JPWO2017043178A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
JPWO2017043178A1
JPWO2017043178A1 JP2017538898A JP2017538898A JPWO2017043178A1 JP WO2017043178 A1 JPWO2017043178 A1 JP WO2017043178A1 JP 2017538898 A JP2017538898 A JP 2017538898A JP 2017538898 A JP2017538898 A JP 2017538898A JP WO2017043178 A1 JPWO2017043178 A1 JP WO2017043178A1
Authority
JP
Japan
Prior art keywords
group
positive electrode
negative electrode
laminated
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017538898A
Other languages
English (en)
Other versions
JP6558440B2 (ja
Inventor
耕司 澁谷
耕司 澁谷
貴昭 松井
貴昭 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2017043178A1 publication Critical patent/JPWO2017043178A1/ja
Application granted granted Critical
Publication of JP6558440B2 publication Critical patent/JP6558440B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

二次電池は、電極部材21とセパレータ26とが積層された積層電極体20を少なくとも備えており、積層電極体20に存在する凹凸部27Aにおける電極部材21の部分21Aと、セパレータ26の部分との間に、電極部材21に対するセパレータ26の移動を抑制する抑制部材31Aが配されている。

Description

本開示は、二次電池に関する。
二次電池は、例えば、電極部材とセパレータとが積層された積層電極体、電極部材に取り付けられたリード部、電解液、及び、電池缶を備えている。そして、帯状の積層電極体が、捲回された状態で電池缶に収納されている。積層電極体は、具体的には、例えば、正極集電体上に正極活物質層が形成された帯状の正極部材と、負極集電体上に負極活物質層が形成された帯状の負極部材とが、セパレータを介して積層されて成る。リード部は、正極集電体に取り付けられた正極リード部、及び、負極集電体に取り付けられた負極リード部から構成されている。通常、リード部の厚さは、正極活物質層や負極活物質層の厚さよりも厚い。従って、リード部が設けられた積層電極体の部分には凹凸が生じる。また、積層電極体の端部は、屡々、端部以外の積層電極体の部分と構成や構造が異なり、積層電極体の端部にも凹凸が生じる。尚、これらの積層電極体の部分を『凹凸部』と呼ぶ。そして、凹凸部におけるセパレータの電極部材に対する密着は、凹凸部以外におけるセパレータの電極部材に対する密着よりも、屡々、乏しい。
二次電池が接続された外部回路に短絡等が発生し、二次電池内を大電流が流れると、二次電池の内部温度が上昇する。その結果、セパレータに収縮が生じ、正極部材と負極部材との間に部分的にセパレータが存在しなくなり、正極部材と負極部材との間に短絡が生じる虞がある。
特開2011−243553 特開2011−181441
ケースの内部で電極組立体が動くことを防止する二次電池が、特開2011−243553から周知である。この二次電池は、電極組立体、電解液、電極組立体の外部表面の少なくとも一部に付着した動き防止テープ、及び、電極組立体を収容するケースを含み、動き防止テープは、電解液と接触すると少なくとも一部が粘着性を示す基材層を含み、粘着性を示す基材層の少なくとも一部はケースの内部表面に接触する。また、巻回電極体のゆるみ防止効果と電池缶内での固定効果を有する円筒型非水電解質電池が、特開2011−181441から周知である。この円筒型非水電解質電池においては、巻回電極体の巻回外周側に位置する積層電極体の巻回終端部を覆うように接着部材が設けられている。しかしながら、これらの特許公開公報には、電極部材に対するセパレータの動きを防止する技術に関して、何ら、言及されていない。
従って、本開示の目的は、電極部材に対するセパレータの動きを防止し得る構成、構造を有する二次電池を提供することにある。
上記の目的を達成するための本開示の二次電池は、電極部材とセパレータとが積層された積層電極体を少なくとも備えており、
積層電極体に存在する凹凸部における電極部材の部分と、セパレータの部分との間に、電極部材に対するセパレータの移動を抑制する抑制部材が配されている。
本開示の二次電池にあっては、積層電極体に存在し、電極部材に対するセパレータの密着に乏しい凹凸部(積層電極体の厚さ方向において非対称な部分、領域)において、電極部材の部分とセパレータの部分との間に、電極部材に対するセパレータの移動を抑制する抑制部材が配されているので、二次電池の内部温度が上昇してもセパレータが収縮することが抑制される結果、高い信頼性を有する二次電池を提供することができる。尚、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また、付加的な効果があってもよい。
図1A及び図1Bは、それぞれ、実施例1の二次電池を構成する電極部材とセパレータとが積層された積層電極体の長手方向に沿った模式的な一部断面図、及び、抑制部材等の配置を模式的に示す図であり、図1Cは、抑制部材の模式的な一部断面図である。 図2A及び図2Bは、実施例1の二次電池を構成する電極部材とセパレータとが積層された積層電極体の長手方向に沿った模式的な一部断面図である。 図3は、実施例1の円筒型の二次電池(リチウムイオン電池)の模式的な断面図である。 図4及び図4Bは、それぞれ、積層電極体における絶縁性材料の配置に関する第1態様を説明するための模式的な断面図、及び、積層電極体における絶縁性材料の配置に関する第2態様を説明するための模式的な一部断面図である。 図5は、実施例2のラミネートフィルム型の角型の二次電池(リチウムイオン電池)の模式的な分解斜視図である。 図6Aは、図5に示したとは別の状態における、実施例2のラミネートフィルム型の二次電池(リチウムイオン電池)の模式的な分解斜視図であり、図6Bは、実施例2のラミネートフィルム型の二次電池(リチウムイオン電池)における積層電極体の図5、図6Aの矢印A−Aに沿った模式的な断面図である。 図7は、実施例1〜実施例2における本開示の二次電池(リチウムイオン電池)の適用例(電池パック:単電池)の模式的な分解斜視図である。 図8A及び図8Bは、図7に示す実施例1〜実施例2における本開示の(リチウムイオン電池)の適用例(電池パック:単電池)の構成を表すブロック図である。 図9A、図9B及び図9Cは、それぞれ、実施例1〜実施例2の本開示の二次電池(リチウムイオン電池)の適用例(電動車両)の構成を表すブロック図、実施例1〜実施例2の本開示の二次電池(リチウムイオン電池)の適用例(電力貯蔵システム)の構成を表すブロック図、及び、実施例1〜実施例2の本開示の二次電池(リチウムイオン電池)の適用例(電動工具)の構成を表すブロック図である。
以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の二次電池、全般に関する説明
2.実施例1(本開示の二次電池)
3.実施例2(実施例1の変形)
4.実施例3(実施例1〜実施例2の二次電池の応用例)
5.その他
〈本開示の二次電池、全般に関する説明〉
本開示の二次電池において、抑制部材は、テープ状の基材、及び、基材の一方の面に設けられた接着層から成り、接着層を介して抑制部材は積層電極体に接着されている態様とすることができる。基材は、単層の材料層とすることもできるし、複数の材料層が積層された(例えば、貼り合わされた)構成とすることもできる。そして、この場合、二次電池は電解液を更に備えており、基材の他方の面は電解液との接触によって粘着性(接着性)を発現し、基材の他方の面はセパレータに粘着(接着)する態様とすることができるし、あるいは又、基材の他方の面は電解液との接触によって膨潤し、基材の他方の面はセパレータに密着する態様とすることができる。
上記の各種好ましい態様を含む本開示の二次電池において、
積層電極体収納部材を更に備えており、
帯状の積層電極体は、捲回された状態で積層電極体収納部材に収納されている形態とすることができる。そして、この場合、積層電極体収納部材の外形形状は、円筒型又は角型(平板型)である形態とすることができる。更には、これらの場合、積層電極体の端部が凹凸部に含まれる構成とすることができる。あるいは又、二次電池は、ラミネート型(ラミネートフィルム型)とすることもできる。
更には、以上に説明した各種好ましい態様、形態を含む本開示の二次電池において、
積層電極体に取り付けられたリード部を更に備えており、
リード部は凹凸部に含まれており、
凹凸部における電極部材の部分及びリード部と、セパレータの部分との間に、抑制部材が配されている形態とすることができる。
あるいは又、以上に説明した各種好ましい態様、形態を含む本開示の二次電池において、
積層電極体に取り付けられたリード部を更に備えており、
凹凸部は、リード部が取り付けられた電極部材の部分の近傍に位置する形態とすることができる。
更には、以上に説明した各種好ましい態様、形態を含む本開示の二次電池において、
積層電極体に取り付けられたリード部を更に備えており、
リード部は、正極集電体に取り付けられた正極リード部、及び、負極集電体に取り付けられた負極リード部から構成されている形態とすることができる。
更には、以上に説明した各種好ましい態様、形態を含む本開示の二次電池において、積層電極体は、正極集電体上に正極活物質層が形成された正極部材と、負極集電体上に負極活物質層が形成された負極部材とが、セパレータを介して積層されて成る形態とすることができる。
あるいは又、以上に説明した各種好ましい態様を含む本開示の二次電池において、
積層電極体は、正極集電体上に正極活物質層が形成された正極部材と、負極集電体上に負極活物質層が形成された負極部材とが、セパレータを介して積層されて成り、
正極集電体に取り付けられた正極リード部、及び、負極集電体に取り付けられた負極リード部から構成されたリード部、並びに、
積層電極体収納部材、
を更に備えており、
積層電極体は、捲回された状態で積層電極体収納部材に収納されており、
正極部材の端部から離間して位置する正極集電体の部分に正極リード部が取り付けられており、
正極リード部、正極リード部の近傍に位置する正極集電体の部分及び正極リード部の近傍に位置する正極集電体の部分に隣接した正極活物質層の部分と、セパレータとの間に、抑制部材が配されている態様とすることができる。
あるいは又、以上に説明した各種好ましい態様を含む本開示の二次電池において、
積層電極体は、正極集電体上に正極活物質層が形成された正極部材と、負極集電体上に負極活物質層が形成された負極部材とが、セパレータを介して積層されて成り、
正極集電体に取り付けられた正極リード部、及び、負極集電体に取り付けられた負極リード部から構成されたリード部、並びに、
積層電極体収納部材、
を更に備えており、
積層電極体は、捲回された状態で積層電極体収納部材に収納されており、
負極集電体の端部によって積層電極体の端部が構成されており、
積層電極体の端部から離れる方向を内側方向としたとき、
負極集電体の端部から内側方向に離間して負極活物質層の端部が配置されており、
負極活物質層の端部から内側方向に離間して正極活物質層の端部及び正極集電体の端部が配置されており、
負極リード部は、負極集電体の端部近傍に取り付けられており、
負極リード部と負極活物質層の端部との間の領域と、セパレータとの間に、抑制部材が配されている態様とすることができる。
積層電極体は、捲回された状態の他、スタックされた状態であってもよい。
二次電池は、リチウムイオン電池から構成されており、あるいは又、例えば、マグネシウムイオン電池、金属及び合金材料を含む負極活物質を含有する負極を有する金属空気二次電池(負極活物質に用いることができる金属及び合金材料として、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属;マグネシウム、カルシウム等の第2族元素;アルミニウム等の第13族元素;亜鉛、鉄等の遷移金属;又は、これらの金属を含有する合金材料や化合物を例示することができる)、リチウム−硫黄二次電池、ナトリウム−硫黄二次電池、ナトリウム−塩化ニッケル二次電池、ナトリウムイオン二次電池、多価カチオン二次電池、各種有機二次電池、ニッケル−水素二次電池から構成されている。
以上に説明した各種好ましい態様、形態、構成を含む本開示の二次電池(以下、これらを総称して、便宜上、『本開示の二次電池等』と呼ぶ)において、電解液との接触によって粘着性を発現する基材として、例えば、OPS(Oriented Polystyrene)を含むポリスチレン(PS)フィルム、ポリアミドフィルム、ポリアクリロニトリルフィルム、ポリビニルアルコールフィルム、ポリカーボネートフィルム、ポリエチレンビニルアセテートフィルムといった各種プラスチックフィルムを挙げることができる。そして、この場合、基材の厚さとして10μm乃至50μmを挙げることができる。また、接着層に用いる材料として、アクリル系樹脂、具体的には、PMMA(ポリメタクリル酸メチル、Polymethyl methacrylate)樹脂、PEMA(ポリメタクリル酸エチル、Polyethyl methacrylate)樹脂、PBMA(ポリメタクリル酸ブチル、Polybuthyl methacrylate)樹脂を挙げることができる。そして、この場合、接着層の厚さとして1μm乃至30μmを例示することができる。
また、電解液との接触によって膨潤する基材として、例えば、高い膨潤性を有する樹脂材料(以下、『高膨潤性樹脂材料』と呼ぶ)と、高い融点を有する樹脂材料(以下、『高融点樹脂材料』と呼ぶ)とを混合して成る基材を挙げることができる。高膨潤性樹脂材料の膨潤度は、プロピレンカーボネート(PC)に対して5%以上、好ましくは11%以上であることが望ましい。尚、膨潤度の測定は、JIS K 6258−2003に準じて行う。具体的には、浸漬溶媒をプロピレンカーボネート(PC)、浸漬温度45゜C、浸漬時間24時間の条件下で直径20mmの基材の材料片を浸漬した場合の質量変化率を膨潤度とする。このような膨潤度を有する材料を用いることにより、凹凸部における電極部材の部分とセパレータの部分との間の空隙を埋めるのに充分な程度に基材が電解液を吸収して膨潤する。高融点樹脂材料の融点は、60゜C以上であることが好ましい。このような融点を有する材料を用いることにより、二次電池の内部温度が上昇した際に基材が軟化、溶融することを防止することができる。高膨潤性樹脂材料及び高融点樹脂材料は、更には、電解液に対して耐性(耐腐食性等)を有することが好ましい。
高膨潤性樹脂材料として、ハロゲン基、若しくは、エステル基及びカルボキシ基等の極性基が含有された高分子化合物を用いることができる。中でも、特に、フッ素系樹脂材料が好ましく、このような材料として、例えば、ポリフッ化ビニリデン、フッ化ビニリデンを主として含む共重合体、ポリブタジエン、ポリイソプレン、テトラフルオロエチレン−エチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(EPE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PEA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−ヘキサフルオロプロピレン−ビニリデンフロオライド三元共重合体(THV)等から成る群から選択された少なくとも1種類の材料を挙げることができる。
高融点樹脂材料として、疎水性非極性基、エステル基又はカルボキシ基等の極性基を含有する高分子物質を用いることができる。このような材料として、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリイミド(PI)、ポリテトラフルオロエチレン(PTFE)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、アクリルゴム(ACM)等から成る群から選択された1種類の材料を挙げることができる。
高膨潤性樹脂材料と高融点樹脂材料とは混合して用いられる。高膨潤性樹脂材料と高融点樹脂材料との混合比率は、質量比で10:90〜97:3の範囲であることが好ましい。高膨潤性樹脂材料の混合比率がこの範囲よりも小さい場合、基材が充分に膨潤しない虞がある。また、高融点樹脂材料の混合比率がこの範囲よりも小さい場合、二次電池の内部温度の上昇時、セパレータが収縮することを充分に抑制することができなくなる虞がある。基材の厚さは、一般に二次電池に用いることが可能な厚さであればよく、例えば、1μm以上とすることができる。基材が薄すぎる場合、抑制部材として必要な強度を保てなくなる虞がある。
電解液との接触によって膨潤する抑制部材を構成する接着層は、基材及びセパレータのそれぞれとの接着性に優れ、耐電解液性を有していることが好ましい。接着層として、アクリル酸エステル共重合体等のアクリル系接着剤、天然ゴム等のゴム系接着剤、シリコーンゴム等のシリコーン系接着剤、ウレタン樹脂等のウレタン系接着剤、α−オレフィン系接着剤、エーテル系接着剤、エチレン−酢酸ビニル樹脂系接着剤、エポキシ樹脂系接着剤、塩化ビニル樹脂系接着剤、クロロプレンゴム系接着剤、シアノアクリレート系接着剤、水性高分子−イソシアネート系接着剤、スチレン−ブタジエンゴム系接着剤、ニトリルゴム系接着剤、ニトロセルロース系接着剤、反応性ホットメルト系接着剤、フェノール樹脂系接着剤、変性シリコーン系接着剤、ポリアミド樹脂系接着剤、ポリイミド系接着剤、ポリウレタン樹脂系接着剤、ポリオレフィン樹脂系接着剤、ポリ酢酸ビニル樹脂系接着剤、ポリスチレン樹脂溶剤系接着剤、ポリビニルアルコール系接着剤、ポリビニルピロリドン樹脂系接着剤、ポリビニルブチラール樹脂系接着剤、ポリベンズイミダソール系接着剤、ポリメタクリレート樹脂系接着剤、メラミン樹脂系接着剤、ユリア樹脂系接着剤、レゾルシノール系接着剤等を挙げることができる。
尚、接着層の基材に対する剥離強度は0.1N/mm以上であることが好ましい。基材と接着層とが剥離し難くなるためである。
電極反応物質であるリチウムの吸蔵・放出によって負極の容量が得られるリチウム二次電池(リチウムイオン電池)の構成要素を、以下、説明する。
リチウムイオン電池において、正極活物質にはリチウム原子が含まれる形態とすることができる。正極部材において、正極集電体の片面又は両面には、正極活物質層が形成されている。正極集電体を構成する材料として、例えば、アルミニウム(Al)、ニッケル(Ni)、マグネシウム(Mg)、チタン(Ti)、鉄(Fe)、コバルト(Co)、亜鉛(Zn)、ゲルマニウム(Ge)、インジウム(In)、金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)等、又は、これらの何れかを含む合金や、ステンレス鋼等の導電材料を例示することができる。正極活物質層は、正極活物質として、リチウムを吸蔵・放出可能である正極材料を含んでいる。正極活物質層は、更に、正極結着剤や正極導電剤等を含んでいてもよい。正極材料としてリチウム含有化合物(リチウム原子を含む化合物)を挙げることができ、高いエネルギー密度が得られるといった観点からは、リチウム含有複合酸化物、リチウム含有リン酸化合物を用いることが好ましい。リチウム含有複合酸化物は、リチウム、及び、1又は2以上の元素(以下、『他元素』と呼ぶ。但し、リチウムを除く)を構成元素として含む酸化物であり、層状岩塩型の結晶構造又はスピネル型の結晶構造を有している。具体的には、例えば、リチウム−コバルト系材料、リチウム−ニッケル系材料、スピネルマンガン系材料、超格子構造材料を挙げることができる。あるいは又、リチウム含有リン酸化合物は、リチウム、及び、1又は2以上の元素(他元素)を構成元素として含むリン酸化合物であり、オリビン型の結晶構造を有している。
負極部材において、負極集電体の片面又は両面には、負極活物質層が形成されている。負極集電体を構成する材料として、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、マグネシウム(Mg)、チタン(Ti)、鉄(Fe)、コバルト(Co)、亜鉛(Zn)、ゲルマニウム(Ge)、インジウム(In)、金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)等、又は、これらの何れかを含む合金や、ステンレス鋼等の導電材料を例示することができる。負極活物質層は、負極活物質として、リチウムを吸蔵・放出可能である負極材料を含んでいる。負極活物質層は、更に、負極結着剤や負極導電剤等を含んでいてもよい。負極結着剤及び負極導電剤は、正極結着剤及び正極導電剤と同様とすることができる。負極集電体の表面は、所謂アンカー効果に基づき負極集電体に対する負極活物質層の密着性を向上させるといった観点から、粗面化されていることが好ましい。この場合、少なくとも負極活物質層を形成すべき負極集電体の領域の表面が粗面化されていればよい。粗面化の方法として、例えば、電解処理を利用して微粒子を形成する方法を挙げることができる。電解処理とは、電解槽中において電解法を用いて負極集電体の表面に微粒子を形成することで負極集電体の表面に凹凸を設ける方法である。あるいは又、負極部材をリチウム箔やリチウムシート、リチウム板から構成することもできる。
負極活物質層は、例えば、塗布法、気相法、液相法、溶射法、焼成法(焼結法)に基づき形成することができる。塗布法とは、粒子(粉末)状の負極活物質を負極結着剤等と混合した後、混合物を有機溶剤等の溶媒に分散させ、負極集電体に塗布する方法である。気相法とは、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザーアブレーション法といったPVD法(物理的気相成長法)や、プラズマCVD法を含む各種CVD法(化学的気相成長法)である。液相法として、電解メッキ法や無電解メッキ法を挙げることができる。溶射法とは、溶融状態又は半溶融状態の負極活物質を負極集電体に噴き付ける方法である。焼成法とは、例えば、塗布法を用いて溶媒に分散された混合物を負極集電体に塗布した後、負極結着剤等の融点よりも高い温度で熱処理する方法であり、雰囲気焼成法、反応焼成法、ホットプレス焼成法を挙げることができる。
充電途中に意図せずにリチウムが負極に析出することを防止するために、負極材料の充電可能な容量は、正極材料の放電容量よりも大きいことが好ましい。即ち、リチウムを吸蔵・放出可能である負極材料の電気化学当量は、正極材料の電気化学当量よりも大きいことが好ましい。尚、負極に析出するリチウムとは、例えば、電極反応物質がリチウムである場合にはリチウム金属である。
正極リード部は、スポット溶接又は超音波溶接に基づき、正極集電体に取り付けることができる。正極リード部は金属箔、網目状のものが望ましいが、電気化学的及び化学的に安定であり、導通がとれるものであれば金属でなくともよい。正極リード部の材料として、例えば、アルミニウム(Al)等を挙げることができる。
負極リード部は、スポット溶接又は超音波溶接に基づき、負極集電体に取り付けることができる。負極リード部は金属箔、網目状のものが望ましいが、電気化学的及び化学的に安定であり、導通がとれるものであれば金属でなくともよい。負極リード部の材料として、例えば、銅(Cu)、ニッケル(Ni)等を挙げることができる。
セパレータは、正極部材と負極部材とを隔離して、正極部材と負極部材の接触に起因する電流の短絡を防止しながら、リチウムイオンを通過させるものである。セパレータは、例えば、ポリオレフィン系樹脂(ポリプロピレン樹脂やポリエチレン樹脂)、ポリイミド樹脂、ポリテトラフルオロエチレン樹脂、ポリフッ化ビニリデン樹脂、ポリフェニレンスルフィド樹脂、芳香族ポリアミドといった合成樹脂から成る多孔質膜;セラミック等の多孔質膜;ガラス繊維;液晶ポリエステル繊維や芳香族ポリアミド繊維、セルロース系繊維から成る不織布、セラミック製の不織布等から構成されているが、中でも、ポリプロピレン、ポリエチレンの多孔質フィルムが好ましい。あるいは又、セパレータを2種類以上の多孔質膜が積層された積層膜から構成することもできるし、無機物層が塗布されたセパレータや、無機物含有セパレータとすることもできる。セパレータの厚さは、5μm以上、50μm以下であることが好ましく、7μm以上、30μm以下であることがより好ましい。セパレータは、厚すぎると活物質の充填量が低下して電池容量が低下すると共に、イオン伝導性が低下して電流特性が低下する。逆に薄すぎると、セパレータの機械的強度が低下する。
リチウムイオン電池において使用に適した非水系電解液を構成するリチウム塩として、例えば、LiPF6、LiClO4、LiBF4、LiAsF6、LiSbF6、LiTaF6、LiNbF6、LiAlCl4、LiCF3SO3、LiCH3SO3、LiN(CF3SO22、LiC(CF3SO23、LiC49SO3、Li(FSO22N、Li(CF3SO22N、Li(C25SO22N、Li(CF3SO23C、LiBF3(C25)、LiB(C242、LiB(C654、LiPF3(C253、1/2Li21212、Li2SiF6、LiCl、LiBr、LiIを挙げることができるが、これらに限定するものではない。また、有機溶媒として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)といった環状炭酸エステル;ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)、プロピルメチルカーボネート(PMC)、プロピルエチルカーボネート(PEC)といった鎖状炭酸エステル;テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン(2−MeTHF)、1,3ジオキソラン(DOL)、4−メチル−1,3ジオキソラン(4−MeDOL)といった環状エーテル;1,2ジメトキシエタン(DME)、1,2ジエトキシエタン(DEE)といった鎖状エーテル;γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)といった環状エステル;酢酸メチル、酢酸エチル、酢酸プロピル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、酪酸メチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピルといった鎖状エステルを挙げることができる。あるいは又、有機溶媒として、テトラヒドロピラン、1,3ジオキサン、1,4ジオキサン、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)、N−メチルピロリジノン(NMP)、N−メチルオキサゾリジノン(NMO)、N,N’−ジメチルイミダゾリジノン(DMI)、ジメチルスルホキシド(DMSO)、トリメチルホスフェート(TMP)、ニトロメタン(NM)、ニトロエタン(NE)、スルホラン(SL)、メチルスルホラン、アセトニトリル(AN)、アニソール、プロピオニトリル、グルタロニトリル(GLN)、アジポニトリル(ADN)、メトキシアセトニトリル(MAN)、3−メトキシプロピオニトリル(MPN)、ジエチルエーテルを挙げることができる。あるいは又、イオン液体を用いることもできる。イオン液体として、従来公知のものを用いることができ、必要に応じて選択すればよい。
非水系電解液及び保持用高分子化合物によって電解質層を構成することもできる。非水系電解液は、例えば、保持用高分子化合物によって保持されている。このような形態における電解質層は、ゲル状電解質であり、高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、非水系電解液の漏液が防止される。電解質は、液系電解質とすることもできるし、ゲル状電解質とすることもできる。
保持用高分子化合物として、具体的には、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキシド、ポリプロピレンオキシド、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル(PVF)、ポリクロロトリフルオロエチレン(PCTFE)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン−六フッ化プロピレン共重合体(FEP)、エチレン−四フッ化エチレン共重合体(ETFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン−ブタジエンゴム、ニトリル−ブタジエンゴム、ポリスチレン、ポリカーボネート、塩化ビニルを例示することができる。これらは、単独で用いてもよいし、混合して用いてもよい。また、保持用高分子化合物は共重合体であってもよい。共重合体として、具体的には、フッ化ビニリデンとヘキサフルオロピレンとの共重合体等を例示することができるが、中でも、電気化学的な安定性といった観点から、単独重合体としてポリフッ化ビニリデンが好ましく、共重合体としてフッ化ビニリデンとヘキサフルオロピレンとの共重合体が好ましい。また、フィラーとして、Al23、SiO2、TiO2、BN(窒化ホウ等の耐熱性の高い化合物を含んでいてもよい。
円筒型の二次電池を構成する積層電極体収納部材(電池缶)の材料として、鉄(Fe)、ニッケル(Ni)、アルミニウム(Al)、チタン(Ti)等、あるいは、これらの合金、ステンレス鋼(SUS)等を挙げることができる。電池缶には、二次電池の充放電に伴う電気化学的な腐食を防止するために、例えばニッケル等のメッキが施されていることが好ましい。ラミネート型(ラミネートフィルム型)の二次電池における外装部材は、プラスチック材料層(融着層)、金属層及びプラスチック材料層(表面保護層)の積層構造を有する形態、即ち、ラミネートフィルムである形態とすることが好ましい。ラミネートフィルム型の二次電池とする場合、例えば、融着層同士が積層電極体を介して対向するように外装部材を折り畳んだ後、融着層の外周縁部同士を融着する。但し、外装部材は、2枚のラミネートフィルムが接着剤等を介して貼り合わされたものでもよい。融着層は、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレン、変性ポリプロピレン、これらの重合体等のオレフィン樹脂のフィルムから成る。金属層は、例えば、アルミニウム箔、ステンレス鋼箔、ニッケル箔等から成る。表面保護層は、例えば、ナイロン、ポリエチレンテレフタレート等から成る。中でも、外装部材は、ポリエチレンフィルムと、アルミニウム箔と、ナイロンフィルムとがこの順に積層されたアルミラミネートフィルムであることが好ましい。但し、外装部材は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレン等の高分子フィルムでもよいし、金属フィルムでもよい。
本開示の二次電池は、例えば、ノート型パーソナルコンピュータ、PDA(携帯情報端末)、携帯電話、スマートフォン、コードレス電話の親機や子機、ビデオムービー、デジタルスチルカメラ、電子書籍、電子辞書、携帯音楽プレイヤー、ラジオ、ヘッドホン、ゲーム機、ナビゲーションシステム、メモリーカード、心臓ペースメーカー、補聴器、電動工具、電気シェーバー、冷蔵庫、エアコンディショナー、テレビジョン受像機、ステレオ、温水器、電子レンジ、食器洗浄器、洗濯機、乾燥機、照明機器、玩具、医療機器、ロボット、ロードコンディショナー、信号機、鉄道車両、ゴルフカート、電動カート、電気自動車(ハイブリッド自動車を含む)等の駆動用電源又は補助用電源として使用することができる。また、住宅をはじめとする建築物又は発電設備用の電力貯蔵用電源等に搭載し、あるいは、これらに電力を供給するために使用することができる。電気自動車において、電力を供給することにより電力を駆動力に変換する変換装置は、一般的にはモータである。車両制御に関する情報処理を行う制御装置としては、二次電池の残量に関する情報に基づき、二次電池残量表示を行う制御装置等が含まれる。また、二次電池を、所謂スマートグリッドにおける蓄電装置において用いることもできる。このような蓄電装置は、電力を供給するだけでなく、他の電力源から電力の供給を受けることにより蓄電することができる。他の電力源としては、例えば、火力発電、原子力発電、水力発電、太陽電池、風力発電、地熱発電、燃料電池(バイオ燃料電池を含む)等を用いることができる。
二次電池、二次電池に関する制御を行う制御手段、及び、二次電池を内包する外装を有する電池パックにおける二次電池に、本開示の二次電池等を適用することができる。この電池パックにおいて、制御手段は、例えば、二次電池に関する充放電、過放電又は過充電の制御を行う。
二次電池から電力の供給を受ける電子機器における二次電池に、本開示の二次電池等を適用することができる。
二次電池から電力の供給を受けて車両の駆動力に変換する変換装置、及び、二次電池に関する情報に基づいて車両制御に関する情報処理を行う制御装置を有する電動車両における二次電池に、本開示の二次電池等を適用することができる。この電動車両において、変換装置は、典型的には、二次電池から電力の供給を受けてモータを駆動させ、駆動力を発生させる。モータの駆動には、回生エネルギーを利用することもできる。また、制御装置は、例えば、二次電池の電池残量に基づいて車両制御に関する情報処理を行う。この電動車両には、例えば、電気自動車、電動バイク、電動自転車、鉄道車両等の他、所謂ハイブリッド車が含まれる。
二次電池から電力の供給を受け、及び/又は、電力源から二次電池に電力を供給するように構成された電力システムにおける二次電池に、本開示の二次電池等を適用することができる。この電力システムは、およそ電力を使用するものである限り、どのような電力システムであってもよく、単なる電力装置も含む。この電力システムは、例えば、スマートグリッド、家庭用エネルギー管理システム(HEMS)、車両等を含み、蓄電も可能である。
二次電池を有し、電力が供給される電子機器が接続されるように構成された電力貯蔵用電源における二次電池に、本開示の二次電池等を適用することができる。この電力貯蔵用電源の用途は問わず、基本的にはどのような電力システム又は電力装置にも用いることができるが、例えば、スマートグリッドに用いることができる。
実施例1は、本開示の二次電池に関する。具体的には、実施例1の二次電池は、円筒型のリチウムイオン電池から成る。実施例1の二次電池を構成する電極部材とセパレータとが積層された積層電極体の長手方向に沿った模式的な一部断面図を図1A、図2A及び図2Bに示し、抑制部材等の配置を模式的に図1Bに示す。尚、図1A及び図1Bは、正極リード部が配された部分における模式的な一部断面図及び模式的な配置図であり、図2Bは、負極リード部が配された部分における模式的な一部断面図であり、図2Aは、正極リード部及び負極リード部が配されていない部分の模式的な一部断面図である。図1A及び図1Bにおいて、図面の簡素化のために積層電極体を平坦に示すが、実際には、積層電極体は捲回されているので、湾曲している。また、図2Bは、積層電極体の端部の領域を示す模式的な一部断面図であり、積層電極体を展開して示している。更には、抑制部材の模式的な一部断面図を図1Cに示す。また、実施例1の円筒型の二次電池(リチウムイオン電池)の模式的な断面図を図3に示す。
実施例1のリチウムイオン電池にあっては、ほぼ中空円柱状の積層電極体収納部材11の内部に、積層電極体20及び一対の絶縁板12,13が収納されている。積層電極体20は、例えば、セパレータ26を介して正極部材22と負極部材24とを積層して積層電極体を得た後、積層電極体を捲回することで作製することができる。
積層電極体収納部材(電池缶)11は、一端部が閉鎖され、他端部が開放された中空構造を有しており、鉄〈Fe〉やアルミニウム〈Al〉等から作製されている。積層電極体収納部材11の表面にはニッケル〈Ni〉等がメッキされていてもよい。一対の絶縁板12,13は、積層電極体20を挟むと共に、積層電極体20の捲回周面に対して垂直に延在するように配置されている。積層電極体収納部材11の開放端部には、電池蓋14、安全弁機構15及び熱感抵抗素子(PTC素子、Positive Temperature Coefficient 素子)16がガスケット17を介してかしめられており、これによって、積層電極体収納部材11は密閉されている。電池蓋14は、例えば、積層電極体収納部材11と同様の材料から作製されている。安全弁機構15及び熱感抵抗素子16は、電池蓋14の内側に設けられており、安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。安全弁機構15にあっては、内部短絡や、外部からの加熱等に起因して内圧が一定以上になると、ディスク板15Aが反転する。そして、これによって、電池蓋14と積層電極体20との電気的接続が切断される。大電流に起因する異常発熱を防止するために、熱感抵抗素子16の抵抗は温度の上昇に応じて増加する。ガスケット17は、例えば、絶縁性材料から作製されている。ガスケット17の表面にはアスファルト等が塗布されていてもよい。
積層電極体20の捲回中心には、センターピン18が挿入されている。但し、センターピン18は、捲回中心に挿入されていなくともよい。正極部材22には、アルミニウム等の導電性材料から作製された正極リード部23が接続されている。負極部材24には、銅等の導電性材料から作製された負極リード部25が接続されている。負極リード部25は、積層電極体収納部材11に溶接されており、積層電極体収納部材11と電気的に接続されている。正極リード部23は、安全弁機構15に溶接されていると共に、電池蓋14と電気的に接続されている。尚、図3に示した例では、負極リード部25は1箇所(捲回された積層電極体の最外周部)であるが、2箇所(捲回された積層電極体の最外周部及び最内周部)に設けられている場合もある。
実施例1の二次電池は、電極部材21とセパレータ26とが積層された積層電極体20を少なくとも備えている。そして、積層電極体20に存在する凹凸部27A,27Bにおける電極部材の部分20A,20Bと、セパレータの部分26A,26Bとの間に、電極部材21に対するセパレータ26の移動を抑制する抑制部材(動き防止部材)31A,31B(これらを総称して、『抑制部材31』と呼ぶ場合もある)が配されている。尚、図1A及び図2Bは、凹凸部27A,27Bが存在する積層電極体20の部分20A,20Bの模式的な一部断面図であり、図2Aは、凹凸部27A,27Bが存在しない積層電極体20の部分20C(積層電極体20の厚さ方向において対称な部分、領域)の模式的な一部断面図である。
ここで、実施例1の二次電池は、上述したとおり、積層電極体収納部材11を更に備えており、帯状の積層電極体20は、捲回された状態で積層電極体収納部材11に収納されている。積層電極体収納部材11の外形形状は、円筒型又は角型(平板型)であり、実施例1にあっては、具体的には、円筒型である。
そして、積層電極体20に取り付けられたリード部を更に備えており、リード部は、正極集電体22Aに取り付けられた正極リード部23(図1A参照)、及び、負極集電体24Aに取り付けられた負極リード部25(図2B参照)から構成されている。また、積層電極体20は、正極集電体22A上に(具体的には、正極集電体22Aの両面に)正極活物質層22Bが形成された正極部材22と、負極集電体24A上に(具体的には、負極集電体24Aの両面に)負極活物質層24Bが形成された負極部材24とが、セパレータ26を介して積層されて成る。正極リード部23を取り付ける正極集電体22Aの領域には、正極活物質層22Bは形成されていないし、負極リード部25を取り付ける負極集電体24Aの領域には、負極活物質層24Bは形成されていない。
そして、図1Aに示すように、リード部(具体的には、正極リード部23)は凹凸部27Aに含まれており、凹凸部27Aにおける電極部材の部分21A及びリード部(具体的には、正極リード部23)と、セパレータ26の部分との間に、抑制部材31Aが配されている。あるいは又、図2Bに示すように、積層電極体20に取り付けられたリード部(具体的には、負極リード部25)を更に備えており、凹凸部27Bは、リード部(具体的には、負極リード部25)が取り付けられた電極部材の部分21Bの近傍に位置する。積層電極体20の端部は凹凸部27Bに含まれる。
具体的には、図1Aに示すように、また、上述したとおり、積層電極体20は、正極集電体22A上に(具体的には、正極集電体22Aの両面に)正極活物質層22Bが形成された正極部材22と、負極集電体24A上に(具体的には、負極集電体24Aの両面に)負極活物質層24Bが形成された負極部材24とが、セパレータ26を介して積層されて成る。二次電池は、正極集電体22Aに取り付けられた正極リード部23、及び、負極集電体24Aに取り付けられた負極リード部25から構成されたリード部23,25、並びに、積層電極体収納部材11を更に備えている。そして、積層電極体20は、捲回された状態で積層電極体収納部材11に収納されており、正極部材22の端部から離間して位置する正極集電体22Aの部分122Aに正極リード部23が取り付けられており、正極リード部23、正極リード部23の近傍に位置する正極集電体の部分122A及び正極リード部23の近傍に位置する正極集電体の部分122Aに隣接した正極活物質層の部分122Bと、セパレータ26との間に、抑制部材31Aが配されている。尚、このような抑制部材31Aの配置を、便宜上、『積層電極体の領域−Aへの抑制部材の配置』と呼ぶ。図1A、図2Bにおいて、抑制部材31A,31Bとセパレータ26との間に隙間が存在するように図示しているが、実際には、殆ど隙間は存在しない。
あるいは又、具体的には、図2Bに示すように、負極集電体24Aの端部124aによって積層電極体20の端部が構成されている。ここで、積層電極体20の端部から離れる方向を内側方向としたとき、負極集電体の端部124aから内側方向に離間して負極活物質層の端部124bが配置されており、負極活物質層の端部124bから内側方向に離間して正極活物質層の端部122b及び正極集電体の端部122aが配置されており、負極リード部25は、負極集電体の端部124aの近傍に取り付けられており、負極リード部25と負極活物質層の端部124bとの間の領域と、セパレータ26との間に、抑制部材31Bが配されている。尚、図2Bに示した、捲回された積層電極体の最外周部へのこのような抑制部材31Bの配置を、便宜上、『積層電極体の領域−Bへの抑制部材の配置』と呼び、捲回された積層電極体の最内周部へのこのような抑制部材31Bの配置を、便宜上、『積層電極体の領域−Cへの抑制部材の配置』と呼ぶ。積層電極体の領域−Cへの抑制部材の配置を示す模式的な一部断面図は省略するが、図2Bの紙面に垂直な軸線を中心として、図2Bに示した構成、構造を180度回転させると、積層電極体の領域−Cへの抑制部材の配置となる。
抑制部材31の模式的な一部断面図を図1Cに示すように、抑制部材31は、テープ状の基材32、及び、基材32の一方の面32Aに設けられた接着層(接着剤層)33から成り、接着層33を介して抑制部材31は積層電極体20に接着されている。ここで、二次電池は、電解液を更に備えており、基材32の他方の面32Bは電解液との接触によって粘着性(接着性)を発現し、基材の他方の面32Bはセパレータ26に粘着(接着)する。基材32は、例えば、厚さ25μm、50μmあるいは100μmのOPSフィルムから成り、接着層33は、厚さ10μmのアクリル系接着剤から成る。
以下の表1に示す仕様の二次電池(リチウムイオン電池)を試作した。
〈表1〉
正極集電体22A 厚さ20μmのアルミニウム箔
正極活物質層22B 片面当たり厚さ50μm
正極リード部23 厚さ100μmのアルミニウム(Al)箔
負極集電体24A 厚さ20μmの銅箔
負極活物質層24B 片面当たり厚さ50μm
負極リード部25 厚さ100μmのニッケル(Ni)箔
正極部材22を作製する場合、先ず、正極活物質〈LiCoO2〉91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛、グラファイト)6質量部とを混合して、正極合剤とする。そして、正極合剤を有機溶剤(N−メチル−2−ピロリドン)と混合して、ペースト状の正極合剤スラリーとする。次いで、コーティング装置を用いて帯状の正極集電体22A(厚さ20μmのアルミニウム箔)の両面に正極合剤スラリーを塗布した後、正極合剤スラリーを乾燥させて、正極活物質層22Bを形成する。そして、ロールプレス機を用いて正極活物質層22Bを圧縮成型する。
負極部材24を作製する場合、先ず、負極活物質(黒鉛(グラファイト)、あるいは、黒鉛とシリコンとの混合材料)97質量部と、負極結着剤(ポリフッ化ビニリデン)3質量部とを混合して、負極合剤とする。黒鉛の平均粒径d50を20μmとする。次いで、負極合剤を有機溶剤(N−メチル−2−ピロリドン)と混合して、ペースト状の負極合剤スラリーとする。そして、コーティング装置を用いて帯状の負極集電体24A(厚さ20μmの銅箔)の両面に負極合剤スラリーを塗布した後、負極合剤スラリーを乾燥させて、負極活物質層24Bを形成する。そして、ロールプレス機を用いて負極活物質層24Bを圧縮成型する。
セパレータ26は、厚さ20μmの微多孔性ポリエチレンフィルムから成る。また以下の表2あるいは表3に示す組成を有する非水系の電解液が、積層電極体20に含浸されている。電解液が基材32の他方の面32と接触することによって、基材32の他方の面32には粘着性(接着性)が発現し、基材32の他方の面32Bはセパレータ26に粘着(接着)する。あるいは又、後述するように、基材32の他方の面32Bは電解液との接触によって膨潤し、基材32の他方の面32Bはセパレータ26に密着する。尚、非水系電解液の溶媒とは、液状の材料だけでなく、電解質塩を解離させることが可能なイオン伝導性を有する材料まで含む広い概念である。よって、イオン伝導性を有する高分子化合物を用いる場合には、高分子化合物も溶媒に含まれる。
〈表2〉
有機溶媒 :EC/PC 質量比で1/1
非水系電解液を構成するリチウム塩:LiPF6 1.0モル/リットル
〈表3〉
有機溶媒 :EC/DMC 質量比で3/5
非水系電解液を構成するリチウム塩:LiPF6 1.0モル/リットル
非水系電解液を調製する場合、詳細は後述するが、第1化合物、第2化合物、第3化合物、及び、他の材料を混合、撹拌する。第1化合物として、ビスフルオロスルホニルイミドリチウム〈LiFSI〉又はビストリフルオロメチルスルホニルイミドリチウム〈LiTFSI〉を用いる。また、第2化合物として、非酸素含有モノニトリル化合物であるアセトニトリル(AN)、プロピオニトリル(PN)若しくはブチロニトリル(BN)、又は、酸素含有モノニトリル化合物であるメトキシアセトニトリル(MAN)を用いる。更には、第3化合物として、不飽和環状炭酸エステルである炭酸ビニレン(VC)、炭酸ビニルエチレン(VEC)若しくは炭酸メチレンエチレン(MEC)、又は、ハロゲン化炭酸エステルである4−フルオロ−1,3−ジオキソラン−2−オン(FEC)若しくは炭酸ビス(フルオロメチル)(DFDMC)、又は、ポリニトリル化合物であるスクシノニトリル(SN)を用いる。更には、他の材料として、環状炭酸エステルである炭酸エチレン(EC)、鎖状炭酸エステルである炭酸ジメチル(DMC)、電解質塩である六フッ化リン酸リチウム〈LiPF6〉、四フッ化ホウ酸リチウム〈LiBF4〉を用いる。
リチウムイオン電池は、例えば、以下の手順に基づき製造することができる。
即ち、先ず、上述したとおり、正極集電体22Aの両面に正極活物質層22Bを形成し、負極集電体24Aの両面に負極活物質層24Bを形成する。
その後、溶接法等を用いて、正極集電体22Aに正極リード部23を取り付ける。図1Aに示すように、正極部材22の端部から離間して位置する正極集電体22Aの部分122Aには、正極活物質層22Bは形成されていない。この正極集電体22Aの部分122Aに正極リード部23を取り付ける。そして、正極リード部23、正極リード部23の近傍に位置する正極集電体の部分122A及び正極リード部23の近傍に位置する正極集電体の部分122Aに隣接した正極活物質層の部分122Bと、セパレータ26との間に、抑制部材31Aを配置する。具体的には、正極リード部23の近傍に位置する正極集電体の部分122A及び正極リード部23の近傍に位置する正極集電体の部分122Aに隣接した正極活物質層の部分122Bに、接着層33を介して抑制部材31Aを貼り付ける。尚、正極リード部23を取り付けた正極集電体22Aの側と反対側の部分にも、正極活物質層22Bは形成されていないので、この部分も凹凸部となる。それ故、正極集電体の部分122A及びこの正極集電体の部分122Aに隣接した正極活物質層の部分122B’と、セパレータ26との間にも、抑制部材31A’を配置する。
また、溶接法等を用いて、負極集電体24Aに負極リード部25を取り付ける。図2Bに示すように、負極リード部25を、負極活物質層24Bが形成されていない負極集電体の端部124aの近傍に取り付ける。そして、負極リード部25と負極活物質層の端部124bとの間の領域と、セパレータ26との間に、抑制部材31Bを配置する。具体的には、負極リード部25と負極活物質層の端部124bとの間に位置する負極集電体24Aの部分124Aに、接着層33を介して抑制部材31Bを貼り付ける。
次に、厚さ20μmの微多孔性ポリエチレンフィルムから成るセパレータ26を介して正極部材22と負極部材24とを積層し、捲回して、(より具体的には、正極部材22/セパレータ26/負極部材24/セパレータ26の積層電極体(積層構造体)を捲回して)、積層電極体20を作製した後、最外周部に保護テープ(図示せず)を貼り付ける。尚、このとき、抑制部材31が粘着性を示したのでは、積層電極体を捲回することが極めて困難となる。その後、積層電極体20の中心にセンターピン18を挿入する。次いで、一対の絶縁板12,13で積層電極体20を挟みながら、積層電極体20を積層電極体収納部材(電池缶)11の内部に収納する。この場合、溶接法等を用いて、正極リード部23の先端部を安全弁機構15に取り付けると共に、負極リード部25の先端部を積層電極体収納部材11に取り付ける。その後、減圧方式に基づき積の内部に有機電解液あるいは非水系電解液を注入して、有機電解液あるいは非水系電解液をセパレータ26に含浸させる。次いで、ガスケット17を介して積層電極体収納部材11の開口端部に電池蓋14、安全弁機構15及び熱感抵抗素子16をかしめる。
実施例のリチウムイオン電池は、例えば、以下のように動作する。即ち、充電時、正極部材22からリチウムイオンが放出されると、リチウムイオンが非水系電解液を介して負極部材24に吸蔵される。一方、放電時、負極部材24からリチウムイオンが放出されると、リチウムイオンが非水系電解液を介して正極部材22に吸蔵される。リチウムイオン電池は、例えば、完全充電時の開回路電圧(電池電圧)がVNボルトとなるように設計されている。この場合、完全充電時の開回路電圧が4.2ボルトとなるように設計されている場合と比較して、同じ種類の正極活物質を用いても、単位質量当たりのリチウムの放出量が多くなる。このように、正極活物質の量と負極活物質との量を調整し、完全充電時の開回路電圧(電池電圧)が所定の電圧(上限電圧)となるようにリチウムイオン電池を設計することで、高いエネルギー密度が得られる。
実施例1においては、以下の表4に示す種々のリチウムイオン電池を試作した。そして、二次電池の過負荷試験を行い、二次電池の内部での短絡発生までの時間を測定した。比較例1における短絡発生までの時間を「1」としたときの、各実施例1の試作品における短絡発生までの相対的な時間を表4に示す。尚、比較例1は、基材32としてOPSフィルムの代わりに厚さ50μmのポリイミドフィルム(一方の面には、実施例1と同じ接着層33を形成)を使用して、抑制部材31の代わりに、このポリイミドフィルムを配置したものである。ポリイミドフィルムは、電解液によって粘着性を発現することが無いし、膨潤することも無い。
〈表4〉
Figure 2017043178
表4から、抑制部材31A,31Bを備えた実施例1の二次電池のいずれにあっても、比較例1よりも短絡発生までの時間が延びており、高い信頼性を有する二次電池を提供することができることが判った。
尚、以下の方法に基づき、正極部材22を作製することもできる。即ち、先ず、炭酸リチウム〈Li2CO3〉と炭酸コバルト〈CoCO3〉とを混合した後、混合物を空気中において焼成(900゜C×5時間)して、リチウム含有複合酸化物(LiCoO2)を得る。この場合、混合比をモル比で、例えば、Li2CO3:CoO3=0.5:1とする。そして、正極活物質(LiCoO2)91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを混合して、正極合剤とする。そして、正極合剤を有機溶剤(N−メチル−2−ピロリドン)と混合して、ペースト状の正極合剤スラリーとする。その後、コーティング装置を用いて帯状の正極集電体22Aの両面に正極合剤スラリーを塗布した後、正極合剤スラリーを乾燥させて、正極活物質層22Bを形成する。そして、ロールプレス機を用いて正極活物質層22Bを圧縮成型する。
正極活物質としてLi1.15(Mn0.65Ni0.22Co0.130.852を用いる場合、先ず、硫酸ニッケル〈NiSO4〉と、硫酸コバルト〈CoSO4〉と、硫酸マンガン〈MnSO4〉とを混合する。そして、混合物を水に分散させて、水溶液を調製した。次いで、水溶液を十分に攪拌しながら、水溶液に水酸化ナトリウム〈NaOH〉を添加して、共沈物(マンガン・ニッケル・コバルト複合共沈水酸化物)を得た。その後、共沈物を水洗してから乾燥させ、次いで、共沈物に水酸化リチウム一水和塩を添加して、前駆体を得た。そして、大気中において前駆体を焼成(800゜C×10時間)することで、上記の正極活物質を得ることができた。
また、正極活物質としてLiNi0.5Mn1.504を用いる場合、先ず、炭酸リチウム〈Li2CO3〉と、酸化マンガン〈MnO2〉と、酸化ニッケル〈NiO〉とを秤量して、ボールミルを用いて秤量物を混合する。この場合、主要元素の混合比(モル比)をNi:Mn=25:75とした。次いで、大気中において混合物を焼成(800゜C×10時間)した後、冷却した。次に、ボールミルを用いて焼成物を再混合した後、大気中において焼成物を再焼成(700゜C×10時間)することで、上記の正極活物質を得ることができた。
あるいは又、正極活物質として、以下の式(A)で表される化合物、あるいは、LiNiMnO系材料を用いることもできる。
Li1+a(MnbCocNi1-b-c1-a0 d2-e (A)
ここで、「M0」は、長周期型周期表における2族〜15族に属する元素(但し、マンガン、コバルト及びニッケルを除く)の少なくとも1種類であり、0<a<0.25,0.3≦b<0.7,0≦c<1−b,0≦d≦1,0≦e≦1を満足する。具体的には、Li1.15(Mn0.65Ni0.22Co0.130.852を例示することができる。また、LiNiMnO系材料として、具体的には、LiNi0.5Mn1.504を例示することができる。
あるいは又、以下の方法に基づき、負極部材24を作製することもできる。即ち、先ず、負極活物質(黒鉛、グラファイト)97質量部と、負極結着剤(ポリフッ化ビニリデン)3質量部とを混合して、負極合剤とする。黒鉛の平均粒径d50を20μmとする。また、負極結着剤として、例えば、スチレン−ブタジエン共重合体のアクリル変性体1.5質量部と、カルボキシメチルセルロース1.5質量部との混合物を用いる。そして、負極合剤を水と混合して、ペースト状の負極合剤スラリーとする。その後、コーティング装置を用いて帯状の負極集電体24Aの両面に負極合剤スラリーを塗布した後、負極合剤スラリーを乾燥させて、負極活物質層24Bを形成する。そして、ロールプレス機を用いて負極活物質層24Bを圧縮成型する。
あるいは又、負極活物質(ケイ素)と負極結着剤の前駆体(ポリアミック酸)とを混合して、負極合剤とすることもできる。この場合、混合比を乾燥質量比でケイ素:ポリアミック酸=80:20とする。ケイ素の平均粒径d50を1μmとする。ポリアミック酸の溶媒として、N−メチル−2−ピロリドン及びN,N−ジメチルアセトアミドを用いる。また、圧縮成型の後、真空雰囲気中において負極合剤スラリーを、100゜C×12時間といった条件で加熱する。これによって、負極結着剤であるポリイミドが形成される。
正極部材22に含まれている正極活物質と負極部材24に含まれている負極活物質との間の領域(活物質間領域)の内のいずれかに、絶縁性材料を備えていてもよい。絶縁性材料が配置される場所は、活物質間領域の内のいずれかであれば特に限定されない。即ち、絶縁性材料は、正極部材22(正極活物質層22B)中に存在していてもよいし、負極部材24(負極活物質層24B)中に存在していてもよいし、正極部材22と負極部材24との間に存在していてもよい。一例を挙げると、絶縁性材料を配置する場所に関して、例えば、以下で説明するように、2通りの態様を挙げることができる。
第1態様においては、図4Aに示すように、正極活物質層22Bは、粒子状の正極活物質222Aを含んでいる。そして、正極活物質222Aの表面に、絶縁性材料を含む層(第1絶縁層である活物質絶縁層222B)が形成されている。活物質絶縁層222Bは、正極活物質222Aの表面の一部だけを被覆していてもよいし、全部を被覆していてもよい。活物質絶縁層222Bが正極活物質222Aの表面の一部を被覆している場合、互いに離間された複数の活物質絶縁層222Bが存在していてもよい。活物質絶縁層222Bは、単層であってもよいし、多層であってもよい。
活物質絶縁層222Bは、絶縁性セラミックス等の無機絶縁性材料から成り、あるいは又、絶縁性高分子化合物等の有機絶縁性材料から成り、あるいは又、無機絶縁性材料及び有機絶縁性材料から成る。絶縁性セラミックスとして、具体的には、酸化アルミニウム〈Al23〉、酸化ケイ素〈SiO2〉、酸化マグネシウム〈MgO〉、酸化チタン〈TiO2〉、酸化ジルコニウム〈ZrO2〉を例示することができるし、LiNbO3、LIPON〈Li3+yPO4-xx,但し、0.5≦x≦1、−0.3<y<0.3〉、LISICON(Lithium-Super-Ion-CONductor)と呼ばれる材料、Thio−LISICON(例えば、Li3.25Ge0.250.754)、Li2S、Li2S−P25、Li2S−SiS2、Li2S−GeS2、Li2S−B25、Li2S−Al25及びLi2O−Al23−TiO2−P25(LATP)を例示することもできる。絶縁性高分子化合物は、正極結着剤あるいは負極結着剤を構成する材料と同様とすることができるが、中でも、フッ化ビニリデンの単独重合体(例えば、ポリフッ化ビニリデン)あるいは共重合体(例えば、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体)が好ましい。物理的強度に優れていると共に、電気化学的に安定だからである。フッ化ビニリデンと共重合される単量体は、ヘキサフルオロプロピレン以外の単量体であってもよい。
正極活物質222Aの表面に活物質絶縁層222Bを形成する手順は、例えば、以下のとおりである。尚、活物質絶縁層222Bが絶縁性セラミックスを含む場合を例にとり説明する。活物質絶縁層222Bを形成する場合、正極活物質222Aの粒子と絶縁性セラミックスの粒子とを混合する。そして、ボールミル、ジェットミル、擂潰機、微粉粉砕機等を用いて、混合物を粉砕・混合する。この場合、水等の分散媒又は溶媒を混合物に加えてもよい。これによって、正極活物質222Aの表面に絶縁性セラミックスが被着するため、活物質絶縁層222Bが形成される。その他、メカノフュージョン等のメカノケミカル処理を用いて、絶縁性セラミックスを被着させてもよい。また、スパッタリング法等のPVD法やCVD法に基づき、正極活物質222Aの表面に絶縁性セラミックスを堆積させてもよい。あるいは又、ゾル・ゲル法を用いてもよく、この場合、アルミニウム、ケイ素等を含むアルコキシド溶液に正極活物質222Aを浸漬させて、正極活物質222Aの表面に前駆体層を被着させた後、前駆体層を焼成すればよい。
第2態様においては、図4Bに示すように、負極部材24(負極活物質層24B)の表面に、絶縁性材料を含む層(第2絶縁層である負極絶縁層224)が設けられている。負極絶縁層224の被覆状態、層構造及び構成材料等に関する詳細は、上記の活物質絶縁層222Bと同様である。そして、この場合、特に、負極絶縁層224が絶縁性高分子化合物を含んでいると、負極部材24に対するセパレータ26の密着性が向上するため、積層電極体20が歪み難くなる。そして、これによって、有機電解液あるいは非水系電解液の分解反応が抑制されると共に、セパレータ26に含浸されている有機電解液あるいは非水系電解液の漏液も抑制される。よって、充放電を繰り返しても抵抗が上昇し難くなると共に、リチウムイオン電池が膨れ難くなる。
負極活物質層24Bの表面に負極絶縁層224を形成する手順は、例えば、以下のとおりである。尚、負極絶縁層224が絶縁性セラミックス及び絶縁性高分子化合物を含む場合を例にとり説明する。負極絶縁層224を形成する場合、絶縁性セラミックスの粒子と、絶縁性高分子化合物と、N−メチル−2−ピロリドン等の溶媒とを混合して、絶縁性セラミックスの粒子を溶媒中に分散させると共に、絶縁性高分子化合物を溶媒に溶解させる。そして、混合液中に負極部材24を浸漬させた後、混合液中から負極部材24を取り出して乾燥させる。これによって、混合液中の溶媒が揮発すると共に絶縁性高分子化合物が膜化するため、負極活物質層24Bの表面に負極絶縁層224が形成される。この場合、乾燥前に負極部材24を加圧して、負極絶縁層224の厚さを調整してもよい。混合液中に負極部材24を浸漬させる代わりに、混合液を負極活物質層24Bの表面に塗布してもよい。
あるいは又、負極絶縁層224を形成する場合、先ず、粉末状の絶縁性セラミックス80質量部と、絶縁性高分子化合物(ポリフッ化ビニリデン)20質量部とを混合した後、混合物を有機溶剤に分散させて、処理溶液を調製する。粉末状の絶縁性セラミックスとして、酸化アルミニウム〈Al23〉及び酸化ケイ素〈SiO2〉を用いる。絶縁性セラミックスの平均粒径d50を0.5μmとする。そして、処理溶液中に負極部材24を浸漬した後、グラビアローラを用いて負極部材24の表面に供給された処理溶液の厚さを調整する。そして、乾燥器を用いて処理溶液を120゜Cにて乾燥させて、処理溶液中の有機溶剤を揮発させる。こうして、負極活物質層24Bの表面に負極絶縁層224を形成することができる。
以上のとおり、実施例1の二次電池にあっては、積層電極体に存在し、電極部材に対するセパレータの密着に乏しい凹凸部において、電極部材の部分とセパレータの部分との間に、電極部材に対するセパレータの移動を抑制する抑制部材が配されているので、二次電池の内部温度が上昇してもセパレータが収縮することが抑制される結果、高い信頼性を有する二次電池を提供することができる。
尚、基材32の他方の面32Bは電解液との接触によって膨潤し、基材32の他方の面32Bはセパレータ26に密着する態様とすることができる。この場合、具体的には、基材32は、厚さ40μmのフィルムから成り、接着層は、厚さ10μmのアクリル系接着剤から成る。基材32は、より具体的には、ポリフッ化ビニリデンから成る高膨潤性樹脂材料と、ポリエチレンテレフタレート(PET)から成る高融点樹脂材料とが混合されて成る。
実施例2は、実施例1の変形であり、平板型のラミネートフィルム型のリチウムイオン電池から成り、正極部材、セパレータ及び負極部材が捲回されている。リチウムイオン電池の模式的な分解斜視図を図5及び図6Aに示し、図1、図6Aに示す積層電極体(積層構造体)の矢印A−Aに沿った模式的な拡大断面図(YZ平面に沿った模式的な拡大断面図)を図6Bに示す。更には、図6Bに示す積層電極体の一部を拡大した模式的な一部断面図(XY平面に沿った模式的な一部断面図)は、図2Aに示したと同様である。
実施例2のリチウムイオン電池にあっては、ラミネートフィルムから成る外装部材300の内部に、基本的に実施例1と同様の積層電極体20が収納されている。積層電極体20は、セパレータ26及び電解質層28を介して正極部材22と負極部材24とを積層した後、この積層構造体を捲回することで作製することができる。正極部材22には正極リード部23が取り付けられており、負極部材24には負極リード部25が取り付けられている。積層電極体20の最外周部は、保護テープ28によって保護されている。
正極リード部23及び負極リード部25は、外装部材300の内部から外部に向かって同一方向に突出している。正極リード部23は、アルミニウム等の導電性材料から形成されている。負極リード部25は、銅、ニッケル、ステンレス鋼等の導電性材料から形成されている。これらの導電性材料は、例えば、薄板状又は網目状である。
外装部材300は、図5に示す矢印Rの方向に折り畳み可能な1枚のフィルムであり、外装部材300の一部には、積層電極体20を収納するための窪み(エンボス)が設けられている。外装部材300は、例えば、融着層と、金属層と、表面保護層とがこの順に積層されたラミネートフィルムである。リチウムイオン電池の製造工程では、融着層同士が積層電極体20を介して対向するように外装部材300を折り畳んだ後、融着層の外周縁部同士を融着する。但し、外装部材300は、2枚のラミネートフィルムが接着剤等を介して貼り合わされたものでもよい。融着層は、例えば、ポリエチレン、ポリプロピレン等のフィルムから成る。金属層は、例えば、アルミニウム箔等から成る。表面保護層は、例えば、ナイロン、ポリエチレンテレフタレート等から成る。中でも、外装部材300は、ポリエチレンフィルムと、アルミニウム箔と、ナイロンフィルムとがこの順に積層されたアルミラミネートフィルムであることが好ましい。但し、外装部材300は、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレン等の高分子フィルムでもよいし、金属フィルムでもよい。具体的には、ナイロンフィルム(厚さ30μm)と、アルミニウム箔(厚さ40μm)と、無延伸ポリプロピレンフィルム(厚さ30μm)とが外側からこの順に積層された耐湿性のアルミラミネートフィルム(総厚100μm)から成る。
外気の侵入を防止するために、外装部材300と正極リード部23との間、及び、外装部材300と負極リード部25との間には、密着フィルム301が挿入されている。密着フィルム301は、正極リード部23及び負極リード部25に対して密着性を有する材料、例えば、ポリオレフィン樹脂等、より具体的には、ポリエチレン、ポリプロピレン、変性ポリエチレン、変性ポリプロピレン等のポリオレフィン樹脂から成る。
図6Bに示すように、正極部材22は、正極集電体22Aの片面又は両面に正極活物質層22Bを有している。また、負極部材24は、負極集電体24Aの片面又は両面に負極活物質層24Bを有している。
図示しないが、正極集電体22Aに正極リード部23を取り付ける部分、負極集電体24Aに負極リード部25を取り付ける部分には、実施例1と同様に、抑制部材31が配されている。
実施例3においては、本開示の二次電池の適用例について説明する。
本開示の二次電池の用途は、本開示の二次電池を駆動用・作動用の電源又は電力蓄積用の電力貯蔵源として利用可能な機械、機器、器具、装置、システム(複数の機器等の集合体)であれば、特に限定されない。電源として使用される二次電池(具体的には、リチウムイオン電池)は、主電源(優先的に使用される電源)であってもよいし、補助電源(主電源に代えて、又は、主電源から切り換えて使用される電源)であってもよい。リチウムイオン電池を補助電源として使用する場合、主電源はリチウムイオン電池に限られない。
本開示の二次電池(具体的には、リチウムイオン電池)の用途として、具体的には、ビデオカメラやカムコーダ、デジタルスチルカメラ、携帯電話機、パーソナルコンピュータ、テレビジョン受像機、各種表示装置、コードレス電話機、ヘッドホンステレオ、音楽プレーヤ、携帯用ラジオ、電子ブックや電子新聞等の電子ペーパー、PDA(Personal Digital Assistant)を含む携帯用情報端末といった各種電子機器、電気機器(携帯用電子機器を含む);玩具;電気シェーバ等の携帯用生活器具;室内灯等の照明器具;ペースメーカや補聴器等の医療用電子機器;メモリーカード等の記憶用装置;着脱可能な電源としてパーソナルコンピュータ等に用いられる電池パック;電動ドリルや電動鋸等の電動工具;非常時等に備えて電力を蓄積しておく家庭用バッテリシステム等の電力貯蔵システムやホームエネルギーサーバ(家庭用蓄電装置);蓄電ユニットやバックアップ電源;電動自動車、電動バイク、電動自転車、セグウェイ(登録商標)等の電動車両;航空機や船舶の電力駆動力変換装置(具体的には、例えば、動力用モータ)の駆動を例示することができるが、これらの用途に限定するものではない。
中でも、本開示の二次電池(具体的には、リチウムイオン電池)は、電池パック、電動車両、電力貯蔵システム、電動工具、電子機器、電気機器等に適用されることが有効である。優れた電池特性が要求されるため、本開示のリチウムイオン電池を用いることで、有効に性能向上を図ることができる。電池パックは、リチウムイオン電池を用いた電源であり、所謂組電池等である。電動車両は、リチウムイオン電池を駆動用電源として作動(走行)する車両であり、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車等)であってもよい。電力貯蔵システムは、リチウムイオン電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源であるリチウムイオン電池に電力が蓄積されているため、電力を利用して家庭用の電気製品等が使用可能となる。電動工具は、リチウムイオン電池を駆動用の電源として可動部(例えばドリル等)が可動する工具である。電子機器や電気機器は、リチウムイオン電池を作動用の電源(電力供給源)として各種機能を発揮する機器である。
以下、リチウムイオン電池の幾つかの適用例について具体的に説明する。尚、以下で説明する各適用例の構成は、あくまで一例であり、構成は適宜変更可能である。
単電池を用いた電池パックを分解した模式的な斜視図を図7に示し、電池パック(単電池)の構成を表すブロック図を図8Aに示す。電池パックは、1つのリチウムイオン電池を用いた簡易型の電池パック(所謂ソフトパック)であり、例えば、スマートフォンに代表される電子機器等に搭載される。電池パックは、実施例1〜実施例2(図示した例では、実施例2)のリチウムイオン電池から成る電源301、及び、電源301に接続された回路基板305を備えている。電源301には、正極リード部23及び負極リード部25が取り付けられている。
電源301の両側面には、一対の粘着テープ307が貼り付けられている。回路基板305には、保護回路(PCM:Protection Circuit Module)が設けられている。回路基板305は、タブ304Aを介して正極リード部23に接続され、タブ304Bを介して負極リード部25に接続されている。また、回路基板305には、外部接続用のコネクタ付きリード線306が接続されている。回路基板305が電源301に接続された状態において、回路基板305は、ラベル308及び絶縁シート309によって上下から保護されている。ラベル308を貼り付けることで、回路基板305及び絶縁シート309は固定される。回路基板305は、制御部41、スイッチ部42、PTC素子43、温度検出部44、及び、温度検出素子44Aを備えている。電源301は、正極端子45A及び負極端子45Bを介して外部と接続可能であり、充放電される。電源301は、正極端子45A及び負極端子45Bを介して充放電される。温度検出部44は、温度検出素子44Aを介して温度を検出可能である。
電池パック全体の動作(電源301の使用状態を含む)を制御する制御部41には、中央演算処理装置(CPU)及びメモリ等が備えられている。制御部41は、電池電圧が過充電検出電圧に到達すると、スイッチ部42を切断することで、電源301の電流経路に充電電流が流れないようにする。また、制御部41は、充電時において大電流が流れると、スイッチ部42を切断し、充電電流を遮断する。その他、制御部41は、電池電圧が過放電検出電圧に到達すると、スイッチ部42を切断することで、電源301の電流経路に放電電流が流れないようにする。また、制御部41は、放電時において大電流が流れると、スイッチ部42を切断し、放電電流を遮断する。
リチウムイオン電池の過充電検出電圧は、例えば、4.20ボルト±0.05ボルトであり、過放電検出電圧は、例えば、2.4ボルト±0.1ボルトである。
スイッチ部42は、制御部41の指示に応じて、電源301の使用状態(電源301と外部機器との接続の可否)を切り換える。スイッチ部42には、充電制御スイッチ及び放電制御スイッチ等が備えられている。充電制御スイッチ及び放電制御スイッチは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)等の半導体スイッチから成る。充放電電流は、例えば、スイッチ部42のオン抵抗に基づいて検出される。サーミスタ等の温度検出素子44Aを備えた温度検出部44は、電源301の温度を測定し、測定結果を制御部41に出力する。温度検出部44の測定結果は、異常発熱時における制御部41による充放電制御、制御部41による残容量算出時における補正処理等に用いられる。回路基板305にはPTC素子43が備えられていなくともよく、この場合、別途、回路基板305にPTC素子を配設すればよい。
次に、図8Aに示したとは別の電池パック(組電池)の構成を表すブロック図を図8Bに示す。この電池パックは、例えば、プラスチック材料等から作製された筐体50の内部に、制御部51、メモリ52、電圧検出部53、電流測定部54、電流検出抵抗器54A、温度検出部55、温度検出素子55A、スイッチ制御部56、スイッチ部57、電源58、正極端子59A、及び、負極端子59Bを備えている。
制御部51は、電池パック全体の動作(電源58の使用状態を含む)を制御し、例えば、CPU等を備えている。電源58は、例えば、実施例1〜実施例2において説明した2以上のリチウムイオン電池(図示せず)を含む組電池であり、リチウムイオン電池の接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源58は、2並列3直列となるように接続された6つのリチウムイオン電池を備えている。
スイッチ部57は、制御部51の指示に応じて電源58の使用状態(電源58と外部機器との接続の可否)を切り換える。スイッチ部57には、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオード及び放電用ダイオード(いずれも図示せず)が備えられている。充電制御スイッチ及び放電制御スイッチは、例えば、MOSFET等の半導体スイッチから成る。
電流測定部54は、電流検出抵抗器54Aを用いて電流を測定し、測定結果を制御部51に出力する。温度検出部55は、温度検出素子55Aを用いて温度を測定し、測定結果を制御部51に出力する。温度測定結果は、例えば、異常発熱時における制御部51による充放電制御、制御部51による残容量算出時における補正処理等に用いられる。電圧検出部53は、電源58中におけるリチウムイオン電池の電圧を測定し、測定電圧をアナログ−デジタル変換して制御部51に供給する。
スイッチ制御部56は、電流測定部54及び電圧検出部53から入力される信号に応じて、スイッチ部57の動作を制御する。スイッチ制御部56は、例えば、電池電圧が過充電検出電圧に到達した場合に、スイッチ部57(充電制御スイッチ)を切断して、電源58の電流経路に充電電流が流れないように制御する。これによって、電源58では、放電用ダイオードを介した放電のみが可能になる。また、スイッチ制御部56は、例えば、充電時に大電流が流れた場合に、充電電流を遮断する。更には、スイッチ制御部56は、例えば、電池電圧が過放電検出電圧に到達した場合に、スイッチ部57(放電制御スイッチ)を切断して、電源58の電流経路に放電電流が流れないようにする。これによって、電源58では、充電用ダイオードを介した充電のみが可能になる。また、スイッチ制御部56は、例えば、放電時に大電流が流れた場合に、放電電流を遮断する。
リチウムイオン電池の過充電検出電圧は、例えば、4.20ボルト±0.05ボルトであり、過放電検出電圧は、例えば、2.4ボルト±0.1ボルトである。
メモリ52は、例えば、不揮発性メモリであるEEPROM等から成る。メモリ52には、例えば、制御部51によって演算された数値や、製造工程段階で測定されたリチウムイオン電池の情報(例えば、初期状態の内部抵抗等)等が記憶されている。メモリ52にリチウムイオン電池の満充電容量を記憶させておけば、制御部51が残容量等の情報を把握することが可能となる。サーミスタ等から成る温度検出素子55Aは、電源58の温度を測定し、測定結果を制御部51に出力する。正極端子59A及び負極端子59Bは、電池パックによって作動させられる外部機器(例えばパーソナルコンピュータ等)や、電池パックを充電するために用いられる外部機器等(例えば充電器等)に接続される端子である。電源58の充放電は、正極端子59A及び負極端子59Bを介して行われる。
次に、電動車両の一例であるハイブリッド自動車といった電動車両の構成を表すブロック図を図9Aに示す。電動車両は、例えば、金属製の筐体60の内部に、制御部61、各種センサ62、電源63、エンジン71、発電機72、インバータ73,74、駆動用のモータ75、差動装置76、トランスミッション77及びクラッチ78を備えている。その他、電動車両は、例えば、差動装置76や、トランスミッション77に接続された前輪用駆動軸81、前輪82、後輪用駆動軸83、後輪84を備えている。
電動車両は、例えば、エンジン71又はモータ75のいずれか一方を駆動源として走行可能である。エンジン71は、主要な動力源であり、例えば、ガソリンエンジン等である。エンジン71を動力源とする場合、エンジン71の駆動力(回転力)は、例えば、駆動部である差動装置76、トランスミッション77及びクラッチ78を介して前輪82又は後輪84に伝達される。エンジン71の回転力は発電機72にも伝達され、回転力を利用して発電機72が交流電力を発生させ、交流電力はインバータ74を介して直流電力に変換され、電源63に蓄積される。一方、変換部であるモータ75を動力源とする場合、電源63から供給された電力(直流電力)がインバータ73を介して交流電力に変換され、交流電力を利用してモータ75を駆動する。モータ75によって電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置76、トランスミッション77及びクラッチ78を介して前輪82又は後輪84に伝達される。
図示しない制動機構を介して電動車両が減速すると、減速時の抵抗力がモータ75に回転力として伝達され、その回転力を利用してモータ75が交流電力を発生させるようにしてもよい。交流電力はインバータ73を介して直流電力に変換され、直流回生電力は電源63に蓄積される。
制御部61は、電動車両全体の動作を制御するものであり、例えば、CPU等を備えている。電源63は、実施例1〜実施例2において説明した1又は2以上のリチウムイオン電池(図示せず)を備えている。電源63は、外部電源と接続され、外部電源から電力供給を受けることで電力を蓄積する構成とすることもできる。各種センサ62は、例えば、エンジン71の回転数を制御すると共に、図示しないスロットルバルブの開度(スロットル開度)を制御するために用いられる。各種センサ62は、例えば、速度センサ、加速度センサ、エンジン回転数センサ等を備えている。
尚、電動車両がハイブリッド自動車である場合について説明したが、電動車両は、エンジン71を用いずに電源63及びモータ75だけを用いて作動する車両(電気自動車)でもよい。
次に、電力貯蔵システムの構成を表すブロック図を図9Bに示す。電力貯蔵システムは、例えば、一般住宅及び商業用ビル等の家屋90の内部に、制御部91、電源92、スマートメータ93、及び、パワーハブ94を備えている。
電源92は、例えば、家屋90の内部に設置された電気機器(電子機器)95に接続されていると共に、家屋90の外部に停車している電動車両97に接続可能である。また、電源92は、例えば、家屋90に設置された自家発電機96にパワーハブ94を介して接続されていると共に、スマートメータ93及びパワーハブ94を介して外部の集中型電力系統98に接続可能である。電気機器(電子機器)95は、例えば、1又は2以上の家電製品を含んでいる。家電製品として、例えば、冷蔵庫、エアコンディショナー、テレビジョン受像機、給湯器等を挙げることができる。自家発電機96は、例えば、太陽光発電機や風力発電機等から構成されている。電動車両97として、例えば、電動自動車、ハイブリッド自動車、電動オートバイ、電動自転車、セグウェイ(登録商標)等を挙げることができる。集中型電力系統98として、商用電源、発電装置、送電網、スマートグリッド(次世代送電網)を挙げることができるし、また、例えば、火力発電所、原子力発電所、水力発電所、風力発電所等を挙げることもできるし、集中型電力系統98に備えられた発電装置として、種々の太陽電池、燃料電池、風力発電装置、マイクロ水力発電装置、地熱発電装置等を例示することができるが、これらに限定するものではない。
制御部91は、電力貯蔵システム全体の動作(電源92の使用状態を含む)を制御するものであり、例えば、CPU等を備えている。電源92は、実施例1〜実施例2において説明した1又は2以上のリチウムイオン電池(図示せず)を備えている。スマートメータ93は、例えば、電力需要側の家屋90に設置されるネットワーク対応型の電力計であり、電力供給側と通信可能である。そして、スマートメータ93は、例えば、外部と通信しながら、家屋90における需要・供給のバランスを制御することで、効率的で安定したエネルギー供給が可能となる。
この電力貯蔵システムでは、例えば、外部電源である集中型電力系統98からスマートメータ93及びパワーハブ94を介して電源92に電力が蓄積されると共に、独立電源である自家発電機96からパワーハブ94を介して電源92に電力が蓄積される。電源92に蓄積された電力は、制御部91の指示に応じて電気機器(電子機器)95及び電動車両97に供給されるため、電気機器(電子機器)95の作動が可能になると共に、電動車両97が充電可能になる。即ち、電力貯蔵システムは、電源92を用いて、家屋90内における電力の蓄積及び供給を可能にするシステムである。
電源92に蓄積された電力は、任意に利用可能である。そのため、例えば、電気料金が安価な深夜に集中型電力系統98から電源92に電力を蓄積しておき、電源92に蓄積しておいた電力を電気料金が高い日中に用いることができる。
以上に説明した電力貯蔵システムは、1戸(1世帯)毎に設置されていてもよいし、複数戸(複数世帯)毎に設置されていてもよい。
次に、電動工具の構成を表すブロック図を図9Cに示す。電動工具は、例えば、電動ドリルであり、プラスチック材料等から作製された工具本体100の内部に、制御部101及び電源102を備えている。工具本体100には、例えば、可動部であるドリル部103が回動可能に取り付けられている。制御部101は、電動工具全体の動作(電源102の使用状態を含む)を制御するものであり、例えば、CPU等を備えている。電源102は、実施例1〜実施例2において説明した1又は2以上のリチウムイオン電池(図示せず)を備えている。制御部101は、図示しない動作スイッチの操作に応じて、電源102からドリル部103に電力を供給する。
以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定するものではなく、種々の変形が可能である。実施例において説明したリチウムイオン電池の構成、構造は例示であり、適宜、変更することができる。積層電極体は、捲回された状態の他、スタックされた状態であってもよい。また、二次電池はリチウムイオン電池に限定されるものではない。
以下、前述したリチウムイオン電池を構成する正極部材、負極部材、非水系電解液等について、詳述する。
正極活物質を構成する好ましい材料であるリチウム含有複合酸化物、リチウム含有リン酸化合物の詳細は、以下のとおりである。尚、リチウム含有複合酸化物やリチウム含有リン酸化合物を構成する他元素として、特に限定されないが、長周期型周期表における2族〜15族に属する元素のいずれか1種類又は2種類以上を挙げることができ、高い電圧が得られるといった観点からは、ニッケル〈Ni〉、コバルト〈Co〉、マンガン〈Mn〉、鉄〈Fe〉を用いることが好ましい。
層状岩塩型の結晶構造を有するリチウム含有複合酸化物として、具体的には、式(B)、式(C)、式(D)で表される化合物を例示することができる。
LiaMn1-b-cNib11 c2-de (B)
ここで、M11は、コバルト〈Co〉、マグネシウム〈Mg〉、アルミニウム〈Al〉、ホウ素〈B〉、チタン〈Ti〉、バナジウム〈V〉、クロム〈Cr〉、鉄〈Fe〉、銅〈Cu〉、亜鉛〈Zn〉、ジルコニウム〈Zr〉、モリブデン〈Mo〉、スズ〈Sn〉、カルシウム〈Ca〉、ストロンチウム〈Sr〉及びタングステン〈W〉から成る群から選択された少なくとも1種類の元素であり、a,b,c,d,eの値は、
0.8≦a≦1.2
0<b<0.5
0≦c≦0.5
b+c<1
−0.1≦d≦0.2
0≦e≦0.1
を満足する。但し、組成は充放電状態に応じて異なり、aは完全放電状態の値である。
LiaNi1-b12 b2-cd (C)
ここで、M12は、コバルト〈Co〉、マンガン〈Mn〉、マグネシウム〈Mg〉、アルミニウム〈Al〉、ホウ素〈B〉、チタン〈Ti〉、バナジウム〈V〉、クロム〈Cr〉、鉄〈Fe〉、銅〈Cu〉、亜鉛〈Zn〉、モリブデン〈Mo〉、スズ〈Sn〉、カルシウム〈Ca〉、ストロンチウム〈Sr〉及びタングステン〈W〉から成る群から選択された少なくとも1種類の元素であり、a,b,c,dの値は、
0.8 ≦a≦1.2
0.005≦b≦0.5
−0.1 ≦c≦0.2
0≦d≦0.1
を満足する。但し、組成は充放電状態に応じて異なり、aは完全放電状態の値である。
LiaCo1-b13 b2-cd (D)
ここで、M13は、ニッケル〈Ni〉、マンガン〈Mn〉、マグネシウム〈Mg〉、アルミニウム〈Al〉、ホウ素〈B〉、チタン〈Ti〉、バナジウム〈V〉、クロム〈Cr〉、鉄〈Fe〉、銅〈Cu〉、亜鉛〈Zn〉、モリブデン〈Mo〉、スズ〈Sn〉、カルシウム〈Ca〉、ストロンチウム〈Sr〉及びタングステン〈W〉から成る群から選択された少なくとも1種類の元素であり、a,b,c,dの値は、
0.8≦a≦1.2
0≦b<0.5
−0.1≦c≦0.2
0≦d≦0.1
を満足する。但し、組成は充放電状態に応じて異なり、aは完全放電状態の値である。
層状岩塩型の結晶構造を有するリチウム含有複合酸化物として、具体的には、LiNiO2、LiCoO2、LiCo0.98Al0.01Mg0.012、LiNi0.5Co0.2Mn0.32、LiNi0.8Co0.15Al0.052、LiNi0.33Co0.33Mn0.332、Li1.2Mn0.52Co0.175Ni0.12、Li1.15(Mn0.65Ni0.22Co0.13)O2を例示することができる。
また、スピネル型の結晶構造を有するリチウム含有複合酸化物として、式(E)で表される化合物を例示することができる。
LiaMn2-b14 bcd (E)
ここで、M14は、コバルト〈Co〉、ニッケル〈Ni〉、マグネシウム〈Mg〉、アルミニウム〈Al〉、ホウ素〈B〉、チタン〈Ti〉、バナジウム〈V〉、クロム〈Cr〉、鉄〈Fe〉、銅〈Cu〉、亜鉛〈Zn〉、モリブデン〈Mo〉、スズ〈Sn〉、カルシウム〈Ca〉、ストロンチウム〈Sr〉及びタングステン〈W〉から成る群から選択された少なくとも1種類の元素であり、a,b,c,dの値は、
0.9≦a≦1.1
0≦b≦0.6
3.7≦c≦4.1
0≦d≦0.1
を満足する。但し、組成は充放電状態に応じて異なり、aは完全放電状態の値である。スピネル型の結晶構造を有するリチウム含有複合酸化物として、具体的には、LiMn24を例示することができる。
更には、オリビン型の結晶構造を有するリチウム含有リン酸化合物として、式(F)で表される化合物を例示することができる。
Lia15PO4 (F)
ここで、M15は、コバルト〈Co〉、マンガン〈Mn〉、鉄〈Fe〉、ニッケル〈Ni〉、マグネシウム〈Mg〉、アルミニウム〈Al〉、ホウ素〈B〉、チタン〈Ti〉、バナジウム〈V〉、ニオブ〈Nb〉、銅〈Cu〉、亜鉛〈Zn〉、モリブデン〈Mo〉、カルシウム〈Ca〉、ストロンチウム〈Sr〉、タングステン〈W〉及びジルコニウム〈Zr〉から成る群から選択された少なくとも1種類の元素であり、aの値は、
0.9≦a≦1.1
を満足する。但し、組成は充放電状態に応じて異なり、aは完全放電状態の値である。オリビン型の結晶構造を有するリチウム含有リン酸化合物として、具体的には、LiFePO4、LiMnPO4、LiFe0.5Mn0.5PO4、LiFe0.3Mn0.7PO4を例示することができる。
あるいは又、リチウム含有複合酸化物として、式(G)で表される化合物を例示することができる。
(Li2MnO3x(LiMnO21-x (G)
ここで、xの値は、
0≦x≦1
を満足する。但し、組成は充放電状態に応じて異なり、xは完全放電状態の値である。
あるいは又、リチウムを含有しない金属硫化物あるいは金属酸化物として、TiS2、MoS2、NbSe2、V25等を挙げることができる。
正極活物質層には、その他、例えば、酸化チタン、酸化バナジウム、二酸化マンガンといった酸化物;二硫化チタン、硫化モリブデンといった二硫化物;セレン化ニオブといったカルコゲン化物;硫黄、ポリアニリン、ポリチオフェンといった導電性高分子が含まれていてもよい。
正極部材及び負極部材における結着剤として、具体的には、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンといった合成ゴム;ポリフッ化ビニリデン、ポリフッ化ビニル、ポリイミド、ポリテトラフルオロエチレン等のフッ素系樹脂といった高分子材料等を例示することができる。また、正極部材及び負極部材における導電剤として、例えば、黒鉛、カーボンブラック、グラファイト、アセチレンブラック、ケッチェンブラックといった炭素材料を例示することができるが、導電性を有する材料であれば、金属材料、導電性高分子等とすることもできる。
負極部材を構成する材料の詳細は、以下のとおりである。
負極活物質層を構成する材料として、例えば、炭素材料を挙げることができる。炭素材料は、リチウムの吸蔵・放出時における結晶構造の変化が非常に少ないため、高いエネルギー密度が安定して得られる。また、炭素材料は負極導電剤としても機能するため、負極活物質層の導電性が向上する。炭素材料として、例えば、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、黒鉛(グラファイト)、結晶構造が発達した高結晶性炭素材料を挙げることができる。但し、難黒鉛化性炭素における(002)面の面間隔は0.37nm以上であることが好ましいし、黒鉛における(002)面の面間隔は0.34nm以下であることが好ましい。より具体的には、炭素材料として、例えば、熱分解炭素類;ピッチコークス、ニードルコークス、石油コークスといったコークス類;黒鉛類;ガラス状炭素繊維;フェノール樹脂、フラン樹脂等の高分子化合物を適当な温度で焼成(炭素化)することで得ることができる有機高分子化合物焼成体;炭素繊維;活性炭;カーボンブラック類;ポリアセチレン等のポリマー等を挙げることができる。また、炭素材料として、その他、約1000゜C以下の温度で熱処理された低結晶性炭素を挙げることもできるし、非晶質炭素とすることもできる。炭素材料の形状は、繊維状、球状、粒状、鱗片状のいずれであってもよい。
あるいは又、負極活物質層を構成する材料として、例えば、金属元素、半金属元素のいずれかを、1種類又は2種類以上、構成元素として含む材料(以下、『金属系材料』と呼ぶ)を挙げることができ、これによって、高いエネルギー密度を得ることができる。金属系材料は、単体、合金、化合物のいずれであってもよいし、これらの2種類以上から構成された材料でもよいし、これらの1種類又は2種類以上の相を少なくとも一部に有する材料であってもよい。合金には、2種類以上の金属元素から成る材料の他、1種類以上の金属元素と1種類以上の半金属元素とを含む材料も含まれる。また、合金は、非金属元素を含んでいてもよい。金属系材料の組織として、例えば、固溶体、共晶(共融混合物)、金属間化合物、及び、これらの2種類以上の共存物を挙げることができる。
金属元素、半金属元素として、例えば、リチウムと合金を形成可能である金属元素、半金属元素を挙げることができる。具体的には、例えば、マグネシウム〈Mg〉、ホウ素〈B〉、アルミニウム〈Al〉、ガリウム〈Ga〉、インジウム〈In〉、ケイ素〈Si〉、ゲルマニウム〈Ge〉、スズ〈Sn〉、鉛〈Pb〉、アンチモン〈Sb〉、ビスマス〈Bi〉、カドミウム〈Cd〉、銀〈Ag〉、亜鉛〈Zn〉、ハフニウム〈Hf〉、ジルコニウム〈Zr〉、イットリウム〈Y〉、パラジウム〈Pd〉、白金〈Pt〉を例示することができるが、中でも、ケイ素〈Si〉やスズ〈Sn〉が、リチウムを吸蔵・放出する能力が優れており、著しく高いエネルギー密度が得られるといった観点から、好ましい。
ケイ素を構成元素として含む材料として、ケイ素の単体、ケイ素合金、ケイ素化合物を挙げることができるし、これらの2種類以上から構成された材料であってもよいし、これらの1種類又は2種類以上の相を少なくとも一部に有する材料であってもよい。スズを構成元素として含む材料として、スズの単体、スズ合金、スズ化合物を挙げることができるし、これらの2種類以上から構成された材料であってもよいし、これらの1種類又は2種類以上の相を少なくとも一部に有する材料であってもよい。単体とは、あくまで一般的な意味合いでの単体を意味しており、微量の不純物を含んでいてもよく、必ずしも純度100%を意味しているわけではない。
ケイ素合金あるいはケイ素化合物を構成するケイ素以外の元素として、スズ〈Sn〉、ニッケル〈Ni〉、銅〈Cu〉、鉄〈Fe〉、コバルト〈Co〉、マンガン〈Mn〉、亜鉛〈Zn〉、インジウム〈In〉、銀〈Ag〉、チタン〈Ti〉、ゲルマニウム〈Ge〉、ビスマス〈Bi〉、アンチモン〈Sb〉、クロム〈Cr〉を挙げることができるし、炭素〈C〉、酸素〈O〉を挙げることもできる。ケイ素合金あるいはケイ素化合物として、具体的には、SiB4、SiB6、Mg2Si、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2、SiC、Si34、Si22O、SiOv(0<v≦2、好ましくは、0.2<v<1.4)、LiSiOを例示することができる。
スズ合金あるいはスズ化合物を構成するスズ以外の元素として、ケイ素〈Si〉、ニッケル〈Ni〉、銅〈Cu〉、鉄〈Fe〉、コバルト〈Co〉、マンガン〈Mn〉、亜鉛〈Zn〉、インジウム〈In〉、銀〈Ag〉、チタン〈Ti〉、ゲルマニウム〈Ge〉、ビスマス〈Bi〉、アンチモン〈Sb〉、クロム〈Cr〉を挙げることができるし、炭素〈C〉、酸素〈O〉を挙げることもできる。スズ合金あるいはスズ化合物として、具体的には、SnOw(0<w≦2)、SnSiO3、LiSnO、Mg2Snを例示することができる。特に、スズを構成元素として含む材料は、例えば、スズ(第1構成元素)と共に第2構成元素及び第3構成元素を含む材料(以下、『Sn含有材料』と呼ぶ)であることが好ましい。第2構成元素として、例えば、コバルト〈Co〉、鉄〈Fe〉、マグネシウム〈Mg〉、チタン〈Ti〉、バナジウム〈V〉、クロム〈Cr〉、マンガン〈Mn〉、ニッケル〈Ni〉、銅〈Cu〉、亜鉛〈Zn〉、ガリウム〈Ga〉、ジルコニウム〈Zr〉、ニオブ〈Nb〉、モリブデン〈Mo〉、銀〈Ag〉、インジウム〈In〉、セシウム〈Ce〉、ハフニウム〈Hf〉、タンタル〈Ta〉、タングステン〈W〉、ビスマス〈Bi〉、ケイ素〈Si〉を挙げることができるし、第3構成元素として、例えば、ホウ素〈B〉、炭素〈C〉、アルミニウム〈Al〉、リン〈P〉を挙げることができる。Sn含有材料が第2構成元素及び第3構成元素を含んでいると、高い電池容量及び優れたサイクル特性等が得られる。
中でも、Sn含有材料は、スズ〈Sn〉、コバルト〈Co〉及び炭素〈C〉を構成元素として含む材料(『SnCoC含有材料』と呼ぶ)であることが好ましい。SnCoC含有材料にあっては、例えば、炭素の含有量が9.9質量%乃至29.7質量%、スズ及びコバルトの含有量の割合{Co/(Sn+Co)}が20質量%乃至70質量%である。高いエネルギー密度が得られるからである。SnCoC含有材料は、スズ、コバルト及び炭素を含む相を有しており、その相は、低結晶性又は非晶質であることが好ましい。この相は、リチウムと反応可能な反応相であるため、その反応相の存在により優れた特性が得られる。この反応相のX線回折により得られる回折ピークの半値幅(回折角2θ)は、特定X線としてCuKα線を用い、挿引速度を1度/分とした場合、1度以上であることが好ましい。リチウムがより円滑に吸蔵・放出されると共に、有機電解液や非水系電解液との反応性が低減するからである。SnCoC含有材料は、低結晶性又は非晶質の相に加えて、各構成元素の単体又は一部が含まれている相を含んでいる場合もある。
X線回折により得られた回折ピークがリチウムと反応可能な反応相に対応するものであるか否かは、リチウムとの電気化学的反応の前後におけるX線回折チャートを比較すれば容易に判断することができる。例えば、リチウムとの電気化学的反応の前後において回折ピークの位置が変化すれば、リチウムと反応可能な反応相に対応するものである。この場合、例えば、低結晶性又は非晶質の反応相の回折ピークが2θ=20度乃至50度の間に見られる。このような反応相は、例えば、上記の各構成元素を含んでおり、主に、炭素の存在に起因して低結晶化又は非晶質化しているものと考えられる。
SnCoC含有材料では、構成元素である炭素の少なくとも一部が金属元素又は半金属元素と結合していることが好ましい。スズ等の凝集、結晶化が抑制されるからである。元素の結合状態に関しては、例えば、軟X線源としてAl−Kα線又はMg−Kα線等を用いたX線光電子分光法(XPS)を用いて確認可能である。炭素の少なくとも一部が金属元素又は半金属元素等と結合している場合、炭素の1s軌道(C1s)の合成波のピークが284.5eVよりも低い領域に現れる。尚、金原子の4f軌道(Au4f)のピークが84.0eVに得られるように、エネルギー較正されているものとする。この際、通常、物質表面に表面汚染炭素が存在しているため、表面汚染炭素のC1sのピークを284.8eVとして、そのピークをエネルギー基準とする。XPS測定において、C1sのピークの波形は、表面汚染炭素のピークとSnCoC含有材料中の炭素のピークとを含んだ形で得られる。そのため、例えば、市販のソフトウエアを用いて解析して、両者のピークを分離すればよい。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
SnCoC含有材料は、構成元素がスズ、コバルト及び炭素だけである材料(SnCoC)に限られない。SnCoC含有材料は、例えば、スズ、コバルト及び炭素に加えて、ケイ素〈Si〉、鉄〈Fe〉、ニッケル〈Ni〉、クロム〈Cr〉、インジウム〈In〉、ニオブ〈Nb〉、ゲルマニウム〈Ge〉、チタン〈Ti〉、モリブデン〈Mo〉、アルミニウム〈Al〉、リン〈P〉、ガリウム〈Ga〉、ビスマス〈Bi〉等のいずれか1種類又は2種類以上を構成元素として含んでいてもよい。
SnCoC含有材料の他、スズ、コバルト、鉄及び炭素を構成元素として含む材料(以下、『SnCoFeC含有材料』と呼ぶ)も好ましい材料である。SnCoFeC含有材料の組成は任意である。一例を挙げると、鉄の含有量を少なめに設定する場合、炭素の含有量が9.9質量%乃至29.7質量%、鉄の含有量が0.3質量%乃至5.9質量%、スズ及びコバルトの含有量の割合{Co/(Sn+Co)}が30質量%乃至70質量%である。また、鉄の含有量を多めに設定する場合、炭素の含有量が11.9質量%乃至29.7質量%、スズ、コバルト及び鉄の含有量の割合{(Co+Fe)/(Sn+Co+Fe)}が26.4質量%乃至48.5質量%、コバルト及び鉄の含有量の割合{Co/(Co+Fe)}が9.9質量%乃至79.5質量%である。このような組成範囲において、高いエネルギー密度が得られるからである。SnCoFeC含有材料の物性(半値幅等)は、上記のSnCoC含有材料の物性と同様である。
その他、負極活物質層を構成する材料として、例えば、酸化鉄、酸化ルテニウム、酸化モリブデンといった金属酸化物;ポリアセチレン、ポリアニリン、ポリピロールといった高分子化合物を挙げることができる。
中でも、負極活物質層を構成する材料は、以下の理由により、炭素材料及び金属系材料の双方を含んでいることが好ましい。即ち、金属系材料、特に、ケイ素及びスズの少なくとも一方を構成元素として含む材料は、理論容量が高いという利点を有する反面、充放電時において激しく膨張・収縮し易い。一方、炭素材料は、理論容量が低い反面、充放電時において膨張・収縮し難いという利点を有する。よって、炭素材料及び金属系材料の双方を用いることで、高い理論容量(云い換えれば、電池容量)を得つつ、充放電時の膨張・収縮が抑制される。
前述したように、リチウムイオン電池における使用に適した非水系電解液として、限定するものではないが、
式(1)で表される化合物、
式(2−A)で表される化合物及び式(2−B)で表される化合物の少なくとも一方の化合物、並びに、
式(3−A)乃至式(3−F)で表される化合物の少なくとも1種類の化合物、
を含む非水系電解液を挙げることができる。尚、非水系電解液中における式(1)で表される化合物の含有量は、2.5モル/リットル乃至6モル/リットル、好ましくは3モル/リットル乃至6モル/リットルであることが望ましい。
+[(Z11)(Z22)N]- (1)
但し、Mは金属元素であり、Z1及びZ2のそれぞれは、フッ素基〈−F〉、1価の炭化水素基、1価のフッ素化炭化水素基のいずれかであり、Z1及びZ2の少なくとも一方は、フッ素基〈−F〉、1価のフッ素化炭化水素基のいずれかであり、Y1及びY2のそれぞれは、スルホニル基〈−S(=O)2−〉、カルボニル基〈−C(=O)−〉のいずれかである。
1−CN (2−A)
2−X−CN (2−B)
但し、R1は1価の炭化水素基であり、R2は1価の炭化水素基であり、Xは、1又は2以上のエーテル結合〈−O−〉と1又は2以上の2価の炭化水素基とが任意の順に結合した基である。
Figure 2017043178
Figure 2017043178
22−(CN)n (3−F)
ここで、式(3−A)中、R3及びR4のそれぞれは、水素基〈−H〉、1価の炭化水素基のいずれかである。また、式(3−B)中、R5,R6,R7,R8のそれぞれは、水素基、1価の飽和炭化水素基、1価の不飽和炭化水素基のいずれかであり、R5,R6,R7,R8の少なくとも1つは、1価の不飽和炭化水素基である。更には、式(3−C)中、R9は、>CR1011で表される基であり、R10及びR11のそれぞれは、水素基、1価の炭化水素基のいずれかである。また、式(3−D)中、R12,R13,R14,R15のそれぞれは、水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基のいずれかであり、R12,R13,R14,R15の少なくとも1つは、ハロゲン基、1価のハロゲン化炭化水素基のいずれかである。更には、式(3−E)中、R16,R17,R18,R19,R20,R21のそれぞれは、水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基のいずれかであり、R16,R17,R18,R19,R20,R21の少なくとも1つは、ハロゲン基、1価のハロゲン化炭化水素基のいずれかである。また、式(3−F)中、R22はn価(但し、nは2以上の整数)の炭化水素基である。尚、「>C」、「C<」は、炭素原子から2本の接合手が延びていることを表している。
具体的には、上記の非水系電解液は、スルホニルイミド型の構造を有する第1化合物と、アセトニトリル型の構造を有する第2化合物と、不飽和炭化水素基等の反応性基を有する第3化合物とを含んでいる。ここで、非水系電解液がこのような組成を有しているのは、以下の利点が得られるからである。即ち、非水系電解液が第1化合物、第2化合物及び第3化合物を一緒に含んでいると共に、非水系電解液中における第1化合物の含有量が上記の範囲(2.5モル/リットル乃至6モル/リットル)内であると、第1化合物と第2化合物と第3化合物との相乗作用により、非水系電解液の化学的安定性が特異的に向上し、充放電時における非水系電解液の分解反応が抑制される。よって、充放電を繰り返しても放電容量が減少し難くなり、リチウムイオン電池の電池特性を向上させることができる。特に、ここで説明する特異的な相乗作用が得られるかどうかは、第1化合物の含有量に依存する。そのため、特異的な相乗作用は、第1化合物の含有量が上記の範囲内である場合においてだけ得られる。
第1化合物は、式(1)で表される化合物の1種類又は2種類以上を含んでいる。第1化合物は、カチオン(M+)とアニオン([(Z11)(Z22)N]-)とを含む塩であるため、リチウムイオン電池において電解質塩の一部として機能し得る。
式(1)における「M」は、金属元素であれば特に限定されず、アルカリ金属元素、アルカリ土類金属元素を例示することができるが、中でも、「M」は、アルカリ金属元素であることが好ましく、これによって、高いエネルギー密度を得ることができる。アルカリ金属元素として、リチウム〈Li〉、ナトリウム〈Na〉、カリウム〈K〉、ルビジウム〈Rb〉、セシウム〈Cs〉等を挙げることができるが、中でも、リチウム〈Li〉が好ましい。アルカリ金属元素は、電極反応物質を構成するアルカリ金属元素と同じであることが好ましく、これによって、高いエネルギー密度を得ることができる。電極反応物質とは、電極反応に拘わる物質であり、例えば、リチウムイオン電池ではリチウムである。このため、リチウムイオン電池に用いられる場合、「M」はリチウムであることが好ましい。
1及びZ2は、同じ基であってもよいし、異なる基であってもよい。Z1、Z2における1価の炭化水素基とは、炭素〈C〉及び水素〈H〉から構成される1価の基の総称であり、直鎖状であってもよいし、1又は2以上の側鎖を有する分岐状であってもよい。また、1価の飽和炭化水素基は、不飽和結合を含んでいない飽和炭化水素基であってもよいし、1又は2以上の不飽和結合を含んでいる不飽和炭化水素基であってもよい。不飽和結合とは、炭素間二重結合(>C=C<)及び炭素間三重結合(−C≡C−)の一方、又は、双方である。
1価の炭化水素基として、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、及び、これらの2種類以上が1価となるように結合した基を挙げることができる。云い換えれば、1価の飽和炭化水素基は、例えば、アルキル基、シクロアルキル基、及び、これらの2種類以上が1価となるように結合した基である。1価の不飽和炭化水素基は、例えば、アルケニル基、アルキニル基、アリール基、これらの1種類以上を含む基、及び、これらの2種類以上が1価となるように結合した基である。1価の炭化水素基における2種類以上が結合した基として、アルキル基とアルケニル基とが結合した基、アルキル基とアルキニル基とが結合した基、アルケニル基とアルキニル基とが結合した基、アルキル基とシクロアルキル基とが結合した基、アルキル基とアリール基とが結合した基を例示することができる。1価の飽和炭化水素基における2種類以上が結合した基として、アルキル基とシクロアルキル基とが結合した基を例示することができる。1価の不飽和炭化水素基における2種類以上が結合した基として、アルキル基とアルケニル基とが結合した基、アルキル基とアルケニル基とが結合した基を例示することができる。
アルキル基として、具体的には、メチル基〈−CH3〉、エチル基〈−C25〉、プロピル基〈−C37〉、n−ブチル基〈−C48〉、t−ブチル基〈−C(CH32−CH3〉を例示することができる。アルケニル基として、具体的には、ビニル基〈−CH=CH2〉、アリル基〈−CH2−CH=CH2〉を例示することができる。アルキニル基として、具体的には、エチニル基〈−C≡CH〉を例示することができる。シクロアルキル基として、具体的には、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基を例示することができる。アリール基として、具体的には、フェニル基、ナフチル基を例示することができる。2種類以上が結合した基として、具体的には、メチル基とエチニル基とが結合した基、ビニル基とエチニル基とが結合した基、メチル基とシクロプロピル基とが結合した基、メチル基とフェニル基とが結合した基を例示することができる。
1価のフッ素化炭化水素基とは、上記の1価の炭化水素基において、1又は2以上の水素基〈−H〉がフッ素基〈−F〉によって置換された基である。1価のフッ素化炭化水素基として、具体的には、フッ素化アルキル基、フッ素化アルケニル基、フッ素化アルキニル基、フッ素化シクロアルキル基、フッ素化アリール基、これらの2種類以上が1価となるように結合した基を例示することができる。
フッ素化アルキル基として、具体的には、フルオロメチル基〈−CH2F〉、ジフルオロメチル基〈−CHF2〉、パーフルオロメチル基〈−CF3〉、パーフルオロエチル基〈−C25〉、パーフルオロプロピル基〈−C37〉、n−パーフルオロブチル基〈−C48〉、t−パーフルオロブチル基〈−C(CF32−CF3〉を例示することができる。フッ素化アルケニル基として、具体的には、パーフルオロビニル基〈−CF=CF2〉、パーフルオロアリル基〈−CF2−CF=CF2〉を例示することができる。フッ素化アルキニル基として、具体的には、パーフルオロエチニル基〈−F≡CF〉を例示することができる。フッ素化シクロアルキル基として、具体的には、パーフルオロシクロプロピル基、パーフルオロシクロブチル基、パーフルオロシクロペンチル基、パーフルオロシクロヘキシル基、パーフルオロシクロヘプチル基、パーフルオロシクロオクチル基を例示することができる。フッ素化アリール基として、具体的には、パーフルオロフェニル基、パーフルオロナフチル基を例示することができる。中でも、フッ素化アルキル基、フッ素化アルケニル基、フッ素化アルキニル基、フッ素化シクロアルキル基、フッ素化アリール基は、パーフルオロ基であることが好ましく、パーフルオロアルキル基がより好ましい。容易に合成可能であると共に、後述する相乗作用が得られ易いからである。
1価の炭化水素基及び1価のフッ素化炭化水素基の炭素数は特に限定されないが、極端に多すぎないことが好ましい。第1化合物の溶解性及び相溶性等が向上するからである。具体的には、フッ素化アルキル基の炭素数は、1乃至4であることが好ましい。フッ素化アルケニル基及びフッ素化アルキニル基の炭素数は、2乃至4であることが好ましい。フッ素化シクロアルキル基及びフッ素化アリール基の炭素数は、6乃至12であることが好ましい。
式(1)において、Z1及びZ2の一方、又は、双方は、フッ素基〈−F〉、1価のフッ素化炭化水素基のいずれかである。容易に合成可能であると共に、後述する相乗作用が得られ易いからである。これに伴い、Z1及びZ2の一方が1価の炭化水素基である場合、他方はフッ素基〈−F〉、1価のフッ素化炭化水素基のいずれかである。即ち、Z1及びZ2の双方が1価の炭化水素基とはならない。
式(1)において、Y1及びY2のそれぞれは、スルホニル基、カルボニル基のいずれかであれば特に限定されない。Y1及びY2は、同じ基であってもよいし、異なる基であってもよい。
第1化合物として、具体的には、ビスフルオロスルホニルイミドリチウム〈LiN(FSO22〉、ビストリフルオロメチルスルホニルイミドリチウム〈LiN(CF3SO22〉、フルオロスルホニルトリフルオロメチルスルホニルイミドリチウム〈LiN(FSO2)(CF3SO2)〉、フルオロスルホニルペンタフルオロエチルスルホニルイミドリチウム〈LiN(FSO2)(C25SO2)〉、フルオロスルホニルノナフルオロブチルスルホニルイミドリチウム〈LiN(FSO2)(C49SO2)〉、フルオロスルホニルフェニルスルホニルイミドリチウム〈LiN(FSO2)(C65SO2)〉、フルオロスルホニルペンタフルオロフェニルスルホニルイミドリチウム〈LiN(FSO2)(C65SO2)〉、フルオロスルホニルビニルスルホニルイミドリチウム〈LiN(FSO2)(C23SO2)〉を例示することができる。
上述した第2化合物は、式(2−A)及び式(2−B)で表される化合物のいずれか一方、又は、双方を含んでいる。但し、第2化合物は、式(2−A)に示した化合物の2種類以上を含んでいてもよいし、式(2−B)に示した化合物の2種類以上を含んでいてもよい。
式(2−A)に示した化合物は、エーテル結合を含んでいないモノニトリル化合物(非酸素含有モノニトリル化合物)である。R1は、1価の炭化水素基であれば特に限定されない。1価の炭化水素基に関する詳細は、上記のとおりである。非酸素含有モノニトリル化合物として、具体的には、アセトニトリル〈CH3CN〉、プロピオニトリル〈C37CN〉、ブチロニトリル〈C49CN〉を例示することができる。
式(2−B)に示した化合物は、エーテル結合を含んでいるモノニトリル化合物(酸素含有モノニトリル化合物)である。R2は、1価の炭化水素基であれば特に限定されない。1価の炭化水素基に関する詳細は、上記のとおりである。式(2−B)中の「X」において、2価の炭化水素基とは、炭素及び水素から構成される2価の基の総称であり、直鎖状であってもよいし、1又は2以上の側鎖を有する分岐状であってもよい。2価の炭化水素基として、具体的には、アルキレン基、アルケニレン基、アルキニレン基、シクロアルキレン基、アリーレン基、及び、これらの2種類以上が2価となるように結合した基を例示することができる。2種類以上が結合した基として、具体的には、アルキレン基とアルケニレン基とが結合した基、アルキル基とアルキニレン基とが結合した基、アルケニレン基とアルキニレン基とが結合した基、アルキレン基とシクロアルキレン基とが結合した基、アルキレン基とアリーレン基とが結合した基を例示することができる。
アルキレン基として,具体的には、メチレン基〈−CH2−〉、エチレン基〈−C24−〉、プロピレン基〈−C36−〉、n−ブチレン基〈−C48−〉、t−ブチレン基〈−C(CH32−CH2−〉を例示することができる。アルケニレン基として、具体的には、ビニレン基〈−CH=CH−〉、アリレン基〈−CH2−CH=CH−〉を例示することができる。アルキニレン基として、具体的には、エチニレン基〈−C≡C−〉を例示することができる。シクロアルキレン基として、具体的には、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基、シクロオクチレン基を例示することができる。アリーレン基として、具体的には、フェニレン基、ナフチレン基を例示することができる。2種類以上が結合した基として、具体的には、メチレン基とエチニレン基とが結合した基、ビニレン基とエチニレン基とが結合した基、メチレン基とシクロプロピレン基とが結合した基、メチレン基とフェニレン基とが結合した基を例示することができる。
2価の炭化水素基の炭素数は特に限定されないが、極端に多すぎないことが好ましい。第2化合物の溶解性及び相溶性等が向上するからである。具体的には、アルキレン基の炭素数は、1乃至4であることが好ましい。アルケニレン基及びアルキニレン基の炭素数は、2乃至4であることが好ましい。シクロアルキレン基及びアリーレン基の炭素数は、6乃至12であることが好ましい。
「X」は、1又は2以上のエーテル結合、及び、1又は2以上の2価の炭化水素基が任意の順に結合した基であれば特に限定されない。即ち、「X」中に含まれるエーテル結合の数は、1であってもよいし、2以上であってもよい。同様に、「X」中に含まれる2価の炭化水素基の数は、1であってもよいし、2以上であってもよい。2価の炭化水素基の数が2以上である場合、2以上の2価の炭化水素基は、同じ基であってもよいし、異なる基であってもよい。2以上の2価の炭化水素基の一部が同じ基であってもよい。エーテル結合と2価の炭化水素基とが結合される順序は任意でよいため、エーテル結合同士が結合されてもよいし、2価の炭化水素基同士が結合されてもよいし、エーテル結合と2価の炭化水素基とが結合されてもよい。
中でも、「X」は、−O−Y−(Yは、2価の炭化水素基である)で表される基であることが好ましい。容易に合成可能であると共に、後述する相乗作用が得られ易いからである。2価の炭化水素基に関する詳細は、上記のとおりである。但し、ここで説明したX(即ち、−O−Y−)では、エーテル結合(−O−)がR2に結合されると共に、Yがシアノ基〈−CN〉に結合される。「X」として、具体的には、−O−CH2−、−CH2−O−、−O−CH2−O−、−O−C25−を例示することができる。
酸素含有モノニトリル化合物の具体例として、メトキシアセトニトリル〈CH3−O−CH2−CN〉、エトキシアセトニトリル〈C25−O−CH2−CN〉、プロポキシアセトニトリル〈C37−O−CH2−CN〉を例示することができる。
非水系電解液中における第2化合物の含有量は特に限定されないが、例えば、20質量%乃至100質量%であることが好ましい。後述する相乗作用が得られ易いからである。第2化合物が非酸素含有モノニトリル化合物及び酸素含有モノニトリル化合物の双方を含む場合、上記の第2化合物の含有量は、非酸素含有モノニトリル化合物の含有量と酸素含有モノニトリル化合物の含有量との総和である。このように含有量が総和を意味することは、以降においても同様である。
上述した第3化合物は、不飽和環状炭酸エステル、ハロゲン化環状炭酸エステル、ポリニトリル化合物のいずれかを、1種類又は2種類以上、含んでいる。但し、第3化合物は、2種類以上の不飽和環状炭酸エステルを含んでいてもよい。このように2種類以上を含んでいてもよいことは、ハロゲン化環状炭酸エステル及びポリニトリル化合物に関しても同様である。
不飽和環状炭酸エステルは、式(3−A)、式(3−B)、式(3−C)に示した化合物のいずれかを、1種類又は2種類以上、含んでいる。ここで、不飽和環状炭酸エステルとは、1又は2以上の不飽和結合(炭素間二重結合)を含む環状炭酸エステルである。
式(3−A)に示した化合物は、炭酸ビニレン系化合物である。R3及びR4のそれぞれは、水素基、1価の炭化水素基のいずれかであれば特に限定されない。1価の炭化水素基に関する詳細は、上記のとおりである。R3及びR4は、同じ基であってもよいし、異なる基であってもよい。
炭酸ビニレン系化合物の具体例として、炭酸ビニレン(1,3−ジオキソール−2−オン)、炭酸メチルビニレン(4−メチル−1,3−ジオキソール−2−オン)、炭酸エチルビニレン(4−エチル−1,3−ジオキソール−2−オン)、4,5−ジメチル−1,3−ジオキソール−2−オン、4,5−ジエチル−1,3−ジオキソール−2−オン、4−フルオロ−1,3−ジオキソール−2−オン、4−トリフルオロメチル−1,3−ジオキソール−2−オンを例示することができるが、中でも、容易に合成可能であるといった観点から、炭酸ビニレンが好ましい。
式(3−B)に示した化合物は、炭酸ビニルエチレン系化合物である。R5,R6,R7,R8のそれぞれは、水素基、1価の飽和炭化水素基、1価の不飽和炭化水素基のいずれかであれば特に限定されない。1価の飽和炭化水素基及び1価の不飽和炭化水素基に関する詳細は、上記のとおりである。但し、R5,R6,R7,R8の1又は2以上は、1価の不飽和炭化水素基である。炭酸ビニルエチレン系化合物は、1又は2以上の不飽和結合(炭素間二重結合)を含んでいなければならないからである。R5,R6,R7,R8は、同じ基であってもよいし、異なる基であってもよい。R5,R6,R7,R8の一部が同じ基であってもよい。
炭酸ビニルエチレン系化合物として、具体的には、炭酸ビニルエチレン(4−ビニル−1,3−ジオキソラン−2−オン)、4−メチル−4−ビニル−1,3−ジオキソラン−2−オン、4−エチル−4−ビニル−1,3−ジオキソラン−2−オン、4−n−プロピル−4−ビニル−1,3−ジオキソラン−2−オン、5−メチル−4−ビニル−1,3−ジオキソラン−2−オン、4,4−ジビニル−1,3−ジオキソラン−2−オン、4,5−ジビニル−1,3−ジオキソラン−2−オンを例示することができるが、中でも、容易に合成可能であるといった観点から、炭酸ビニルエチレンが好ましい。
式(3−C)に示した化合物は、炭酸メチレンエチレン系化合物である。R9は、>CR1011で表される基であれば特に限定されない。1価の炭化水素基に関する詳細は、上記のとおりである。R10及びR11は、同じ基であってもよいし、異なる基であってもよい。
炭酸メチレンエチレン系化合物として、具体的には、炭酸メチレンエチレン(4−メチレン−1,3−ジオキソラン−2−オン)、4,4−ジメチル−5−メチレン−1,3−ジオキソラン−2−オン、4,4−ジエチル−5−メチレン−1,3−ジオキソラン−2−オンを例示することができる。
その他、不飽和環状炭酸エステルは、2つのメチレン基を含む化合物であってもよいし、ベンゼン環を含む炭酸カテコール(カテコールカーボネート)等であってもよい。2つのメチレン基を含む化合物とは、式(3−C)において、>C=R9の代わりに>C=CH2を含むと共に、>CH2の代わりに>C=CH2を含む化合物である。
非水系電解液中における不飽和環状炭酸エステルの含有量は特に限定されないが、例えば、不飽和環状炭酸エステルを除いた全体の合計に対して0.01質量%乃至20質量%であることが好ましい。
ハロゲン化環状炭酸エステルは、式(3−D)及び式(3−E)に示した化合物のいずれかを、1種類又は2種類以上、含んでいる。ハロゲン化炭酸エステルとは、1又は2以上のハロゲン基を有する炭酸エステルである。
式(3−D)に示した化合物は、ハロゲン化環状炭酸エステルである。R12〜R15は、水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基のいずれかであれば特に限定されない。1価の炭化水素基に関する詳細は、上記のとおりである。但し、R12〜R15の1又は2以上は、ハロゲン基、1価のハロゲン化炭化水素基のいずれかである。ハロゲン化環状炭酸エステルは、1又は2以上のハロゲン基を含んでいなければならないからである。R12〜R15は、同じ基であってもよいし、異なる基であってもよい。R12〜R15の一部が同じ基であってもよい。
1価のハロゲン化炭化水素基とは、上記の1価の炭化水素基において、1又は2以上の水素基がハロゲン基によって置換された基である。ハロゲン基は特に限定されないが、例えば、フッ素基〈−F〉、塩素基〈−Cl〉、臭素基〈−Br〉、ヨウ素基〈−I〉等のいずれかであり、中でも、フッ素基〈−F〉が好ましい。容易に合成可能であると共に、後述する相乗作用が得られ易いからである。ハロゲン基の数は、1よりも2が好ましく、更には、3以上であってもよい。より高い効果が得られるからである。
1価のハロゲン化炭化水素基として、具体的には、ハロゲン化アルキル基、ハロゲン化アルケニル基、ハロゲン化アルキニル基、ハロゲン化シクロアルキル基、ハロゲン化アリール基、これらの2種類以上が1価となるように結合した基を例示することができる。
ハロゲン化アルキル基の内、フッ素化アルキル基、フッ素化アルケニル基、フッ素化アルキニル基、フッ素化シクロアルキル基、フッ素化アリール基の具体例は、上記のとおりである。塩素化アルキル基、臭素化アルキル基、ヨウ素化アルキル基の具体例は、上記のフッ素化アルキル基の具体例の内のフッ素基を、塩素基、臭素基、ヨウ素基に変更した化合物である。このように、フッ素基を、塩素基、臭素基、ヨウ素基に変更することは、塩素化アルケニル基、塩素化アルキニル基、塩素化シクロアルキル基、塩素化アリール基、臭素化アルケニル基、臭素化アルキニル基、臭素化シクロアルキル基、臭素化アリール基、ヨウ素化アルケニル基、ヨウ素化アルキニル基、ヨウ素化シクロアルキル基、ヨウ素化アリール基に関しても同様である。
ハロゲン化環状炭酸エステルの具体例として、4−フルオロ−1,3−ジオキソラン−2−オン、4−クロロ−1,3−ジオキソラン−2−オン、4,5−ジフルオロ−1,3−ジオキソラン−2−オン、テトラフルオロ−1,3−ジオキソラン−2−オン、4−クロロ−5−フルオロ−1,3−ジオキソラン−2−オン、4,5−ジクロロ−1,3−オキソラン−2−オン、テトラクロロ−1,3−ジオキソラン−2−オン、4,5−ビストリフルオロメチル−1,3−ジオキソラン−2−オン、4−トリフルオロメチル−1,3−ジオキソラン−2−オン、4,5−ジフルオロ−4,5−ジメチル−1,3−ジオキソラン−2−オン、4,4−ジフルオロ−5−メチル−1,3−ジオキソラン−2−オン、4−エチル−5,5−ジフルオロ−1,3−ジオキソラン−2−オン、4−フルオロ−5−トリフルオロメチル−1,3−ジオキソラン−2−オン、4−メチル−5−トリフルオロメチル−1,3−ジオキソラン−2−オン、4−フルオロ−4,5−ジメチル−1,3−ジオキソラン−2−オン、5−1,1−ジフルオロエチル−4,4−ジフルオロ−1,3−ジオキソラン−2−オン、4,5−ジクロロ−4,5−ジメチル−1,3−ジオキソラン−2−オン、4−エチル−5−フルオロ−1,3−ジオキソラン−2−オン、4−エチル−4,5−ジフルオロ−1,3−ジオキソラン−2−オン、4−エチル−4,5,5−トリフルオロ−1,3−ジオキソラン−2−オン、4−フルオロ−4−メチル−1,3−ジオキソラン−2−オンを例示することができる。ここで説明するハロゲン化環状炭酸エステルの具体例には、異性体(シス異性体及びトランス異性体)が含まれる。
式(3−E)に示した化合物は、ハロゲン化鎖状炭酸エステルである。R16〜R21は、水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基のいずれかであれば特に限定されない。1価の炭化水素基及び1価のハロゲン化炭化水素基に関する詳細は、上記のとおりである。但し、上記のハロゲン化環状炭酸エステルと同様の理由により、R16〜R21の1又は2以上は、ハロゲン基、1価のハロゲン化炭化水素基のいずれかである。R16〜R21は、同じ基であってもよいし、異なる基であってもよい。R16〜R21の一部が同じ基であってもよい。ハロゲン化鎖状炭酸エステルとして、具体的には、炭酸フルオロメチルメチル、炭酸ビスフルオロメチル、炭酸ジフルオロメチルメチルを例示することができる。非水系電解液中におけるハロゲン化環状炭酸エステルの含有量は特に限定されないが、例えば、ハロゲン化環状炭酸エステルを除いた全体の合計に対して0.01質量%乃至20質量%であることが好ましい。
ポリニトリル化合物は、式(3−F)に示した化合物のいずれかを、1種類又は2種類以上、含んでいる。ポリニトリル化合物は、2以上のニトリル基を含む化合物であり、上記の第2化合物は、ここで説明するポリニトリル化合物に含まれない。第2化合物は、2以上のニトリル基を含んでいないからである。
22は、n価の炭化水素基であれば特に限定されない。一例を挙げると、R22の炭素数が1である場合、2価の炭化水素基として−CH2−、3価の炭化水素基として>CH−等を挙げることができる。同様に、R22の炭素数が2である場合、2価の炭化水素基として−CH2−CH2−、3価の炭化水素基として>CH−CH2−等を挙げることができる。中でも、R22は、2価の炭化水素基であることが好ましい。シアノ基〈−CN〉の数が2になるため、後述する相乗作用が得られ易いからである。2価の炭化水素基に関する詳細は、上記のとおりである。
ポリニトリル化合物として、具体的には、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、フタロニトリル、テトラシアノキノジメタンを例示することができる。非水系電解液中におけるポリニトリル化合物の含有量は特に限定されないが、例えば、ポリニトリル化合物を除いた全体の合計に対して0.01質量%乃至10質量%であることが好ましい。
非水系電解液は、上記の第1化合物、第2化合物及び第3化合物に加えて、他の材料の1種類又は2種類以上を含んでいてもよい。他の材料として、具体的には、スルホン酸エステル、酸無水物、環状カルボン酸エステル(ラクトン)、ジアルキルスルホキシド、鎖状ジ炭酸エステル(下記の式(10)参照)、芳香族炭酸エステル(下記の式(11)参照)、環状炭酸エステル(下記の式(12)参照)、鎖状モノ炭酸エステル(下記の式(13)参照)、鎖状カルボン酸エステル(下記の式(14)参照)、リン酸エステル(下記の式(15)参照)、モノフルオロリン酸リチウム〈Li2PO3F〉、ジフルオロリン酸リチウム〈LiPO22〉のいずれか1種類又は2種類以上を例示することができる。
Figure 2017043178
ここで、R23及びR24のそれぞれは、1価の炭化水素基、1価のハロゲン化炭化水素基のいずれかであり、R25は、2価の炭化水素基、2価のハロゲン化炭化水素基のいずれかである。また、R26,R27,R28,R29,R30,R31,R32,R33,R34,R35のそれぞれは、1価の炭化水素基、1価の酸素含有炭化水素基、1価の窒素含有炭化水素基、1価のハロゲン化炭化水素基、1価のハロゲン化酸素含有炭化水素基、1価のハロゲン化窒素含有炭化水素基、これらの2種類以上が1価となるように結合した基のいずれかである。更には、R36,R37,R38,R39のそれぞれは、水素基、1価の炭化水素基のいずれかである。また、R40及びR41のそれぞれは、水素基、1価の炭化水素基のいずれかである。更には、R42及びR43のそれぞれは、水素基、1価の炭化水素基のいずれかである。また、R44,R45,R46のそれぞれは、1価の炭化水素基、1価のハロゲン化炭化水素基のいずれかである。
スルホン酸エステルとして、具体的には、モノスルホン酸エステル、ジスルホン酸エステルを例示することができる。非水系電解液中におけるスルホン酸エステルの含有量は特に限定されないが、例えば、スルホン酸エステルを除いた全体の合計に対して0.01質量%乃至10質量%であることが好ましい。
モノスルホン酸エステルは、環状モノスルホン酸エステルであってもよいし、鎖状モノスルホン酸エステルであってもよい。環状モノスルホン酸エステルとして、具体的には、プロパンスルトン、プロペンスルトン等のスルトンを例示することができる。鎖状モノスルホン酸エステルとして、具体的には、環状モノスルホン酸エステルが途中で切断された構造を有する化合物を例示することができる。一例を挙げると、プロパンスルトンが途中で切断された化合物として、CH3−CH2−CH2−SO3−CH3を例示することができる。−SO3−(−S(=O)2−O−)の向きは特に限定されない。即ち、上記のCH3−CH2−CH2−SO3−CH3は、CH3−CH2−CH2−S(=O)2−O−CH3であってもよいし、CH3−CH2−CH2−O−S(=O)2−CH3であってもよい。
ジスルホン酸エステルは、環状ジスルホン酸エステルであってもよいし、鎖状ジスルホン酸エステルであってもよい。環状ジスルホン酸エステルとして、具体的には、式(16−1)、式(16−2)、式(16−3)で表される化合物を例示することができる。鎖状ジスルホン酸エステルは、環状ジスルホン酸エステルが途中で切断された化合物である。式(16−2)に示した化合物が途中で切断された化合物として、具体的には、CH3−SO3−CH2−CH2−SO3−CH3を例示することができる。2つの−SO3−(−S(=O)2−O−)の向きは特に限定されない。即ち、上記のCH3−SO3−CH2−CH2−SO3−CH3は、CH3−S(=O)2−O−CH2−CH2−S(=O)2−O−CH3でもよいし、CH3−O−S(=O)2−CH2−CH2−S(=O)2−O−CH3でもよいし、CH3−S(=O)2−O−CH2−CH2−O−S(=O)2−CH3でもよい。
Figure 2017043178
酸無水物として、具体的には、安息香酸無水物、コハク酸無水物、グルタル酸無水物、マレイン酸無水物といったカルボン酸無水物;エタンジスルホン酸無水物、プロパンジスルホン酸無水物といったジスルホン酸無水物;スルホ安息香酸無水物、スルホプロピオン酸無水物、スルホ酪酸無水物といったカルボン酸スルホン酸無水物を例示することができる。非水系電解液中における酸無水物の含有量は特に限定されないが、例えば、酸無水物を除いた全体の合計に対して0.01質量%乃至10質量%であることが好ましい。
環状カルボン酸エステルとして、具体的には、γ−ブチロラクトン、γ−バレロラクトンを例示することができる。非水系電解液中における環状カルボン酸エステルの含有量は特に限定されないが、例えば、環状カルボン酸エステルを除いた全体の合計に対して0.01質量%乃至10質量%であることが好ましい。
ジアルキルスルホキシドとして、具体的には、ジメチルスルホキシド〈(CH32SO〉、ジエチルスルホキシド〈(C252SO〉を例示することができる。非水系電解液中におけるジアルキルスルホキシドの含有量は特に限定されないが、例えば、ジアルキルスルホキシドを除いた全体の合計に対して0.01質量%乃至10質量%であることが好ましい。
鎖状ジ炭酸エステルは、上記の式(10)で表される化合物のいずれか1種類又は2種類以上の化合物である。R23及びR24は、1価の炭化水素基、1価のハロゲン化炭化水素基のいずれかであれば特に限定されない。R23及びR24は、同じ基であってもよいし、異なる基であってもよい。R25は、2価の炭化水素基、2価のハロゲン化炭化水素基のいずれかであれば特に限定されない。1価の炭化水素基及び1価のハロゲン化炭化水素基に関する詳細は、上記のとおりである。2価のハロゲン化炭化水素基とは、2価の炭化水素基の1又は2以上の水素基がハロゲン基によって置換された基である。2価の炭化水素基及びハロゲン基に関する詳細は、上記のとおりである。2価のハロゲン化炭化水素基として、具体的には、パーフルオロメチレン基〈−CF2−〉、パーフルオロエチレン基〈−C24−〉、パーフルオロプロピレン基〈−C36−〉、n−パーフルオロブチレン基〈−C48−〉、t−パーフルオロブチレン基〈−C(CF32−CF2−〉を例示することができる。鎖状ジ炭酸エステルとして、具体的には、エタン−1,2−ジイルジメチルジカーボネート、エタン−1,2−ジイルエチルメチルジカーボネート、エタン−1,2−ジイルジエチルジカーボネート、ジメチルオキシビスエタン−2,1−ジイルジカーボネート、エチルメチルオキシビスエタン−2,1−ジイルジカーボネート、ジエチルオキシビスエタン−2,1−ジイルジカーボネートを例示することができる。非水系電解液中における鎖状ジ炭酸エステルの含有量は特に限定されないが、鎖状ジ炭酸エステルを除いた全体の合計に対して例えば、0.01質量%乃至10質量%であることが好ましい。
芳香族炭酸エステルは、上記の式(11)で表される化合物のいずれか1種類又は2種類以上の化合物である。R26〜R35は、1価の炭化水素基、1価の酸素含有炭化水素基、1価の窒素含有炭化水素基、1価のハロゲン化炭化水素基、1価のハロゲン化酸素含有炭化水素基、1価のハロゲン化窒素含有炭化水素基、これらの2種類以上が1価となるように結合した基のいずれかであれば特に限定されない。R26〜R35は、同じ基であってもよいし、異なる基であってもよい。R26〜R35の一部が同じ基であってもよい。1価の炭化水素基及び1価のハロゲン化炭化水素基に関する詳細は、上記のとおりである。
1価の酸素含有炭化水素基とは、炭素、水素及び酸素から構成される1価の基の総称であり、直鎖状であってもよいし、1又は2以上の側鎖を有する分岐状であってもよい。1価の酸素含有炭化水素基として、具体的には、アルコキシ基を例示することができ、アルコキシ基として、具体的には、メトキシ基〈−OCH3〉、エトキシ基〈−OC25〉、プロポキシ基〈−OC37〉を例示することができる。
1価の窒素含有炭化水素基とは、炭素、水素及び窒素から構成される1価の基の総称であり、直鎖状であってもよいし、1又は2以上の側鎖を有する分岐状であってもよい。1価の窒素含有炭化水素基として、具体的には、アミノ基〈−NH2〉を例示することができる。
1価のハロゲン化酸素含有炭化水素基とは、1価の酸素含有炭化水素基の1又は2以上の水素基がハロゲン基によって置換された基である。1価の酸素含有炭化水素基及びハロゲン基に関する詳細は、上記のとおりである。1価のハロゲン化酸素含有炭化水素基として、具体的には、パーフルオロメトキシ基〈−OCF3−〉、パーフルオロエトキシ基〈−OC24−〉を例示することができる。
1価のハロゲン化窒素含有炭化水素基とは、1価の窒素含有炭化水素基の1又は2以上の水素基がハロゲン基によって置換された基である。1価の窒素含有炭化水素基及びハロゲン基に関する詳細は、上記のとおりである。1価のハロゲン化窒素含有炭化水素基として、具体的には、パーフルオロアミノ基〈−NF2〉、パーフルオロメチルアミノ基〈−CF2−NF2〉を例示することができる。
2種類以上が結合した基として、具体的には、アルキル基とアルコキシ基とが1価となるように結合した基(アルキルアルコキシ基)、アルキル基とアミノ基とが1価となるように結合した基(アルキルアミノ基)を例示することができる。アルキルアルコキシ基として、具体的には、メチルメトキシ基〈−CH2−OCH3〉を例示することができる。アルキルアミノ基として、具体的には、メチルアミノ基〈−CH2−NH2〉を例示することができる。
芳香族炭酸エステルとして、具体的には、炭酸ジフェニル、炭酸ビス4−メチルフェニル、炭酸ビスペンタフルオロフェニルを例示することができる。
非水系電解液中における芳香族炭酸エステルの含有量は特に限定されないが、例えば、芳香族炭酸エステルを除いた全体の合計に対して0.01質量%乃至10質量%であることが好ましい。
環状炭酸エステルは、上記の式(12)で表される化合物のいずれか1種類又は2種類以上の化合物である。R36〜R39は、水素基、1価の炭化水素基のいずれかであれば特に限定されない。R36〜R39は、同じ基であってもよいし、異なる基であってもよい。R36〜R39の一部が同じ基であってもよい。1価の炭化水素基に関する詳細は、上記のとおりである。環状炭酸エステルとして、具体的には、炭酸エチレン、炭酸プロピレン、炭酸ブチレンを例示することができる。非水系電解液中における環状炭酸エステルの含有量は特に限定されないが、例えば、0.01質量%乃至80質量%であることが好ましい。
鎖状モノ炭酸エステルは、上記の式(13)で表される化合物のいずれか1種類又は2種類以上の化合物である。R40及びR41は、水素基、1価の炭化水素基のいずれかであれば特に限定されない。R40及びR41は、同じ基であってもよいし、異なる基であってもよい。R40及びR41の一部が同じ基であってもよい。1価の炭化水素基に関する詳細は、上記のとおりである。鎖状モノ炭酸エステルとして、具体的には、炭酸ジメチル、炭酸ジエチル、炭酸メチルエチル、炭酸メチルプロピルを例示することができる。非水系電解液中における鎖状モノ炭酸エステルの含有量は特に限定されないが、例えば、0.01質量%乃至70質量%であることが好ましい。
鎖状カルボン酸エステルは、上記の式(14)で表される化合物のいずれか1種類又は2種類以上の化合物である。R42及びR43は、水素基、1価の炭化水素基のいずれかであれば特に限定されない。R42及びR43は、同じ基であってもよいし、異なる基であってもよい。1価の炭化水素基に関する詳細は、上記のとおりである。鎖状カルボン酸エステルとして、具体的には、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチルを例示することができる。非水系電解液中における鎖状カルボン酸エステルの含有量は特に限定されないが、例えば、鎖状カルボン酸エステルを除いた全体の合計に対して0.01質量%乃至50質量%であることが好ましい。
リン酸エステルは、上記の式(15)で表される化合物のいずれか1種類又は2種類以上の化合物である。R44〜R46は、1価の炭化水素基、1価のハロゲン化炭化水素基のいずれかであれば特に限定されない。R44〜R46は、同じ基であってもよいし、異なる基であってもよい。R44〜R46の一部が同じ基であってもよい。1価の炭化水素基及び1価のハロゲン化炭化水素基に関する詳細は、上記のとおりである。リン酸エステルとして、具体的には、リン酸リメチル、リン酸トリエチル、リン酸トリフルオロエチル、リン酸トリプロピルを例示することができる。非水系電解液中におけるリン酸エステルの含有量は特に限定されないが、例えば、リン酸エステルを除いた全体の合計に対して0.01質量%乃至50質量%であることが好ましい。
更には、他の材料として、非水系溶媒(有機溶剤)等の溶媒のいずれか1種類又は2種類以上を挙げることができる。但し、上記のスルホン酸エステル等の他の材料は、ここで説明する非水系溶媒から除かれる。
また、他の材料として、例えば、リチウム塩等の電解質塩のいずれか1種類又は2種類以上を例示することができる。但し、電解質塩は、例えば、リチウム塩以外の塩を含んでいてもよい。リチウム塩以外の塩とは、例えば、リチウム塩以外の軽金属塩等である。
以下では、電解質塩の具体例としてリチウム塩を例に挙げながら説明するが、リチウム塩をリチウム塩以外の塩に変更してもよい。即ち、例えば、以下に説明する六フッ化リン酸リチウムを、六フッ化リン酸ナトリウムや六フッ化リン酸カリウム等の他の軽金属塩に変更してもよい。
リチウム塩として、具体的には、前述した各種のリチウム塩を例示することができ、内部抵抗の低下を図ることができる。中でも、六フッ化リン酸リチウム〈LiPF6〉、四フッ化ホウ酸リチウム〈LiBF4〉、LiB(C654、LiCl、LiBr、過塩素酸リチウム〈LiClO4〉、六フッ化ヒ酸リチウム〈LiAsF6〉、CH3SO3Li、CF3SO3Li、N(CnF2n+1SO22Liのいずれか1種類又は2種類以上が好ましい。内部抵抗がより低下するからである。特に、六フッ化リン酸リチウム〈LiPF6〉、四フッ化ホウ酸リチウム〈LiBF4〉が一層好ましく、六フッ化リン酸リチウム〈LiPF6〉がより一層好ましい。
電解質塩は、式(17)、式(18)、式(19)で表される化合物のいずれか1種類又は2種類以上であってもよい。R51及びR53は、同じ基であってもよいし、異なる基であってもよい。このことは、R61,R62,R63に関しても同様であるし、R71及びR72に関しても同様である。R61,R62,R63の内の2つが同じ基であってもよい。
Figure 2017043178
ここで、X51は、長周期型周期表における1族元素、2族元素、Alのいずれかである。M51は、遷移金属、並びに、長周期型周期表における13族元素、14族元素、15族元素のいずれかである。R51はハロゲン基である。また、Y51は、−C(=O)−R52−C(=O)−、−C(=O)−CR53 2−、−C(=O)−C(=O)−のいずれかである。但し、R52は、アルキレン基、ハロゲン化アルキレン基、アリーレン基、ハロゲン化アリーレン基のいずれかであり、R53は、アルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基のいずれかである。また、a5は1乃至4の整数であり、b5は0、2、4のいずれかであり、c5、d5、m5、n5は1乃至3の整数である。
Figure 2017043178
ここで、X61は、長周期型周期表における1族元素、2族元素のいずれかである。M61は、遷移金属、並びに、長周期型周期表における13族元素、14族元素、15族元素のいずれかである。Y61は、−C(=O)−(CR61 2b6−C(=O)−、−R63 2C−(CR62 2c6−C(=O)−、−R63 2C−(CR62 2c6−CR63 2−、−R63 2C−(CR62 2c6−S(=O)2−、−S(=O)2−(CR62 2d6−S(=O)2−、−C(=O)−(CR62 2d6−S(=O)2−のいずれかである。但し、R61及びR63のそれぞれは、水素基、アルキル基、ハロゲン基、ハロゲン化アルキル基のいずれかである。但し、R61は、ハロゲン基、ハロゲン化アルキル基のいずれかであり、R63は、ハロゲン基、ハロゲン化アルキル基のいずれかである。R62は、水素基、アルキル基、ハロゲン基、ハロゲン化アルキル基のいずれかである。また、a6、e6、n6は1又は2の整数であり、b6、d6は1乃至4の整数であり、c6は0乃至4の整数であり、f6、m6は1乃至3の整数である。
Figure 2017043178
ここで、X71は、長周期型周期表における1族元素、2族元素のいずれかである。M71は、遷移金属、並びに、長周期型周期表における13族元素、14族元素、15族元素のいずれかである。Rfは、フッ素化アルキル基、フッ素化アリール基のいずれかであり、フッ素化アルキル基、フッ素化アリール基の炭素数は、1乃至10である。Y71は、−C(=O)−(CR71 2d7−C(=O)−、−R72 2C−(CR71 2d7−C(=O)−、−R72 2C−(CR71 2d7−CR72 2−、−R72 2C−(CR71 2d7−S(=O)2−、−S(=O)2−(CR71 2e7−S(=O)2−、−C(=O)−(CR71 2e7−S(=O)2−のいずれかである。但し、R71は、水素基、アルキル基、ハロゲン基、ハロゲン化アルキル基のいずれかであり、R72は、水素基、アルキル基、ハロゲン基、ハロゲン化アルキル基のいずれかであり、R72は、ハロゲン基、ハロゲン化アルキル基のいずれかである。また、a7、f7、n7は1又は2の整数であり、b7、c7、e7は1乃至4の整数であり、d7は0乃至4の整数であり、g7、m7は1乃至3の整数である。
1族元素とは、水素〈H〉、リチウム〈Li〉、ナトリウム〈Na〉、カリウム〈K〉、ルビジウム〈Rb〉、セシウム〈Cs〉、フランシウム〈Fr〉である。2族元素とは、ベリリウム〈Be〉、マグネシウム〈Mg〉、カルシウム〈Ca〉、ストロンチウム〈Sr〉、バリウム〈Ba〉、ラジウム〈Ra〉である。13族元素とは、ホウ素〈B〉、アルミニウム〈Al〉、ガリウム〈Ga〉、インジウム〈In〉、タリウム〈Tl〉である。14族元素とは、炭素〈C〉、ケイ素〈Si〉、ゲルマニウム〈Ge〉、スズ〈Sn〉、鉛〈Pb〉である。15族元素とは、窒素〈N〉、リン〈P〉、ヒ素〈As〉、アンチモン〈Sb〉、ビスマス〈Bi〉である。
式(17)に示した化合物として、具体的には、式(17−1)〜式(17−6)で表される化合物を例示することができる。式(18)に示した化合物として、具体的には、式(18−1)〜式(18−8)で表される化合物を例示することができる。式(19)に示した化合物として、具体的には、式(19−1)で表される化合物を例示することができる。
Figure 2017043178
Figure 2017043178
Figure 2017043178
また、電解質塩として、式(20)あるいは式(21)で表される化合物を例示することもできる。p、q、rは、同じ値であってもよいし、異なる値であってもよい。p、q、rの内の2つが同じ値であってもよい。
Figure 2017043178
但し、R81は炭素数2乃至4の直鎖状又は分岐状のパーフルオロアルキレン基である。
LiC(Cp2p+1SO2)(Cq2q+1SO2)(Cr2r+1SO2) (21)
但し、p、q、rは1以上の整数である。
式(20)に示した化合物は環状のイミド化合物である。環状のイミド化合物として、具体的には、式(20−1)〜式(20−4)で表される化合物を例示することができる。
Figure 2017043178
式(21)に示した化合物は鎖状のメチド化合物である。鎖状のメチド化合物として、具体的には、リチウムトリストリフルオロメタンスルホニルメチド〈LiC(CF3SO23〉を例示することができる。
電解質塩の含有量は特に限定されないが、溶媒に対して0.3モル/kg乃至3.0モル/kgであることが、高いイオン伝導性が得られるといった観点から好ましい。電解質塩の含有量を算出する場合、電解質塩の量に、上記の第1化合物、モノフルオロリン酸リチウム、ジフルオロリン酸リチウムの量を含めてもよい。また、溶媒の量に、第2化合物、第3化合物、スルホン酸エステル、酸無水物、環状カルボン酸エステル、ジアルキルスルホキシド、鎖状ジ炭酸エステル、芳香族炭酸エステル、環状炭酸エステル、鎖状モノ炭酸エステル、鎖状カルボン酸エステル、リン酸エステルの量を含めてもよい。
非水系電解液の固有粘度は特に限定されないが、25゜Cにおいて10mPa/s以下であることが、電解質塩の解離性及びイオン移動度等の確保といった観点から好ましい。
特に、非水系電解液が、スルホン酸エステル、酸無水物、環状カルボン酸エステル、ジアルキルスルホキシド、鎖状ジ炭酸エステル、芳香族炭酸エステル、環状炭酸エステル、鎖状モノ炭酸エステル、鎖状カルボン酸エステル、リン酸エステル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウムのいずれか1種類又は2種類以上を含んでいれば、より高い効果を得ることができる。
また、非水系電解液が、六フッ化リン酸リチウム、四フッ化ホウ酸リチウムの少なくとも一方を含んでいれば、より高い効果を得ることができる。
尚、本開示は、以下のような構成を取ることもできる。
[A01]《二次電池》
電極部材とセパレータとが積層された積層電極体を少なくとも備えており、
積層電極体に存在する凹凸部における電極部材の部分と、セパレータの部分との間に、電極部材に対するセパレータの移動を抑制する抑制部材が配されている二次電池。
[A02]抑制部材は、テープ状の基材、及び、基材の一方の面に設けられた接着層から成り、
接着層を介して抑制部材は積層電極体に接着されている[A01]に記載の二次電池。
[A03]電解液を更に備えており、
基材の他方の面は電解液との接触によって粘着性を発現し、基材の他方の面はセパレータに粘着する[A02]に記載の二次電池。
[A04]電解液を更に備えており、
基材の他方の面は電解液との接触によって膨潤し、基材の他方の面はセパレータに密着する[A02]に記載の二次電池。
[A05]積層電極体収納部材を更に備えており、
帯状の積層電極体は、捲回された状態で積層電極体収納部材に収納されている[A01]乃至[A04]のいずれか1項に記載の二次電池。
[A06]積層電極体収納部材の外形形状は、円筒型又は角型である[A05]に記載の二次電池。
[A07]積層電極体に取り付けられたリード部を更に備えており、
リード部は凹凸部に含まれており、
凹凸部における電極部材の部分及びリード部と、セパレータの部分との間に、抑制部材が配されている[A01]乃至[A06]のいずれか1項に記載の二次電池。
[A08]積層電極体に取り付けられたリード部を更に備えており、
凹凸部は、リード部が取り付けられた電極部材の部分の近傍に位置する[A01]乃至[A06]のいずれか1項に記載の二次電池。
[A09]積層電極体に取り付けられたリード部を更に備えており、
リード部は、正極集電体に取り付けられた正極リード部、及び、負極集電体に取り付けられた負極リード部から構成されている[A01]乃至[A08]のいずれか1項に記載の二次電池。
[A10]積層電極体は、正極集電体上に正極活物質層が形成された正極部材と、負極集電体上に負極活物質層が形成された負極部材とが、セパレータを介して積層されて成る[A01]乃至[A09]のいずれか1項に記載の二次電池。
[A11]積層電極体の端部が凹凸部に含まれる[A05]又は[A06]に記載の二次電池。
[A12]積層電極体は、正極集電体上に正極活物質層が形成された正極部材と、負極集電体上に負極活物質層が形成された負極部材とが、セパレータを介して積層されて成り、
正極集電体に取り付けられた正極リード部、及び、負極集電体に取り付けられた負極リード部から構成されたリード部、並びに、
積層電極体収納部材、
を更に備えており、
積層電極体は、捲回された状態で積層電極体収納部材に収納されており、
正極部材の端部から離間して位置する正極集電体の部分に正極リード部が取り付けられており、
正極リード部、正極リード部の近傍に位置する正極集電体の部分及び正極リード部の近傍に位置する正極集電体の部分に隣接した正極活物質層の部分と、セパレータとの間に、抑制部材が配されている[A01]乃至[A04]のいずれか1項に記載の二次電池。
[A13]積層電極体は、正極集電体上に正極活物質層が形成された正極部材と、負極集電体上に負極活物質層が形成された負極部材とが、セパレータを介して積層されて成り、
正極集電体に取り付けられた正極リード部、及び、負極集電体に取り付けられた負極リード部から構成されたリード部、並びに、
積層電極体収納部材、
を更に備えており、
積層電極体は、捲回された状態で積層電極体収納部材に収納されており、
負極集電体の端部によって積層電極体の端部が構成されており、
積層電極体の端部から離れる方向を内側方向としたとき、
負極集電体の端部から内側方向に離間して負極活物質層の端部が配置されており、
負極活物質層の端部から内側方向に離間して正極活物質層の端部及び正極集電体の端部が配置されており、
負極リード部は、負極集電体の端部近傍に取り付けられており、
負極リード部と負極活物質層の端部との間の領域と、セパレータとの間に、抑制部材が配されている[A01]乃至[A04]のいずれか1項に記載の二次電池。
[B01]電解質は非水系電解液から成り、
非水系電解液は、
式(1)で表される化合物、
式(2−A)で表される化合物及び式(2−B)で表される化合物の少なくとも一方の化合物、並びに、
式(3−A)乃至式(3−F)で表される化合物の少なくとも1種類の化合物、
から成り、式(1)で表される化合物の含有量は、2.5モル/リットル乃至6モル/リットル、好ましくは3モル/リットル乃至6モル/リットルである[A01]乃至[A13]のいずれか1項に記載の二次電池。
+[(Z11)(Z22)N]- (1)
1−CN (2−A)
2−X−CN (2−B)
Figure 2017043178
Figure 2017043178
22−(CN)n (3−F)
但し、
式(1)中、Mは金属元素であり、Z1及びZ2のそれぞれは、フッ素基、1価の炭化水素基、1価のフッ素化炭化水素基のいずれかであり、Z1及びZ2の少なくとも一方は、フッ素基、1価のフッ素化炭化水素基のいずれかであり、Y1及びY2のそれぞれは、スルホニル基、カルボニル基のいずれかであり、
式(2−A)中、R1は1価の炭化水素基であり、
式(2−B)中、R2は1価の炭化水素基であり、Xは、1又は2以上のエーテル結合と1又は2以上の2価の炭化水素基とが任意の順に結合した基であり、
式(3−A)中、R3及びR4のそれぞれは、水素基、1価の炭化水素基のいずれかであり、
式(3−B)中、R5,R6,R7,R8のそれぞれは、水素基、1価の飽和炭化水素基、1価の不飽和炭化水素基のいずれかであり、R5,R6,R7,R8の少なくとも1つは、1価の不飽和炭化水素基であり、
式(3−C)中、R9は、>CR1011で表される基であり、R10及びR11のそれぞれは、水素基、1価の炭化水素基のいずれかであり、
式(3−D)中、R12,R13,R14,R15のそれぞれは、水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基のいずれかであり、R12,R13,R14,R15の少なくとも1つは、ハロゲン基、1価のハロゲン化炭化水素基のいずれかであり、
式(3−E)中、R16,R17,R18,R19,R20,R21のそれぞれは、水素基、ハロゲン基、1価の炭化水素基、1価のハロゲン化炭化水素基のいずれかであり、R16,R17,R18,R19,R20,R21の少なくとも1つは、ハロゲン基、1価のハロゲン化炭化水素基のいずれかであり、
式(3−F)中、R22はn価(但し、nは2以上の整数)の炭化水素基である。
[B02]Mは、アルカリ金属元素であり、
1価の炭化水素基は、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、及び、これらの2種類以上が1価となるように結合した基のいずれかであり、
1価のフッ素化炭化水素基は、1価の炭化水素基の内の少なくとも1つの水素基がフッ素基によって置換された基であり、
2価の炭化水素基は、アルキレン基、アルケニレン基、アルキニレン基、シクロアルキレン基、アリーレン基、及び、これらの2種類以上が結合された基のいずれかであり、
1価の飽和炭化水素基は、アルキル基、シクロアルキル基、及び、これらが1価となるように結合された基のいずれかであり、
1価の不飽和炭化水素基は、アルケニル基、アルキニル基、アリール基、これらの1種類以上を含む基、及び、これらの2種類以上が1価となるように結合された基のいずれかであり、
ハロゲン基は、フッ素基、塩素基、臭素基、及び、ヨウ素基のいずれかであり、
1価のハロゲン化炭化水素基は、1価の炭化水素基の内の少なくとも1つの水素基がハロゲン基によって置換された基である[B01]に記載の二次電池。
[B03]Mはリチウムであり、
1価のフッ素化炭化水素基は、パーフルオロアルキル基であり、
Xは、−O−Y−(但し、Yは、2価の炭化水素基)で表される基である[B01]又は[B02]に記載の二次電池。
[B04]非水系電解液は、スルホン酸エステル、酸無水物、環状カルボン酸エステル、ジアルキルスルホキシド、式(10)乃至式(15)で表される化合物、モノフルオロリン酸リチウム、及び、ジフルオロリン酸リチウムの少なくとも1種を含む[B01]乃至[B03]のいずれか1項に記載の二次電池。
Figure 2017043178
但し、
23及びR24のそれぞれは、1価の炭化水素基、1価のハロゲン化炭化水素基のいずれかであり、
25は、2価の炭化水素基、2価のハロゲン化炭化水素基のいずれかであり、
26,R27,R28,R29,R30,R31,R32,R33,R34,R35のそれぞれは、1価の炭化水素基、1価の酸素含有炭化水素基、1価の窒素含有炭化水素基、1価のハロゲン化炭化水素基、1価のハロゲン化酸素含有炭化水素基、1価のハロゲン化窒素含有炭化水素基、これらの2種類以上が1価となるように結合した基のいずれかであり、
36,R37,R38,R39のそれぞれは、水素基、1価の炭化水素基のいずれかであり、
40及びR41のそれぞれは、水素基、1価の炭化水素基のいずれかであり、
42及びR43のそれぞれは、水素基、1価の炭化水素基のいずれかであり、
44,R45,R46のそれぞれは、1価の炭化水素基、1価のハロゲン化炭化水素基のいずれかである。
[B05]2価のハロゲン化炭化水素基は、2価の炭化水素基の内の少なくとも1つの水素基がハロゲン基によって置換された基であり、
ハロゲン基は、フッ素基、塩素基、臭素基及びヨウ素基のいずれかであり、
1価の酸素含有炭化水素基は、アルコキシ基であり、
1価の窒素含有炭化水素基は、アルキルアミノ基であり、
1価のハロゲン化酸素含有炭化水素基は、1価の酸素含有炭化水素基の内の少なくとも1つの水素基がハロゲン基によって置換された基であり、
1価のハロゲン化窒素含有炭化水素基は、1価の窒素含有炭化水素基の内の少なくとも1つの水素基がハロゲン基によって置換された基である[B04]に記載の二次電池。
[B06]非水系電解液は、六フッ化リン酸リチウム及び四フッ化ホウ酸リチウムの内の少なくとも一方を含む[B01]乃至[B05]のいずれか1項に記載の二次電池。
[B07]正極は、電極反応物質を吸蔵・放出可能である正極活物質を含み、
負極は、電極反応物質を吸蔵・放出可能である負極活物質を含み、
正極活物質と負極活物質との間に絶縁性材料を備え、
絶縁性材料は、絶縁性セラミックス及び絶縁性高分子化合物の少なくとも一方を含む[B01]乃至[B06]のいずれか1項に記載の二次電池。
[B08]絶縁性セラミックスは、酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化チタン、及び、酸化ジルコニウムの少なくとも1種を含み、
絶縁性高分子化合物は、フッ化ビニリデンの単独重合体及び共重合体の少なくとも一方を含む[B07]に記載の二次電池。
[B09]正極活物質の表面に、絶縁性材料を含む第1絶縁層が設けられている[B07]又は[B08]に記載の二次電池。
[B10]負極の表面に、絶縁性材料を含む第2絶縁層が設けられている[B07]又は[B08]に記載の二次電池。
[C01]《電池パック》
[A01]乃至[B10]のいずれか1項に記載の二次電池、
二次電池の動作を制御する制御部、及び、
制御部の指示に応じて二次電池の動作を切り換えるスイッチ部、
を備えている電池パック。
[C02]《電動車両》
[A01]乃至[B10]のいずれか1項に記載の二次電池、
二次電池から供給された電力を駆動力に変換する変換部、
駆動力に応じて駆動する駆動部、及び、
二次電池の動作を制御する制御部、
を備えている電動車両。
[C03]《電力貯蔵システム》
[A01]乃至[B10]のいずれか1項に記載の二次電池、
二次電池から電力を供給される1又は2以上の電気機器、及び、
二次電池からの電気機器に対する電力供給を制御する制御部、
を備えている電力貯蔵システム。
[C04]《電動工具》
[A01]乃至[B10]のいずれか1項に記載の二次電池、及び、
二次電池から電力を供給される可動部、
を備えている電動工具。
[C05]《電子機器》
[A01]乃至[B10]のいずれか1項に記載の二次電池を電力供給源として備えている電子機器。
11・・・積層電極体収納部材、11・・・積層電極体収納部材、12,13・・・絶縁板、14・・・電池蓋、15・・・安全弁機構、15A・・・ディスク板、16・・・熱感抵抗素子(PTC素子)、17・・・ガスケット、18・・・センターピン、20・・・積層電極体、20A,20B・・・凹凸部が存在する電極部材の部分、20C・・・凹凸部が存在しない電極部材の部分、21・・・電極部材、21A・・・凹凸部における電極部材の部分、21B・・・リード部が取り付けられた電極部材の部分、22・・・正極部材、22A・・・正極集電体、122A・・・正極部材の端部から離間して位置する正極集電体の部分、122a・・・正極集電体の端部、22B・・・正極活物質層、122B・・・正極集電体の部分に隣接した正極活物質層の部分、122b・・・正極活物質層の端部、23・・・正極リード部、24・・・負極部材、24A・・・負極集電体、124A・・・負極リード部と負極活物質層の端部との間に位置する負極集電体の部分、124a・・・負極集電体の端部、24B・・・負極活物質層、124b・・・負極活物質層の端部、25・・・負極リード部、26・・・セパレータ、26A,26B・・・凹凸部が存在するセパレータの部分、27A,27B・・・凹凸部、28・・・電解質層、29・・・保護テープ、31,31A,31A’,31B・・・抑制部材(動き防止部材)、32・・・基材、32A・・・基材の一方の面、32B・・・基材の他方の面、33・・・接着層(接着剤層)、41・・・制御部、42・・・スイッチ部、43・・・PTC素子、44・・・温度検出部、44A・・・温度検出素子、45A・・・正極端子、45B・・・負極端子、50・・・筐体、51・・・制御部、52・・・メモリ、53・・・電圧検出部、54・・・電流測定部、54A・・・電流検出抵抗器、55・・・温度検出部、55A・・・温度検出素子、56・・・スイッチ制御部、57・・・スイッチ部、58・・・電源、59A・・・正極端子、59B・・・負極端子、60・・・筐体、61・・・制御部、62・・・各種センサ、63・・・電源、71・・・エンジン、72・・・発電機、73,74・・・インバータ、75・・・モータ、76・・・差動装置、77・・・トランスミッション、78・・・クラッチ、81・・・前輪用駆動軸、82・・・前輪、83・・・後輪用駆動軸、84・・・後輪、90・・・家屋、91・・・制御部、92・・・電源、93・・・スマートメータ、94・・・パワーハブ、95・・・電気機器(電子機器)、96・・・自家発電機、97・・・電動車両、98・・・集中型電力系統、100・・・工具本体、101・・・制御部、102・・・電源、103・・・ドリル部、222A・・・正極活物質、222B・・・活物質絶縁層、224・・・負極絶縁層、301・・・電源、304A,304B・・・タブ、305・・・回路基板、306・・・コネクタ付きリード線、307・・・粘着テープ、308・・・ラベル、309・・・絶縁シート

Claims (13)

  1. 電極部材とセパレータとが積層された積層電極体を少なくとも備えており、
    積層電極体に存在する凹凸部における電極部材の部分と、セパレータの部分との間に、電極部材に対するセパレータの移動を抑制する抑制部材が配されている二次電池。
  2. 抑制部材は、テープ状の基材、及び、基材の一方の面に設けられた接着層から成り、
    接着層を介して抑制部材は積層電極体に接着されている請求項1に記載の二次電池。
  3. 電解液を更に備えており、
    基材の他方の面は電解液との接触によって粘着性を発現し、基材の他方の面はセパレータに粘着する請求項2に記載の二次電池。
  4. 電解液を更に備えており、
    基材の他方の面は電解液との接触によって膨潤し、基材の他方の面はセパレータに密着する請求項2に記載の二次電池。
  5. 積層電極体収納部材を更に備えており、
    帯状の積層電極体は、捲回された状態で積層電極体収納部材に収納されている請求項1に記載の二次電池。
  6. 積層電極体収納部材の外形形状は、円筒型又は角型である請求項5に記載の二次電池。
  7. 積層電極体に取り付けられたリード部を更に備えており、
    リード部は凹凸部に含まれており、
    凹凸部における電極部材の部分及びリード部と、セパレータの部分との間に、抑制部材が配されている請求項1に記載の二次電池。
  8. 積層電極体に取り付けられたリード部を更に備えており、
    凹凸部は、リード部が取り付けられた電極部材の部分の近傍に位置する請求項1に記載の二次電池。
  9. 積層電極体に取り付けられたリード部を更に備えており、
    リード部は、正極集電体に取り付けられた正極リード部、及び、負極集電体に取り付けられた負極リード部から構成されている請求項1に記載の二次電池。
  10. 積層電極体は、正極集電体上に正極活物質層が形成された正極部材と、負極集電体上に負極活物質層が形成された負極部材とが、セパレータを介して積層されて成る請求項1に記載の二次電池。
  11. 積層電極体の端部が凹凸部に含まれる請求項5に記載の二次電池。
  12. 積層電極体は、正極集電体上に正極活物質層が形成された正極部材と、負極集電体上に負極活物質層が形成された負極部材とが、セパレータを介して積層されて成り、
    正極集電体に取り付けられた正極リード部、及び、負極集電体に取り付けられた負極リード部から構成されたリード部、並びに、
    積層電極体収納部材、
    を更に備えており、
    積層電極体は、捲回された状態で積層電極体収納部材に収納されており、
    正極部材の端部から離間して位置する正極集電体の部分に正極リード部が取り付けられており、
    正極リード部、正極リード部の近傍に位置する正極集電体の部分及び正極リード部の近傍に位置する正極集電体の部分に隣接した正極活物質層の部分と、セパレータとの間に、抑制部材が配されている請求項1に記載の二次電池。
  13. 積層電極体は、正極集電体上に正極活物質層が形成された正極部材と、負極集電体上に負極活物質層が形成された負極部材とが、セパレータを介して積層されて成り、
    正極集電体に取り付けられた正極リード部、及び、負極集電体に取り付けられた負極リード部から構成されたリード部、並びに、
    積層電極体収納部材、
    を更に備えており、
    積層電極体は、捲回された状態で積層電極体収納部材に収納されており、
    負極集電体の端部によって積層電極体の端部が構成されており、
    積層電極体の端部から離れる方向を内側方向としたとき、
    負極集電体の端部から内側方向に離間して負極活物質層の端部が配置されており、
    負極活物質層の端部から内側方向に離間して正極活物質層の端部及び正極集電体の端部が配置されており、
    負極リード部は、負極集電体の端部近傍に取り付けられており、
    負極リード部と負極活物質層の端部との間の領域と、セパレータとの間に、抑制部材が配されている請求項1に記載の二次電池。
JP2017538898A 2015-09-09 2016-07-14 二次電池 Active JP6558440B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015177271 2015-09-09
JP2015177271 2015-09-09
PCT/JP2016/070863 WO2017043178A1 (ja) 2015-09-09 2016-07-14 二次電池

Publications (2)

Publication Number Publication Date
JPWO2017043178A1 true JPWO2017043178A1 (ja) 2018-06-28
JP6558440B2 JP6558440B2 (ja) 2019-08-14

Family

ID=58239650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017538898A Active JP6558440B2 (ja) 2015-09-09 2016-07-14 二次電池

Country Status (4)

Country Link
US (1) US10658650B2 (ja)
JP (1) JP6558440B2 (ja)
CN (1) CN108028433B (ja)
WO (1) WO2017043178A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6379857B2 (ja) * 2014-08-25 2018-08-29 ダイキン工業株式会社 電解液用溶媒、電解液、電気化学デバイス、二次電池及びモジュール
WO2018235516A1 (ja) * 2017-06-19 2018-12-27 株式会社村田製作所 二次電池
US12034180B1 (en) * 2018-01-09 2024-07-09 Oceanit Laboratories, Inc. Multi layered nanostructured materials for ionic and electronic transport in chemical and electrochemical devices
US11018372B2 (en) * 2018-03-09 2021-05-25 The Regents Of The University Of California Interlayer sodium electrodes for sodium ion batteries
US11431046B2 (en) * 2018-08-21 2022-08-30 Nio Technology (Anhui) Co., Ltd. Lithium-ion cell using aluminum can
JP7105152B2 (ja) * 2018-09-19 2022-07-22 リンテック株式会社 電池用粘着シートおよびリチウムイオン電池
CN109406582A (zh) * 2018-12-28 2019-03-01 南水北调东线总公司 一种利用碳纤维阻值变化的结构损伤检测方法
CN110581248B (zh) * 2019-08-23 2021-02-26 中南大学 一种锂硫电池及其复合隔膜
CN112768776B (zh) * 2019-10-21 2022-06-24 鹏鼎控股(深圳)股份有限公司 柔性电池组件及其制造方法
US11664311B2 (en) * 2020-01-17 2023-05-30 Taiwan Semiconductor Manufacturing Company Ltd. Method and structure to reduce cell width in semiconductor device
CN111710907A (zh) * 2020-06-12 2020-09-25 南方科技大学 一种金属硫电池电解液及包含该电解液的金属硫电池
CN112490505A (zh) * 2020-12-07 2021-03-12 珠海市赛纬电子材料股份有限公司 电解液添加剂、非水电解液及其锂离子电池
KR102565300B1 (ko) * 2020-12-24 2023-08-10 이노레이 주식회사 이차 전지의 테스트 방법 및 이를 포함하는 이차 전지의 제조 방법
WO2024106758A1 (ko) * 2022-11-17 2024-05-23 주식회사 엘지에너지솔루션 전극조립체, 및 이를 포함하는 이차 전지, 배터리 팩 및 운송 수단
CN117219851B (zh) * 2023-11-09 2024-03-15 宁德时代新能源科技股份有限公司 钠二次电池及用电装置
CN117219839B (zh) * 2023-11-09 2024-04-09 宁德时代新能源科技股份有限公司 钠二次电池及用电装置
CN117219836B (zh) * 2023-11-09 2024-04-16 宁德时代新能源科技股份有限公司 钠二次电池及用电装置
CN117219838B (zh) * 2023-11-09 2024-04-09 宁德时代新能源科技股份有限公司 钠二次电池和用电装置
CN117219840B (zh) * 2023-11-09 2024-04-16 宁德时代新能源科技股份有限公司 钠二次电池及用电装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323128A (ja) * 1999-05-10 2000-11-24 Nitto Denko Corp 非水電解液電池
JP2010003697A (ja) * 2008-06-23 2010-01-07 Samsung Sdi Co Ltd 電極組立体及びこれを用いたリチウム二次電池
JP2012038705A (ja) * 2010-08-05 2012-02-23 Samsung Sdi Co Ltd 二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711653B2 (ja) 2004-08-31 2011-06-29 三洋電機株式会社 電池
JP2010073580A (ja) * 2008-09-19 2010-04-02 Toshiba Corp 非水電解質電池
KR101136254B1 (ko) 2010-05-20 2012-04-19 삼성에스디아이 주식회사 이차전지
JP2011181441A (ja) 2010-03-03 2011-09-15 Sony Corp 円筒型非水電解質電池
WO2012090726A1 (ja) * 2010-12-28 2012-07-05 三洋電機株式会社 非水電解質二次電池
KR101781645B1 (ko) * 2011-04-20 2017-09-25 닛토덴코 가부시키가이샤 전기 화학 디바이스용 점착 테이프
JP2014143051A (ja) * 2013-01-23 2014-08-07 Nippon Light Metal Co Ltd タブリード部材の製造方法
JP6311269B2 (ja) 2013-10-28 2018-04-18 日本ゼオン株式会社 リチウムイオン二次電池用接着剤、リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323128A (ja) * 1999-05-10 2000-11-24 Nitto Denko Corp 非水電解液電池
JP2010003697A (ja) * 2008-06-23 2010-01-07 Samsung Sdi Co Ltd 電極組立体及びこれを用いたリチウム二次電池
JP2012038705A (ja) * 2010-08-05 2012-02-23 Samsung Sdi Co Ltd 二次電池

Also Published As

Publication number Publication date
CN108028433A (zh) 2018-05-11
US20180241026A1 (en) 2018-08-23
JP6558440B2 (ja) 2019-08-14
WO2017043178A1 (ja) 2017-03-16
CN108028433B (zh) 2021-04-23
US10658650B2 (en) 2020-05-19

Similar Documents

Publication Publication Date Title
JP6558440B2 (ja) 二次電池
JP6683202B2 (ja) 二次電池の充電方法、充電制御装置及び二次電池
US10826112B2 (en) Negative electrode active material, negative electrode for secondary battery, and lithium ion secondary battery
JP6561982B2 (ja) 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6131877B2 (ja) リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2018206514A (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JPWO2018110067A1 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP5910066B2 (ja) リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2013051081A (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6065627B2 (ja) リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2013045743A (ja) 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2013058402A (ja) 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2016066595A (ja) 電池及び電池用電解液
JP6753096B2 (ja) 二次電池
JP6742067B2 (ja) リチウムイオン電池
WO2015186517A1 (ja) 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2013062072A (ja) 二次電池用電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6131868B2 (ja) リチウム二次電池用非水電解液、リチウム二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6135798B2 (ja) リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2016042763A1 (ja) 電池及び電池用電解液

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190701

R150 Certificate of patent or registration of utility model

Ref document number: 6558440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150