WO2017159621A1 - 反射防止フィルムおよび機能性ガラス - Google Patents

反射防止フィルムおよび機能性ガラス Download PDF

Info

Publication number
WO2017159621A1
WO2017159621A1 PCT/JP2017/009998 JP2017009998W WO2017159621A1 WO 2017159621 A1 WO2017159621 A1 WO 2017159621A1 JP 2017009998 W JP2017009998 W JP 2017009998W WO 2017159621 A1 WO2017159621 A1 WO 2017159621A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
layer
antireflection film
refractive index
transparent substrate
Prior art date
Application number
PCT/JP2017/009998
Other languages
English (en)
French (fr)
Inventor
亮 松野
清都 尚治
英正 細田
優樹 中川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018505918A priority Critical patent/JPWO2017159621A1/ja
Priority to CN201780012716.5A priority patent/CN108700677A/zh
Priority to EP17766621.1A priority patent/EP3415961A4/en
Publication of WO2017159621A1 publication Critical patent/WO2017159621A1/ja
Priority to US16/100,211 priority patent/US20180348406A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Definitions

  • the present invention relates to an antireflection film having an antireflection function for incident light and a functional glass provided with the antireflection film.
  • an antireflection film having an antireflection film for visible light on a transparent base material is provided on the glass surface of a display in order to prevent a decrease in visibility due to an external light source or scenery being reflected.
  • an antireflection film for visible light a structure including a dielectric multilayer film or a visible light wavelength absorption layer made of a silver nanoparticle layer in the multilayer film is known.
  • Patent Document 1 proposes an antireflection film comprising a laminate of a metal tabular particle, particularly a silver nanoparticle layer containing a silver nanodisk, and a dielectric layer on a transparent substrate. . According to such an antireflection film, it is possible to realize a very low reflectance in a wide band.
  • Patent Document 2 discloses a technique for improving light resistance of a silver nanodisk for heat ray shielding (heat shielding) by replacing gold.
  • JP 2015-129909 A Japanese Patent No. 5636208
  • the antireflection film provided with a laminate of a silver nanoparticle layer containing a silver nanodisk and a dielectric layer described in Patent Document 1 is a technology that achieves a very low reflectance with a small number of layers.
  • the antireflection performance deteriorated over time. As a result of intensive studies by the present inventors, it has become clear that this decrease in antireflection performance is due to deformation of the silver nanodisks due to the influence of ozone gas.
  • an object of the present invention is to provide an antireflection film having high antireflection properties and high durability that can withstand long-term use outdoors. Moreover, an object of this invention is to provide the functional glass provided with the anti-reflection film which has high durability.
  • the antireflection film of the present invention comprises a transparent substrate and an antireflection layer provided on one side of the transparent substrate,
  • the antireflection layer has, from the transparent substrate side, a silver nanoparticle layer in which a plurality of silver nanoparticles having an aspect ratio of 3 or more are dispersed in a binder, and a refractive index smaller than the refractive index of the transparent substrate.
  • a low refractive index layer is laminated in this order,
  • the silver nanoparticle layer contains a metal nobler than silver.
  • a metal more precious than silver means a metal having a standard electrode potential higher than the standard electrode potential of silver.
  • the standard electrode potentials of metals are described in “Chemical Handbook 5th edition, basic edition II, pages 581-584” for reference. Since the standard electrode potential varies depending on the type of metal compound and the coexisting compound type even for the same metal, it can be appropriately selected and used according to the metal type.
  • the major axis length of the silver nanoparticles is the equivalent circle diameter of the main plane
  • the aspect ratio is the ratio of the equivalent circle diameter to the plate thickness
  • the silver nanoparticles are rod-shaped (rod-shaped) Where the major axis length of the silver nanoparticles is the rod length and the aspect ratio is the ratio of the rod length to the equivalent circle diameter.
  • the silver nanoparticles are particularly preferably tabular.
  • the aspect ratio defines the portion having the maximum length of the particle as the long axis, in an arbitrary cross section including the long axis and parallel to the long axis,
  • the average value of the length at each position of the long axis in the short axis direction perpendicular to the long axis is obtained as the short axis average value, and is defined as the ratio of the length of the long axis (maximum length) to the short axis direction average value.
  • the amount of noble metal contained in the silver nanoparticle layer is preferably 10 ⁇ 2 atom% to 5 atom% with respect to the silver nanoparticles.
  • a metal nobler than silver is disposed on the surface of the silver nanoparticles.
  • the metal nobler than silver is preferably at least one of gold, palladium, iridium, platinum and osmium.
  • the silver nanoparticle layer preferably contains an organic component having a solubility product pKsp with silver ions of 14 or more or a reduction potential of less than 700 mV. More preferably, the silver nanoparticle layer contains an organic component having a solubility product pKsp with silver ions of 14 or more and a reduction potential of less than 700 mV.
  • the hard coat layer is a layer having a hardness of B or higher in a pencil hardness test (former JIS K5400 pencil scratch test), but is preferably HB or higher.
  • the hard coat layer is preferably made of a cured product of an aqueous resin composition.
  • a high refractive index layer having a higher refractive index than that of the hard coat layer is provided between the transparent substrate and the hard coat layer.
  • the total amount of unreacted polymerization initiators contained in layers other than the transparent substrate is preferably 50 mg / m 2 or less.
  • the functional glass of the present invention includes a glass plate, It comprises the above-described antireflection film of the present invention attached to at least one surface of a glass plate.
  • the antireflection film of the present invention includes a silver nanoparticle layer in which silver nanoparticles having an aspect ratio of 3 or more are dispersed in the antireflection layer, thereby providing good antireflection characteristics over a wide wavelength range.
  • a silver nanoparticle layer in which silver nanoparticles having an aspect ratio of 3 or more are dispersed in the antireflection layer, thereby providing good antireflection characteristics over a wide wavelength range.
  • a metal nobler than silver in the silver nanoparticle layer deformation of the nanoparticles due to the influence of ozone gas can be suppressed, and the silver nanoparticle layer has high durability that can withstand long-term use outdoors.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration of an antireflection film 1 according to an embodiment of the present invention.
  • the antireflection film 1 of this embodiment includes a transparent base material 10 and an antireflection layer 30 provided on one surface side of the transparent base material 10.
  • the antireflection layer 30 is smaller than the refractive index of the silver nanoparticle layer 36 in which a plurality of silver nanoparticles 35 having an aspect ratio of 3 or more are dispersed and the transparent substrate 10 from the transparent substrate 10 side.
  • a low refractive index layer 38 having a refractive index is laminated in this order.
  • the silver nanoparticle layer 36 contains a metal nobler than silver.
  • the antireflection film 1 contains a metal nobler than silver in the silver nanoparticle layer 36, thereby improving the resistance to ozone gas, and hardly causing a deterioration in reflection characteristics even when used outdoors for a long time. That is, the antireflection film 1 has high durability that can withstand long-term use outdoors.
  • the visible light (380 nm to 780 nm) is mainly targeted as the light having a wavelength to prevent reflection.
  • the reflectance is preferably 1% or less with respect to light having a wavelength of 550 nm, and further, the reflectance is 1% or less with respect to light having a wavelength of 550 nm. It is preferable that the wavelength range of 1% or less covers a range of 100 nm or more.
  • the total amount of unreacted polymerization initiators contained in layers other than the transparent substrate is preferably 50 mg / m 2 or less from the viewpoint of further improving ozone gas resistance.
  • the silver nanoparticle layer 36 is a layer in which a plurality of silver nanoparticles 35 having an aspect ratio of 3 or more are contained in the binder 33. From the viewpoint of haze suppression, the major axis length is preferably smaller than the wavelength ⁇ of light that prevents reflection, and the aspect ratio is preferably less than 40.
  • a silver nanoparticle is dispersed means that 80% or more of silver nanoparticles are arranged isolated from each other.
  • “Arranged in isolation from each other” means a state in which there is a distance of 1 nm or more from the closest fine particles. More preferably, the distance between the fine particles arranged in isolation and the nearest fine particles is 10 nm or more.
  • the silver nanoparticle layer 36 includes a metal nobler than silver.
  • a metal more noble than silver means “a metal having a standard electrode potential higher than the standard electrode potential of silver” as described above. It is preferable to contain a metal nobler than silver in an amount of 10 ⁇ 2 atom% to 5 atom% relative to silver. If it is this range, the effect of this invention can be acquired more notably. Note that the content of a metal nobler than silver can be measured by, for example, high-frequency inductively coupled plasma (ICP) after a sample is dissolved with an acid or the like.
  • ICP inductively coupled plasma
  • the position of the metal nobler than silver is near the surface of the silver nanoparticle.
  • the surface of the silver nanoparticle and a region from the surface to 2 to 4 atomic layers are included, and a metal nobler than silver coats the surface of the silver nanoparticle. included.
  • the presence of a metal nobler than silver near the surface of the silver nanoparticles is, for example, Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (X-ray Photoelectron Spectroscopy: XPS) or the like.
  • metals nobler than silver examples include gold, palladium, iridium, platinum, osmium, and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, palladium, gold, and platinum are particularly preferable from the viewpoint of easy availability of raw materials.
  • Metals nobler than silver can be included in the vicinity of the surface of silver nanoparticles by photoreduction, addition of a reducing agent, and chemical reduction after formation of silver nanoparticles. Is preferred.
  • the reduction is performed simultaneously with the reducing agent, the noble metal is directly reduced and the effect is reduced. Therefore, a method of substituting with silver is preferable.
  • the reduction can be achieved, for example, by heating the silver nanoparticles in a solvent containing a metal nobler than silver. By heating the solvent, metals other than silver are reduced by silver.
  • photoreduction, addition of a reducing agent, chemical reduction method, and the like may be appropriately combined depending on the purpose.
  • the silver nanoparticles 35 preferably have a flat plate shape having two opposing main planes as shown in FIGS. 2 and 3, or a rod shape (rod shape) as shown in FIG.
  • the major axis length is the equivalent circle diameter D of the main plane, and the aspect ratio is the circle. It is a ratio D / T between the distance between the main planes facing the equivalent diameter D, that is, the thickness (plate thickness) T of the plate-like metal particles.
  • the major axis length is the rod length L
  • the aspect ratio is the equivalent circle diameter of the cross section perpendicular to the rod length L and the rod length direction. The ratio L / ⁇ with ⁇ .
  • the silver nanodisk is a particle having two main planes facing each other as shown in FIG. 2 or FIG.
  • Examples of the shape of the main plane include a hexagonal shape, a triangular shape, and a circular shape.
  • the shape of the main plane is a hexagonal shape as shown in FIG. 2, a polygonal shape equal to or more than a hexagon, or a circular shape as shown in FIG. 3 in terms of high visible light transmittance. Two or more kinds of these silver nanodisks having a plurality of shapes may be mixed and used.
  • the circular shape means a shape in which the number of sides having a length of 50% or more of the average equivalent circle diameter of silver nanodisks described later is 0 per silver nanodisk particle.
  • the circular silver nanodisk is not particularly limited as long as it has no corners and a round shape when the silver nanodisk is observed from above the main plane with a transmission electron microscope (Transmission Electron Microscope: TEM).
  • the hexagonal shape means a shape in which the number of sides having a length of 20% or more of the average equivalent circle diameter of silver nanodisks described later is 6 per silver nanodisk.
  • the hexagonal silver nanodisk is not particularly limited as long as it is hexagonal when the silver nanodisk is observed from above the main plane with a TEM, and can be appropriately selected according to the purpose.
  • the hexagonal corners may be sharp or dull, but the corners are preferably dull in that the absorption in the visible light region can be reduced. There is no restriction
  • the equivalent circle diameter D which is the major axis length of the silver nanodisk, is represented by the diameter of a circle having an area equal to the projected area of each particle.
  • the projected area of each particle can be obtained by a known method in which the area on an electron micrograph is measured and corrected with the photographing magnification.
  • the average equivalent circle diameter D AV is an arithmetic average value obtained by obtaining a particle size distribution (particle size distribution) from statistics of the equivalent circle diameter D of 200 silver nanodisks and calculating from the particle size distribution.
  • the coefficient of variation in the particle size distribution of the silver nanodisk is a value (%) obtained by dividing the standard deviation of the particle size distribution by the above-mentioned average equivalent circle diameter.
  • the coefficient of variation in the particle size distribution of the silver nanodisks is preferably 35% or less, more preferably 30% or less, and particularly preferably 20% or less.
  • the variation coefficient is preferably 35% or less from the viewpoint of reducing absorption of visible light in the antireflection structure.
  • the size of the silver nanodisk is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the average particle size is preferably 10 to 500 nm, more preferably 20 to 300 nm, and even more preferably 50 to 200 nm.
  • the thickness T of the silver nanodisk is preferably 20 nm or less, more preferably 2 to 15 nm, and particularly preferably 4 to 12 nm.
  • the particle thickness T can be measured by an atomic force microscope (AFM) or a transmission electron microscope (TEM).
  • Examples of the method for measuring the average particle thickness by AFM include a method in which a particle dispersion containing silver nanodisks is dropped on a glass substrate and dried to measure the thickness of one particle.
  • a method for measuring the average particle thickness by TEM for example, a particle dispersion containing silver nanodisks is dropped on a silicon substrate, dried, and then subjected to coating treatment by carbon vapor deposition or metal vapor deposition.
  • Examples include a method in which a cross-section is prepared by Focused Ion Beam (FIB) processing, and the cross-section is observed with a TEM to measure the particle thickness (hereinafter referred to as FIB-TEM).
  • FIB-TEM Focused Ion Beam
  • the ratio D / T (aspect ratio) of the diameter (equivalent circle diameter) D to the thickness T of the silver nanodisks is preferably 3 or more. Although it can be appropriately selected according to the purpose, it is preferably 3 to 40 and more preferably 5 to 40 from the viewpoint of reducing absorption of visible light and haze. If the aspect ratio is 3 or more, visible light absorption can be suppressed, and if it is less than 40, haze in the visible region can also be suppressed.
  • the method for synthesizing the silver nanodisk is not particularly limited and may be appropriately selected depending on the purpose.
  • a liquid phase method such as a chemical reduction method, a photochemical reduction method, or an electrochemical reduction method may be used as a method for synthesizing a hexagonal or circular silver nanodisk.
  • a liquid phase method such as a chemical reduction method or a photochemical reduction method is particularly preferable in terms of shape and size controllability.
  • hexagonal-triangular silver nanodisks After synthesizing hexagonal-triangular silver nanodisks, hexagonal-triangular silver nanodisks, for example, by etching with dissolved species that dissolve silver such as nitric acid and sodium sulfite, and aging by heating Hexagonal or circular silver nanodisks may be obtained by dulling the corners.
  • crystal growth may be performed after fixing a seed crystal on the surface of a transparent substrate such as a film or glass in advance.
  • Silver nanorods are particles having a shape extending in a uniaxial direction as shown in FIG.
  • the bar length L which is the long axis length of the silver nanorods, is the bar length in the uniaxial direction described above, and the bar length L of each particle is long on the electron micrograph as in the case of the silver nanodisks described above. It can be obtained by photographing the thickness and correcting with the photographing magnification.
  • the rod length L which is the major axis length of the silver nanorods, is smaller than the wavelength ⁇ of light for preventing reflection, preferably 0.8 times or less of ⁇ , more preferably 0.6 times or less. It is particularly preferred that the ratio is 5 times or less.
  • the lower limit of the bar length is not particularly limited, but is preferably 1 nm or more, more preferably 2 nm or more, and particularly preferably 5 nm or more.
  • the rod length L is preferably 50 nm or more and 300 nm or less.
  • the diameter (equivalent circle diameter) ⁇ of the silver nanorod can be calculated from an AFM or TEM image obtained by a method similar to the method for measuring the thickness of the silver nanodisk. An AFM or TEM image is acquired, the area of the cross section is measured from the acquired image of the cross section perpendicular to the length direction of the rod, and the equivalent circle diameter may be calculated by a known method of correcting with the imaging magnification.
  • the diameter ⁇ of the silver nanorod is smaller than 0.5 times the wavelength ⁇ of light for preventing reflection, preferably 0 or 4 times or less of ⁇ , more preferably 0.3 or less. It is particularly preferable that it is 1 time or less.
  • the ratio L / ⁇ (aspect ratio) of the rod length L to the equivalent circle diameter ⁇ is preferably 3 to 40 from the viewpoint of reducing visible light absorption and haze, and 5 to 40 is preferable. More preferred. If the aspect ratio is 3 or more, visible light absorption can be suppressed, and if it is less than 40, haze in the visible region can also be suppressed.
  • the binder 33 in the silver nanoparticle layer 36 preferably contains a polymer, and more preferably contains a transparent polymer.
  • the polymer include natural materials such as polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, polyvinyl chloride resin, (saturated) polyester resin, polyurethane resin, gelatin, and cellulose. Examples thereof include polymers such as polymers.
  • the main polymer is preferably a polyvinyl alcohol resin, a polyvinyl butyral resin, a polyvinyl chloride resin, a (saturated) polyester resin, or a polyurethane resin, and the polyester resin and the polyurethane resin are 80% by number or more of silver nanoparticles. Is more preferable from the viewpoint of easily existing in the range of d / 2 from the surface of the silver nanoparticle layer. Two or more binders may be used in combination.
  • polyester resins a saturated polyester resin is particularly preferable from the viewpoint of imparting excellent weather resistance because it does not contain a double bond. Further, from the viewpoint of obtaining high hardness, durability and heat resistance by curing with a water-soluble / water-dispersible curing agent or the like, it is more preferable to have a hydroxyl group or a carboxyl group at the molecular end.
  • the polymer a commercially available polymer can be preferably used. Examples thereof include PLUSCOAT Z-687, which is a water-soluble polyester resin manufactured by Kyodo Chemical Industry Co., Ltd., and Hydran HW-350, which is a polyester polyurethane copolymer product manufactured by DIC Corporation.
  • the main polymer contained in a silver nanoparticle layer means the polymer component which occupies 50 mass% or more of the polymer contained in a silver nanoparticle layer.
  • the content of the polyester resin and the polyurethane resin with respect to the silver nanoparticles contained in the silver nanoparticle layer is preferably 1 to 10000% by mass, more preferably 10 to 1000% by mass, and 20 to 500% by mass. It is particularly preferred.
  • the refractive index of the binder is preferably 1.4 to 1.7.
  • the refractive index is a numerical value at a wavelength of 550 nm.
  • the refractive index in this specification is a refractive index at a wavelength of 550 nm.
  • the binder 33 preferably contains an organic component having a solubility product pKsp with silver ions of 14 or more or a reduction potential of less than 700 mV.
  • Additives having such organic components include 1-phenyl-1H-tetrazole-5-thiol, 5-amino-1,3,4-thiadiazole-2-thiol, 5-phenyl 1,3,4-oxy. Asiazol-2-thiol, methylureidophenyl mercaptoterazole and the like.
  • these additives are preferably added in an amount of 0.1 ⁇ 10 ⁇ 5 mol / m 2 to 10 ⁇ 10 ⁇ 5 mol / m 2 . If the addition amount is 0.1 ⁇ 10 ⁇ 5 mol or more, the ozone gas resistance effect described later can be sufficiently exerted. On the other hand, if the addition amount is 10 ⁇ 10 ⁇ 5 mol / m 2 or less, the silver particles are aggregated. Can be suppressed.
  • the refractive index of the low refractive index layer 38 is smaller than the refractive index of the transparent substrate. Further, it is preferably lower than the refractive index of the transparent substrate 10.
  • the refractive index of the low refractive index layer is preferably 1.40 or less, for example, about 1.35.
  • the optical film thickness of the low refractive index layer is preferably 30 nm to 100 nm, for example, about 70 nm.
  • the low refractive index layer 38 contains, for example, a binder, refractive index control particles and a surfactant, and further contains other components as necessary.
  • the binder of the low refractive index layer is not particularly limited and can be appropriately selected according to the purpose.
  • the refractive index control particles are added for adjusting the refractive index and can be appropriately selected according to the purpose. Examples thereof include hollow silica.
  • the transparent substrate 10 is not particularly limited as long as it is optically transparent with respect to incident light having a predetermined wavelength ⁇ , and can be appropriately selected according to the purpose.
  • the transparent substrate 10 preferably has a visible light transmittance of 70% or more, and more preferably a visible light transmittance of 80% or more.
  • the transparent substrate 10 may be in the form of a film, may have a single layer structure, or may have a laminated structure, and the size may be determined according to the application.
  • the transparent substrate 10 examples include polyolefin resins such as polyethylene, polypropylene, poly-4-methylpentene-1 and polybutene-1, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate resins and polyvinyl chloride.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • the thickness of the transparent substrate 10 is usually about 10 ⁇ m to 500 ⁇ m.
  • the thickness of the transparent substrate 10 is further preferably 10 ⁇ m to 100 ⁇ m, more preferably 20 to 75 ⁇ m, and particularly preferably 35 to 75 ⁇ m. If the thickness of the transparent substrate 10 is sufficiently thick, adhesion failure tends to be difficult to occur.
  • the thickness of the transparent base material 10 is sufficiently thin, when it is attached to a building material or a window glass of an automobile as an antireflection film, the waist as a material is not too strong and the construction tends to be easy.
  • the transparent substrate 10 is sufficiently thin, the visible light transmittance is increased, and the raw material cost tends to be suppressed.
  • the PET film When using a PET film as the transparent substrate 10, it is preferable to use a biaxially stretched product from the viewpoint of rigidity.
  • the PET film preferably has an easy adhesion layer on the surface on which the antireflection structure is formed. This is because by using a PET film provided with an easy-adhesion layer, Fresnel reflection occurring between the PET film and the layer to be laminated can be suppressed, and the antireflection effect can be further enhanced.
  • the film thickness of the easy-adhesion layer it is preferable that the optical path length is 1/4 with respect to the wavelength for which reflection is desired to be prevented.
  • the refractive index of the easy-adhesion layer is preferably lower than the refractive index of the PET film (biaxially stretched product: 1.66) and higher than the refractive index of the hard coat layer. It is particularly preferable to be in the vicinity of the middle of the refractive index (refractive index of 1.56 to 1.6).
  • the PET film having such an easy-adhesion layer include Lumirror manufactured by Toray Industries, Inc. and Cosmo Shine manufactured by Toyobo Co., Ltd.
  • the antireflection film of the present invention may include a layer other than the above layers.
  • the structure of the antireflection film of an embodiment provided with other layers will be described.
  • FIG. 5 is a schematic cross-sectional view showing a laminated structure of the antireflection film 2 according to the second embodiment of the present invention.
  • symbol is attached
  • the antireflection film 2 of the present embodiment is different from the antireflection film 1 of the first embodiment in that a hard coat layer 20 is provided between the transparent substrate 10 and the silver nanoparticle layer 36.
  • the hard coat layer 20 is a layer having a hardness of B or more, preferably HB or more, in a pencil hardness test.
  • this hard coat layer 20 By interposing this hard coat layer 20 between the transparent base material 10 and the antireflection layer 30, it becomes possible to prevent the occurrence of scratches or peeling due to packing / transport, pasting or cleaning.
  • By providing the hard coat layer it is possible to prevent the occurrence of scratches or peeling due to bonding or cleaning.
  • the hard coat layer 20 is preferably made of a material that does not absorb in the visible light region from the viewpoint of transparency.
  • the hard coat layer 20 may include particles made of a metal oxide or the like. From the viewpoint of preventing the occurrence of internal haze, it is preferable that the added particles have a refractive index close to that of the later-described resin constituting the layer and have a particle size of 200 nm or less.
  • a compatibilizing aid such as a film-forming aid, or selection of materials having good compatibility is preferably used as a raw material for the hard coat layer.
  • the refractive index of the hard coat layer 20 is preferably 1.5 or more and 1.6 or less.
  • the hard coat layer 20 may be any layer that satisfies the above conditions, and the material thereof is not particularly limited.
  • the type and the forming method can be selected as appropriate, and examples thereof include acrylic resins, silicone resins, melamine resins, urethane resins, alkyd resins, and fluorine resins.
  • urethane-based resins are preferable, and a material containing a reactive group such as a silanol group in the side chain is more preferable from the viewpoint of forming a bond with the upper layer.
  • the thickness of the hard coat layer is not particularly limited and can be appropriately selected according to the purpose. However, it is preferably 1 ⁇ m or more from the viewpoint of improving scratch resistance at the time of water interposition. From a viewpoint, 50 micrometers or less are preferable and 10 micrometers or less are more preferable.
  • the hard coat layer 20 may be an ultraviolet curable resin or a thermosetting resin containing a polymerization initiator, but is particularly a cured product of an aqueous resin composition that can be cured without using a polymerization initiator.
  • the aqueous resin composition refers to a composition having a property of solidifying when the aqueous solvent contained therein is removed.
  • forced emulsification resin obtained by forcibly emulsifying a resin having no emulsifiability or water solubility using a surfactant, self-emulsified or dispersed self-emulsifying resin
  • An emulsifying resin, a water-soluble resin in which a water-soluble resin is dissolved, and the like can be given.
  • the forced emulsifying resin and the self-emulsifying resin are in a dispersed state in which the resin has a particle size at the stage of the composition.
  • the water-soluble resin means that the resin does not have a particle size and is in a dissolved state at the composition stage.
  • a hard-coat layer consists of the hardened
  • the cured product of the aqueous resin composition can be distinguished from an ultraviolet curable resin compound or a thermosetting resin compound that requires a polymerization initiator from the point that a polymerization initiator is not included.
  • the aqueous solvent is a dispersion medium whose main component is water, and the content of water contained in the solvent is preferably 70% to 100%, more preferably 80% to 100%.
  • Solvents other than water are soluble in water such as alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, glycol ethers such as N-methylpyrrolidone (NMP), tetrahydrofuran and butyl cellosolve, etc.
  • a solvent is preferably used.
  • amines such as surfactants, ammonia, triethylamine, N, -N dimethylethanolamine are added to the dispersion to improve the dispersion stability of the polymer in the water-based resin composition, coating properties, and film properties after drying. It may contain several percent.
  • the resin in the aqueous resin composition include polyester, polyolefin, polyester, acrylic resin, polyurethane and the like. From the viewpoint of good strength and transparency of the coating film to be formed, it is preferable to include at least one resin selected from the group consisting of polyurethane and acrylic resins.
  • the acrylic resin used as the resin in the aqueous resin composition is a resin containing a monomer having at least one group selected from an acryloyl group and a methacryloyl group as a polymerization component.
  • the total mass of the acrylic resin is 100% by mass, the total mass of repeating units formed by polymerization is preferably a resin exceeding 50% by mass.
  • a monomer having at least one group selected from an acryloyl group and a methacryloyl group is hereinafter referred to as “(meth) acryl monomer” as appropriate.
  • the acrylic resin is obtained by homopolymerizing (meth) acrylic monomers or copolymerizing with other monomers.
  • the acrylic resin is a copolymer of a (meth) acrylic monomer and another monomer
  • the other monomer to be copolymerized with the (meth) acrylic monomer may be a monomer having a carbon-carbon double bond, and an ester A monomer having a bond or urethane bond may be used.
  • the copolymer of the (meth) acrylic monomer and other monomer may be any of a random copolymer, a block copolymer, and a graft copolymer.
  • the acrylic resin includes a polymer, a polyurethane solution or a polyurethane dispersion obtained by homopolymerizing a (meth) acrylic monomer or copolymerizing with another monomer in a polyester solution or a polyester dispersion.
  • a polymer solution or dispersion other than an acrylic resin such as a polymer obtained by homopolymerizing an acrylic monomer or copolymerizing with another monomer
  • the (meth) acrylic monomer is homopolymerized or copolymerized with another monomer.
  • Polymers obtained by polymerization and mixtures containing other polymers such as polyester resins and urethane resins are included.
  • the acrylic resin may have at least one group selected from a hydroxy group and an amino group in order to further improve the adhesion between the hard coat layer and the adjacent layer.
  • (meth) acrylic monomer that can be used for the synthesis of the acrylic resin.
  • Representative (meth) acrylic monomers include, for example, (meth) acrylic acid; hydroxyalkyl (meta) such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate; (meth) acrylamide; diacetone acrylamide, N -N-substituted acrylamides such as methylolacrylamide; (meth) acrylonitrile; silicon-containing (meth) acrylic monomers such as ⁇ -methacryloxypropyltrimethoxysilane.
  • a commercially available acrylic resin may be used.
  • Commercially available acrylic resins that can be used for the hard coat layer include Julimer (registered trademark) ET-410 (manufactured by Toa Gosei Chemical Co., Ltd.), AS-563A (trade name: manufactured by Daicel Finechem Co., Ltd.), Bonlon (registered (Trademark) XPS-002 (made by Mitsui Chemicals, Inc.) etc. are mentioned.
  • Polyurethane resin is a general term for polymers having a urethane bond in the main chain, and is usually a reaction product of diisocyanate and polyol.
  • Examples of the diisocyanate that can be used for the synthesis of the polyurethane resin include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate (NDI), tolidine diisocyanate (TODI), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI). It is done.
  • TDI toluene diisocyanate
  • MDI diphenylmethane diisocyanate
  • NDI naphthalene diisocyanate
  • TODI tolidine diisocyanate
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • polyol examples include ethylene glycol, propylene glycol, glycerin, hexanetriol, and the like.
  • the polyurethane resin used as the resin in the aqueous resin composition includes a polyurethane resin obtained by subjecting a polyurethane resin obtained by the reaction of diisocyanate and polyol to a chain extension treatment to increase the molecular weight in addition to a general polyurethane resin. Can be used.
  • the diisocyanate, polyol, and chain extension treatment described for the polyurethane resin are described in detail in, for example, “Polyurethane Handbook” (edited by Keiji Iwata, Nikkan Kogyo Shimbun, published in 1987), and described in the “Polyurethane Handbook”. The description relating to the polyurethane resin and its raw materials can be applied to the present invention depending on the purpose.
  • a commercially available polyurethane resin may be used.
  • Commercially available products include Superflex (registered trademark) 470, 210, 150HS, 150HF, Elastron (registered trademark) H-3 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Hydran (registered trademark) AP-20, AP -40F, WLS-210 (above, manufactured by DIC Corporation), Takelac (registered trademark) W-6061, WS-5100, WS-4000, WSA-5920, Olester (registered trademark) UD-350 (above, Mitsui) Chemical Co., Ltd.).
  • WS-5100 and WS-4000 are particularly preferable from the viewpoint of containing a silanol group.
  • the hard coat layer 20 is preferably formed by applying an aqueous resin composition on a transparent substrate and drying it. At this time, it is preferable to adjust the thickness of the coating film so that the dry film thickness is 1 ⁇ m or more and 10 ⁇ m or less.
  • the total amount of unreacted polymerization initiators contained in the layers other than the transparent substrate is preferably 50 mg / m 2 or less from the viewpoint of improving ozone gas resistance. If the hard coat layer 20 is made of a cured product of an aqueous composition, the amount of the unreacted polymerization initiator in the hard coat layer 20 is dramatic compared to the case of using an ultraviolet curable or thermosetting resin. Can be reduced. Therefore, if the hard coat layer 20 made of a cured product of the aqueous composition is provided, even in the antireflection film provided with the hard coat layer, the total of unreacted polymerization initiators easily contained in layers other than the transparent substrate. The amount can be 50 mg / m 2 or less.
  • an ultraviolet absorber may be added. Although it does not specifically limit as a ultraviolet absorber, It is preferable to use the compound which mixed the compound containing a triazine ring individually or in mixture of multiple types. By containing the ultraviolet absorber in the hard coat layer 20, yellowing of the transparent substrate when the antireflection film is exposed to sunlight for a long time can be suppressed.
  • FIG. 6 is a schematic cross-sectional view showing the layer structure of the antireflection film 3 of the third embodiment of the present invention.
  • the antireflection film of the present invention may include a high refractive index layer 32 and a hard coat layer 20 between the transparent substrate 10 and the silver nanoparticle layer 36. By providing the high refractive index layer 32, the antireflection performance can be improved.
  • the high refractive index layer 32 and the hard coat layer 20 are provided, a configuration in which the high refractive index layer 32 is disposed between the silver nanoparticle layer 36 and the hard coat layer 20 as shown in FIG. 6 is preferable.
  • the hard coat layer 20 may be disposed between the silver nanoparticle layer 36 and the high refractive index layer 32.
  • the optical film thickness of the high refractive index layer 32 is preferably ⁇ / 4 or less. At this time, the physical film thickness of the high refractive index layer 32 is specifically preferably 200 nm or less. On the other hand, when the hard coat layer 20 is disposed between the silver nanoparticle layer 36 and the high refractive index layer 32, the optical film thickness of the high refractive index layer 32 is preferably ⁇ / 2 or less. At this time, the physical film thickness of the high refractive index layer 32 is specifically preferably 300 nm or less.
  • the refractive index of the high refractive index layer 32 should just be larger than the refractive index of the hard-coat layer 20, it is preferable that it is 1.55 or more, especially 1.6 or more.
  • the upper limit of the refractive index of the high refractive index layer 32 is not particularly limited, but is preferably 2.6 or less, more preferably 2.0 or less, and particularly preferably 1.8 or less.
  • the constituent material of the high refractive index layer 32 is not particularly limited as long as the refractive index is 1.55 or more.
  • it contains a binder, metal oxide fine particles, a matting agent, and a surfactant, and further contains other components as necessary.
  • the binder is not particularly limited and can be appropriately selected depending on the purpose.
  • thermosetting type such as an acrylic resin, a silicone resin, a melamine resin, a urethane resin, an alkyd resin, or a fluorine resin. Or a photocurable resin etc.
  • the material of the metal oxide fine particles is not particularly limited as long as it has a refractive index larger than that of the binder, and can be appropriately selected according to the purpose.
  • tin-doped indium oxide hereinafter, “ Abbreviated as “ITO”
  • ITO tin-doped indium oxide
  • the antireflection film of the present invention may comprise other layers and components other than the layers described in the first to third embodiments.
  • the antireflection film of the present invention may have an infrared absorbing compound-containing layer containing a compound having absorption in the infrared region in order to shield heat rays.
  • the layer containing a compound having absorption in the infrared region is also referred to as an infrared absorbing compound-containing layer.
  • the infrared absorbing compound-containing layer may serve as another functional layer.
  • the antireflection film of the present invention may have an adhesive layer (hereinafter also referred to as an adhesive layer).
  • an adhesive layer There is no restriction
  • examples thereof include polyvinyl butyral (PVB) resin, acrylic resin, styrene / acrylic resin, urethane resin, polyester resin, silicone resin, natural rubber, and synthetic rubber. These may be used individually by 1 type and may use 2 or more types together.
  • An adhesive layer made of these materials can be formed by coating or laminating. Furthermore, you may add an antistatic agent, a lubricant, an antiblocking agent, etc. to the adhesion layer.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m to 50 ⁇ m.
  • the antireflection film may have a backcoat layer on the surface of the transparent substrate opposite to the surface on which the antireflection layer is formed.
  • a backcoat layer There is no restriction
  • it is also suitable to use the easily bonding layer of PET film as a backcoat layer.
  • the antireflection film of the present invention may contain at least one kind of metal oxide particles in order to shield heat rays.
  • metal oxide particles there is no restriction
  • ITO, ATO, CWO, and lanthanum hexaboride (LaB 6 ) are more preferable in that they have excellent heat ray absorption ability and can produce an antireflection structure having a wide range of heat ray absorption ability when combined with tabular grains.
  • ITO is particularly preferable in that infrared rays of 200 nm or more are shielded by 90% or more and the visible light transmittance is 90% or more.
  • the volume average particle size of the primary particles of the metal oxide particles is preferably 0.1 ⁇ m or less in order not to reduce the visible light transmittance.
  • a shape of a metal oxide particle According to the objective, it can select suitably, For example, spherical shape, needle shape, plate shape, etc. are mentioned.
  • a transparent substrate 10 is prepared, and first, a hard coat layer 20 is formed on the transparent substrate 10.
  • a coating method is preferred.
  • a coating liquid for forming a hard coat layer a coating liquid containing at least a water-soluble resin or a water-dispersible resin and water is prepared, and the coating liquid is applied on a transparent substrate and dried to thereby hard coat layer 20. Form.
  • the high refractive index layer 32 is formed on the hard coat layer 20.
  • a coating method is preferable.
  • a coating solution for forming a high refractive index layer is prepared and applied on the hard coat layer 20 by using a method such as a dip coater, a die coater, a slit coater, a bar coater, or a gravure coater. Apply the coating solution.
  • the high refractive index layer 32 is obtained by curing by light irradiation or heating according to the resin constituting the binder of the high refractive index layer.
  • the silver nanoparticle layer 36 is formed on the high refractive index layer 32.
  • a dispersion (silver nanoparticle dispersion) containing silver tabular grains as a coating liquid for forming a silver nanoparticle layer is applied by a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like.
  • a silver nanoparticle layer is obtained by making it harden by light irradiation or heating.
  • pressure-bonding rollers such as a calender roller and a laminating roller.
  • a low refractive index layer 38 is formed on the silver nanoparticle layer 36.
  • a coating method is preferable.
  • a coating solution for forming a low refractive index layer is prepared and used for forming a low refractive index layer on the silver nanoparticle layer 36 by using a dip coater, die coater, slit coater, bar coater or gravure coater. Apply the coating solution.
  • the low refractive index layer 38 is obtained by curing by light irradiation or heating according to the resin constituting the binder of the low refractive index layer.
  • the antireflection film 3 can be manufactured through the above steps.
  • the antireflection film of the present invention is used by being attached to at least one of the front and back surfaces of a glass plate to which functionality is desired. That is, the functional glass of the present invention is obtained by attaching the antireflection film of the present invention to at least one surface side.
  • FIG. 7 the cross-sectional schematic diagram of the structural example of the functional glass of this invention is shown.
  • the functional glass 100 shown in FIG. 7 includes a glass plate 50, a first antireflection film 11 attached to one surface of the glass plate 50, and an s2th reflection attached to the other surface of the glass plate 50. And a prevention film 12.
  • the first and second antireflection films 11 and 12 are both embodiments of the antireflection film of the present invention.
  • the first and second antireflection films 11 and 12 may have the same reflection condition, or may have different reflection conditions.
  • the material and film thickness of the low-refractive index layer and the high-refractive index layer, the thickness of the silver nanoparticle layer, and / or the content of silver nanoparticles are different, generally the reflectance on the front and back of the film, the desired reflectance
  • the reflection conditions such as the wavelength range are different.
  • the glass plate 50 is glass applied for uses such as a building window, a show window, or a car window.
  • the first and second antireflection films 11 and 12 are each provided with a pressure-sensitive adhesive layer 9 on the back surface of the transparent substrate 10, and one side and the other side of the glass plate 50 through the pressure-sensitive adhesive layer 9. Is pasted.
  • the functional glass provided with the antireflection film of the present invention has a high visible light transmittance from the antireflection film application side and a clear field of view. In addition, it has high radio wave permeability and does not interfere with the radio waves of mobile phones.
  • an adhesive layer is provided by coating or laminating on the side of the antireflection film where the antireflection layer of the transparent base is not formed, and the window glass surface is reflected in advance. It is preferable to spray an aqueous solution containing a surfactant (mainly nonionic) on the surface of the pressure-sensitive adhesive layer of the prevention film, and then install the antireflection film on the window glass through the pressure-sensitive adhesive layer. Until the moisture evaporates, the adhesive force of the pressure-sensitive adhesive layer is reduced, so that the position of the antireflection structure can be adjusted on the glass surface.
  • a surfactant mainly nonionic
  • the moisture remaining between the window glass and the antireflection film is swept away from the glass center toward the edge using a squeegee to prevent reflection on the window glass surface.
  • the film can be fixed. In this way, it is possible to install an antireflection film on the window glass.
  • ⁇ Functionality can be imparted to the window glass also by a method of heating or pressure laminating in which an antireflection film is mechanically attached to the glass plate using a laminator facility.
  • a laminator is prepared in which a glass plate passes through a slit area sandwiched between a metal roll or a heat-resistant rubber roll heated from the top and a room-temperature or heated heat-resistant rubber roll from the bottom. Place the antireflection film on the glass plate so that the adhesive surface is in contact with the glass surface, set the laminator's upper roll so that the antireflection film is pressed, and pass the laminator.
  • the pressure-sensitive adhesive strength is increased and the air-bubbles can be stuck so as not to be mixed.
  • the antireflection film can be supplied in a roll shape, it is preferable to continuously supply the tape-like film from the top to the heating roll so that the heating roll has a wrap angle of about 90 degrees. This is because the pressure-sensitive adhesive layer of the antireflective film is easily pasted by preheating, and both the elimination of bubbles and the increase in adhesive strength can be achieved at a high level.
  • Examples of the antireflection film of the present invention and comparative examples will be described below. First, the preparation of various coating solutions used in the production of the antireflection film examples and comparative examples will be described. In the examples and comparative examples, silver nanodisks were used as the silver nanoparticles, and the silver nanoparticle layer was a silver nanodisk layer.
  • Coating solution for forming hard coat layer (Coating liquid A-1 for forming a hard coat layer)
  • the coating liquid A-1 for forming the hard coat layer is prepared by mixing the materials shown in Table 1 below with a binder, an ultraviolet absorber, a surfactant, a film-forming aid, and water in the mixing ratio shown in Table 1. Prepared.
  • Coating liquid A-2 for forming a hard coat layer Except for the addition of polyurethane water dispersion: Takelac WS-4000, polyurethane water dispersion: Takelac WS-5100 (manufactured by Mitsui Chemicals, Inc., solid content 30 mass%) in the preparation of coating liquid A-1, A coating liquid A-2 was obtained in the same manner as the coating liquid A-1.
  • the coating liquid A-3 for forming the hard coat layer was prepared by mixing the materials shown in Table 2 below with a monomer, an ultraviolet absorber, an ultraviolet polymerization initiator (photopolymerization initiator), and a solvent in the mixing ratio shown in Table 2. It was prepared by doing.
  • the coating solution C-1 for the silver nanodisk layer was prepared by mixing at the material mixing ratio shown in Table 4.
  • the silver nanodisk dispersion c1B in the above material was prepared as follows.
  • a 0.2 mM NaOH aqueous solution was added to the precipitated tabular grains to make a total of 800 g, and the mixture was manually stirred with a stirring bar to obtain a coarse dispersion.
  • the batch dispersion treatment was performed at 9000 rpm for 120 minutes on the crude dispersion mixture in the tank.
  • the liquid temperature during dispersion was kept at 50 ° C.
  • the temperature was lowered to 25 ° C.
  • single-pass filtration was performed using a profile II filter (manufactured by Nippon Pole Co., Ltd., product type MCY1001Y030H13).
  • the dispersion c1A was subjected to a desalting treatment and a redispersion treatment to prepare a silver nanodisk dispersion c1B.
  • the silver nanodisk dispersion c1B was dropped on a silicon substrate and dried, and the individual thickness of the silver nanodisk was measured by the FIB-TEM method. Ten silver nanodisks in the silver nanodisk dispersion c1B were measured, and the average thickness was 8 nm. That is, the aspect ratio expressed by the diameter / thickness was 14.8.
  • a coating liquid C-7 was obtained in the same manner as the coating liquid C-4 except that 1- (5-methylureidophenyl) -5-mercaptotetrazole was not added in the preparation of the coating liquid C-4.
  • the coating liquid D-1 for the low refractive index layer was prepared by mixing at the material mixing ratio shown in Table 5.
  • the compound M-11 was prepared by the method described in JP-A-2006-28280, paragraph numbers [0017] to [0025].
  • the coating solution C-1 for the silver nanodisk layer is applied to one surface of a PET (polyethylene terephthalate) film (U403, film thickness 75 ⁇ m, manufactured by Toray Industries, Inc.), which is a transparent substrate. Then, the coating was applied so that the average thickness after drying was 30 nm. Then, it heated at 130 degreeC for 1 minute, dried and solidified, and formed the silver nanodisk layer. On the formed silver nanodisk layer, the coating liquid D-1 for the low refractive index layer was applied using a wire bar so that the average thickness after drying was 70 nm, and dried by heating at 60 ° C. for 1 minute.
  • an antireflection film of Comparative Example 1 in which a silver nanodisk layer and a low refractive index layer were laminated in this order on a transparent substrate made of a PET film was obtained.
  • the antireflection film of Comparative Example 1 has the same configuration as that described in JP-A-2015-129909 described in the section of the prior art.
  • Comparative Example 2 In Comparative Example 1, the film of Comparative Example 2 was prepared in the same manner as in Comparative Example 1, except that C-4 was used instead of the coating solution C-1 for the silver nanodisk layer and no low refractive index layer was formed. Got.
  • Examples 1 to 9 In Comparative Example 1, an example was prepared in the same manner as in Comparative Example 1, except that the C-2 to C-10 coating solutions shown in Table 6 were used instead of the coating solution C-1 for the silver nanodisk layer. 1-9 antireflection films were obtained.
  • Example 10 In Example 3, before applying the coating solution C-4 for the silver nanodisk layer, a hard coat layer was formed on one surface of the transparent substrate, and the coating liquid C for the silver nanodisk layer was formed on the hard coat layer. An antireflection film of Example 10 was obtained in the same manner as in Example 3 except that -4 was applied.
  • the hard coat layer was prepared by applying the coating liquid A-3 for the hard coat layer on one surface of a PET (polyethylene terephthalate) film (U403, film thickness 75 ⁇ m, manufactured by Toray Industries, Inc.) with an easy adhesion layer. Used, coated to an average thickness of 5 ⁇ m after drying, heat-dried at 90 ° C.
  • metal halide (M04-L41) UV lamp (Eye Graphics) was used to cure and form the coating film by irradiating with an ultraviolet ray with an irradiation amount of 100 mJ / cm 2 .
  • Example 11 In Example 10, a hard coat layer using the coating solution A-3 was formed, and then a high refractive index layer was formed, and a coating solution C-4 for silver nanodisk layer was coated on the high refractive index layer. did. Except for this point, the reflective film of Example 11 was obtained in the same manner as in Example 10.
  • the coating liquid B-1 for the high refractive index layer was applied using a wire bar so that the average thickness after drying was 23 nm, dried by heating at 135 ° C. for 2 minutes and solidified. Formed.
  • Example 12 In Example 11, the antireflection film of Example 12 was obtained in the same manner as in Example 11 except that the coating liquid A-3 was applied so that the average thickness of the hard coat layer was 1.5 ⁇ m.
  • Example 13 An antireflection film of Example 13 was obtained in the same manner as in Example 11 except that the hard coat layer was formed as follows.
  • the hard coat layer was coated using the coating liquid A-2 in place of the coating liquid A-3, so that the average thickness after drying was 4 ⁇ m, and dried by heating at 165 ° C. for 2 minutes to solidify. Formed.
  • Example 14 In Example 13, the antireflection film of Example 14 was obtained in the same manner as in Example 13, except that the coating liquid A-1 was used instead of the coating liquid A-2.
  • Example 10-Coating liquid A-3 for hard coat layer used in Example 12 contains an ultraviolet polymerization initiator and is polymerized by irradiation with ultraviolet rays to form a hard coat layer.
  • the coating liquids A-1 and A-2 for the hard coat layer used in Examples 13 and 14 are aqueous resin compositions that do not contain an ultraviolet polymerization initiator.
  • Comparative Example 1 can obtain a good reflectance, but has low ozone gas resistance.
  • Examples 1 to 13 containing a metal nobler than silver (here, gold) had higher ozone gas resistance than Comparative Example 1.
  • Example 1 the gold content ratio is small and ozone gas resistance can be obtained very much. However, as shown in Example 2-4, it has been found that the ozone gas resistance is further improved when the content ratio is somewhat large. On the other hand, when the content ratio was large as in Example 4, the reflectance increased and the antireflection performance decreased. From the comparison between Example 3 and Examples 6-9, the silver nanoparticle layer contains an organic component having a solubility product pKsp of 14 or more and / or an organic component having a reduction potential of less than 700 mV. It was found that the ozone gas resistance was improved. In particular, ozone gas resistance was the best when an organic component having a solubility product pKsp with silver ions of 14 or more and a reduction potential of less than 700 mV was contained as in Example 3.
  • Adhesive layer 10 Transparent substrate 11 First antireflection film 12 Second antireflection film 20 Hard coat layer 30 Antireflection layer 32 High refractive index layer 35 Silver nanoparticles 35A, 35B Silver nanodisk 35C Silver nanorod 36 Silver nanoparticle layer 38 Low refractive index layer 50 Glass plate 100 Functional glass

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

【課題】耐久性の高い反射防止フィルムおよび反射防止フィルムを備えた機能性ガラスを提供する。 【解決手段】透明基材(10)および透明基材(10)の一面側に設けられた反射防止層(30)を備え、反射防止層(30)が、透明基材(10)側から、バインダー(33)中にアスペクト比が3以上である複数の銀ナノ粒子(35)が分散されてなる銀ナノ粒子層(36)、および透明基材(10)の屈折率よりも小さい屈折率を有する低屈折率層(38)をこの順に積層してなり、銀ナノ粒子層(36)に、銀よりも貴な金属を含む反射防止フィルムとする。

Description

反射防止フィルムおよび機能性ガラス
 本発明は、入射光に対する反射防止機能を有する反射防止フィルムおよびその反射防止フィルムが付与されてなる機能性ガラスに関するものである。
 従来、ディスプレイのガラス面には、外部の光源や風景が映り込むことによる視認性の低下を防止するため、透明基材上に可視光に対する反射防止膜を備えた反射防止フィルムが付与されている。そのような可視光に対する反射防止膜としては、誘電体多層膜や、多層膜中に銀ナノ粒子層からなる可視光波長吸収層などを備えた構成が知られている。
 特許文献1には、反射防止フィルムとして、透明基材上に金属の平板粒子、特には銀ナノディスクを含有する銀ナノ粒子層と誘電体層との積層体を備えたものが提案されている。かかる反射防止フィルムによれば、広帯域において非常に低い反射率を実現することができる。
 他方、特許文献2は、熱線遮蔽(遮熱)用途の銀ナノディスクについて、金置換することにより耐光性を向上させる技術が開示されている。
特開2015-129909号公報 特許5636208号公報
 特許文献1に記載の銀ナノディスクを含有する銀ナノ粒子層と誘電体層との積層体を備えた反射防止フィルムは少ない積層数で非常に低い反射率を達成する技術である。
 一方で、本発明者らが、特許文献1に記載の反射防止フィルムについて屋外ショーウィンドウ用として利用しようと試みたところ、経時で反射防止性能が低下した。本発明者らによる鋭意検討により、この反射防止性能の低下がオゾンガスの影響による銀ナノディスクの変形によるものであることが明らかになってきた。
 本発明は、上記事情に鑑み、反射防止特性が高く、かつ、屋外での長期間の使用に耐えられる高耐久性を有する反射防止フィルムを提供することを目的とする。また、本発明は高耐久性を有する反射防止フィルムを備えた機能性ガラスを提供することを目的とする。
 本発明の反射防止フィルムは、透明基材および透明基材の一面側に設けられた反射防止層を備え、
 反射防止層が、透明基材側から、バインダー中にアスペクト比が3以上である複数の銀ナノ粒子が分散されてなる銀ナノ粒子層、および透明基材の屈折率よりも小さい屈折率を有する低屈折率層をこの順に積層してなり、
 銀ナノ粒子層に、銀よりも貴な金属を含むことを特徴とする。
 「銀より貴な金属」とは、銀の標準電極電位よりも高い標準電極電位を有する金属、を意味する。金属の標準電極電位は「化学便覧改訂5版 基礎編II 581頁~584頁」に記載されているので参考にできる。標準電極電位は、同一金属であっても金属化合物の種類や共存する化合物種によって異なるので、金属種に対応して適宜選択して使用することができる。
 銀ナノ粒子が平板状であるとき、銀ナノ粒子の長軸長が主平面の円相当直径であり、アスペクト比は円相当直径の板厚に対する比であり、銀ナノ粒子が棒状(ロッド状)であるとき、銀ナノ粒子の長軸長は棒長であり、アスペクト比はその棒長の円相当直径に対する比である。
 銀ナノ粒子は平板状であることが特に好ましい。
 なお、銀ナノ粒子が平板状、棒状のいずれにも該当しない場合、アスペクト比は、粒子の最大長を有する部分を長軸と定め、その長軸に平行かつ長軸を含む任意の断面における、長軸に直交する短軸方向の、長軸の各位置における長さの平均値を短軸平均値として求め、長軸の長さ(最大長)の短軸方向平均値に対する比で定義する。
 本発明の反射防止フィルムにおいては、銀ナノ粒子層に含まれる貴な金属の量が、銀ナノ粒子に対して10-2原子%から5原子%であることが好ましい。
 本発明の反射防止フィルムにおいては、銀ナノ粒子の表面に銀より貴な金属が配置されていることが好ましい。
 本発明の反射防止フィルムにおいては、銀より貴な金属としては、金、パラジウム、イリジウム、白金およびオスミウムのうちの少なくとも1つであることが好ましい。
 本発明の反射防止フィルムにおいては、銀ナノ粒子層が、銀イオンとの溶解度積pKspが14以上である、または還元電位が700mV未満である有機成分を含有することが好ましい。
 また、銀ナノ粒子層が、銀イオンとの溶解度積pKspが14以上であり、かつ還元電位が700mV未満である有機成分を含有することがより好ましい。
 本発明の反射防止フィルムにおいては、透明基材と銀ナノ粒子層との間にハードコート層を備えていることが好ましい。
 ここで、ハードコート層とは鉛筆硬度試験(旧 JIS K5400 鉛筆引っかき試験)でB以上の硬度を有する層のことであるが、HB以上であることが好ましい。
 ハードコート層が水系樹脂組成物の硬化物からなることが好ましい。
 本発明の反射防止フィルムにおいては、透明基材とハードコート層との間に、ハードコート層よりも高い屈折率を有する高屈折率層を備えていることがさらに好ましい。
 本発明の反射防止フィルムにおいては、透明基材以外の層に含まれる未反応の重合開始剤の合計量が50mg/m以下であることが好ましい。
 本発明の機能性ガラスは、ガラス板と、
 ガラス板の少なくとも一方の面に貼付された上述の本発明の反射防止フィルムとを備えてなる。
 本発明の反射防止フィルムは、反射防止層中にアスペクト比が3以上である銀ナノ粒子が分散されてなる銀ナノ粒子層を備えていることにより、広い波長域に亘って良好な反射防止特性を有する。また、銀ナノ粒子層に銀よりも貴な金属を含むことにより、オゾンガスの影響によるナノ粒子の変形を抑制することができ、屋外での長期間の使用に耐えられる高耐久性を有する。
本発明の第1の実施形態の反射防止フィルムの構成示す概略断面図である。 銀ナノディスクの一例を示す概略斜視図である。 銀ナノディスクの他の一例を示す概略斜視図である。 銀ナノロッドの一例を示す概略斜視図である。 本発明の第2の実施形態の反射防止フィルムの構成示す概略断面図である。 本発明の第3の実施形態の反射防止フィルムの構成示す概略断面図である。 本発明の機能性ガラスの一実施形態を示す概略図である。
 以下、本発明の実施の形態を説明する。
 図1は本発明の実施形態に係る反射防止フィルム1の概略構成を示す断面模式図である。図1に示すように、本実施形態の反射防止フィルム1は、透明基材10と、透明基材10の一面側に設けられた反射防止層30と備えている。そして、反射防止層30は、透明基材10側から、アスペクト比が3以上である複数の銀ナノ粒子35が分散されてなる銀ナノ粒子層36、および透明基材10の屈折率よりも小さい屈折率を有する低屈折率層38をこの順に積層してなる。また、銀ナノ粒子層36は、銀より貴な金属を含んでいる。
 本反射防止フィルム1は、銀ナノ粒子層36に銀より貴な金属を含むことにより、オゾンガスに対する耐性が向上し、屋外での長期間の使用においても反射特性の低下が生じにくい。すなわち、本反射防止フィルム1は屋外での長期間の使用に耐えられる高耐久性を有する。
 本発明の反射防止フィルムにおいては、反射を防止したい波長の光としては、主として可視光(380nm~780nm)を対象としている。反射防止機能としては、例えば、波長550nmの光に対して1%以下の反射率であることが好ましく、さらには、波長550nmの光に対して1%以下の反射率であり、かつ、反射率1%以下の波長域が100nm以上の範囲に亘っていることが好ましい。
 反射防止層中に銀ナノ粒子層を備えることにより、非常に広い波長域に亘って反射率1%以下を実現することが可能となる。
 なお、本反射防止フィルムにおいては透明基材以外の層に含まれる未反応の重合開始剤の合計量が50mg/m以下であることが、オゾンガス耐性をさらに向上させる観点から好ましい。
<銀ナノ粒子層>
 銀ナノ粒子層36は、バインダー33中にアスペクト比が3以上である銀ナノ粒子35が複数含有されてなる層である。ヘイズ抑制の観点からは、長軸長は反射を防止する光の波長λよりも小さいことが好ましく、アスペクト比は40未満であることが好ましい。「銀ナノ粒子が分散されてなる」とは、銀ナノ粒子の80%以上が互いに孤立して配置されていることを意味する。「互いに孤立して配置」とは、最も近接した微粒子と1nm以上の間隔がある状態をいうものとする。孤立して配置されている微粒子の最隣接微粒子との間隔は10nm以上であることがより好ましい。
 銀ナノ粒子層36は、銀より貴な金属を含む。ここで、「銀よりも貴な金属」であるとは、既述の通り「銀の標準電極電位よりも高い標準電極電位を有する金属」を意味する。
 銀より貴な金属を銀に対して10-2原子%~5原子%含有することが好ましい。この範囲であれば、本発明の効果をより顕著に得ることができる。
 なお、銀より貴な金属の含有量は、例えば、試料を酸などにより溶解後、高周波誘導結合プラズマ(Inductively Coupled Plasma:ICP)により測定することができる。
 銀ナノ粒子層中における銀よりも貴な金属の含有位置は、銀ナノ粒子の表面近傍である。
 ここで、銀ナノ粒子の表面近傍には、銀ナノ粒子の表面、及び表面から2~4原子層までの領域を含み、銀より貴な金属が銀ナノ粒子の表面を被覆している場合も含まれる。
 ここで、銀ナノ粒子の表面近傍に、銀よりも貴な金属が存在していることは、例えばオージェ光電子分光法(Auger Electron Spectroscopy :AES)、X線光電子分光法(X-ray Photoelectron Spectroscopy :XPS)等により検出することができる。
 銀より貴な金属としては、例えば金、パラジウム、イリジウム、白金、オスミウム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、原材料の入手のし易さの点からパラジウム、金、白金が特に好ましい。
 銀より貴な金属は、銀ナノ粒子の形成後に光還元、還元剤添加、化学還元によって銀ナノ粒子の表面近傍に含有させることができ、銀より貴な金属は銀により還元されて生成さることが好ましい。
 還元は、還元剤と同時添加であると貴な金属が直接還元されてしまい効果が小さくなるので、銀と置換する方法が好ましい。
 また、還元は、例えば銀ナノ粒子を銀より貴な金属を含む溶媒中で加熱することによって達成できる。溶媒を加熱することにより、銀により、銀以外の金属が還元される。更に目的に応じて適宜、光還元、還元剤添加、化学還元法などを組み合わせてもよい。
-銀ナノ粒子-
 銀ナノ粒子35は図2および図3に示すような2つの対向する主平面を有する平板状あるいは図4に示すような棒状(ロッド状)であることが好ましい。図2および図3に示すディスク状の銀ナノ粒子(以下において、銀ナノディスクという。)35A,35Bの場合、長軸長とはその主平面の円相当直径Dであり、アスペクト比とは円相当直径Dと対向する主平面間の距離すなわち板状金属粒子の厚み(板厚)Tとの比D/Tである。図4に示す銀ナノロッド(以下において、銀ナノロッドという。)35Cの場合、長軸長とはその棒長Lであり、アスペクト比とは棒長Lと棒長方向に垂直な断面の円相当直径φとの比L/φである。
[銀ナノディスク]
 銀ナノディスクとは、図2あるいは図3に示すような対向する2つの主平面を備えた粒子である。その主平面の形状としては、例えば、六角形状、三角形状、円形状などが挙げられる。これらの中でも、可視光透過率が高い点で、主平面の形状が図2に示すような六角形状、あるいは六角形以上の多角形状もしくは図3に示すような円形状であることが好ましい。
 これら複数の形状の銀ナノディスクを2種以上混ぜて使用しても良い。
 本明細書中、円形状とは、後述する銀ナノディスクの平均円相当直径の50%以上の長さを有する辺の個数が1個の銀ナノディスク粒子当たり0個である形状のことを言う。円形状の銀ナノディスクとしては、透過型電子顕微鏡(Transmission Electron Microscope : TEM)で銀ナノディスクを主平面の上方から観察した際に、角が無く、丸い形状であれば特に制限はない。
 本明細書中、六角形状とは、後述する銀ナノディスクの平均円相当直径の20%以上の長さを有する辺の個数が1個の銀ナノディスク当たり6個である形状のことを言う。六角形状の銀ナノディスクとしては、TEMで銀ナノディスクを主平面の上方から観察した際に、六角形状であれば特に制限はなく、目的に応じて適宜選択することができる。例えば、六角形状の角が鋭角のものでも、鈍っているものでもよいが、可視光域の吸収を軽減し得る点で、角が鈍っているものであることが好ましい。角の鈍りの程度としては、特に制限はなく、目的に応じて適宜選択することができる。
(銀ナノディスクの平均円相当直径および変動係数)
 銀ナノディスクの長軸長である円相当直径Dは、個々の粒子の投影面積と等しい面積を有する円の直径で表される。個々の粒子の投影面積は、電子顕微鏡写真上での面積を測定し、撮影倍率で補正する公知の方法により得ることができる。また、平均円相当直径DAVは、200個の銀ナノディスクの円相当直径Dの統計で粒径分布(粒度分布)を得て、粒径分布から計算により求めた算術平均値である。銀ナノディスクの粒度分布における変動係数は、粒度分布の標準偏差を前述の平均円相当直径で割った値(%)である。
 本発明の反射防止フィルムにおいて銀ナノディスクの粒度分布における変動係数としては、35%以下が好ましく、30%以下がより好ましく、20%以下が特に好ましい。変動係数は、35%以下であることが反射防止構造における可視光線の吸収を減らす観点から好ましい。
 銀ナノディスクの大きさとしては、特に制限はなく、目的に応じて適宜選択することができ、平均粒子径は10~500nmが好ましく、20~300nmがより好ましく、50~200nmがさらに好ましい。
(銀ナノディスクの厚みおよびアスペクト比)
 本発明の反射防止フィルムでは、銀ナノディスクの厚みTは20nm以下であることが好ましく、2~15nmであることがより好ましく、4~12nmであることが特に好ましい。
 粒子厚みTは、原子間力顕微鏡(Atomic Force Microscope:AFM)や透過型電子顕微鏡(TEM)により測定することができる。
 AFMによる平均粒子厚みの測定方法としては、例えば、ガラス基板に銀ナノディスクを含有する粒子分散液を滴下し、乾燥させて、粒子1個の厚みを測定する方法などが挙げられる。
 TEMによる平均粒子厚みの測定方法としては、例えば、シリコン基板上に銀ナノディスクを含有する粒子分散液を滴下し、乾燥させた後、カーボン蒸着、金属蒸着による被覆処理を施し、集束イオンビーム(Focused Ion Beam:FIB)加工により断面切片を作成し、その断面をTEMにより観察して粒子の厚み測定を行う方法(以下において、FIB-TEMという。)などが挙げられる。
 銀ナノ粒子が銀ナノディスクである場合、銀ナノディスクの直径(円相当直径)Dの厚みTに対する比D/T(アスペクト比)は3以上であることが好ましい。目的に応じて適宜選択することができるが、可視光線の吸収とヘイズを減らす観点から、3~40が好ましく、5~40がより好ましい。アスペクト比が3以上であれば可視光線の吸収を抑制でき、40未満であれば可視領域でのヘイズも抑制できる。
(銀ナノディスクの合成方法)
 銀ナノディスクの合成方法としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、化学還元法、光化学還元法、電気化学還元法等の液相法などが六角形状乃至円形状の銀ナノディスクを合成し得るものとして挙げられる。これらの中でも、形状とサイズ制御性の点で、化学還元法、光化学還元法などの液相法が特に好ましい。六角形~三角形状の銀ナノディスクを合成後、例えば、硝酸、亜硫酸ナトリウム等の銀を溶解する溶解種によるエッチング処理、加熱によるエージング処理などを行うことにより、六角形~三角形状の銀ナノディスクの角を鈍らせて、六角形状乃至円形状の銀ナノディスクを得てもよい。
 銀ナノディスクの合成方法としては、その他、予めフィルム、ガラスなどの透明基材の表面に種晶を固定後、結晶成長させてもよい。
[銀ナノロッド]
 銀ナノロッドとは、図4に示すような一軸方向に伸びた形状を有する粒子である。
(銀ナノロッドの棒長)
 銀ナノロッドの長軸長である棒長Lは、上述の一軸方向における棒の長さであり、個々の粒子の棒長Lは、上述の銀ナノディスクの場合と同様に電子顕微鏡写真上において長さを撮影し、撮影倍率で補正することにより得ることができる。
 銀ナノロッドの長軸長である棒長Lは、反射を防止する光の波長λよりも小さく、λの0.8倍以下であることが好ましく、0.6倍以下であることがより好ましく0.5倍以下であることが特に好ましい。棒長の下限値は特に制限はないが、1nm以上であることが好ましく、2nm以上であることがより好ましく、5nm以上であることが特に好ましい。棒長Lは、具体的には、50nm以上、300nm以下であることが好ましい。
(銀ナノロッドの直径およびアスペクト比)
 銀ナノロッドの直径(円相当直径)φは、銀ナノディスクの厚みの測定方法と同様の方法で取得されたAFMやTEMの画像から算出できる。AFMやTEMの画像を取得し、取得した棒の長さ方向に垂直な断面についての画像から断面の面積を測定し、撮影倍率で補正する公知の方法により円相当直径を算出すればよい。
 銀ナノロッドの直径φは反射を防止する光の波長λの0.5倍よりも小さく、λの0、4倍以下であることが好ましく、0.3倍以下であることがより好ましく、0.1倍以下であることが特に好ましい。
 銀ナノ粒子が銀ナノロッドである場合、棒長Lの円相当直径φに対する比L/φ(アスペクト比)は、可視光線の吸収とヘイズを減らす観点から、3~40が好ましく、5~40がより好ましい。アスペクト比が3以上であれば可視光線の吸収を抑制でき、40未満であれば可視領域でのヘイズも抑制できる。
-バインダー-
 銀ナノ粒子層36におけるバインダー33は、ポリマーを含むことが好ましく、透明ポリマーを含むことがより好ましい。ポリマーとしては、例えば、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリアクリレート樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂、ゼラチンやセルロース等の天然高分子等の高分子などが挙げられる。その中でも、主ポリマーがポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂であることが好ましく、ポリエステル樹脂およびポリウレタン樹脂であることが銀ナノ粒子の80個数%以上を銀ナノ粒子層の表面からd/2の範囲に存在させやすい観点からより好ましい。
 バインダーは2種以上を併用して使用しても良い。
 ポリエステル樹脂の中でも、飽和ポリエステル樹脂であることが二重結合を含まないために優れた耐候性を付与できる観点からより特に好ましい。また、水溶性・水分散性の硬化剤等で硬化させることで高い硬度、耐久性および耐熱性を得られる観点から、分子末端に水酸基またはカルボキシル基を持つことがより好ましい。
 ポリマーとしては、商業的に入手できるものを好ましく用いることもできる。例えば、互応化学工業(株)製の水溶性ポリエステル樹脂であるプラスコートZ-687やDIC(株)社製のポリエステルポリウレタン共重合品であるハイドランHW-350などを挙げることができる。
 また、本明細書中、銀ナノ粒子層に含まれる主ポリマーとは、銀ナノ粒子層に含まれるポリマーの50質量%以上を占めるポリマー成分のことを言う。
 銀ナノ粒子層に含まれる銀ナノ粒子に対するポリエステル樹脂およびポリウレタン樹脂の含有量が1~10000質量%であることが好ましく、10~1000質量%であることがより好ましく、20~500質量%であることが特に好ましい。
 バインダーの屈折率は、1.4~1.7であることが好ましい。なお、ここで屈折率とは波長550nmでの数値である。特に断りがない限り、本明細書において屈折率は波長550nmにおける屈折率である。
 バインダー33中には、銀イオンとの溶解度積pKspが14以上である、または還元電位が700mV未満である有機成分を含有することが好ましい。特には、銀イオンとの溶解度積pKspが14以上であり、かつ還元電位が700mV未満である有機成分を含有することが好ましい。このような有機成分を有する添加剤としては、1-フェニル-1H-テトラゾール-5-チオール、5-アミノ-1,3,4-チアジアゾール-2-チオール、5-フェニル1,3,4-オキアジアゾール-2-チオール、およびメチルウレイドフェニルメルカプトテラゾールなどが挙げられる。また、これらの添加剤は、0.1×10-5mol/m~10×10-5mol/m添加することが好ましい。添加量が0.1×10-5mol以上であれば、後述の耐オゾンガス性効果を十分奏することができ、一方添加量が10×10-5mol/m以下であれば銀粒子が凝集を抑制することができる。
<低屈折率層>
 低屈折率層38の屈折率は透明基材の屈折率よりも小さい。また、透明基材10の屈折率よりも低いことが好ましい。低屈折率層の屈折率は1.40以下が好ましく、例えば、1.35程度とすればよい。低屈折率層の光学膜厚30nmから100nmであることが好ましく、例えば70nm程度とする。
 低屈折率層38は、例えば、バインダー、屈折率制御粒子および界面活性剤を含有し、更に必要に応じてその他の成分を含む。
 低屈折率層のバインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型または光硬化型樹脂などが挙げられる。
 屈折率制御粒子は、屈折率調整のために添加されるものであり、目的に応じて適宜選択することができ、例えば、中空シリカ等が挙げられる。
<透明基材>
 透明基材10としては、所定波長λの入射光に対し光学的に透明なものであれば特に制限はなく、目的に応じて適宜選択することができる。透明基材10としては、可視光透過率が70%以上のもの、さらには可視光透過率が80%以上のものが好ましい。
 透明基材10はフィルム状であればよく、単層構造であってもよいし、積層構造であってもよく、大きさは、用途に応じて定めればよい。
 透明基材10としては、例えば、ポリエチレン、ポリプロピレン、ポリ4-メチルペンテン-1およびポリブテン-1等のポリオレフィン系樹脂;ポリエチレンテレフタレートおよびポリエチレンナフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂、ポリ塩化ビニル系樹脂、ポリフェニレンサルファイド系樹脂、ポリエーテルサルフォン系樹脂、系樹脂、ポリフェニレンエーテル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロースアセテート等のセルロース系樹脂などからなるフィルム又はこれらの積層フィルムが挙げられる。これらの中で、特にトリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルムが好適である。
 透明基材10の厚みは、通常は10μm~500μm程度である。透明基材10の厚みとしては、さらに10μm~100μmであることが好ましく、20~75μmであることがより好ましく、35~75μmであることが特に好ましい。透明基材10の厚みが十分に厚いと、接着故障が起き難くなる傾向にある。また、透明基材10の厚みが十分に薄いと、反射防止膜として建材や自動車の窓ガラスに貼り合わせる際、材料としての腰が強過ぎず、施工し易くなる傾向にある。更に、透明基材10が十分に薄いことにより、可視光透過率が増加し、原材料費を抑制できる傾向にある。
 透明基材10としてPETフィルムを用いる場合、剛性の観点から2軸延伸品を用いることが好ましい。PETフィルムは反射防止構造が形成される面に易接着層を備えることが好ましい。易接着層を備えるPETフィルムを用いることで、PETフィルムと積層される層との間に生じるフレネル反射を抑制することができ、より反射防止効果を高めることができるからである。易接着層の膜厚としては、反射を防止したい波長に対して、光路長が1/4となるようにすることが好ましい。さらに、易接着層の屈折率はPETフィルムの屈折率(2軸延伸品で1.66)より低く、ハードコート層の屈折率より高いことが好ましく、PETフィルムの屈折率とハードコート層の屈折率の中間付近(屈折率1.56~1.6)にあることが特に好ましい。このような易接着層を備えるPETフィルムとして、東レ株式会社製ルミラー、東洋紡績株式会社製コスモシャインなどが挙げられる。
 本発明の反射防止フィルムは、上記各層以外の層を備えていてもよい。以下、他の層を備えた実施形態の反射防止フィルムの構成について説明する。
 図5は、本発明の第2の実施形態の反射防止フィルム2の積層構造を示す模式断面図である。図5において、第1の実施形態の反射防止フィルム1と同等の要素には同一符号を付している。以下の図面においても同様とする。
 本実施形態の反射防止フィルム2は、透明基材10と銀ナノ粒子層36との間に、ハードコート層20を備えている点で第1の実施形態の反射防止フィルム1と異なる。
 ハードコート層20は、既述の通り、鉛筆硬度試験でB以上、好ましくはHB以上の硬度を有する層である。このハードコート層20を透明基材10と反射防止層30との間に介在させることにより、梱包・輸送、貼合や掃除による傷や剥がれの発生を防止することが可能となる。ハードコート層を設けることで貼合や掃除による傷・剥がれの発生を防止することができる。
 ハードコート層20は、透明性の観点から可視光領域に吸収を持たない材料で構成することが好ましい。ハードコート層20は金属酸化物等からなる粒子を含んでいてもよい。内部ヘイズを発生させない観点から、添加される粒子は層を構成する後述の樹脂に屈折率が近く、粒径が200nm以下であることが好ましい。また、ハードコート層の原材料としては、造膜助剤等の相溶化助剤の併用、あるいは相溶性が良い素材同士の選択が好適に用いられる。
 ハードコート層20の屈折率は1.5以上1.6以下が好ましい。
 ハードコート層20としては、上記条件を満たす層であればよく、その材料も特に限定されるものではない。目的に応じて適宜その種類も形成方法も選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等などが挙げられる。中でも、ウレタン系樹脂が好ましく、上層との結合形成の観点でシラノール基等の反応性基を側鎖に含有する素材がさらに好ましい。ハードコート層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、水介在時の耐傷性向上の観点から1μm以上が好ましく、塗布性および塗布層含有フィルムの剛性の観点から50μm以下が好ましく、10μm以下がより好ましい。
 ハードコート層20は、重合開始剤を含む紫外線硬化性樹脂や熱硬化性樹脂であってもよいが、特には、重合開始剤を用いないで硬化可能な水系樹脂組成物の硬化物であることが好ましい。
 ここで、水系樹脂組成物とは、含有される水系溶媒が除去されることにより、固化する性質を有する組成物をいうものとする。一般的な水系樹脂組成物の種類としては、乳化性や水溶性を有しない樹脂を界面活性剤などを用いて強制乳化させた強制乳化樹脂、自己乳化性を有する樹脂を乳化又は分散させた自己乳化性樹脂、水溶性を有する樹脂を溶解させた水溶性樹脂などが挙げられる。強制乳化樹脂および自己乳化性樹脂は、組成物の段階で樹脂が粒子径を有した分散状態である。また、水溶性樹脂とは、組成物の段階で樹脂が粒子径を有さずに溶解状態であることをいう。
 なお、ハードコート層が水系樹脂組成物の硬化物からなるものであることは、ハードコート層についてのTEM像を観察することにより、あるいは組成分析によって確認することができる。具体的には、強制乳化樹脂および自己乳化性樹脂などの分散物ではTEM像により乾燥膜表面に粒界が観察される。また、水溶性樹脂の場合には末端基や側鎖に親水基を多く含むので、分析によって判別することができる。また、水系樹脂組成物の硬化物においては重合開始剤が含まれていない点からも紫外線硬化型もしくは重合開始剤を要する熱硬化型の樹脂化合物とは区別されうる。
 水系溶媒とは、主成分が水である分散媒のことであり、溶媒中に含まれる水の含量は、70%~100%が好ましく、80%~100%がより好ましい。水以外の溶媒としては、メタノールやエタノール、イソプロピルアルコール等のアルコール類、アセトンやメチルエチルケトン等のケトン類、N-メチルピロリドン(NMP)、テトラヒドロフラン、ブチルセロソルブ等のグリコールエーテル類等、水に溶解性を有する溶剤が好ましく用いられる。また、水系樹脂組成物におけるポリマーの分散安定性、塗布性、乾燥後の皮膜特性向上のために、界面活性剤、アンモニア、トリエチルアミン、N,-Nジメチルエタノールアミン等のアミン類を分散物に対して数%含んでもよい。
 水系樹脂組成物中の樹脂の具体的例としてはポリエステル、ポリオレフィン、ポリエステル、アクリル樹脂、ポリウレタンなどが挙げられる。形成される塗膜の強度および透明性が良好であるという観点から、ポリウレタン、及びアクリル樹脂からなる群より選択される少なくとも1種の樹脂を含むことが好ましい。
(アクリル樹脂)
 水系樹脂組成物中の樹脂として用いられるアクリル樹脂は、アクリロイル基及びメタクリロイル基から選ばれた少なくとも1つの基を有するモノマーを重合成分として含む樹脂である。アクリル樹脂の総質量を100質量%とした場合に、重合させて形成される繰り返し単位の総質量が50質量%を超える樹脂であることが好ましい。ここで、アクリロイル基及びメタクリロイル基から選ばれた少なくとも1つの基を有するモノマーを、以下、適宜、「(メタ)アクリルモノマー」と称する。
 アクリル樹脂は、(メタ)アクリルモノマーを単独重合するか又は他のモノマーと共重合させて得られる。
 アクリル樹脂が(メタ)アクリルモノマーと他のモノマーとの共重合体である場合、(メタ)アクリルモノマーと共重合させる他のモノマーは、炭素-炭素二重結合を有するモノマーであればよく、エステル結合、ウレタン結合を有するモノマーであってもよい。
 (メタ)アクリルモノマーと他のモノマーとの共重合体としては、ランダム共重合体、ブロック共重合体、グラフト共重合体のいずれであってもよい。
 ここで、アクリル樹脂には、ポリエステル溶液又はポリエステル分散液中で、(メタ)アクリルモノマーを単独重合又は他のモノマーと共重合して得られたポリマー、ポリウレタン溶液又はポリウレタン分散液中で、(メタ)アクリルモノマーを単独重合又は他のモノマーと共重合して得られたポリマー等の、アクリル樹脂以外の他のポリマー溶液又は分散液中で、(メタ)アクリルモノマーを単独重合又は他のモノマーと共重合して得られたポリマーであって、ポリエステル樹脂、ウレタン樹脂等の他のポリマーを含む混合物が含まれる。
 アクリル樹脂は、ハードコート層と隣接する層との接着性をより向上させるため、ヒドロキシ基及びアミノ基から選ばれた少なくとも1つの基を有していてもよい。
 アクリル樹脂の合成に使用しうる(メタ)アクリルモノマーの具体例としては、特に限定はない。代表的な(メタ)アクリルモノマーとして、例えば、(メタ)アクリル酸;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート等のアルキル(メタ)アクリレート;(メタ)アクリルアミド;ジアセトンアクリルアミド、N-メチロールアクリルアミド等のN-置換アクリルアミド;(メタ)アクリロニトリル;γ-メタクリロキシプロピルトリメトキシシラン等の珪素含有(メタ)アクリルモノマー等が挙げられる。
 なお、市販品のアクリル樹脂を用いてもよい。ハードコート層に用いうるアクリル樹脂の市販品としては、ジュリマー(登録商標)ET-410(東亜合成化学(株)製)、AS-563A(商品名:ダイセルファインケム(株)製)、ボンロン(登録商標)XPS-002(三井化学(株)製)などが挙げられる。
(ポリウレタン樹脂)
 ポリウレタン樹脂は、主鎖にウレタン結合を有するポリマーの総称であり、通常、ジイソシアネートとポリオールとの反応生成物である。
 ポリウレタン樹脂の合成に用いうるジイソシアネートとしては、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)、トリジンジイソシアネート(TODI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)等が挙げられる。
 ポリウレタン樹脂の合成に用いうるポリオールとしては、エチレングリコール、プロピレングリコール、グリセリン、ヘキサントリオール等が挙げられる。
 水系樹脂組成物中の樹脂として用いられるポリウレタン樹脂としては、一般的なポリウレタン樹脂に加え、ジイソシアネートとポリオールの反応によって得られたポリウレタン樹脂に対し、鎖延長処理を施して分子量を増大させたポリウレタン樹脂を使用することができる。
 ポリウレタン樹脂に関して述べたジイソシアネート、ポリオール、及び鎖延長処理については、例えば「ポリウレタンハンドブック」(岩田敬治編、日刊工業新聞社、昭和62年発行)に詳細に記載されており、「ポリウレタンハンドブック」に記載のポリウレタン樹脂及びその原料に係る記載は、目的に応じて本発明に適用しうる。
 なお、市販品のポリウレタン樹脂を用いてもよい。市販品としては、スーパーフレックス(登録商標)470、210、150HS、150HF、エラストロン(登録商標)H-3(以上、第一工業製薬(株)製)、ハイドラン(登録商標)AP-20、AP-40F、WLS-210(以上、DIC(株)製)、タケラック(登録商標)W-6061、WS-5100、WS-4000、WSA-5920、オレスター(登録商標)UD-350(以上、三井化学(株)製)が挙げられる。これらの中でも、シラノール基含有の観点から、WS-5100、WS-4000が特に好ましい。
 ハードコート層20は、水系樹脂組成物を透明基材上に塗布し、乾燥させることにより形成することが好ましい。このとき、塗布膜の厚みを乾燥膜厚が1μm以上10μm以下となるように調整するのが好ましい。
 反射防止フィルムにおいては、先に述べた通り、透明基材以外の層に含まれる未反応の重合開始剤の合計量が50mg/m以下であることが、オゾンガス耐性を向上させる上で好ましい。ハードコート層20を水系組成物の硬化物からなるものとすれば、ハードコート層20中における未反応の重合開始剤の量を紫外線硬化型あるいは熱硬化型樹脂を用いる場合に比較して劇的に低下することができる。したがって、水系組成物の硬化物からなるハードコート層20を備えれば、ハードコート層を備えた反射防止フィルムにおいても、容易に透明基材以外の層に含まれる未反応の重合開始剤の合計量を50mg/m以下とすることができる。
 ハードコート層20中には、紫外線吸収剤を添加してもよい。紫外線吸収剤としては、特に限定されないが、トリアジン環を含む化合物を単独で、もしくは複数種以上混合した混合物を用いることが好ましい。ハードコート層20に紫外線吸収剤を含有することにより、反射防止フィルムが太陽光に長時間曝された場合における透明基材の黄変を抑制することができる。
 図6は、本発明の第3の実施形態の反射防止フィルム3の層構成を示す模式断面図である。図6に示すように、本発明の反射防止フィルムは、透明基材10と銀ナノ粒子層36との間に、高屈折率層32およびハードコート層20を備えていてもよい。高屈折率層32を備えることにより、反射防止性能を向上させることができる。
 高屈折率層32およびハードコート層20を備える場合には、図6に示すように、高屈折率層32を銀ナノ粒子層36とハードコート層20との間に配置する構成が好ましい。しかし、ハードコート層20が銀ナノ粒子層36と高屈折率層32との間に配置されていてもよい。
 高屈折率層32が銀ナノ粒子層36とハードコート層20との間に配置されている場合、高屈折率層32の光学膜厚はλ/4以下であることが好ましい。このとき、高屈折率層32の物理膜厚は、具体的には、200nm以下であることが好ましい。
 一方、ハードコート層20が銀ナノ粒子層36と高屈折率層32との間に配置されている場合、高屈折率層32の光学膜厚はλ/2以下であることが好ましい。このとき、高屈折率層32の物理膜厚は、具体的には300nm以下であることが好ましい。
<高屈折率層>
 高屈折率層32の屈折率はハードコート層20の屈折率より大きければよいが、1.55以上、特に1.6以上であることが好ましい。高屈折率層32の屈折率の上限は特にないが、2.6以下が好ましく、2.0以下がより好ましく、1.8以下が特に好ましい。
 高屈折率層32は、屈折率が1.55以上のものであればその構成材料は特に制限されない。例えば、バインダー、金属酸化物微粒子、マット剤、及び界面活性剤を含有し、更に必要に応じてその他の成分を含有してなる。バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型又は光硬化型樹脂などが挙げられる。
 金属酸化物微粒子の材料としては、バインダーの屈折率よりも大きな屈折率を持つものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、錫ドープ酸化インジウム(以下、「ITO」と略記する。)、酸化亜鉛、酸化チタン、酸化ジルコニア等が挙げられる。
<その他の層・成分>
 本発明の反射防止フィルムは、上記第1~第3の実施形態で説明した層以外の他の層および成分を備えていてもよい。
[赤外線吸収化合物含有層]
 本発明の反射防止フィルムは、熱線を遮蔽するために、赤外領域に吸収を有する化合物を含有する赤外線吸収化合物含有層を有してもよい。以下、赤外領域に吸収を有する化合物を含有する層のことを、赤外線吸収化合物含有層ともいう。なお、赤外線吸収化合物含有層は、他の機能層の役割を果たしてもよい。
[粘着剤層]
 本発明の反射防止フィルムは、粘着剤層(以下、粘着層ともいう)を有していてもよい。粘着層の形成に利用可能な材料としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、ポリビニルブチラール(PVB)樹脂、アクリル樹脂、スチレン/アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂、天然ゴム、合成ゴムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの材料からなる粘着層は、塗布やラミネートにより形成することができる。
 さらに、粘着層には帯電防止剤、滑剤、ブロッキング防止剤などを添加してもよい。
 粘着層の厚みとしては、0.1μm~50μmが好ましい。
[バックコート層]
 反射防止フィルムは、透明基材の反射防止層が形成された面とは反対側の面上に、バックコート層を有していてもよい。バックコート層としては、特に制限はなく、目的に応じて適宜選択することができるが、赤外領域に吸収を有する化合物を含む層としてもよく、後述の金属酸化物粒子含有層としてもよい。なお、透明基材としてPETフィルムを用いる場合、PETフィルムの易接着層をバックコート層として用いることも好適である。
[金属酸化物粒子]
 本発明の反射防止フィルムは、熱線を遮蔽するために、少なくとも1種の金属酸化物粒子を含有していても良い。
 金属酸化物粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ITO、アンチモンドープ酸化錫(以下、「ATO」と略記する。)、酸化亜鉛、アンチモン酸亜鉛、酸化チタン、酸化インジウム、酸化錫、酸化アンチモン、ガラスセラミックス、6硼化ランタン(LaB)、セシウムタングステン酸化物(Cs0.33WO、以下「CWO」と略記する。)などが挙げられる。これらの中でも、熱線吸収能力に優れ、平板粒子と組み合わせることにより幅広い熱線吸収能を有する反射防止構造が製造できる点で、ITO、ATO、CWO、6硼化ランタン(LaB)がより好ましく、1,200nm以上の赤外線を90%以上遮蔽し、可視光透過率が90%以上である点で、ITOが特に好ましい。
 金属酸化物粒子の一次粒子の体積平均粒径としては、可視光透過率を低下させないため、0.1μm以下が好ましい。
 金属酸化物粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、針状、板状などが挙げられる。
 次に、本発明の反射防止フィルムの製造方法の一例として、第3の実施形態の反射防止フィルム3の製造方法を簡単に説明する。
 透明基材10を用意し、まず、透明基材10上にハードコート層20を形成する。ハードコート層の形成方法としては塗布法が好ましい。ハードコート層形成用の塗布液として、水溶性樹脂または水分散性樹脂と水とを少なくとも含む塗布液を調製し、その塗布液を透明基材上に塗布して乾燥させることによりハードコート層20を形成する。
 次に、ハードコート層20上に高屈折率層32を形成する。高屈折率層の形成方法としては、塗布法が好ましい。高屈折率層形成用の塗布液を調製し、ディップコーター、ダイコーター、スリットコーター、バーコーターあるいはグラビアコーター等により塗布する方法などを用いて、ハードコート層20上に高屈折率層形成用の塗布液を塗布する。その後、高屈折率層のバインダーを構成する樹脂に応じて光照射もしくは加熱して硬化させることにより高屈折率層32を得る。
 次に、高屈折率層32上に銀ナノ粒子層36を形成する。銀ナノ粒子層の形成方法としては、特に制限はないが、塗布法またはLB膜法、自己組織化法、スプレー塗布などの方法で面配向させる方法が挙げられる。例えば、銀ナノ粒子層形成用の塗布液として銀の平板粒子を含有する分散液(銀ナノ粒子分散液)を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する。その後、銀ナノ粒子層のバインダーを構成する樹脂に応じて光照射もしくは加熱して硬化させることにより銀ナノ粒子層を得る。
 なお、面配向を促進するために、銀ナノ粒子層形成用の塗布液を塗布後に、カレンダーローラーやラミローラーなどの圧着ローラーを通してもよい。
 続いて、銀ナノ粒子層36上に低屈折率層38を形成する。低屈折率層の形成方法としては、塗布法が好ましい。低屈折率層形成用の塗布液を調製し、ディップコーター、ダイコーター、スリットコーター、バーコーターあるいはグラビアコーター等により塗布する方法などを用いて、銀ナノ粒子層36上に低屈折率層形成用の塗布液を塗布する。その後、低屈折率層のバインダーを構成する樹脂に応じて光照射もしくは加熱して硬化させることにより低屈折率層38を得る。
 以上の工程により、反射防止フィルム3を製造することができる。
[機能性ガラス]
 本発明の反射防止フィルムは、機能性を付与したいガラス板の表裏の少なくとも一方に貼付されて用いられる。すなわち、本発明の機能性ガラスは、少なくとも一方の面側に本発明の反射防止フィルムが貼付されてなるものである。
 図7に、本発明の機能性ガラスの構成例の断面模式図を示す。
 図7に示す機能性ガラス100は、ガラス板50と、ガラス板50の一方の面に貼付された第1の反射防止フィルム11と、ガラス板50の他方の面に貼付された第s2の反射防止フィルム12とを備えている。第1および第2の反射防止フィルム11、12は、いずれも本発明の反射防止フィルムの一実施形態である。第1および第2の反射防止フィルム11、12は同一の反射条件を有するものであってもよいし、異なる反射条件を有するものであってもよい。低屈折率層、高屈折率層の材料や膜厚、銀ナノ粒子層の厚み、および/または、銀ナノ粒子の含有量等が異なれば、一般にはフィルム表裏における反射率、所望の反射率を有する波長域などの反射条件が異なる。
 ガラス板50は、例えば、建築物の窓、ショーウィンドウ、あるいは車窓などの用途に適用されるガラスである。
 第1および第2の反射防止フィルム11、12は、いずれも透明基材10の裏面に粘着剤層9が備えられ、その粘着剤層9を介してガラス板50の一方の面および他方の面に貼り付けられている。
 本発明の反射防止フィルムを備えた機能性ガラスは反射防止フィルム貼付側からの可視光透過率が高く、視界がクリアである。また、電波透過性が高く、携帯電話の電波を妨げない。
 窓ガラスに反射防止フィルムを貼り付ける場合には、反射防止フィルムの透明基材の反射防止層が形成されていない面側に、塗工あるいはラミネートにより粘着剤層を設け、あらかじめ窓ガラス表面と反射防止フィルムの粘着剤層表面に界面活性剤(主にノニオン系)を含んだ水溶液を噴霧してから、粘着剤層を介して窓ガラスに反射防止フィルムを設置すると良い。水分が蒸発するまでの間、粘着剤層の粘着力は落ちるため、ガラス表面では反射防止構造の位置の調整が可能である。窓ガラスに対する反射防止構造の貼り付け位置が定まった後、スキージー等を用いて窓ガラスと反射防止フィルムの間に残る水分をガラス中央から端部に向けて掃き出すことにより、窓ガラス表面に反射防止フィルムを固定できる。このようにして、窓ガラスに反射防止フィルムを設置することが可能である。
 窓ガラスへの機能性の付与は、ガラス板にラミネーター設備を使って機械的に反射防止フィルムを貼り付ける加熱もしくは加圧ラミネートという手法によっても達成される。上部から過熱された金属ロールまたは耐熱性ゴムロール、下部からは室温または加熱された耐熱性ゴムロールにて挟まれるスリットエリアをガラス板が通っていくラミネーターを用意する。ガラス板の上に粘着剤面がガラス面と接触するように反射防止フィルムを乗せ、ラミネーターの上部ロールが反射防止フィルムを押し付けるようにセットして、ラミネーターを通す。粘着剤の種類によって適切なロール加熱温度を選んで貼れば、粘着力が強くなり、気泡も紛れ込まないように貼る事ができる。反射防止フィルムがロール状で供給できる場合は、加熱ロールに上部から連続的にテープ状フィルムを供給して、加熱ロールに90度程度のラップ角をもつようにした方がよい。反射防止フィルムの粘着剤層がプレヒートを受けて貼り付けられやすくなり、気泡排除と粘着力アップの両方を高次元に達成できるからである。
 以下、本発明の反射防止フィルムの実施例および比較例について説明する。
 まず、反射防止フィルムの実施例および比較例の作製に用いた各種塗布液の調製について説明する。
 本実施例および比較例においては、銀ナノ粒子として銀ナノディスクを用い、銀ナノ粒子層は銀ナノディスク層とした。
[ハードコート層形成用の塗布液]
 (ハードコート層形成用の塗布液A-1)
 ハードコート層形成用の塗布液A-1は、下記表1に示す材料を表1記載の配合比にて、バインダー、紫外線吸収剤、界面活性剤、造膜助剤および水を混合することにより調製した。
Figure JPOXMLDOC01-appb-T000001
 
 (ハードコート層形成用の塗布液A-2)
 塗布液A-1の調製において、ポリウレタン水分散物:タケラックWS-4000に代えてポリウレタン水分散物:タケラックWS-5100(三井化学(株)製、固形分30質量%)を添加した以外は、塗布液A-1と同様にして塗布液A-2を得た。
 (ハードコート層形成用の塗布液A-3)
 ハードコート層形成用の塗布液A-3は、下記表2に示す材料を表2記載の配合比にて、モノマー、紫外線吸収剤、紫外線重合開始剤(光重合開始剤)、および溶媒を混合することにより調製した。
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-C000003
 
[高屈折率層]
 (高屈折率層用の塗布液B-1)
 高屈折率層用の塗布液B-1を表3に示す材料および配合比で混合して調製した。
Figure JPOXMLDOC01-appb-T000004
 
[銀ナノディスク層]
 (銀ナノディスク層用の塗布液C-1の調製)
 銀ナノディスク層用の塗布液C-1を表4に示す材料の配合比で混合して調製した。
Figure JPOXMLDOC01-appb-T000005
 
 なお、上記材料中における銀ナノディスク分散液c1Bは、以下のようにして調製した。
-銀ナノディスク分散液c1Aの調液-
 NTKR-4(日本金属工業(株)製)製の反応容器にイオン交換水13Lを計量し、SUS316L製のシャフトにNTKR-4製のプロペラ4枚およびNTKR-4製のパドル4枚を取り付けたアジターを備えるチャンバーを用いて撹拌しながら、10g/Lのクエン酸三ナトリウム(無水物)水溶液1.0Lを添加して35℃に保温した。8.0g/Lのポリスチレンスルホン酸水溶液0.68Lを添加し、更に0.04Nの水酸化ナトリウム水溶液を用いて23g/Lに調製した水素化ホウ素ナトリウム水溶液0.041Lを添加した。0.10g/Lの硝酸銀水溶液13Lを5.0L/minで添加した。
 10g/Lのクエン酸三ナトリウム(無水物)水溶液1.0Lとイオン交換水11Lを添加して、更に80g/Lのヒドロキノンスルホン酸カリウム水溶液0.68Lを添加した。撹拌を800rpmに上げて、0.10g/Lの硝酸銀水溶液8.1Lを0.95L/minで添加した後、30℃に降温した。
 44g/Lのメチルヒドロキノン水溶液8.0Lを添加し、次いで、後述する40℃のゼラチン水溶液を全量添加した。撹拌を1200rpmに上げて、後述する亜硫酸銀白色沈殿物混合液を全量添加した。
 調製液のpH変化が止まった段階で、1NのNaOH水溶液5.0Lを0.33L/minで添加した。その後、70g/Lの1,2-ベンズイソチアゾリン-3-オン(NaOHで水溶液をアルカリ性に調節して溶解した)0.078Lを添加した。このようにして銀ナノディスク分散液c1Aを調製した。
--ゼラチン水溶液の調製――
 SUS316L製の溶解タンクにイオン交換水16.7Lを計量した。SUS316L製のアジターで低速撹拌を行いながら、脱イオン処理を施したアルカリ処理牛骨ゼラチン(GPC重量平均分子量20万)1.4kgを添加した。更に、脱イオン処理、蛋白質分解酵素処理、および過酸化水素による酸化処理を施したアルカリ処理牛骨ゼラチン(GPC重量平均分子量2.1万)0.91kgを添加した。その後40℃に昇温し、ゼラチンの膨潤と溶解を同時に行って完全に溶解させた。
--亜硫酸銀白色沈殿物混合液の調製――
 SUS316L製の溶解タンクにイオン交換水8.2Lを計量し、100g/Lの硝酸銀水溶液8.2Lを添加した。SUS316L製のアジターで高速撹拌を行いながら、140g/Lの亜硫酸ナトリウム水溶液2.7Lを短時間で添加して、亜硫酸銀の白色沈澱物を含む混合液を調製した。この混合液は、使用する直前に調製した。
-銀ナノディスク分散液c1Bの調液-
 前述の銀ナノディスク分散液c1Aを遠沈管に800g採取して、1NのNaOHおよび/または1Nの硫酸を用いて25℃でpH=9.2±0.2に調整した。遠心分離機(日立工機(株)製himacCR22GIII、アングルローターR9A)を用いて、35℃に設定して9000rpm60分間の遠心分離操作を行った後、上澄液を784g捨てた。沈殿した平板粒子に0.2mMのNaOH水溶液を加えて合計400gとし、撹拌棒を用いて手撹拌して粗分散液にした。これと同様の操作で遠沈管24本分の粗分散液を調製して合計9600gとし、SUS316L製のタンクに添加して混合した。更に、Pluronic31R1(BASF社製)の10g/L溶液(メタノール:イオン交換水=1:1(体積比)の混合液で希釈)を10cc添加した。プライミクス(株)製オートミクサー20型(撹拌部はホモミクサーMARKII)を用いて、タンク中の粗分散液混合物に9000rpmで120分間のバッチ式分散処理を施した。分散中の液温は50℃に保った。このように得られた分散液を、再び遠沈管に800g採取して、遠心分離機(日立工機(株)製himacCR22GIII、アングルローターR9A)を用いて、35℃に設定して9000rpm60分間の遠心分離操作を行った後、上澄液を760g捨てた。沈殿した平板粒子に0.2mMのNaOH水溶液を加えて合計800gとし、撹拌棒を用いて手撹拌して粗分散液にした。これと同様の操作で遠沈管12本分の粗分散液を調製して合計9600gとし、SUS316L製のタンクに添加して混合した。更に、Pluronic31R1(BASF社製)の10g/L溶液(メタノール:イオン交換水=1:1(体積比)の混合液で希釈)を10cc添加した。プライミクス(株)製オートミクサー20型(撹拌部はホモミクサーMARKII)を用いて、タンク中の粗分散液混合物に9000rpmで120分間のバッチ式分散処理を施した。分散中の液温は50℃に保った。分散後、25℃に降温してから、プロファイルIIフィルター(日本ポール(株)製、製品型式MCY1001Y030H13)を用いてシングルパスの濾過を行った。
 このようにして、分散液c1Aに脱塩処理および再分散処理を施して、銀ナノディスク分散液c1Bを調製した。
-銀ナノディスクの評価-
 銀ナノディスク分散液c1Aの中には、六角形状乃至円形状および三角形状の銀ナノディスクが生成していることを確認した。なお、分散液c1A中においては、銀ナノ粒子は全て銀ナノディスクであった。銀ナノディスク分散液c1AのTEM観察により得られた像を、画像処理ソフトImageJに取り込み、画像処理を施した。数視野のTEM像から任意に抽出した500個の粒子に関して画像解析を行い、同面積円相当径を算出した。これらの母集団に基づき統計処理した結果、平均直径は118nmであった。
 銀ナノディスク分散液c1Bを同様に測定したところ、粒度分布の形状も含め銀ナノディスク分散液c1Aとほぼ同じ結果を得た。
 また、銀ナノディスク分散液c1Bをシリコン基板上に滴下して乾燥し、銀ナノディスクの個々の厚みをFIB-TEM法により測定した。銀ナノディスク分散液c1B中の銀ナノディスク10個を測定して平均厚みは8nmであった。すなわち直径/厚みで表されるアスペクト比は14.8であった。
 (銀ナノディスク層用の塗布液C-2の調製)
 上記塗布液C-1の調製における銀ナノディスク分散液c1Bの調液時に、銀ナノディスク分散液c1Aに代えて、銀ナノディスク分散液c2Aを用いた以外は、塗布液C-1と同様にして塗布液C-2を得た。
 ここで、銀ナノディスク分散液c2Aは、銀ナノディスク分散液c1Aを50Lに対し、0.1質量%塩化金酸(和光純薬(株)製)水溶液を0.028L添加し、60℃4hr攪拌して得た。
  (銀ナノディスク層用の塗布液C-3の調製)
 上記塗布液C-1の調製における銀ナノディスク分散液c1Bの調液時に、銀ナノディスク分散液c1Aに代えて、銀ナノディスク分散液c3Aを用いた以外は、塗布液C-1と同様にして塗布液C-3を得た。
 ここで、銀ナノディスク分散液c3Aは、銀ナノディスク分散液c1Aを50Lに対し、0.1質量%塩化金酸(和光純薬(株)製)水溶液を0.28L添加し、60℃4hr攪拌して得た。
 (銀ナノディスク層用の塗布液C-4の調製)
 上記塗布液C-1の調製における銀ナノディスク分散液c1Bの調液時に、銀ナノディスク分散液c1Aに代えて、銀ナノディスク分散液c4Aを用いた以外は、塗布液C-1と同様にして塗布液C-4を得た。
 ここで、銀ナノディスク分散液c4Aは、銀ナノディスク分散液c1Aを50Lに対し、0.1質量%塩化金酸(和光純薬(株)製)水溶液を2.78L添加し、60℃4hr攪拌して得た。
 (銀ナノディスク層用の塗布液C-5の調製)
 上記塗布液C-1の調製における銀ナノディスク分散液c1Bの調液時に、銀ナノディスク分散液c1Aに代えて、銀ナノディスク分散液c5Aを用いた以外は、塗布液C-1と同様にして塗布液C-5を得た。
 ここで、銀ナノディスク分散液c5Aは、銀ナノディスク分散液c1Aを50Lに対し、1.0質量%塩化金酸(和光純薬(株)製)水溶液を2.78L添加し、60℃4hr攪拌して得た。
 (銀ナノディスク層用の塗布液C-6の調製)
 上記塗布液C-1の調製における銀ナノディスク分散液c1Bの調液時に、銀ナノディスク分散液c1Aに代えて、銀ナノディスク分散液c6Aを用いた以外は、塗布液C-1と同様にして塗布液C-3を得た。
 ここで、銀ナノディスク分散液c6Aは、銀ナノディスク分散液c1Aを50Lに対し、5.0質量%塩化金酸(和光純薬(株)製)水溶液を5.56L添加し、60℃4hr攪拌して得た。
 (銀ナノディスク層用の塗布液C-7の調製)
 上記塗布液C-4の調製において、1-(5-メチルウレイドフェニル)-5-メルカプトテトラゾールを添加しない以外は、塗布液C-4と同様にして塗布液C-7を得た。
 (銀ナノディスク層用の塗布液C-8の調製)
 上記C-4の調製において、1-(5-メチルウレイドフェニル)-5-メルカプトテトラゾールの代わりに、1-フェニル-1H-テトラゾール-5-チオールを添加した以外は、塗布液C-4と同様にして塗布液C-8を得た。
 (銀ナノディスク層用の塗布液C-9の調製)
 上記C-4の調製において、1-(5-メチルウレイドフェニル)-5-メルカプトテトラゾールの代わりに5-アミノ-1,3,4-チアジアゾール-2-チオールを添加した以外は、塗布液C-4と同様にして塗布液C-9を得た。
 (銀ナノディスク層用の塗布液C-10の調製)
 上記C-4の調製において、1-(5-メチルウレイドフェニル)-5-メルカプトテトラゾールの代わりに、N-(3-(5-メルカプト-1H-テトラゾール-1-イル)フェニル)-3-(メチル(ピロリジン-1-イル)アミノプロパンアミド)
を添加した以外は、塗布液C-4と同様にして塗布液C-10を得た。
[低屈折率層]
 (低屈折率層用の塗布液D-1)
 低屈折率層用の塗布液D-1を表5に示す材料の配合比で混合して調製した。
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-C000007
 
  上記化合物M-11は特開2006-28280号公報の段落番号[0017]から[0025]に記載の方法により調製した。
 
 上記のようにして調製して得られた塗布液A-1~A-3、B-1およびC-1~C-10を用い、本発明の反射防止フィルムの実施例および比較例をそれぞれ作製した。各実施例および比較例の層構成(各層に用いた塗布液の種類)を纏めて表6に示す。
Figure JPOXMLDOC01-appb-T000008
 
 各実施例および比較例の反射防止フィルムの作製方法について説明する。
[比較例1]
 透明基材である易接着層付PET(ポリエチレンテレフタレート)フィルム(U403、膜厚75μm、東レ(株)製)の一面上に、銀ナノディスク層用の塗布液C-1を、ワイヤーバーを用いて、乾燥後の平均厚みが30nmになるように塗布した。その後、130℃で1分間加熱し、乾燥、固化し、銀ナノディスク層を形成した。形成した銀ナノディスク層の上に、低屈折率層用の塗布液D-1を、ワイヤーバーを用いて、乾燥後の平均厚みが70nmになるように塗布し、60℃で1分間加熱乾燥し、酸素濃度0.1%以下となるように窒素パージしながら、メタルハライド(M04-L41)UVランプ(アイグラフィックス製)を用いて、照射量200mJ/cm2の紫外線を照射して塗布膜を硬化させ、誘電体層を形成した。
 以上の工程により、PETフィルムからなる透明基材上に、銀ナノディスク層および低屈折率層がこの順に積層されてなる比較例1の反射防止フィルムを得た。比較例1の反射防止フィルムは、従来技術の項で説明した特開2015-129909号公報に記載されている構成と同様の構成を有する。
[比較例2]
 比較例1において、銀ナノディスク層用の塗布液C-1のかわりにC-4を用い、さらに低屈折率層を形成しないこと以外は、比較例1と同様の方法で比較例2のフィルムを得た。
[実施例1~9]
 比較例1において、銀ナノディスク層用の塗布液C-1の代わりに、それぞれ表6に記載のC-2~C-10塗布液を用いること以外は比較例1と同様の方法で実施例1~9反射防止フィルムを得た。
[実施例10]
 実施例3において、銀ナノディスク層用の塗布液C-4を塗布する前に、透明基材の一面上にハードコート層を形成し、ハードコート層上に銀ナノディスク層用の塗布液C-4を塗布した以外は、実施例3と同様の方法で実施例10の反射防止フィルムを得た。なお、ハードコート層は、ハードコート層用の塗布液A-3を、易接着層付PET(ポリエチレンテレフタレート)フィルム(U403、膜厚75μm、東レ(株)製)の一面上に、ワイヤーバーを用いて、乾燥後の平均厚みが5μmになるように塗布し、90℃で1分間加熱乾燥し、酸素濃度0.1%以下となるように窒素パージしながら、メタルハライド(M04-L41)UVランプ(アイグラフィックス製)を用いて、照射量100mJ/cm2の紫外線を照射して塗布膜を硬化して形成した。
[実施例11]
 実施例10において、上記塗布液A-3を用いたハードコート層を形成した上に、高屈折率層を形成し、この高屈折率層上に銀ナノディスク層用塗布液C-4を塗布した。この点以外は、実施例10と同様の方法で実施例11の反射フィルムを得た。高屈折率層は、高屈折率層用の塗布液B-1を、ワイヤーバーを用いて、乾燥後の平均厚みが23nmになるように塗布し、135℃で2分間加熱乾燥、固化して形成した。
[実施例12]
 実施例11において、上記ハードコート層の平均厚みが1.5μmとなるように塗布液A-3を塗布した以外は実施例11と同様の方法で実施例12の反射防止フィルムを得た。
[実施例13]
 実施例11において、ハードコート層の形成方法を次の通りとした以外は、同様の方法で実施例13の反射防止フィルムを得た。本例において、ハードコート層は、上記塗布液A-3に代えて塗布液A-2を用い、乾燥後の平均厚みが4μmになるように塗布し、165℃で2分間加熱乾燥、固化して形成した。
[実施例14]
 実施例13において、塗布液A-2に代えて塗布液A-1を用いた以外は実施例13と同様の方法で実施例14の反射防止フィルムを得た。
 実施例10-実施例12で用いたハードコート層用の塗布液A-3は紫外線重合開始剤を含むものであり、紫外線を照射させることにより重合させてハードコート層を形成するものであるのに対し、実施例13および実施例14で用いたハードコート層用の塗布液A-1及びA-2は、紫外線重合開始剤を含まない水系樹脂組成物である。
<評価>
 各実施例および比較例の反射防止フィルムについて、以下の測定、評価を行った。
[銀ナノディスク層に含まれる銀以外の金属の原子%]
 各反射防止フィルムについて、μXRF(Micro X-ray Fluorescence)(リガク製ZSX Primus II)を使用し、管電圧:50kV、管電流:60mA、マスク/分析径:30nmφ、分析線:Ag-Kα、Au-Lα、の条件で元素分析を行った。
 得られた、Ag、Auそれぞれの蛍光X線強度(kcps)に対し、予め硝酸銀、塩化金酸の各水溶液を用いて作成した検量線により原子%に換算した。
 それぞれの比較例、実施例にて得られた値を下記表7に示す。
[透明基材以外の層の未反応紫外線重合開始剤量測定]
 作製した各比較例および実施例の反射防止フィルム(0.3g)とメタノール(10g)を、100mL容量のナスフラスコに投入し、80℃のオイルバスにて1時間抽出を行い、未反応光重合開始剤の溶出量をLC-MS(Liquid Chromatograph Mass Spectrometer:液値クロマトグラフ質量分析、LCMS-2010:島津製作所製)にて定量した。溶出量は光重合開始剤にて予め作製した検量線を元に算出し、m2あたりの量(mg/m2)に換算した。これを未反応の紫外線重合開始剤の合計量とする。それぞれの実施例および比較例で得られた値を表7に示す。
[銀ナノディスク層に添加する添加剤のpKsp値測定]
 銀イオンとの溶解度積Kspは「坂口喜堅・菊池真一,日本写真学会誌,13,126,(1951)」と「A.Pailliofet and J.Pouradier,Bull.Soc.chim.France,1982,I-445(1982)」を参照して測定した。
 なお、pKsp=-log10Kspである。
 それぞれの添加剤における測定値を表7に示す。
[銀ナノディスク層に添加する添加剤の還元電位値測定]
 還元電位は「電気化学測定法」(1984年,藤嶋昭ら著)P150-167に記載のサイクリックボルタメトリー測定を参照して測定した。それぞれの添加剤における測定値を表7に示す。
[表面反射率]
 各実施例および比較例の反射防止フィルムについて、低屈折率層とは逆の面(透明基材の裏面)に黒インキ(シャチハタ製 Artline_KR-20_black)を塗り、裏面の可視光領域の反射を除き、紫外可視近赤外分光計(V560、日本分光製)を用い、低屈折率層側から光を入射角5°で入射した際の正反射測定を実施した。波長450nmから650nmにおける反射率を測定して平均値(以下において「平均反射率」という。)を算出し、以下の基準で評価した。結果を表7に示す。
 A:0.5%未満
 B:0.5%以上、1.0%未満
 C:1.0%以上、2.0%未満
 D:2.0%以上
[オゾンガス耐性]
 3mm厚の青板ガラスに各実施例および比較例の反射防止フィルムを透明基材が青板ガラス側となるようにして粘着フィルム(PD-S1:パナック(株)製)を介して貼り合わせたサンプルを2セット作製した。そのうちの1セットの各サンプルの反射防止フィルムについて上記表面反射率の測定方法と同様の平均反射率(曝露試験前)を算出した。なお、ここでは、青板ガラスの反射防止フィルム貼付面と反対の面に黒インキを塗って反射率を測定した。
 他方の1セットの各サンプルを、腐食試験機GS-FD(スガ試験機(株)製)において、25℃60%、オゾン濃度10ppmの環境下に120時間曝露した。
 この曝露後の各サンプルの反射防止フィルムについて、上記と同様にして表面反射率の測定を行って平均反射率(曝露試験後)を算出した。
 上記のようにして得た曝露試験前の平均反射率と曝露試験後の平均反射率との差を求め、下記の基準で評価した。評価結果は表7に示す。
A:差が0.2%以下
B:差が0.2%超、0.4%以下
C:差が0.4%超、0.6%以下
D:差が0.6%超、0.8%以下
E:差が0.8%超、1.0%以下
F:差が1.0%超、2.0%以下
G:差が2.0%超
[鉛筆硬度]
 各実施例および比較例の反射防止フィルムを、ガラス板に透明基材がガラス側となるようにして粘着フィルム(PD-S1:パナック(株)製)を介して貼り合わせ、JIS K-5600-5-4に従って鉛筆硬度を測定した。結果を表7に示す。鉛筆硬度は硬いものから順に、6H、5H、4H、3H、2H、H、F、HB、B、2B、3B、4B、5B、6Bで表され、表中には測定された硬度を記載している。
[耐傷性]
 連続加重式引掻強度試験機(TYPE:18、新東科学(株)製)を用い、アズピュアワイパー(アズワン社製)を取り付け、ワイパーに純水をしみ込ませ、水を含ませた環境下で200g/cmの加重を掛けて、各実施例および比較例の反射防止フィルムの低屈折率層側の表面を5000往復させ、表面の磨耗状態を目視および光学顕微鏡下で観察した。下記基準で評価した結果を表7に示す。
 A:擦った後が全く見えない状態である。
 B:擦った後が擦り跡として認識できる。
 C:擦った後が1mm以上の幅として認識できる。
Figure JPOXMLDOC01-appb-T000009
 
 表7に示すように、比較例1は良好な反射率を得ることができるが、オゾンガス耐性が低いことが明らかになった。また、銀より貴な金属(ここでは金)が含有された実施例1~13は比較例1に対してオゾンガス耐性が高いという結果が得られた。
 実施例1に示す通り、金の含有比率は小さくとてもオゾンガス耐性を得ることができるが、実施例2-4に示すようにある程度含有比率が大きい方がオゾンガス耐性はより向上することが分かった。一方で、実施例4のように含有比率が大きい場合には、反射率が大きくなり、反射防止性能が低下した。
 また、実施例3および実施例6-9の比較から、銀ナノ粒子層には銀イオンとの溶解度積pKspが14以上の有機成分および/または還元電位が700mV未満の有機成分が含まれていることによりオゾンガス耐性が向上することが分かった。特に、実施例3のように、銀イオンとの溶解度積pKspが14以上、かつ還元電位が700mV未満を満たす有機成分を含むときオゾンガス耐性は最も良好であった。
 また、同時に硬度および耐傷性を向上させるためには、ハードコート層を備えることが必要であることが明らかになった。実施例10から12のように、ハードコート層としてUV硬化樹脂を用いるとオゾンガス耐性が低下することが明らかになった。一方で、実施例13および14のようにハードコート層を水系樹脂組成物により形成することにより、非常に良好なオゾンガス耐性が実現できた。
1、2、3  反射防止フィルム
9  粘着剤層
10  透明基材
11  第1の反射防止フィルム
12  第2の反射防止フィルム
20  ハードコート層
30  反射防止層
32  高屈折率層
35  銀ナノ粒子
35A,35B  銀ナノディスク
35C  銀ナノロッド
36  銀ナノ粒子層
38  低屈折率層
50  ガラス板
100  機能性ガラス

Claims (13)

  1.  透明基材および該透明基材の一面側に設けられた反射防止層を備え、
     前記反射防止層が、前記透明基材側から、バインダー中にアスペクト比が3以上である複数の銀ナノ粒子が分散されてなる銀ナノ粒子層、および前記透明基材の屈折率よりも小さい屈折率を有する低屈折率層をこの順に積層してなり、
     前記銀ナノ粒子層に、銀よりも貴な金属を含むことを特徴とする反射防止フィルム。
  2.  前記銀ナノ粒子が平板状であり、該銀ナノ粒子の長軸長が主平面の円相当直径であり、前記アスペクト比が前記円相当直径と板厚との比である請求項1に記載の反射防止フィルム。
  3.  前記銀ナノ粒子層に含まれる前記貴な金属の量が、前記銀ナノ粒子に対して10-2原子%から5原子%である請求項1または2に記載の反射防止フィルム。
  4.  前記銀ナノ粒子の表面に前記貴な金属が配置されている請求項1から3いずれか1項に記載の反射防止フィルム。
  5.  前記貴な金属が金、パラジウム、イリジウム、白金およびオスミウムのうちの少なくとも1つである請求項1から4いずれか1項に記載の反射防止フィルム。
  6.  前記銀ナノ粒子層が、銀イオンとの溶解度積pKspが14以上である、または還元電位が700mV未満である有機成分を含有する請求項1から5いずれか1項に記載の反射防止フィルム。
  7.  前記銀ナノ粒子層が、銀イオンとの溶解度積pKspが14以上であり、かつ還元電位が700mV未満である有機成分を含有する請求項1から5いずれか1項に記載の反射防止フィルム。
  8.  前記透明基材と前記銀ナノ粒子層との間にハードコート層を備えた請求項1から7いずれか1項に記載の反射防止フィルム。
  9.  前記ハードコート層の鉛筆硬度がHB以上である請求項8記載の反射防止フィルム。
  10.  前記ハードコート層が水系樹脂組成物の硬化物からなる請求項8または9に記載の反射防止フィルム。
  11.  前記透明基材と前記ハードコート層との間に、該ハードコート層よりも高い屈折率を有する高屈折率層を備えた請求項8から10のいずれか1項に記載の反射防止フィルム。
  12.  前記透明基材以外の層に含まれる未反応の重合開始剤の合計量が50mg/m以下で
    ある請求項1から11いずれか1項に記載の反射防止フィルム。
  13.  ガラス板と、
     前記ガラス板の少なくとも一方の面に貼付された請求項1から12いずれか1項に記載の反射防止フィルムとを備えた機能性ガラス。
PCT/JP2017/009998 2016-03-18 2017-03-13 反射防止フィルムおよび機能性ガラス WO2017159621A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018505918A JPWO2017159621A1 (ja) 2016-03-18 2017-03-13 反射防止フィルムおよび機能性ガラス
CN201780012716.5A CN108700677A (zh) 2016-03-18 2017-03-13 防反射膜及功能性玻璃
EP17766621.1A EP3415961A4 (en) 2016-03-18 2017-03-13 ANTIREFLECTION FILM AND FUNCTIONAL GLASS
US16/100,211 US20180348406A1 (en) 2016-03-18 2018-08-10 Antireflection film and functional glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016055849 2016-03-18
JP2016-055849 2016-03-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/100,211 Continuation US20180348406A1 (en) 2016-03-18 2018-08-10 Antireflection film and functional glass

Publications (1)

Publication Number Publication Date
WO2017159621A1 true WO2017159621A1 (ja) 2017-09-21

Family

ID=59850704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009998 WO2017159621A1 (ja) 2016-03-18 2017-03-13 反射防止フィルムおよび機能性ガラス

Country Status (6)

Country Link
US (1) US20180348406A1 (ja)
EP (1) EP3415961A4 (ja)
JP (1) JPWO2017159621A1 (ja)
CN (1) CN108700677A (ja)
TW (1) TW201740139A (ja)
WO (1) WO2017159621A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018086789A (ja) * 2016-11-29 2018-06-07 凸版印刷株式会社 銀ナノ粒子積層体及び銀ナノ粒子積層体の製造方法
KR20200092051A (ko) * 2019-01-24 2020-08-03 주식회사 엘지화학 폴리머 내 나노입자의 분산도를 평가하는 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425013B1 (en) * 2016-02-29 2021-03-31 FUJIFILM Corporation Ink composition and image formation method
CN108699369B (zh) * 2016-02-29 2021-09-07 富士胶片株式会社 油墨组合物、油墨组、图像形成方法及印刷品
CN112068227B (zh) * 2020-09-10 2022-06-10 天津津航技术物理研究所 一种大角度入射红外硬质保护薄膜光学窗口

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636208B2 (ja) 1978-09-20 1981-08-22
JPH103868A (ja) * 1996-04-16 1998-01-06 Mitsubishi Electric Corp 陰極線管およびその製造方法
JP2000268639A (ja) * 1999-01-14 2000-09-29 Sumitomo Metal Mining Co Ltd 透明導電性基材とその製造方法および透明導電性基材の製造に用いられる透明導電層形成用塗液とその製造方法
JP2000515264A (ja) * 1997-04-28 2000-11-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 静電防止、反射防止フィルタを具える表示装置及び陰極線管上に反射防止フィルタを製造する方法
JP2002062401A (ja) * 2000-08-14 2002-02-28 Fuji Photo Film Co Ltd 反射防止透明導電性積層フィルム
JP2002338720A (ja) * 2001-05-21 2002-11-27 Fuji Photo Film Co Ltd ハードコート膜、ハードコートフィルム、及び画像表示装置
JP2011065139A (ja) * 2009-08-19 2011-03-31 Fujifilm Corp 光拡散シート
JP2014126570A (ja) * 2012-12-25 2014-07-07 Toray Advanced Film Co Ltd 反射防止フィルム
JP2015129909A (ja) 2013-12-03 2015-07-16 富士フイルム株式会社 反射防止光学部材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031813A1 (ja) * 2002-10-02 2004-04-15 Bridgestone Corporation 反射防止フィルム
JP5636208B2 (ja) * 2010-04-07 2014-12-03 富士フイルム株式会社 熱線遮蔽用金属平板状粒子含有組成物
JP5518600B2 (ja) * 2010-07-06 2014-06-11 富士フイルム株式会社 熱線反射材
WO2013146355A1 (ja) * 2012-03-29 2013-10-03 富士フイルム株式会社 熱線遮蔽材および貼合せ構造体
CN106170718A (zh) * 2014-04-14 2016-11-30 富士胶片株式会社 防反射膜及功能性玻璃

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5636208B2 (ja) 1978-09-20 1981-08-22
JPH103868A (ja) * 1996-04-16 1998-01-06 Mitsubishi Electric Corp 陰極線管およびその製造方法
JP2000515264A (ja) * 1997-04-28 2000-11-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 静電防止、反射防止フィルタを具える表示装置及び陰極線管上に反射防止フィルタを製造する方法
JP2000268639A (ja) * 1999-01-14 2000-09-29 Sumitomo Metal Mining Co Ltd 透明導電性基材とその製造方法および透明導電性基材の製造に用いられる透明導電層形成用塗液とその製造方法
JP2002062401A (ja) * 2000-08-14 2002-02-28 Fuji Photo Film Co Ltd 反射防止透明導電性積層フィルム
JP2002338720A (ja) * 2001-05-21 2002-11-27 Fuji Photo Film Co Ltd ハードコート膜、ハードコートフィルム、及び画像表示装置
JP2011065139A (ja) * 2009-08-19 2011-03-31 Fujifilm Corp 光拡散シート
JP2014126570A (ja) * 2012-12-25 2014-07-07 Toray Advanced Film Co Ltd 反射防止フィルム
JP2015129909A (ja) 2013-12-03 2015-07-16 富士フイルム株式会社 反射防止光学部材

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Chemical Handbook, Revised", pages: 581 - 584
A. PAILLIOFET; J. POURADIER, BULL. SOC. CHIM., vol. I-445, 1982
AKIHIRO FUJISHIMA ET AL.: "Electrochemical Measurement Method", 1984, pages: 150 - 167
KAORI SAKAGUCHI; SHINICHI KIKUCHI, JOURNAL OF THE JAPAN SOCIETY OF PHOTOGRAPHIC SCIENCE, vol. 13, 1951, pages 126

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018086789A (ja) * 2016-11-29 2018-06-07 凸版印刷株式会社 銀ナノ粒子積層体及び銀ナノ粒子積層体の製造方法
KR20200092051A (ko) * 2019-01-24 2020-08-03 주식회사 엘지화학 폴리머 내 나노입자의 분산도를 평가하는 방법
KR102542140B1 (ko) * 2019-01-24 2023-06-09 주식회사 엘지화학 폴리머 내 나노입자의 분산도를 평가하는 방법

Also Published As

Publication number Publication date
JPWO2017159621A1 (ja) 2018-08-23
CN108700677A (zh) 2018-10-23
US20180348406A1 (en) 2018-12-06
EP3415961A1 (en) 2018-12-19
TW201740139A (zh) 2017-11-16
EP3415961A4 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
WO2017159621A1 (ja) 反射防止フィルムおよび機能性ガラス
US10310143B2 (en) Anti-reflection optical member
JP6663079B2 (ja) 金被覆銀平板状粒子、金被覆銀平板状粒子分散液及びその製造方法、塗布膜、並びに、反射防止光学部材
JP6514657B2 (ja) 反射防止光学部材
WO2015159517A1 (ja) 反射防止フイルムおよび機能性ガラス
JP6284762B2 (ja) 熱線遮蔽材および窓ガラス
EP3404074A1 (en) Infrared reflective coating composition
US20200041703A1 (en) High refractive index film and optical interference film
WO2013042718A1 (ja) 熱線遮蔽材
EP3594298A1 (en) Method for producing silver nanowire ink, silver nanowire ink and transparent conductive coating film
US20180239060A1 (en) Antireflection film and functional glass
US20200139676A1 (en) Heat ray-screening material, interlayer for laminated glass, and laminated glass
JP2012215825A (ja) 熱線遮蔽材および貼合せ構造体
WO2017068788A1 (ja) 反射防止フィルムおよびその製造方法
JP2016102873A (ja) 反射防止光学部材
JP4247182B2 (ja) 透明導電体
WO2022168436A1 (ja) 合わせガラス、及び、合わせガラス中間膜
TW200941048A (en) Filter for display
WO2018061678A1 (ja) 反射防止構造体
WO2018003806A1 (ja) 断熱フィルム及び断熱フィルムの製造方法
WO2016143881A1 (ja) 反射防止光学部材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505918

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017766621

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017766621

Country of ref document: EP

Effective date: 20180912

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766621

Country of ref document: EP

Kind code of ref document: A1