JPWO2017061067A1 - 蓄冷装置及び蓄冷体の状態を表示する方法 - Google Patents

蓄冷装置及び蓄冷体の状態を表示する方法 Download PDF

Info

Publication number
JPWO2017061067A1
JPWO2017061067A1 JP2017544171A JP2017544171A JPWO2017061067A1 JP WO2017061067 A1 JPWO2017061067 A1 JP WO2017061067A1 JP 2017544171 A JP2017544171 A JP 2017544171A JP 2017544171 A JP2017544171 A JP 2017544171A JP WO2017061067 A1 JPWO2017061067 A1 JP WO2017061067A1
Authority
JP
Japan
Prior art keywords
temperature
cold storage
regenerator
box
boxes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017544171A
Other languages
English (en)
Other versions
JP6745487B2 (ja
Inventor
竹口 伸介
伸介 竹口
鈴木 基啓
基啓 鈴木
博宣 町田
博宣 町田
健太郎 椎
健太郎 椎
雅章 長井
雅章 長井
雄章 水藤
雄章 水藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2017061067A1 publication Critical patent/JPWO2017061067A1/ja
Application granted granted Critical
Publication of JP6745487B2 publication Critical patent/JP6745487B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

蓄冷体の状態をより確実に適切に求めることができる蓄冷装置を提供する。蓄冷装置(100)は、複数の箱体(11)と、送風機(20)と、温度センサ(12,12・・)と、表示情報生成器(30)と、表示部(40)とを備える。複数の箱体は、蓄冷室(15)において第1の方向(Y軸方向)に配列され、それぞれ蓄冷体(10,10)を収納している。送風機は、箱体同士の間に空気の流れを生じさせる。温度センサは、箱体の表面温度、蓄冷体の表面温度、又は蓄冷体の内部の温度を第2の方向(X軸方向)における複数の位置で検出する。表示情報生成器は、複数の位置における、箱体の表面温度、蓄冷体の表面温度、又は蓄冷体の内部の温度を示す情報に基づいて蓄冷体の状態を示す状態情報を生成する。表示部は、状態情報を表示する。

Description

本開示は、蓄冷装置及び蓄冷体の状態を表示する方法に関する。
従来、蓄冷装置を備えたコールドロールボックスが知られている。コールドロールボックスは、例えば、食品などの物品がコールドロールボックスの内部に収納された状態で、配送車の荷台に積載されて搬送される。
特許文献1には、蓄冷溶剤と、記憶部と、温度検出部と、蓄冷量演算部と、表示部とを含む蓄冷装置を備えたコールドロールボックスが記載されている。蓄冷溶剤において、凍結開始温度と凍結終了温度との間に所定の温度勾配特性を有するように添加物濃度が調製されている。蓄冷溶剤の凍結開始温度は、例えば概ね−7℃であり、蓄冷溶剤の凍結終了温度は概ね−22℃である。記憶部は、温度勾配特性に係るデータを記憶する。温度検出部は、蓄冷溶剤の温度を検出する。蓄冷量演算部は、温度検出部から得る検出温度と、記憶部から得る温度勾配特性に係るデータとに基づいて蓄冷量を求める。表示部は、蓄冷量演算部によって求めた蓄冷量を表示する。
特開平7−318215号公報
特許文献1に記載の蓄冷装置は、場合によっては、蓄冷量を適切に求めることができない可能性がある。そこで、本開示は、蓄冷体の状態をより確実に適切に求めることができる蓄冷装置を提供する。
課題を解決するための手段
本開示は、
蓄冷室において第1の方向に配列され、それぞれ蓄冷体が収納されている複数の箱体と、
前記蓄冷室と連通可能に仕切られている貯蔵室に配置され、前記複数の箱体が配列された前記蓄冷室の底面に平行な面内において前記第1の方向と交わる第2の方向に沿って前記箱体同士の間に規定された空間を前記第2の方向に通過する空気の流れを生じさせ、前記蓄冷体によって冷却された空気を循環させる送風機と、
少なくとも1つの前記箱体の表面温度、少なくとも1つの前記箱体に収納されている前記蓄冷体の表面温度、又は少なくとも1つの前記箱体に収納されている前記蓄冷体の内部の温度を前記第2の方向における複数の位置で検出する温度センサと、
前記温度センサによって検出された温度を示す情報が入力され、前記複数の位置における、前記箱体の表面温度、前記蓄冷体の表面温度、又は前記蓄冷体の内部の温度を示す情報に基づいて前記蓄冷体の状態を示す状態情報を生成する表示情報生成器と、
前記状態情報を表示する表示部と、を備えた、
蓄冷装置を提供する。
上記の蓄冷装置は、蓄冷体の状態をより確実に適切に求めることができる。
第1実施形態に係る蓄冷装置を模式的に示す構成図 蓄冷室における空気の流れを説明する斜視図 実施形態に係る蓄冷装置の一部を模式的に示す構成図 図3のIV−IV線に沿った箱体の断面図 蓄冷装置の動作を示すフローチャート 実施形態に係る蓄冷装置の温度センサによる検出結果の一例を示すグラフ 変形例に係る蓄冷装置の一部を模式的に示す構成図 別の変形例に係る蓄冷装置の一部を示す構成図 別の変形例に係る蓄冷装置の一部を示す構成図 図8Aの蓄冷装置の温度センサによる検出結果の一例を模式的に示すグラフ 図8Bの蓄冷装置の温度センサによる検出結果の一例を模式的に示すグラフ さらに別の変形例に係る蓄冷装置の箱体の断面図 さらに別の変形例に係る蓄冷装置の箱体の断面図 第2実施形態に係る蓄冷装置を模式的に示す構成図 第2実施形態に係る蓄冷装置における箱体の断面図 第2実施形態に係る蓄冷装置の温度センサによる検出結果の一例を模式的に示すグラフ
引用文献1に記載の蓄冷装置は、蓄冷溶剤の温度が空間的にばらつく可能性があることを考慮して考案されていない。このため、引用文献1に記載の蓄冷装置は、蓄冷溶剤の温度に空間的なばらつきが生じる場合、蓄冷量を適切に求めることができない可能性がある。また、引用文献1に記載の蓄冷装置では、例えば、概ね−7℃の凍結開始温度及び概ね−22℃の凍結終了温度Teを有する蓄冷溶剤が使用されており、凍結開始温度Tsと凍結終了温度Teとの差の絶対値は概ね15℃にも及ぶ。このため、引用文献1に記載の蓄冷装置によれば、凍結開始温度と凍結終了温度との間の温度勾配特性を用いて蓄冷量を求めやすい。しかし、引用文献1に記載の蓄冷装置では、凍結開始温度と凍結終了温度との差の絶対値が小さくなると蓄冷量を適切に求めるのが困難になってしまう。
本開示の第1態様は、蓄冷室において第1の方向に配列され、それぞれ蓄冷体が収納されている複数の箱体と、前記蓄冷室と連通可能に仕切られている貯蔵室に配置され、前記複数の箱体が配列された前記蓄冷室の底面に平行な面内において前記第1の方向と交わる第2の方向に沿って前記箱体同士の間に規定された空間を前記第2の方向に通過する空気の流れを生じさせ、前記蓄冷体によって冷却された空気を循環させる送風機と、少なくとも1つの前記箱体の表面温度、少なくとも1つの前記箱体に収納されている前記蓄冷体の表面温度、又は少なくとも1つの前記箱体に収納されている前記蓄冷体の内部の温度を前記第2の方向における複数の位置で検出する温度センサと、前記温度センサによって検出された温度を示す情報が入力され、前記複数の位置における、前記箱体の表面温度、前記蓄冷体の表面温度、又は前記蓄冷体の内部の温度を示す情報に基づいて前記蓄冷体の状態を示す状態情報を生成する表示情報生成器と、前記状態情報を表示する表示部と、を備えた、蓄冷装置を提供する。
第1態様によれば、表示情報生成器は、複数の位置における箱体の表面温度、蓄冷体の表面温度、又は蓄冷体の内部の温度を示す情報に基づいて蓄冷体の状態を示す状態情報を生成する。このため、蓄冷体の温度に空間的なばらつきが生じる可能性がある場合でも、蓄冷体の状態を適切に求めることができる。また、第1態様によれば、蓄冷体に含まれる蓄冷材料の凍結開始温度と凍結終了温度との間の温度勾配特性に関わらず、蓄冷体の状態を適切に求めることができる。加えて、空気を循環させるための流路を確保するために、複数の箱体が必ずしも蓄冷室の底面から離れて配置されている必要がない。さらに、送風機が貯蔵室に配置されているので、箱体同士の間に規定された空間において空気の流れの流速がばらつきにくい。
本開示の第2態様は、第1態様に加えて、前記複数の箱体は、前記蓄冷室の前記底面に接触している、蓄冷装置を提供する。第2態様によれば、箱体同士の間に規定された空間を第2の方向に沿って空気が流れやすく、空気が蓄冷体によって効率的に冷却されやすい。
本開示の第3態様は、第1態様又は第2態様に加えて、前記複数の箱体のそれぞれにおいて最も長い辺は、前記第2の方向と平行な方向に延びている、蓄冷装置を提供する。第3態様によれば、蓄冷体の全体の融解状態が第2の方向においてばらつきやすい。また、箱体同士の間に規定された空間を空気の流れが第2の方向に通過する期間が長くなりやすく、箱体同士の間に規定された空間に導かれた空気が確実に冷却されやすい。加えて、箱体同士の間に規定された空間を流れる空気の流れに生じる圧量損失が比較的大きいので、空気の流れが生じる複数の空間に均等に空気が導かれやすい。
本開示の第4態様は、第1態様〜第3態様のいずれか1つの態様に加えて、前記第2の方向における前記箱体の両端のうち前記空気の流れの上流側に位置する前記箱体の端を上流端と定義し、かつ、前記両端のうち前記空気の流れの下流側に位置する前記箱体の端を下流端と定義したとき、前記複数の位置は、前記第2の方向において前記上流端と前記下流端との中間に位置している中間位置であって、前記上流端及び前記下流端から等距離離れている中間位置と前記上流端との間で相対的に密に分布し、前記中間位置と前記下流端との間で相対的に疎に分布している、蓄冷装置を提供する。第4態様によれば、以下の理由により、蓄冷体の状態を示す状態情報をより精度良く生成しやすい。
蓄冷装置の外部からの入熱に対し、蓄冷装置において物品を収容するための空間の温度を特定の温度範囲に保つためには、その入熱を相殺する冷熱量を蓄冷装置の内部で循環する空気が蓄冷体との熱交換により受け取る必要がある。蓄冷装置の内部で循環する空気がその冷熱量を受け取るのに十分な伝熱面積を蓄冷体が有している場合、その蓄冷体の全体が有する冷熱量が多い時点では、空気と蓄冷体との温度差が特に大きい箱体の上流端付近で空気と蓄冷体との間の熱交換が効果的に行われる。このため、上流端付近の蓄冷体が有する冷熱が先だって消費され、蓄冷体が上流端から中間位置に向かって次第に融解していく。その結果、第2の方向において上流端と中間位置との間では、温度センサによって検出される温度がばらつきやすい。上流端から中間位置付近まで蓄冷体の融解が進み、蓄冷体の全体が有する冷熱量が少なくなった時点では、中間位置付近と下流端との間の蓄冷体の融解挙動は蓄冷体の全体が有する冷熱量が多い時点における上流端付近の蓄冷体の融解挙動とは異なる。この場合、中間位置付近と下流端との間の蓄冷体は、中間位置付近と下流端との間においてほぼ均一に融解する。
蓄冷体の全体が有する冷熱量が少なくなった時点において、上流端と中間位置との間の蓄冷体は融解している。しかし、上流端と中間位置との間の蓄冷体の少なくとも一部は、箱体同士の間に規定された空間に流入する空気の温度に対してその空気を冷却するのに十分な冷熱量を顕熱として有している。このため、その空間に流入した空気は上流端から中間位置付近に向かって流れる期間に蓄冷体の融点近くの温度まで冷却される。さらに、空気は中間位置付近から下流端の間を流れる期間に蓄冷体の融点以下まで冷却されうる。このとき、中間位置付近と下流端との間の蓄冷体で消費される冷熱量は少ないので、中間位置付近と下流端との間の蓄冷体の融解状態は空気の流れ方向においてばらつきにくい。このような理由により、中間位置付近と下流端との間の蓄冷体は、上流端と中間位置付近との間の蓄冷体の融解挙動とは異なり、中間位置付近と下流端との間においてほぼ均一に融解する。その結果、中間位置付近と下流端との間の蓄冷体の融解状態は空気の流れ方向においてばらつきにくく、中間位置付近と下流端との間の蓄冷体の温度は空気の流れ方向においてばらつきにくい。このため、温度センサが温度を検出する複数の位置が、中間位置と上流端との間で相対的に密に分布していることにより、蓄冷体の蓄冷量を精度良く算出しやすく、ひいては蓄冷体の状態を示す状態情報をより精度良く生成しやすい。
本開示の第5態様は、第1態様〜第3態様のいずれか1つの態様に加えて、前記第2の方向における前記箱体の両端のうち前記空気の流れの上流側に位置する前記箱体の端を上流端と定義し、かつ、前記両端のうち前記空気の流れの下流側に位置する前記箱体の端を下流端と定義したとき、前記複数の位置は、前記第2の方向において前記上流端と前記下流端との中間に位置している中間位置であって、前記上流端及び前記下流端から等距離離れている中間位置と前記下流端との間で相対的に密に分布し、前記中間位置と前記上流端との間で相対的に疎に分布している、蓄冷装置を提供する。第5態様によれば、例えば、蓄冷体が有する伝熱面積が比較的小さい場合に、蓄冷体の状態を示す状態情報をより精度良く生成しやすい。蓄冷体が有する伝熱面積が比較的小さい場合、上流端と中間位置との間の蓄冷体は均一に融解しやすく、第2の方向において上流端と中間位置との間では、温度センサによって検出される温度がばらつきにくい。一方、中間位置と下流端との間の蓄冷体は、中間位置から下流端に向かって次第に融解していく。このため、第2の方向において中間位置と下流端との間では、温度センサによって検出される温度がばらつきやすい。このため、温度センサが温度を検出する複数の位置が、中間位置と下流端との間で相対的に密に分布していることにより、蓄冷体の蓄冷量を精度良く算出しやすく、ひいては蓄冷体の状態を示す状態情報をより精度良く生成しやすい。
本開示の第6態様は、第1態様〜第5態様にいずれか1つの態様に加えて、前記少なくとも1つの前記箱体は、前記第2の方向に配列された複数の前記蓄冷体を収納している、蓄冷装置を提供する。第6態様によれば、複数の蓄冷体のうちの特定の蓄冷体に、この特定の蓄冷体に隣り合う別の蓄冷体の有する熱が伝わりにくい。このため、蓄冷体の状態を適切に求めやすい。
本開示の第7態様は、第1態様〜第6態様にいずれか1つの態様に加えて、前記温度センサは、少なくとも1つの前記箱体の表面温度又は少なくとも1つの前記箱体に収納されている前記蓄冷体の表面温度を検出する、蓄冷装置を提供する。第7態様によれば、温度センサを蓄冷体の内部に設置する必要がないので、蓄冷体におけるシール不良による蓄冷材料の漏えいが起こりにくい。また、蓄冷体の交換が必要なときでも、温度センサの設置作業を簡単にでき、又は、温度センサの設置作業を不要にできる。
本開示の第8態様は、第7態様に加えて、前記温度センサは、前記蓄冷体の表面又は前記箱体の表面に設置されている、蓄冷装置を提供する。第7態様によれば、蓄冷体の表面温度又は箱体の表面温度をより確実に検出できる。
本開示の第8態様の一例(態様8A)は、第8態様に加えて、前記温度センサは、複数の温度センサを含み、前記第2の方向における前記箱体の両端のうち前記空気の流れの上流側に位置する前記箱体の端を上流端と定義し、前記両端のうち前記空気の流れの下流側に位置する前記箱体の端を下流端と定義し、前記複数の温度センサは、前記第2の方向において前記上流端と前記下流端との中間に位置している中間位置であって、前記上流端及び前記下流端から等距離離れている中間位置と前記上流端との間で相対的に密に設置され、前記中間位置と前記下流端との間で相対的に疎に設置されている、
蓄冷装置を提供する。
態様8Aによれば、第3態様と同様の理由により、蓄冷体の状態を示す状態情報をより精度良く生成しやすい。
本開示の第8態様の別の一例(態様8B)は、態様8Aに加えて、
前記複数の箱体のそれぞれにおいて最も長い辺は、前記第2の方向と平行な方向に延びており、前記温度センサは、第一温度センサ、第二温度センサ、及び第三温度センサを含み、前記箱体の前記最も長い辺の長さをLとさらに定義したときに、前記第一温度センサは、前記上流端から前記下流端に向かってL/2を超えて離れた位置に設置されており、前記第二温度センサは、前記上流端から前記下流端に向かってL/2未満離れた位置に設置されており、前記第三温度センサは、前記第2の方向において前記上流端と前記第二温度センサとの間に設置されている、蓄冷装置を提供する。
態様8Bによれば、箱体同士の間に規定された空間に導かれた空気を効率的に冷却できるとともに、蓄冷体の状態を示す状態情報をより精度良く生成しやすい。
本開示の第8態様のさらに別の一例(態様8C)は、態様8Bに加えて、前記温度センサは、第四温度センサをさらに含み、前記四温度センサは、前記第2の方向において前記上流端と前記第三温度センサとの間に設置されている、蓄冷装置を提供する。態様8Cによれば、蓄冷体の状態を示す状態情報をさらに精度良く生成しやすい。
本開示の第9態様は、第1態様〜第8態様のいずれか1つの態様に加えて、前記状態情報は、蓄冷残量、保冷可能時間、及び当該蓄冷装置に含まれる前記蓄冷体のうち所定量の前記蓄冷体が固化するまでに要する時間の少なくとも1つである、蓄冷装置を提供する。第10態様によれば、蓄冷残量、保冷可能時間、及び蓄冷装置に含まれる蓄冷体のうち所定量の蓄冷体が固化するまでに要する時間の少なくとも1つをユーザーに知らせることができる。このため、ユーザーにとっての利便性が高い。
本開示の第10態様は、第1態様〜第9態様のいずれかの1つの態様に加えて、前記表示情報生成器は、前記複数の位置における、前記箱体の表面温度、前記蓄冷体の表面温度、又は前記蓄冷体の内部の温度を示す情報に基づいて前記蓄冷体の空間的な温度分布を推定し、前記温度分布の全体における所定のしきい値を超えている部分の割合に基づいて、前記状態情報である蓄冷残量を算出する、蓄冷装置を提供する。第11態様によれば、蓄冷体の空間的な温度分布が推定されたうえで、適切な蓄冷残量を比較的容易に算出できる。
本開示の第11態様は、第1態様〜第10態様のいずれか1つの態様に加えて、蒸発器、圧縮機、凝縮器、及び膨張弁が配管を用いてこの順番で環状に接続されている冷凍サイクルをさらに備え、前記蒸発器は、前記箱体の表面の少なくとも一部と接触している、蓄冷装置を提供する。第12態様によれば、蒸発器が箱体の表面の少なくとも一部と接触しているので、箱体の内部の蓄冷体を効率的に冷却しつつ箱体同士の間に規定された空間を通過する空気を冷却できる。
本開示の第12態様は、蓄冷体の状態を示す情報を表示する方法であって、送風機を用いて、それぞれ蓄冷体が収納されている複数の箱体が蓄冷室において第1の方向に配列された前記蓄冷室の底面に平行な面内において前記第1の方向と交わる第2の方向に沿って前記箱体同士の間に規定された空間を前記第2の方向通過する空気の流れを生じさせ、前記蓄冷体によって冷却された空気を循環させ、温度センサを用いて、少なくとも1つの前記箱体の表面温度、少なくとも1つの前記箱体に収納されている前記蓄冷体の表面温度、又は少なくとも1つの前記箱体に収納されている前記蓄冷体の内部の温度を前記第2の方向における複数の位置で検出し、表示情報生成器を用いて、前記温度センサによって検出された温度を示す情報を取得し、前記複数の位置における、前記箱体の表面温度、前記蓄冷体の表面温度、又は前記蓄冷体の内部の温度を示す情報に基づいて前記蓄冷体の状態を示す状態情報を生成し、前記状態情報を表示部に表示する、方法を提供する。
第12態様によれば、第1態様と同様の効果を得ることができる。
以下、本開示の実施形態について図面を参照しながら説明する。なお、以下の説明は本発明の一例に関するものであり、本発明はこれらに限定されるものではない。なお添付の図面においてX軸方向、Y軸方向、及びZ軸方向は、それぞれ同一の方向を示す。また、X軸、Y軸、及びZ軸に言及されることなく説明される構成要素は、必要に応じて、適切な位置に配置可能である。
<第1実施形態>
図1〜図3に示すように、蓄冷装置100は、複数の箱体11と、送風機20と、温度センサ12と、表示情報生成器30と、表示部40とを備えている。図2に示すように、複数の箱体11は、蓄冷室15において第1の方向(Y軸方向)に配列されている。例えば、複数の箱体11は、Y軸方向に所定の間隔で配置されている。また、図3に示すように、複数の箱体11のそれぞれには、蓄冷体10が収納されている。図1及び図2における矢印は、送風機20の働きによって生じる空気の流れ方向を示している。図1に示す通り、送風機20は貯蔵室50に配置されている。貯蔵室50は、蓄冷室15と連通可能に仕切られている。図1又は図2に示すように、送風機20は、複数の箱体11が配列された蓄冷室15の底面に平行な面内(XY平面内)において第1の方向(Y軸方向)と交わる第2の方向(X軸正方向)に沿って箱体11同士の間に規定された空間を第2の方向に通過する空気の流れを生じさせる。これにより、送風機20は、蓄冷体10によって冷却された空気を循環させる。温度センサ12は、少なくとも1つの箱体11の表面温度、少なくとも1つの箱体11に収納されている蓄冷体10の表面温度、又は少なくとも1つの箱体11に収納されている蓄冷体10の内部の温度を検出する。図3に示すように、温度センサ12は、この温度を、第2の方向(箱体11同士の間に規定された空間を通過する空気の流れの方向:X軸正方向)における複数の位置で検出する。表示情報生成器30には、温度センサ12によって検出された温度を示す情報が入力される。表示情報生成器30は、第2の方向(空気の流れの方向:X軸正方向)の複数の位置における、箱体11の表面温度、蓄冷体10の表面温度、又は蓄冷体10の内部の温度を示す情報に基づいて蓄冷体10の状態を示す状態情報を生成する。表示部40は、表示情報生成器30によって生成された状態情報を表示する。
蓄冷装置100の表示情報生成器30は、上記のようにして、蓄冷体10の状態を示す状態情報を生成するので、蓄冷体10の温度に空間的なばらつきが生じる可能性がある場合でも、蓄冷体10の状態を適切に求めることができる。加えて、空気を循環させるための流路を確保するために、複数の箱体11が必ずしも蓄冷室15の底面から離れて配置されている必要がない。また、送風機20が貯蔵室50に配置されているので、箱体11同士の間に規定された空間において空気の流れの流速がばらつきにくい。
図1に示す通り、複数の箱体11は、例えば蓄冷室15の底面に接触している。これにより、箱体11同士の間に規定された空間を第2の方向に沿って空気が流れやすく、空気が蓄冷体10によって効率的に冷却されやすい。
図4に示すように、蓄冷体10は、例えば、蓄冷材料10aがフィルム製の容器10bに密閉されて規定されている。蓄冷体10は、例えば、液状の蓄冷材料10aが冷却されて固化することにより潜熱の形態で冷熱を蓄えることができる。蓄冷材料10aは、特に制限されないが、例えば、所定の濃度で塩化ナトリウムが添加された塩化ナトリウム及び水を含む混合物である。蓄冷材料10aの結晶開始温度と蓄冷材料10bの結晶終了温度との差の絶対値は、特に制限されないが、例えば、2℃以下である。容器10bを形成するフィルムは、例えば、アルミニウム層と、アルミニウム層の厚み方向の両側に配置された2つ以上の樹脂層とを備えた、積層フィルムである。
蓄冷装置100の表示情報生成器30は、上記のようにして、蓄冷体10の状態を示す状態情報を生成するので、蓄冷材料10aの結晶開始温度と蓄冷材料10aの結晶終了温度との差が比較的小さい場合でも、蓄冷体10の状態を適切に求めることができる。なお、蓄冷材料10aの結晶開始温度と蓄冷材料10aの結晶終了温度との差が比較的小さいと、例えば、物品を保冷するために許容される保冷温度の許容範囲が狭い場合に蓄冷体10を有利に利用できる。
図1及び図2に示す通り、例えば、複数の箱体11のそれぞれにおいて最も長い辺は、第2の方向と平行な方向に延びている。これにより、蓄冷体10の全体の融解状態が第2の方向においてばらつきやすい。また、箱体11同士の間に規定された空間を空気の流れが第2の方向に通過する期間が長くなりやすく、箱体11同士の間に規定された空間に導かれた空気が確実に冷却されやすい。加えて、箱体11同士の間に規定された空間を流れる空気の流れに生じる圧量損失が比較的大きいので、空気の流れが生じる複数の空間に均等に空気が導かれやすい。
箱体11は、特に制限されないが、例えば、図1及び図2に示すように、第2の方向(空気の流れ方向:X軸方向)に細長く延びた直方体状の外形を有する。箱体11は、組み立てやすさを考慮して、Y軸方向に組み合わせ可能な複数の部品によって形成されていてもよい。箱体11を形成する材料は、特に制限されないが、例えば、アルミニウムなどの金属又は合金である。この場合、蓄冷体10が有する冷熱が箱体11の近くを流れる空気に伝わりやすい。
蓄冷室15に配列された複数の箱体11の数は、特に制限されないが、例えば、蓄冷装置100に必要な冷熱量、蓄冷体10の寸法、及び蓄冷室15の高さ等のパラメータに基づいて適切に定められる。また、蓄冷室15に配列された複数の箱体11の数は、望ましくは、蓄冷室15を流れる空気との箱体11との熱交換面積が十分に確保されるように定められる。さらに、蓄冷室15に配列された複数の箱体11の数は、望ましくは、箱体11同士の間に規定された空気の流路において空気の流れに生じる圧力損失が適切な大きさに保たれるように定められる。
温度センサ12による温度検出の対象である少なくとも1つの箱体11は、単数の蓄冷体10を収納していてもよいが、望ましくは、図3に示すように、第2の方向(空気の流れ方向:X軸方向)に配列された複数(図3では2つ)の蓄冷体10を収納している。例えば、複数の蓄冷体10同士の間には、所定の隙間が規定されている。上記のように、蓄冷体10の容器10bは、例えば、アルミニウム層を含むフィルムによって形成されることがある。このため、箱体11が単数の蓄冷体10を収納している場合、蓄冷体10の第2の方向(空気の流れ方向:X軸方向)の特定の箇所に、特定の箇所の近くの箇所において蓄冷体10が有する熱が容器10bを通って伝わりやすい。これに対し、箱体11が第2の方向(空気の流れ方向:X軸方向)に配列された複数の蓄冷体10を収納していれば、複数の蓄冷体10のうちの特定の蓄冷体10に、この特定の蓄冷体10に隣り合う別の蓄冷体10の有する熱が伝わりにくい。このため、特定の蓄冷体10の温度は、この特定の蓄冷体10に隣り合う別の蓄冷体10の有する熱の影響を受けにくく、蓄冷体10の状態を有利に求めることができる。
温度センサ12は、特に制限されないが、例えば、熱電対又はサーミスターを有する接触式温度センサ又はサーモパイルを有する非接触式温度センサである。図3に示すように、温度センサ12は、例えば、第2の方向(空気の流れ方向:X軸方向)の複数の位置にそれぞれ配置されている。例えば、箱体11に収納された2つの蓄冷体10のそれぞれに対し、第2の方向(空気の流れ方向:X軸方向)に異なる3つの位置に対応して、6つの温度センサ12が配置されている。6つの温度センサ12は、例えば、X軸方向に特定の間隔で配置されている。なお、温度センサ12が、測定視野角の広い非接触式温度センサ又は視野角が移動可能な非接触式温度センサである場合、1つの温度センサ12を用いて第2の方向(空気の流れ方向:X軸方向)の複数の位置で対象物の温度が検出されてもよい。また、非接触式温度センサである温度センサ12を用いて蓄冷体10の表面温度を測定する場合、箱体11には、望ましくは蓄冷体10の表面温度を検出するための開口が定められている。
温度センサ12は、望ましくは、少なくとも1つの箱体11の表面温度又は少なくとも1つの箱体11に収納されている蓄冷体10の表面温度を検出する。この場合、温度センサ12を蓄冷体10の内部に設置する必要がないので、蓄冷体10におけるシール不良による蓄冷材料10aの漏えいが起こりにくい。また、蓄冷体10の交換が必要なときでも、温度センサ12の設置作業を簡単にでき、又は、温度センサ12の設置作業を不要にできる。
温度センサ12は、例えば、蓄冷体10の表面又は箱体11の表面に設置されている。換言すると、温度センサ12は、蓄冷体10の表面又は箱体11の表面に接している。この場合、蓄冷体10の表面又は箱体11の表面と温度センサ12との間に隙間がほとんど規定されないので、蓄冷体10の表面又は箱体11の表面と温度センサ12との間に温度センサ12による温度検出を阻害する異物が存在しにくい。このため、蓄冷体10の表面温度又は箱体11の表面温度をより確実に検出できる。例えば、図4に示すように、温度センサ12は蓄冷体10の表面に設置されている。
図3に示すように、表示情報生成器30には、有線又は無線によって通信可能に、温度センサ12が接続されている。このため、表示情報生成器30には、温度センサ12によって検出された温度を示す情報が入力される。表示情報生成器30は、例えば、情報の入出力のためのインターフェース、CPU等の演算装置、メモリ等の主記憶装置、及びハードディスクドライブなどの補助記憶装置を備えたコンピュータとして構成されている。表示情報生成器30は、上記のようにして、蓄冷体10の状態を示す状態情報を生成する。図3に示すように、表示情報生成器30は、通信ケーブルによって表示部40に接続されており、蓄冷体10の状態を示す状態情報を表示部40に出力する。表示部40は、特に制限されないが、例えば液晶ディスプレイ又は有機ELディスプレイである。表示部40は、例えば、蓄冷装置100の筐体の外周面に配置されている。
図1に示すように、蓄冷装置100は、例えば、冷気ダクト21、床板60、及び冷凍サイクル装置70を備えている。蓄冷装置100の蓄冷室15を含む内部空間は、床板60によって蓄冷室15と貯蔵室50とに分かれている。例えば、床板60より下方(Z軸負方向)に蓄冷室15が規定され、床板60より上方(Z軸正方向)に貯蔵室50が規定されている。貯蔵室50は、食品などの保冷が必要な物品を収納するための空間である。例えば、床板60の端の一部と貯蔵室50を規定する壁面との間には隙間が規定されており、この隙間によって蓄冷室15と貯蔵室50とが連通している。
送風機20は、例えば、貯蔵室50の内部に配置されている。送風機20は、貯蔵室50の天井面近傍で貯蔵室50の側面に配置されている。冷気ダクト21は蓄冷室15と送風機20の後方の空間とを連通させている。送風機20が動作すると、蓄冷室15の内部の空気は、箱体11同士の間に規定された空間を通過する。このとき、蓄冷体10によって空気が冷却される。冷却された空気は、冷気ダクト21の内部を通って送風機20の後方の空間に導かれ、送風機20によって貯蔵室50に吹き出される。これにより、貯蔵室50に貯蔵された物品が保冷される。貯蔵室50の内部の空気の一部は、床板60の端の一部と貯蔵室50を規定する壁面との間に規定された隙間を通って蓄冷室15に導かれる。
図1に示すように、蓄冷装置100は、例えば、冷凍サイクル装置70をさらに備えている。冷凍サイクル装置70は、蒸発器71、圧縮機72、凝縮器73、及び膨張弁74を備えている。蒸発器71、圧縮機72、凝縮器73、及び膨張弁74の順番で冷媒が通過するようにこれらが配管によって環状に接続されている。蒸発器71は、蓄冷室15に配置されている。冷凍サイクル装置70を動作させると、蒸発器71を流れる冷媒と蓄冷室15の空気とが熱交換することにより、蓄冷室15の空気が冷却される。蒸発器71において冷媒の温度は、蓄冷材料10aの結晶終了温度よりも低い。このため、液体状態の蓄冷材料10aが固化して蓄冷体10に冷熱が蓄えられる。冷凍サイクル装置70は、貯蔵室50で物品を保冷する前に、蓄冷体10に冷熱を蓄えるために使用される。このため、冷凍サイクル装置70は、貯蔵室50で物品を保冷している期間は通常停止している。
蓄冷装置100は、冷凍サイクル装置70を備えていなくてもよい。例えば、別の冷凍装置によって冷熱が蓄えられた状態の蓄冷体10を収納している複数の箱体11が蓄冷室15に配列されてもよい。この場合、複数の箱体11は、例えば、蓄冷装置100に対して着脱可能である。
次に、蓄冷体10の状態を表示するための蓄冷装置100の動作の一例を説明する。この動作は、特に制限されないが、例えば、送風機20を用いて、箱体11同士の間に規定された空間を通過する空気の流れを生じさせ、蓄冷体10によって冷却された空気を循環させている場合に実施される。この動作は、送風機20が停止している場合であっても、冷凍サイクル装置70を動作させて蓄冷体10に冷熱を蓄える場合に、実施されてもよい。図5に示すように、所定の条件が満たされると、蓄冷装置100は、蓄冷体10の状態を表示するための動作を開始する。ここで、所定の条件は、特に制限されないが、例えば、送風機20又は冷凍サイクル装置70の運転開始から所定の時間が経過したこと、及び、表示情報生成器30に蓄冷体10の状態の表示を要求する情報が入力されたことである。蓄冷装置100は、蓄冷体10の状態を表示するための動作を定期的に行ってもよい。
まず、ステップS1において、温度センサ12は、箱体11の表面温度、蓄冷体10の表面温度、又は蓄冷体10の内部の温度を第2の方向(空気の流れ方向:X軸方向)における複数の位置で検出する。ここで、箱体11の表面温度は、少なくとも1つの箱体11の表面温度である。蓄冷体10の表面温度は、少なくとも1つの箱体11に収納されている蓄冷体10の表面温度である。蓄冷体10の内部の温度は、少なくとも1つの箱体11に収納されている蓄冷体10の内部の温度である。
次に、ステップS2において、表示情報生成器30は、温度センサ12によって検出された温度を示す情報を取得する。この情報には、第2の方向(空気の流れ方向:X軸方向)の複数の位置での、箱体11の表面温度、蓄冷体10の表面温度、又は蓄冷体10の内部の温度を示す情報が含まれる。
次に、ステップS3において、表示情報生成器30は、第2の方向(空気の流れ方向:X軸方向)の複数の位置での、箱体11の表面温度、蓄冷体10の表面温度、又は蓄冷体10の内部の温度を示す情報に基づいて、蓄冷体10の状態を示す状態情報を生成する。次に、ステップS4において、表示情報生成器30で生成された状態情報が表示部40に出力され、表示部40が状態情報を表示し、一連の動作が終了する。
表示部40に表示される状態情報は、例えば、蓄冷残量、保冷可能時間、及び蓄冷装置100に含まれる蓄冷体10のうち所定量の蓄冷体10が固化するまでに要する時間の1つである。
蓄冷残量は、例えば、箱体11に収納されている蓄冷体10の容量の全体において、所定のしきい値以下の温度を有する蓄冷体10の容量が占める割合に対応する。表示情報生成器30は、例えば、第2の方向(空気の流れ方向:X軸方向)の複数の位置での、箱体11の表面温度、蓄冷体10の表面温度、又は蓄冷体10の内部の温度を示す情報に基づいて、蓄冷体10の空間的な温度分布を推定する。この場合、表示情報生成器30は、推定した温度分布の全体における所定のしきい値を超えている部分の割合に基づいて、蓄冷残量を算出する。例えば、少なくとも1つの箱体11に対し、第2の方向(空気の流れ方向:X軸方向)に等間隔で位置する10箇所で温度センサ12によって温度が検出される場合を考える。また、温度センサ12によって温度が検出される10箇所のそれぞれで検出される温度が互いに等しい容積の蓄冷体10の温度を代表していると仮定する。送風機20が動作している場合、蓄冷体10の冷熱は空気の流れの上流側から先に消費されるので、蓄冷体10の温度は、空気の流れの上流側の位置から空気の流れの下流側の位置へ順番にしきい値を超えていく。例えば、空気の流れの上流側の位置から空気の流れの下流側の位置へ、温度センサ12によって温度が検出される10箇所のうち、しきい値を超える箇所が1つ増えると、表示情報生成器30は蓄冷残量を10%低下させる。ただし、推定した温度分布の全体における所定のしきい値を超えている部分の割合に基づいて、蓄冷残量を算出するアルゴリズムは、これに限られない。蓄冷残量を算出するためのアルゴリズムは、温度センサ12によって温度が測定される箇所の数、温度センサ12によって温度が測定される位置、蓄冷体10又は箱体11の構造に従って、適宜定められてよい。所定のしきい値は、例えば、蓄冷材料10aの融点に基づいて定められている。また、蓄冷材料10aの結晶開始温度と蓄冷材料10aの結晶終了温度との間に差がある場合には、所定のしきい値は、上限値と下限値とを有する温度範囲として定められていてもよい。
図3に示す6つの温度センサ12によって、図6に示すような検出結果が得られたと仮定する。図6のグラフにおける一点鎖線は所定のしきい値を示し、所定のしきい値は、上限値と下限値とを有する特定の温度範囲として定義されている。この場合、蓄冷材料10aは、この特定の温度範囲において固体から液体に変化する。図6における各プロットは、図3に示す6つの温度センサ12によって検出された温度を示している。図6に示すように、6つの温度センサ12のうち、空気の流れの上流側に位置している2つの温度センサ12によって検出された温度は、所定のしきい値を超えている。具体的には、空気の流れの上流側に位置している2つの温度センサ12によって検出された温度は、所定のしきい値の上限値を超えている。一方、6つの温度センサ12のうち、空気の流れの下流側に位置している4つの温度センサ12によって検出された温度は、所定のしきい値の上限値以下である。このように、表示情報生成器30は、6つの温度センサ12によって検出された温度を示す情報に基づいて、図6に示すように空間的な温度分布を推定する。表示情報生成器30は、この推定された温度分布の全体における所定のしきい値の上限値を超えている部分の割合に基づいて、蓄冷残量を算出する。
保冷可能時間は、例えば、蓄冷室15を通過する空気を蓄冷体10によって所定温度以下に冷却可能な時間を意味する。保冷可能時間は、例えば、蓄冷装置100の内部から蓄冷装置100の外部に放出される単位時間当たりの冷熱量及び蓄冷残量に基づいて求めることができる。蓄冷装置100の内部から蓄冷装置100の外部に放出される単位時間当たりの冷熱量は、例えば、蓄冷装置100の外部の温度と、蓄冷装置100の内部空間の温度との差に基づいて定められる。この場合、例えば、貯蔵室50及び蓄冷装置100の筐体の外部に温度センサ(図示省略)がそれぞれ配置され、この温度センサによって検出された温度を示す情報が表示情報生成器30に入力される。表示情報生成器30は、例えば、この情報に基づいて、蓄冷装置100の内部から蓄冷装置100の外部に放出される単位時間当たりの冷熱量を算出したうえで、保冷可能時間を算出する。保冷可能時間は、例えば、蓄冷残量がA[J]であり、蓄冷装置100の内部から蓄冷装置100の外部に放出される単位時間当たりの冷熱量がB[W]である場合、A/B[秒]として算出される。また、表示情報生成器30は、所定の蓄冷残量まで蓄冷体10に蓄えられた冷熱が消費されるのに要した時間に基づいて、保冷可能時間を算出してもよい。例えば、送風機20の動作開始から、箱体11に収納されている蓄冷体10の蓄冷残量が半分になるまでに要した時間が1時間であった場合、保冷可能時間は「1時間」と算出されてもよい。
表示情報生成器30は、例えば、蓄冷材料10aが液体状態である蓄冷体10に冷凍サイクル装置70によって冷熱を蓄えるときに、蓄冷装置100に含まれる蓄冷体10のうち所定量の蓄冷体10が固化するまでに要する時間を蓄冷体10の状態を示す状態情報として算出する。所定量の蓄冷体10は、蓄冷装置100に含まれる蓄冷体10の全てであってもよいし、蓄冷装置100に含まれる蓄冷体10の一部であってもよい。例えば、表示情報生成器30は、蒸発器71の冷却能力及び蓄冷残量に基づいて、蓄冷体10の全体が固化するまでに要する時間を算出できる。蒸発器71の冷却能力は、例えば、表示情報生成器30に記憶されている。蓄冷体10の全体が固化するまでに要する時間は、例えば、蓄冷残量がC[J]であり、蓄冷体10の全体が固化した場合に蓄冷体10に蓄えられる冷熱量がD[J]であり、蒸発器71の冷却能力がE[W]である場合、(D−C)/E[秒]として算出される。また、表示情報生成器30は、所定の蓄冷残量まで蓄冷体10に冷熱を蓄えるのに要した時間に基づいて、蓄冷体10の全体が固化するまでに要する時間を算出してもよい。例えば、冷凍サイクル装置70の動作開始から蓄冷残量が半分になるまでに要した時間が1時間であった場合、蓄冷体10の全体が固化するまでに要する時間は「1時間」と算出されてもよい。
(変形例)
上記の蓄冷装置100は、様々な観点から変更が可能である。例えば、図7に示すように、温度センサ12による温度検出の対象である少なくとも1つの箱体11は、第2の方向(空気の流れ方向:X軸方向)に配列された4つの蓄冷体10を収納していてもよい。この場合、温度センサ12によって各蓄冷体10の表面温度が検出されてもよい。箱体11に収納されている蓄冷体10の数は、3つであってもよいし、5つ以上であってもよい。箱体11に収納されている蓄冷体10の数が多いと、隣り合う蓄冷体10の有する熱が伝わりにくい蓄冷体10の数が多い。これにより、隣り合う蓄冷体10の有する熱の影響を受けにくい蓄冷体10の数が多くなるので、蓄冷体10の状態を有利に求めることができる。
第2の方向(X軸方向)における箱体11の両端のうち空気の流れの上流側に位置する箱体11の端を上流端と定義し、かつ、その箱体11の両端のうち空気の流れの下流側に位置する箱体11の端を下流端と定義する。この場合、図8Aに示す通り、温度センサ12が温度を検出する複数の位置は、例えば、中間位置と上流端との間で相対的に密に分布し、中間位置と下流端との間で相対的に疎に分布していてもよい。ここで、中間位置とは、第2の方向において箱体11の上流端と箱体11の下流端との中間に位置しており、箱体11の上流端及び箱体11の下流端から等距離離れている位置である。
例えば、図8Aに示す通り、温度センサ12は、複数の温度センサを含む。複数の温度センサは、箱体11の中間位置と箱体11の上流端との間で相対的に密に設置され、箱体11の中間位置と箱体11の下流端との間で相対的に疎に設置されている。
例えば、図8Aに示す通り、複数の箱体11のそれぞれにおいて最も長い辺は、第2の方向と平行な方向に延びている。温度センサ12は、第一温度センサ12a、第二温度センサ12b、及び第三温度センサ12cを含む。箱体11の最も長い辺の長さをLと定義する。第一温度センサ12aは、上流端から下流端に向かってL/2を超えて離れた位置に設置されている。第二温度センサ12bは、上流端から下流端に向かってL/2未満離れた位置に設置されている。第三温度センサ12cは、第2の方向において箱体11の上流端と第二温度センサ12bとの間に設置されている。
例えば、図8Aに示す通り、温度センサ12は、第四温度センサ12dをさらに含み、第四温度センサ12dは、第2の方向において箱体11の上流端と第三温度センサ12cとの間に設置されている。
蓄冷装置100の外部からの入熱に対し、貯蔵室50の温度を特定の温度範囲に保つためには、その入熱を相殺する冷熱量を蓄冷装置100の内部で循環する空気が蓄冷体10との熱交換により受け取る必要がある。蓄冷装置100の内部で循環する空気がその冷熱量を受け取るのに十分な伝熱面積を蓄冷体10が有している場合、その蓄冷体10の全体が有する冷熱量が多い時点では、空気と蓄冷体10との温度差が特に大きい箱体11の上流端付近で空気と蓄冷体10との間の熱交換が効果的に行われる。このため、箱体11の上流端付近の蓄冷体10が有する冷熱が先だって消費され、蓄冷体10が上流端から中間位置に向かって次第に融解していく。その結果、第2の方向において上流端と中間位置との間では、温度センサ12によって検出される温度が、図9Aに示す通り、ばらつきやすい。箱体11の上流端から中間位置付近まで蓄冷体10の融解が進み、蓄冷体10の全体が有する冷熱量が少なくなった時点では、中間位置付近と下流端との間の蓄冷体10の融解挙動は蓄冷体10の全体が有する冷熱量が多い時点における上流端付近の蓄冷体10の融解挙動とは異なる。この場合、中間位置付近と下流端との間の蓄冷体10は、中間位置付近と下流端との間においてほぼ均一に融解する。
蓄冷体10の全体が有する冷熱量が少なくなった時点において、箱体11の上流端と中間位置との間の蓄冷体10は融解している。しかし、上流端と中間位置との間の蓄冷体10の少なくとも一部は、箱体11同士の間に規定された空間に流入する空気の温度に対してその空気を冷却するのに十分な冷熱量を顕熱として有している。このため、その空間に流入した空気は上流端から中間位置付近に向かって流れる期間に蓄冷体10の融点近くの温度まで冷却される。さらに、空気は中間位置付近から下流端の間を流れる期間に蓄冷体10の融点以下まで冷却されうる。このとき、中間位置付近と下流端との間の蓄冷体10で消費される冷熱量は少ないので、中間位置付近と下流端との間の蓄冷体10の融解状態は空気の流れ方向においてばらつきにくい。このような理由により、中間位置付近と下流端との間の蓄冷体10は、上流端と中間位置付近との間の蓄冷体10の融解挙動とは異なり、中間位置付近と下流端との間においてほぼ均一に融解する。その結果、中間位置付近と下流端との間の蓄冷体10の融解状態は空気の流れ方向においてばらつきにくく、中間位置付近と下流端との間の蓄冷体10の温度は空気の流れ方向においてばらつきにくい。このため、温度センサ12が温度を検出する複数の位置が、中間位置と上流端との間で相対的に密に分布していることにより、蓄冷体10の蓄冷量を精度良く算出しやすく、ひいては蓄冷体10の状態を示す状態情報をより精度良く生成しやすい。
図8Aに示すように、温度センサ12によって温度が検出される箇所は、空気の流れの上流側で相対的に密に分布し、空気の流れの下流側で相対的に疎に分布していてもよい。例えば、温度センサ12は、箱体11に収納されている2つの蓄冷体10のうち、空気の流れの上流側に位置する蓄冷体10に対して、第2の方向(空気の流れ方向:X軸方向)に所定の間隔で位置する4つの箇所で蓄冷体10の表面温度を検出する。一方、温度センサ12は、箱体11に収納されている2つの蓄冷体10のうち、空気の流れの下流側に位置する蓄冷体10に対して、第2の方向(空気の流れ方向:X軸方向)に所定の間隔で位置する2つの箇所で蓄冷体10の表面温度を検出する。この場合、6つの温度センサ12によって、例えば、図9Aに示すような検出結果が得られる。図9Aにおける各プロットは、図8Aに示す6つの温度センサ12によって検出された温度を示している。このように、送風機20が動作している場合に、蓄冷体10の温度が早期に所定のしきい値を超える空気の流れの上流側において、より多くの箇所で蓄冷体10の表面温度が検出される。これにより、蓄冷体10の温度が所定のしきい値を超え始める初期の段階における蓄冷残量の検出精度を高めることができる。
第2の方向(X軸方向)における箱体11の両端のうち空気の流れの上流側に位置する箱体11の端を上流端と定義し、かつ、その箱体11の両端のうち空気の流れの下流側に位置する箱体11の端を下流端と定義する。この場合、図8Bに示す通り、温度センサ12が温度を検出する複数の位置は、例えば、中間位置と下流端との間で相対的に密に分布し、中間位置と上流端との間で相対的に疎に分布していてもよい。ここで、中間位置とは、第2の方向において箱体11の上流端と箱体11の下流端との中間に位置しており、箱体11の上流端及び箱体11の下流端から等距離離れている位置である。
蓄冷体10が有する伝熱面積が比較的小さい場合、上流端と中間位置との間の蓄冷体10は均一に融解しやすく、第2の方向において上流端と中間位置との間では、温度センサ12によって検出される温度がばらつきにくい。一方、中間位置と下流端との間の蓄冷体10は、中間位置から下流端に向かって次第に融解していく。このため、第2の方向において中間位置と下流端との間では、図9Bに示す通り、温度センサ12によって検出される温度がばらつきやすい。このため、温度センサ12が温度を検出する複数の位置が、中間位置と下流端との間で相対的に密に分布していることにより、蓄冷体10の蓄冷量を精度良く算出しやすく、ひいては蓄冷体10の状態を示す状態情報をより精度良く生成しやすい。
なお、温度センサ12によって温度が検出される箇所は、空気の流れの上流側で相対的に疎に分布し、空気の流れの下流側で相対的に密に分布していてもよい。この場合、蓄冷体10の温度が多くの箇所で所定のしきい値を超えている段階において、蓄冷残量の検出精度を高めることができる。また、温度センサ12によって温度が検出される箇所は、箱体11の特定の領域で他の領域よりも相対的に疎に分布していてもよい。
図10Aに示すように、温度センサ12は、箱体11の表面に配置されていてもよい。温度センサ12が箱体11の表面に配置されている場合、温度センサ12によって温度が検出される複数の位置において、箱体11の内周面と蓄冷体10との距離がばらついていないことが望ましい。また、図10Aに示すように、箱体11の内周面と蓄冷体10との間に隙間が規定されていると、温度センサ12によって検出される温度と蓄冷体10の実際の温度との間の差が大きくなりやすい。このため、蓄冷体10の状態をより適切に求める観点から、図10Bに示すように、例えば、箱体11の表面には温度センサ12を配置するための凹部13が規定され、凹部13に温度センサ12が配置されていてもよい。この場合、凹部13によって箱体11の内周面が蓄冷体10に向かって突出しているので、箱体11の内周面と蓄冷体10との間に隙間ができにくい。凹部13は、望ましくは、凹部13によって規定された箱体11の内周面が蓄冷体10に接触するように規定されている。これにより、温度センサ12によって温度が検出される複数の位置において、箱体11の内周面と蓄冷体10との距離がばらつくことが抑制される。また、温度センサ12によって検出される温度と蓄冷体10の実際の温度との間の差が小さくなり、蓄冷体10の状態をより適切に求めるうえで有利な蓄冷装置を得ることができる。
<第2実施形態>
第2実施形態に係る蓄冷装置200について説明する。第2実施形態は、特に説明する場合を除き第1実施形態と同様に構成される。第1実施形態の構成要素と同一又は対応する第2実施形態の構成要素には同一の符号を付し詳細な説明を省略する。第1実施形態及びその変形例に関する説明は、技術的に矛盾しない限り第2実施形態にもあてはまる。
図11に示す通り、蓄冷装置200は、蓄冷装置100と同様に、冷凍サイクル装置70を備えている。冷凍サイクル装置70は、蒸発器71、圧縮機72、凝縮器73、及び膨張弁74が配管を用いてこの順番で環状に接続されている。図12に示す通り、蒸発器71は、箱体11の表面の少なくとも一部と接触している。
例えば、蒸発器71の冷媒の流路を定める配管が箱体11の表面に接触している。配管と箱体11との間の伝熱性を良好にするために、例えば、金属製の押圧部材(図示省略)によって配管が箱体11の表面に接触するように押圧されている。蒸発器71の冷媒の流路を定める配管は、例えば、箱体11の上流端から第2の方向に沿って下流端に延びて下流端で折り曲がり第2の方向に沿って上流端に向かって延びている。蒸発器71の冷媒の流路を定める配管は、箱体11の下流端から第2の方向に沿って上流端に延びて上流端で折り曲がり第2の方向に沿って下流端に向かって延びていてもよい。
図11に示す通り、蓄冷装置200は、例えば貯蔵室温度センサ80を備えている。貯蔵室温度センサ80は、貯蔵室50の空気の温度を検出するための温度センサである。
蓄冷体10を蓄冷する場合には、例えば、冷凍サイクル装置70を動作させて蒸発器71を流れる冷媒の温度を蓄冷体10の凝固点より10℃以上低い温度に保つ必要がある。蓄冷体10は、多くの場合、蓄冷体10の温度を蓄冷体10の凝固点より低下させてもすぐには結晶化せず過冷却状態になることがある。このため、例えば蓄冷体10の凝固点より10℃以上低い冷媒を用いて蓄冷体10を冷却することにより、過冷却状態を解除し結晶化させることができる。また、蓄冷体10の凝固点と蒸発器71を流れる冷媒の温度との差を大きくすることにより、蓄冷体10をより早く冷却し凝固させることができる。
蓄冷体10を蓄冷するときに、場合によっては、貯蔵室50の温度を物品の保冷に適した温度に調整するために、貯蔵室50の空気を冷却する必要がある。この場合、貯蔵室温度センサ80によって検出された温度が蓄冷体10の凝固点より高い所定の目標温度になるように送風機20が作動される。これにより、貯蔵室50の空気が蓄冷室15に供給され、蓄冷体10又は蒸発器71によって空気が冷却され、冷却された空気が貯蔵室50に向かって送られる。このように、蓄冷装置200の内部において冷却された空気が循環する。その結果、貯蔵室50の空気の温度が物品の保冷に適した温度に調整される。
蒸発器71を流れる冷媒の冷熱が蓄冷体10の蓄冷のみに使用されている場合には、蒸発器71によって箱体11が全体的に冷却される。しかし、貯蔵室50の空気の冷却のために送風機20が作動して蓄冷装置200の内部において冷却された空気が循環すると、図13に示す通り、箱体11又は蓄冷体10には、箱体11の上流端から下流端に向かって段階的に低下する温度分布が生じる。なお、図13において、最も低温を示す破線は、蒸発器71の温度TEVを意味する。蒸発器71によって蓄冷体10を長期間冷却すると、箱体11の下流端における箱体11又は蓄冷体10の温度は、TEVまで低下する。一方、箱体11の上流端付近における箱体11又は蓄冷体10の温度は、箱体11同士の間に規定された空間に流入した空気が有する熱量とバランスする温度で安定する。蓄冷体10が融解するときと同様に、蓄冷室15における空気の循環により生じるこの温度分布から、蓄冷体10の蓄冷量を算出できる。この場合、望ましくは、顕熱として蓄冷体10が有する冷熱量及び潜熱として蓄冷体10が有する冷熱量の双方が考慮される。例えば、図13に示すような温度分布から求めた蓄冷量から蓄冷体10の温度から求めた顕熱として蓄冷体10が有する冷熱量を差し引くことによって潜熱として蓄冷体10が有する冷熱量を算出できる。例えば、蓄冷体10の凝固点と蓄冷体10の温度との差と蓄冷体10及び箱体11の熱容量とから顕熱として蓄冷体10が有する冷熱量を求めることができる。この場合、蓄冷体10の温度としては、例えば、温度センサ12によって複数の位置で検出された蓄冷体10の凝固点を下回っている温度の算術平均値が採用される。加えて、蓄冷体10及び箱体11の熱容量としては、蓄冷体10の凝固点を下回っている温度が検出された複数の位置のそれぞれが代表する蓄冷体10及び箱体11の容積の和に対応する熱容量を採用できる。また、蓄冷体10の温度として、温度センサ12によって複数の位置で検出された蓄冷体10の凝固点を下回っている複数の温度のそれぞれが採用されてもよい。この場合、顕熱として蓄冷体10が有する冷熱量は、その温度のそれぞれと蓄冷体10の凝固点との差と、複数の位置のそれぞれが代表する蓄冷体10及び箱体11の容積に対応する熱容量との積の和として求めることができる。
本開示の蓄冷装置は、冷蔵又は冷凍において冷熱を一時的に蓄える用途に利用できる。
10 蓄冷体
11 箱体
12 温度センサ
12a 第一温度センサ
12b 第二温度センサ
12c 第三温度センサ
12d 第四温度センサ
15 蓄冷室
20 送風機
30 表示情報生成器
40 表示部
50 貯蔵室
70 冷凍サイクル装置
71 蒸発器
72 圧縮機
73 凝縮器
74 膨張弁
100 蓄冷装置

Claims (12)

  1. 蓄冷室において第1の方向に配列され、それぞれ蓄冷体が収納されている複数の箱体と、
    前記蓄冷室と連通可能に仕切られている貯蔵室に配置され、前記複数の箱体が配列された前記蓄冷室の底面に平行な面内において前記第1の方向と交わる第2の方向に沿って前記箱体同士の間に規定された空間を前記第2の方向に通過する空気の流れを生じさせ、前記蓄冷体によって冷却された空気を循環させる送風機と、
    少なくとも1つの前記箱体の表面温度、少なくとも1つの前記箱体に収納されている前記蓄冷体の表面温度、又は少なくとも1つの前記箱体に収納されている前記蓄冷体の内部の温度を前記第2の方向における複数の位置で検出する温度センサと、
    前記温度センサによって検出された温度を示す情報が入力され、前記複数の位置における、前記箱体の表面温度、前記蓄冷体の表面温度、又は前記蓄冷体の内部の温度を示す情報に基づいて前記蓄冷体の状態を示す状態情報を生成する表示情報生成器と、
    前記状態情報を表示する表示部と、を備えた、
    蓄冷装置。
  2. 前記複数の箱体は、前記蓄冷室の前記底面に接触している、請求項1に記載の蓄冷装置。
  3. 前記複数の箱体のそれぞれにおいて最も長い辺は、前記第2の方向と平行な方向に延びている、請求項1又は2に記載の蓄冷装置。
  4. 前記第2の方向における前記箱体の両端のうち前記空気の流れの上流側に位置する前記箱体の端を上流端と定義し、かつ、前記両端のうち前記空気の流れの下流側に位置する前記箱体の端を下流端と定義したとき、前記複数の位置は、前記第2の方向において前記上流端と前記下流端との中間に位置している中間位置であって、前記上流端及び前記下流端から等距離離れている中間位置と前記上流端との間で相対的に密に分布し、前記中間位置と前記下流端との間で相対的に疎に分布している、請求項1〜3のいずれか1項に記載の蓄冷装置。
  5. 前記第2の方向における前記箱体の両端のうち前記空気の流れの上流側に位置する前記箱体の端を上流端と定義し、かつ、前記両端のうち前記空気の流れの下流側に位置する前記箱体の端を下流端と定義したとき、前記複数の位置は、前記第2の方向において前記上流端と前記下流端との中間に位置している中間位置であって、前記上流端及び前記下流端から等距離離れている中間位置と前記下流端との間で相対的に密に分布し、前記中間位置と前記上流端との間で相対的に疎に分布している、請求項1〜3のいずれか1項に記載の蓄冷装置。
  6. 前記少なくとも1つの前記箱体は、前記第2の方向に配列された複数の前記蓄冷体を収納している、請求項1〜5のいずれか1項に記載の蓄冷装置。
  7. 前記温度センサは、少なくとも1つの前記箱体の表面温度又は少なくとも1つの前記箱体に収納されている前記蓄冷体の表面温度を検出する、請求項1〜6のいずれか1項に記載の蓄冷装置。
  8. 前記温度センサは、前記蓄冷体の表面又は前記箱体の表面に設置されている、請求項7に記載の蓄冷装置。
  9. 前記状態情報は、蓄冷残量、保冷可能時間、及び当該蓄冷装置に含まれる前記蓄冷体のうち所定量の前記蓄冷体が固化するまでに要する時間の少なくとも1つである、請求項1〜8のいずれか1項に記載の蓄冷装置。
  10. 前記表示情報生成器は、前記複数の位置における、前記箱体の表面温度、前記蓄冷体の表面温度、又は前記蓄冷体の内部の温度を示す情報に基づいて前記蓄冷体の空間的な温度分布を推定し、前記温度分布の全体における所定のしきい値を超えている部分の割合に基づいて、前記状態情報である蓄冷残量を算出する、請求項1〜9のいずれか1項に記載の蓄冷装置。
  11. 蒸発器、圧縮機、凝縮器、及び膨張弁が配管を用いてこの順番で環状に接続されている冷凍サイクルをさらに備え、
    前記蒸発器は、前記箱体の表面の少なくとも一部と接触している、請求項1〜10のいずれか1項に記載の蓄冷装置。
  12. 蓄冷体の状態を示す情報を表示する方法であって、
    送風機を用いて、それぞれ蓄冷体が収納されている複数の箱体が蓄冷室において第1の方向に配列された前記蓄冷室の底面に平行な面内において前記第1の方向と交わる第2の方向に沿って前記箱体同士の間に規定された空間を前記第2の方向に通過する空気の流れを生じさせ、前記蓄冷体によって冷却された空気を循環させ、
    温度センサを用いて、少なくとも1つの前記箱体の表面温度、少なくとも1つの前記箱体に収納されている前記蓄冷体の表面温度、又は少なくとも1つの前記箱体に収納されている前記蓄冷体の内部の温度を前記第2の方向における複数の位置で検出し、
    表示情報生成器を用いて、前記温度センサによって検出された温度を示す情報を取得し、前記複数の位置における、前記箱体の表面温度、前記蓄冷体の表面温度、又は前記蓄冷体の内部の温度を示す情報に基づいて前記蓄冷体の状態を示す状態情報を生成し、
    前記状態情報を表示部に表示する、
    方法。
JP2017544171A 2015-10-06 2016-08-31 蓄冷装置及び蓄冷体の状態を表示する方法 Active JP6745487B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015198441 2015-10-06
JP2015198441 2015-10-06
JP2016147784 2016-07-27
JP2016147784 2016-07-27
PCT/JP2016/003966 WO2017061067A1 (ja) 2015-10-06 2016-08-31 蓄冷装置及び蓄冷体の状態を表示する方法

Publications (2)

Publication Number Publication Date
JPWO2017061067A1 true JPWO2017061067A1 (ja) 2018-07-26
JP6745487B2 JP6745487B2 (ja) 2020-08-26

Family

ID=58487345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017544171A Active JP6745487B2 (ja) 2015-10-06 2016-08-31 蓄冷装置及び蓄冷体の状態を表示する方法

Country Status (6)

Country Link
JP (1) JP6745487B2 (ja)
CN (1) CN107208958B (ja)
MY (1) MY190605A (ja)
SG (1) SG11201708213WA (ja)
TW (1) TWI701416B (ja)
WO (1) WO2017061067A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6986700B2 (ja) * 2017-07-06 2021-12-22 パナソニックIpマネジメント株式会社 蓄冷装置及び蓄冷体の蓄冷量を決定する方法
JP6960583B2 (ja) * 2017-11-02 2021-11-05 パナソニックIpマネジメント株式会社 蓄冷装置
JP2019086220A (ja) * 2017-11-07 2019-06-06 パナソニックIpマネジメント株式会社 保冷庫及び保冷庫管理システム
JP7165890B2 (ja) * 2018-10-09 2022-11-07 パナソニックIpマネジメント株式会社 蓄冷装置
JP2020134087A (ja) * 2019-02-25 2020-08-31 パナソニック株式会社 蓄冷装置
JP2021101137A (ja) * 2019-12-24 2021-07-08 パナソニック株式会社 蓄冷用熱交換器
CN115244348A (zh) * 2020-01-08 2022-10-25 双天收购有限责任公司 用于集装箱的相变材料绝缘体
CN114945783A (zh) * 2020-01-10 2022-08-26 夏普株式会社 保冷材料、信息管理装置、保冷材料管理系统以及冷冻库控制系统
CN115597281A (zh) * 2021-07-08 2023-01-13 青岛海尔电冰箱有限公司(Cn) 冷藏冷冻装置及其控制方法
WO2023042495A1 (ja) * 2021-09-14 2023-03-23 パナソニックIpマネジメント株式会社 保冷材の検査装置及び検査システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318215A (ja) * 1994-05-26 1995-12-08 Orion Mach Co Ltd 蓄冷装置
JPH1163781A (ja) * 1997-08-27 1999-03-05 Sanyo Electric Co Ltd 低温庫
JP2001263736A (ja) * 2000-03-22 2001-09-26 Sanden Corp 保冷庫の蓄冷装置
JP2002162148A (ja) * 2000-11-27 2002-06-07 Sanden Corp 蓄冷式保冷庫
JP2006064314A (ja) * 2004-08-27 2006-03-09 Daiwa Industries Ltd 蓄冷形保冷庫

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155032A (zh) * 1995-10-27 1997-07-23 三洋电机株式会社 可搬式贮藏库
JPH09126625A (ja) * 1995-10-27 1997-05-16 Sanyo Electric Co Ltd 可搬式貯蔵庫
JPH1163778A (ja) * 1997-08-26 1999-03-05 Sanden Corp 低温庫
JP2001208460A (ja) * 2000-01-27 2001-08-03 Sanden Corp 蓄冷式保冷庫
JP2001355953A (ja) * 2000-06-14 2001-12-26 Sanden Corp 保冷庫
JP4271358B2 (ja) * 2000-10-24 2009-06-03 サンデン株式会社 蓄冷式保冷庫
JP2010096418A (ja) * 2008-10-16 2010-04-30 Sanyo Electric Co Ltd 低温庫
DE102012213542A1 (de) * 2012-08-01 2014-02-06 Goselig UG Kältespeichervorrichtung sowie Kühlanlagenanordnung
CN203698988U (zh) * 2014-02-19 2014-07-09 郑州牧业工程高等专科学校 蓄冷保温箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318215A (ja) * 1994-05-26 1995-12-08 Orion Mach Co Ltd 蓄冷装置
JPH1163781A (ja) * 1997-08-27 1999-03-05 Sanyo Electric Co Ltd 低温庫
JP2001263736A (ja) * 2000-03-22 2001-09-26 Sanden Corp 保冷庫の蓄冷装置
JP2002162148A (ja) * 2000-11-27 2002-06-07 Sanden Corp 蓄冷式保冷庫
JP2006064314A (ja) * 2004-08-27 2006-03-09 Daiwa Industries Ltd 蓄冷形保冷庫

Also Published As

Publication number Publication date
WO2017061067A1 (ja) 2017-04-13
TW201725353A (zh) 2017-07-16
JP6745487B2 (ja) 2020-08-26
CN107208958B (zh) 2020-06-26
SG11201708213WA (en) 2018-04-27
MY190605A (en) 2022-04-27
CN107208958A (zh) 2017-09-26
TWI701416B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2017061067A1 (ja) 蓄冷装置及び蓄冷体の状態を表示する方法
JP6748980B2 (ja) 蓄冷装置
US20220341658A1 (en) System for evaluating the insulation properties of a thermally insulated transport unit
JP6671018B2 (ja) 蓄冷装置、蓄冷体の状態を示す情報を表示する方法、及び蓄冷体の状態を示す情報を求める方法
Mađerić et al. Experimental and numerical study on water ice forming on pipe columns in a limited-volume storage
JP2016015398A (ja) 冷却システムの冷媒漏洩検知方法
JP6765062B2 (ja) 蓄冷装置
JP6960583B2 (ja) 蓄冷装置
CN107796157B (zh) 冷库
JP6986700B2 (ja) 蓄冷装置及び蓄冷体の蓄冷量を決定する方法
JP6998528B2 (ja) 蓄冷装置及び蓄冷状態推定方法
JP2008281305A (ja) 蓄熱装置
JP4743781B2 (ja) 容器の内壁面の温度及び熱流束の推定方法、装置、並びにコンピュータプログラム
JP7165890B2 (ja) 蓄冷装置
JP2007032770A (ja) 液化ガス貯槽内監視装置
JP2019211151A (ja) 蓄冷装置
JP4833621B2 (ja) 反応容器の温度又は熱流束の推定方法、装置、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体
JP2008128534A (ja) 冷蔵庫およびその温度制御方法
JP2005333688A (ja) 使用電力量管理システム
JP4577076B2 (ja) 自動販売機
TW201923297A (zh) 保冷庫及保冷庫管理系統
JP2010230275A (ja) 保冷庫
US20240167760A1 (en) Information processing device and program
JP2008162438A (ja) 車両用空調装置
JP2008076011A (ja) 冷却庫

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200717

R151 Written notification of patent or utility model registration

Ref document number: 6745487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151