789A1 (ja)
CN (1) CN108351434A (ja)
TW (1) TW201725119A (ja)
WO (1) WO2017068789A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189418A1 (ja) * 2018-03-29 2019-10-03 富士フイルム株式会社 波長選択吸収材料、赤外センサー、波長選択光源及び放射冷却システム
CN111273379A (zh) * 2018-11-19 2020-06-12 北京小米移动软件有限公司 移动终端
CN115593047B (zh) * 2022-09-29 2024-01-23 福耀玻璃工业集团股份有限公司 车窗玻璃与车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310423A (ja) * 2000-02-23 2001-11-06 Fuji Photo Film Co Ltd 耐傷性透明支持体、および反射防止膜
JP2011065139A (ja) * 2009-08-19 2011-03-31 Fujifilm Corp 光拡散シート
JP2015129909A (ja) * 2013-12-03 2015-07-16 富士フイルム株式会社 反射防止光学部材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4400458B2 (ja) * 2002-10-02 2010-01-20 株式会社ブリヂストン 反射防止フィルム
US7374812B2 (en) * 2004-12-30 2008-05-20 3M Innovative Properties Company Low refractive index coating composition for use in antireflection polymer film coatings and manufacturing method
JP5636208B2 (ja) * 2010-04-07 2014-12-03 富士フイルム株式会社 熱線遮蔽用金属平板状粒子含有組成物
JP6263980B2 (ja) * 2013-11-19 2018-01-24 大日本印刷株式会社 透明導電膜形成用基材、透明導電性基材及びタッチパネル
WO2015152559A1 (ko) * 2014-04-04 2015-10-08 (주)엘지하우시스 저굴절 조성물, 이의 제조방법, 및 투명 도전성 필름

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310423A (ja) * 2000-02-23 2001-11-06 Fuji Photo Film Co Ltd 耐傷性透明支持体、および反射防止膜
JP2011065139A (ja) * 2009-08-19 2011-03-31 Fujifilm Corp 光拡散シート
JP2015129909A (ja) * 2013-12-03 2015-07-16 富士フイルム株式会社 反射防止光学部材

Also Published As

Publication number Publication date
TW201725119A (zh) 2017-07-16
CN108351434A (zh) 2018-07-31
US20180239060A1 (en) 2018-08-23
WO2017068789A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6211485B2 (ja) 反射防止光学部材
EP3270191B1 (en) Antireflection optical member
US11541455B2 (en) Gold-coated flat silver particles, gold-coated flat silver particle dispersion, method of manufacturing gold-coated flat silver particles, coating film, and antireflection optical member
WO2017159621A1 (ja) 反射防止フィルムおよび機能性ガラス
WO2012070477A1 (ja) 熱線遮蔽材
WO2015159517A1 (ja) 反射防止フイルムおよび機能性ガラス
WO2013137373A1 (ja) 赤外線遮蔽フィルム
WO2015093422A1 (ja) 熱線遮蔽材および窓ガラス
US11226437B2 (en) High refractive index film and optical interference film
JP5833518B2 (ja) 熱線遮蔽材
WO2017068789A1 (ja) 反射防止フィルムおよび機能性ガラス
WO2017068788A1 (ja) 反射防止フィルムおよびその製造方法
JP6395576B2 (ja) 赤外線反射材料、熱線遮蔽材および窓ガラス
JP2016102873A (ja) 反射防止光学部材
JP5878050B2 (ja) 熱線遮蔽材
US11007752B2 (en) Far infrared reflective film, heat shield film, and heat shield glass
WO2016143881A1 (ja) 反射防止光学部材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190924