JPWO2016121155A1 - 多孔質材料または粒状材料を受容体層として有するセンサ - Google Patents

多孔質材料または粒状材料を受容体層として有するセンサ Download PDF

Info

Publication number
JPWO2016121155A1
JPWO2016121155A1 JP2016571666A JP2016571666A JPWO2016121155A1 JP WO2016121155 A1 JPWO2016121155 A1 JP WO2016121155A1 JP 2016571666 A JP2016571666 A JP 2016571666A JP 2016571666 A JP2016571666 A JP 2016571666A JP WO2016121155 A1 JPWO2016121155 A1 JP WO2016121155A1
Authority
JP
Japan
Prior art keywords
sensor
group
sensor according
porous
receptor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016571666A
Other languages
English (en)
Other versions
JP6544744B2 (ja
Inventor
弘太 柴
弘太 柴
元起 吉川
元起 吉川
悠輔 山内
悠輔 山内
孝宗 鈴木
孝宗 鈴木
岳 今村
岳 今村
皓輔 南
皓輔 南
ハミッシュ ヘイマン ユン
ハミッシュ ヘイマン ユン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Publication of JPWO2016121155A1 publication Critical patent/JPWO2016121155A1/ja
Application granted granted Critical
Publication of JP6544744B2 publication Critical patent/JP6544744B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/13Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing having piezoelectric or piezoresistive properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/227Sensors changing capacitance upon adsorption or absorption of fluid components, e.g. electrolyte-insulator-semiconductor sensors, MOS capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N2021/495Scattering, i.e. diffuse reflection within a body or fluid the fluid being adsorbed, e.g. in porous medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/021Gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02433Gases in liquids, e.g. bubbles, foams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

物理パラメータを検出するタイプの様々なセンサ(例えば、表面応力センサ、QCM、SPRなど)の受容体層の改良により、高い感度、選択性、耐久性を同時に実現する。受容体層として従来使用されていた一様な膜の代わりに、多孔質材料またはナノ粒子等の粒状材料を使用する。これにより、受容体層の膜厚を変えることにより感度を、多孔質材料または粒状材料に固定する表面修飾基を変えることにより選択性を、多孔質材料または粒状材料の組成および表面特性を変えることにより耐久性をそれぞれ制御することができるようになる。

Description

本発明は、多孔質材料または粒状材料をセンサ上に被覆することにより、検体分子(検出対象物質分子)の高感度かつ選択的検出を可能とするセンサに関する。
一般にセンサは、検体分子の高感度かつ選択的な検出を可能とする「受容体層」と呼ばれる層で被覆した後、測定に用いられる。受容体層として利用される物質は、自己組織化単分子膜、DNA/RNA、タンパク質、抗原/抗体、ポリマーなど多岐に渡る。感度や選択性に加え、測定の再現性やセンサの耐久性などの観点から、受容体物質とセンサ上の検出機能を有する表面(以下、単にセンサ表面と称する)との相互作用は重要であり、安定的な結合状態を作り出すことが望まれる。そのため、受容体物質の固定化は厳密に制御された条件下で行われる必要があり、その条件最適化は容易ではない。また、例えば、水溶性のポリマーでは水中での測定に使用できないなど、被覆する物質によってはセンサの測定環境が限定されるといった問題もある。
センサの選択性については、被覆する物質に応じて、例えば抗原抗体反応のようにきわめて特異的なものから、比較的多種の検体を吸着するポリマーのように広域な選択性をもつものまで幅広く設計可能である。一方、感度に関しては定まった指針が無く、明確な指針に基づく設計は行われていないのが現状である。近年、表面に印加される応力を検出するタイプのセンサに関して、非特許文献1および2にあるように、受容体物質の膜厚やヤング率などの物理パラメータが大きく影響することが報告された。具体的には、ヤング率一定の場合、膜厚がある値に達するまでは感度が向上し、その後は減少するといった形である。これを踏まえると、自己組織化単分子膜、DNA/RNA、タンパク質、抗原/抗体などについては、そもそも膜厚を増加するということ自体が困難であるため、感度向上は容易ではない。ポリマーの場合、膜厚を増加することは可能であるが、前述のように溶解性の問題や、耐候性の問題がある。以上のような背景から、限られた種類のセンサに関してのみ、感度および選択性を制御・最適化するための指針は存在するものの、それらを同時に満たす最適物質は未だ知られておらず、その発見ならびに実証が待たれている。
本発明は、受容体層物質としてこれまで利用されることのなかった「多孔質材料」あるいは「粒状材料」を用いることにより、従来物質では成し得なかった感度および選択性の制御や、高い耐久性を有する受容体層並びにその作製方法について提供することを課題としている。
本発明の一側面によれば、多孔質材料または粒状材料を、物理パラメータを検出するタイプのセンサ本体上に被覆し、検体分子を前記多孔質材料または粒状材料が吸着することによる前記物理パラメータの変化により前記検体分子を検出するセンサが提供される。
ここで、前記多孔質材料または粒状材料は無機物質からなってよい。
また、前記無機物質はシリカであってよい。
また、前記多孔質材料または粒状材料は平均孔径が1mm以下の多孔質材料であってよい。
また、前記多孔質材料の平均孔径は0.1nm以上500nm以下であってよい。
また、前記シリカはメソポーラスシリカであってよい。
また、前記多孔質材料または粒状材料は無機材料、有機材料、無機有機ハイブリッド材料、金属有機構造体、自己組織化した界面活性剤ミセルを構造中に取り込んだ材料、繊維がプラスチック中に分散した材料、炭素材料、及び生体材料からなる群から選択されてよい。
また、前記無機材料は酸化物、窒化物、硫化物、金属、金からなる群から選択される一もしくは複数の材料、または前記群から選択される複数の材料を任意の割合で複合化したものを含む無機物であり、前記有機材料は重合可能な官能基を主鎖として構造中に有し、側鎖に置換基を有する有機物であり、前記無機有機ハイブリッド材料は前記無機材料と有機材料とが任意の割合で複合化したものである無機有機ハイブリッドからなる群から選択され、前記金属有機構造体は、HKUST−1、IRMOF、MOF、ZIF、UIO、及びMILからなる群から選択され、前記自己組織化した界面活性剤ミセルを構造中に取り込んだ材料は、シリカ骨格中に陽イオン性界面活性剤が取り込まれた材料、及び金属骨格中にブロックコポリマーが取り込まれた材料からなる群から選択され、繊維がプラスチック中に分散した材料は、繊維強化プラスチックであり、前記炭素材料は、sp2炭素原子を骨格とする物質であり、前記生体材料はペプチド、タンパク質、酵素、糖、脂質、及びタンパク質から選択される材料またはペプチド、タンパク質、酵素、糖、脂質、及びタンパク質から選択される材料と前記無機材料との複合体であってよい。
また、前記無機材料及び前記無機有機ハイブリッド材料の少なくとも一方における前記複合化は、ヤヌス粒子状に不均一接合した形態、コアシェル状の形態、及び一方の粒子内部に他方の粒子が複数個分散した形態からなる群から選択される形態であってよい。
また、前記有機物は、ポリスチレン、ポリメチルメタクリレート、ポリジビニルベンゼン、ポリイソプロピルアクリルアミド、ポルフィリン、ポルフィリン環に置換基が導入された化合物、および遷移金属を有するポルフィリン金属錯体化合物からなる群から選択されてよい。
また、前記多孔質材料または粒状材料の表面を、単一種類のまたは複数種類の表面修飾基で修飾してよい。
また、前記表面修飾基のうちの少なくとも一種類の表面修飾基は、前記検体分子を吸着してよい。
また、前記複数種類の表面修飾基中、第1の表面修飾基は疎水性の表面修飾基であり、前記複数種類の表面修飾基中、前記第1の表面修飾基と異なる第2の表面修飾基は、親水性であるとともに前記第1の表面修飾基より短い表面修飾基であり、もって、前記受容体層の表面を巨視的には疎水性であるが、微視的には親水性としてよい。
また、前記第2の表面修飾基はアミノプロピル基であり、前記第1の表面修飾基はアミノプロピル基よりも鎖長の長いアルキル基であってよい。
また、前記多孔質材料または粒状材料の表面に複数種類の物質が繰り返し出現し、前記複数種類の物質はそれぞれ互いに異なる種類の前記表面修飾基により修飾されてよい。
また、前記複数種類の物質は少なくともチタニアおよびシリカであってよい。
また、前記多孔質材料または粒状材料はナノ粒子であってよい。
また、前記物理パラメータは表面応力、応力、力、表面張力、圧力、質量、弾性、ヤング率、ポアソン比、共振周波数、周波数、体積、厚み、粘度、密度、磁力、磁気量、磁場、磁束、磁束密度、電気抵抗、電気量、誘電率、電力、電界、電荷、電流、電圧、電位、移動度、静電エネルギー、キャパシタンス、インダクタンス、リアクタンス、サセプタンス、アドミッタンス、インピーダンス、コンダクタンス、プラズモン、屈折率、光度および温度から選択された少なくとも一であってよい。
また、前記センサ本体は表面応力センサまたはQCMであってよい。
また、物理パラメータを検出するタイプのセンサ本体の表面上で前記多孔質材料をその場合成してよい。
本発明の他の側面によれば、センサと、前記センサを覆うとともに、液体の分子は透過しないが、少なくとも一部の気体の分子は透過する膜とを設け、前記センサのセンサ表面と前記膜との間に空隙が形成されてよい。
ここで、前記膜は中空糸膜または半透膜であってよい。
また、前記空隙に陰圧を印加する手段を有してよい。
本発明によれば、従来の受容体材料では実現することのできなかった感度、選択性、耐久性を、表面応力やその他の様々な物理パラメータを検出するタイプのセンサにおいて、同時に実現することが可能になる。これにより、気中/液中測定を様々な温度、溶媒条件下で実施することが可能になる。また、多孔質材料または粒状材料による被覆は容易に実施可能であり、特別な反応条件や装置等を必要としない。
センサに被覆する多孔質材料の例であるメソポーラスシリカ薄膜(平均細孔径35nm)の走査型電子顕微鏡(SEM)像。 多孔質材料を被覆した多孔質受容体層付き膜型表面応力センサによるガス識別測定の例を示す図。各種ガスに対するセンサ出力の主成分分析結果である。 (a)多孔質材料を被覆した多孔質受容体層付き膜型表面応力センサを、液体の水およびエタノールに浸す前(左)と後(右)の光学顕微鏡写真。(b)多孔質材料を被覆した多孔質受容体層付き膜型表面応力センサを、液体の水およびエタノールに浸す前(左)と後(右)に、オクタンの蒸気を測定した際のシグナルの例。 実施例2で粒状材料合成に利用した装置構成の一例を示す図。 実施例2で作製した粒状材料のSEM像。 実施例2の粒状材料により被覆する前後の膜型表面応力センサ(MSS)の光学顕微鏡像。 実施例2の粒状材料被覆MSSおよびその比較対象としてのポリビニルピロリドン(PVP)被覆MSSを用いて、8種類の化合物を測定した結果を示す図。 実施例3において、5回連続して粒状材料を被覆したMSSを用いて8種類の化合物を測定した結果を示す図。 実施例4において、粒状材料被覆MSSを水に浸漬する前後の光学顕微鏡像。比較対象として、PVP被覆MSSを水に浸漬する前後の光学顕微鏡像も示した。 実施例4において、水への浸漬前後の粒状材料被覆MSSを用いて、8種類の化合物を測定した結果を示す図。 実施例4において、水への浸漬前後のPVP被覆MSSを用いて、8種類の化合物を測定した結果を示す図。 実施例5において、粒状材料被覆QCMを用いて8種類の化合物を測定した結果を示す図。比較対象として、粒状材料被覆前のQCMを用いて8種類の化合物を測定した結果も示した。 実施例5において、PVP被覆QCMを用いて8種類の化合物を測定した結果を示す図。 気体分子は透過するが、液体分子は透過しない性質を持つ材料で構成された膜を使用して、液中気体測定を行うための構成例を説明する図。 構造の異なる三種類の金属有機構造体(metal-organic framework、MOF)ZIF−7、ZIF−8及びZIF−71のナノ粒子のSEM像。各SEM像の右上隅は対応するMOFの結晶構造式である。 図15にSEM像を示したZIF−7ナノ粒子を被覆したMSSを用いて9種類の化合物を測定した結果の一部を示す図。 図15にSEM像を示したZIF−7ナノ粒子を被覆したMSSを用いて9種類の化合物を測定した結果の残りを示す図。 図15にSEM像を示したZIF−8ナノ粒子を被覆したMSSを用いて9種類の化合物を測定した結果の一部を示す図。 図15にSEM像を示したZIF−8ナノ粒子を被覆したMSSを用いて9種類の化合物を測定した結果の残りを示す図。 図15にSEM像を示したZIF−71ナノ粒子を被覆したMSSを用いて9種類の化合物を測定した結果の一部を示す図。 図15にSEM像を示したZIF−71ナノ粒子を被覆したMSSを用いて9種類の化合物を測定した結果の残りを示す図。 図15にSEM像を示した三種類のMOFナノ粒子を被覆したMSSを用いて測定した結果から導かれた、各ナノ粒子の極性・無極性化合物に対する親和性の傾向を示す図。 酸化グラフェン(GO)と組み合わせるポルフィリンの例であるT(3,5−DHP)P(5,10,15,20-tetrakis(3',5'-dihydroxyphenyl)porphyrin、Por−OH)の化学構造式を示す図。 GOとPor−OHとの組み合わせを基板に塗布した状態のSEM像。 GOとPor−OHとの組み合わせ(Ch1〜Ch3)及びGO水溶液(Ch4)をインクジェットにより成膜したMSSの表面(a)及び裏面(b)の光学顕微鏡像。 図22に示した四種類の受容体被覆MSS(Ch1〜Ch4)で14種類の化合物を測定した結果を示す図。 酸化グラフェン(GO)と組み合わせるポルフィリンの別の例であるZn−T(3,5−DHP)P(5,10,15,20-tetrakis(3',5'-dihydroxyphenyl)porphinatozinc(II)、Zn-Por−OH)の化学構造式を示す図。 GOとZn−Por−OHとの組み合わせを基板に塗布した状態のSEM像。 GOとZn−Por−OHとの組み合わせ(Ch1〜Ch3)及びGO水溶液(Ch4)をインクジェットにより成膜したMSSの表面(a)及び裏面(b)の光学顕微鏡像。 図26に示した四種類の受容体被覆MSS(Ch1〜Ch4)で14種類の化合物を測定した結果を示す図。
本発明では、表面応力、応力、力、表面張力、圧力、質量、弾性、ヤング率、ポアソン比、共振周波数、周波数、体積、厚み、粘度、密度、磁力、磁気量、磁場、磁束、磁束密度、電気抵抗、電気量、誘電率、電力、電界、電荷、電流、電圧、電位、移動度、静電エネルギー、キャパシタンス、インダクタンス、リアクタンス、サセプタンス、アドミッタンス、インピーダンス、コンダクタンス、プラズモン、屈折率、光度および温度やその他の様々な物理パラメータを検出するタイプのセンサ本体上に多孔質材料または粒状材料(以下、多孔質材料と粒状材料とを総称する場合には単に受容体材料と称する)を直接被覆して構成される受容体層を設けたセンサが与えられる。このセンサは、当該受容体層が検体分子を吸着することでそこに引き起こされる物理パラメータの変化を、センサ本体により検出する。従って、本発明で使用可能なセンサ本体は、その表面に受容体材料を被覆することで構成された受容体層が検知対象物質を吸着することによって受容体層に引き起こされる変化を検知するものであればその構造、動作等は特に制限されない。例えば表面応力センサを使用した場合には、その表面を被覆した受容体層が検知対象物質を吸着することで当該受容体層中に引き起こされた応力変化を検出して表面応力センサがシグナルを出力する。また、別の種類のセンサ本体として例えば、水晶振動子の電極表面に物質が吸着するとその質量に応じて共振周波数が変動する性質を利用して微量な質量変化を計測する質量センサであるQCMを使用した場合には、その表面を被覆した受容体層が検知対象物質を吸着することで起こる質量変化を検出してシグナルを出力する。なお、ここで吸着という用語は、物理吸着だけではなく、化学結合や生化学的な作用による吸着も含む最も広い意味で用いていることに注意されたい。
[多孔質材料受容体層]
受容体層に使用する多孔質材料は、いかなるサイズ、形状、組成および構造のものであってもよい。組成としては、例えば酸化シリコンなどの無機材料を利用することができ、従って耐久性の高い材料を利用することが可能である。
これに限定するわけではないが、無機材料をここで例示すれば、酸化物、窒化物、硫化物、金属などを主成分とするもの、あるいは各種合金などであってよい。また、上記の物質が任意の割合で複合化したものであってよい。複合化の形態は、ヤヌス粒子状に不均一接合したもの、コアシェル状のもの、一方の粒子内部に他方の(微)粒子が2個以上分散したものなどであってよい。
その他、あらゆる金属、金属酸化物を有する多孔質材料が使用可能である。金属の場合は電気化学的な手法(電析法など)などが、また金属酸化物の場合にはゾルゲル反応などが利用可能であるが、当然これらに限るものではない。また、多孔質材料を表面修飾することによってその化学的性質を変更することができる。本発明においては、必要に応じて多孔質材料に対していかなる表面修飾も施してよい。例えば、多孔質材料の表面を親水性あるいは疎水性にするために表面をアミノ基、アルキル基等で修飾してもよい。その他、これらに限定する意図はないが、必要に応じて、アミノプロピル基、オクタデシル基、あるいはシランカップリング剤、チオール基を有する分子、ホスホン酸などに加え、各種の高分子や生体関連分子で表面修飾を行うなどが可能である。
更には、多孔質材料を無機材料に限定する意図はなく、無機材料以外にも、有機材料、無機有機ハイブリッド材料、金属有機構造体、自己組織化した界面活性剤ミセルを構造中に取り込んだ材料、ガラスや炭素などからなる繊維がプラスチック中に分散した繊維強化プラスチック等の材料、炭素材料、生体由来成分などの生体材料等、その成分は問わない。この種の材料を非限定的に例示すれば、有機材料は、二重結合等の重合可能な官能基を主鎖として構造中に有し、側鎖に種々の置換基を有するものであってよい。具体的には、ポリスチレン、ポリメチルメタクリレート、ポリジビニルベンゼン、ポリイソプロピルアクリルアミドなどであってよい。ポルフィリン環構造を有する有機化合物であるポルフィリンを使用することができる。また、ポルフィリン環に置換基が導入されたもの、および遷移金属(スズ、コバルト、クロム、マンガン、鉄、銅、ルテニウム、亜鉛、銀、白金等)を有する錯体化合物であってもよい。さらに、前記無機材料と有機材料とが任意の割合で複合化したものである無機有機ハイブリッドも使用可能である。この複合化の形態は、無機材料における複合化と同じく、ヤヌス粒子状に不均一接合したもの、コアシェル状のもの、一方の粒子内部に他方の(微)粒子が2個以上分散したものなどであってよい。また、任意の金属元素と有機化合物とが周期構造を形成する金属有機構造体(MOF)も使用可能である。MOFの具体例として、HKUST−1、IRMOF(IRMOF−1など)、MOF(MOF−5など)、ZIF(ZIF−7、ZIF−8、ZIF−71など),UIO(UIO−66など)、MIL(MIL−101など)などがあり、これらは金属元素の種類や有機化合物に結合する置換基の種類などによって略称および通し番号が変化する。前記MOFはこのうちのいずれであってもよい。また、自己組織化した界面活性剤ミセルを構造中に取り込んだものの具体例としては、シリカ骨格中に陽イオン性界面活性剤が取り込まれたものや、金属骨格中にブロックコポリマーが取り込まれたものなどであってよい。また、ガラスや炭素などからなる繊維がプラスチック中に分散した材料の具体的例としては、ガラス繊維強化プラスチック、炭素繊維強化プラスチックと呼ばれるものであってよい。炭素材料は、グラフェン・グラファイト、カーボンナノチューブ、フラーレンなどのsp2炭素原子を骨格とする物質群であってよいし、また、それらが酸化したもの、置換基が導入されたもの等、化学的な修飾が施されたものであってもよい。生体材料は、ペプチド、タンパク質、糖、脂質などであってよく、タンパク質を基に構成される酵素なども含まれる。その他、水酸アパタイトのような無機材料とコラーゲンのようなタンパク質とが、例えば前者の表面に後者が吸着しているような態様で複合化したものであってよい。
また、多孔質材料の表面に官能基を結合することによる表面修飾を適宜行うことで感度の向上や検出される物質の選択性を向上させること等の機能の増強・追加を行うことができる。
また、多孔質材料の平均孔径は0.1nm(きわめて小さな分子の検出に関するふるい機能(後述)を発揮させようという場合は0.05nm)から1mmである。孔径の上限は100μmとするのが好ましい。より好ましくは10μm、更に好ましくは1μm、更には500nmとするのがよい。孔径がナノメートルレベルの多孔質材料を受容体材料として使用する場合、具体的には、細孔サイズとしては、1nmから500nm程度まで容易に制御可能であるが、これに限るものではない。製造プロセスで用いる界面活性剤、ブロックコポリマーなどの分子サイズを変えることで、細孔サイズはいかようにも調整可能である。また、マクロ細孔領域(細孔サイズ100nm以上)の場合は、コロイダルビーズなどを用いると良い。
構造としては、無秩序な多孔質構造から規則的な構造(具体的には、ヘキサゴナル構造、ラメラ構造、Cubic構造など)まで、制御可能である。
また、上記多孔質材料を被覆する表面応力センサ等のセンサは、種類は特に限定されず、どのようなものを使用しても良い。例えば膜型表面応力センサやカンチレバーセンサを好ましく利用することができる。
また、上記多孔質材料をセンサ表面へ被覆する際には、インクジェット、スプレー、ディップなどによって所望の多孔質材料の原料をセンサ表面に載せ、その場合成により当該表面上に多孔質材料を形成・被覆することができる。あるいは、既に作製されている多孔質材料の薄層や粉末などをセンサ表面に貼り付けたり吹き付けたりすることで被覆を行うなど、どのような方法を利用しても良い。
更に、表面応力センサ本体表面と多孔質材料受容体層との間に例えば接着性改善のための層などの別の層をはさんでもよい。また、受容体層を層構造としてもよい。このような構成は例えば感度の向上に寄与し得る。
また、上記多孔質材料を被覆した表面応力センサ等のセンサは、気中・液中・真空中など、どのような環境で測定を行っても良い。
多孔質材料は比表面積が極めて大きいため、受容体層に多孔質材料を使用することで測定対象物質が吸着可能な面積がそれに応じて大きくなり、実効的に表面応力センサ素子に印加される表面応力も大きくなる。また、多孔質材料は、孔を持たない材料と比較して、剛性が小さくなるため、表面応力の印加による機械的変形によって測定信号が発生する表面応力センサの検知部分の剛性を低く抑えることが可能であり、従って出力信号強度を高くすることが可能となる。更に、表面応力センサは本質的に機械的な変形を検出するものであり、また検出表面はわずかな力で容易に変形する膜や薄板等の部材上に設けられるが、本発明によれば、バルク状態では硬いあるいは脆い物質でできた受容体層をこのように変形しやすい部材上に設けても破損、剥離等が起こりにくくなる。また、これに限定するわけではないが多くの無機物質などの剛体が大きいため従来は受容体層用としては思いもよらなかった物質でも本発明の表面応力センサでは利用可能となるので、受容体層として利用可能な物質の選択の幅が広がる。
更に、多孔質材料の孔径を極めて小さくした場合に特有の効果が発揮される。例えば、受容体層が吸着する物質の分子やクラスターは物質の種類毎に一定のサイズを有しているので、多孔質の受容体層の孔径を調節して多孔質をふるいとして機能させることにより、所望の物質に対する選択性を向上させることが可能となる。ここで、ガス分子の場合には分子量が小さいものが多いので、多孔質をふるいとして機能させる場合には、このような小さなサイズの分子に適合させる場合には、主に1nm以下の孔径とする必要がある。この孔径を0.05nmまで、あるいは0.1nmまで制御可能に設定できるようにすることで、上記ふるい機能を利用した分子検出に当たって広範な分子に対する高い選択性を達成することができる。
[粒状材料受容体層]
本発明における受容体材料として粒状材料を使用する場合も、[多孔質材料受容体層]のセクション冒頭の段落に記載した一般的説明および具体例がそのまま当てはまる。また、当該粒状材料はいかなるサイズ、形状、組成および構造のものであってもよい。サイズについては、粒径が1mm以下であれば、重力等に比べて分子間力の影響が大きいため付着力が強くなり好ましい。更に好ましくは100μm以下、更に好ましくは1μm以下、更に好ましくは100nm以下が好ましい。いずれにせよ、センサ本体表面と何らかの相互作用により結合している限りにおいては、粒子サイズは問わないが、粒子がセンサ本体表面から容易に脱離しないことが一側面では重要である。もう一つの側面では、検知対象物質が吸着することによって、センサ表面に被覆されている粒状材料が脱離し、その際に引き起こされる物理パラメータの変化を検出してもよい。
一般に、たとえば非特許文献3に解析結果が示されているように、ナノ粒子は表面に一旦付着するとそこから脱落しにくい傾向がある。従って、粒状材料としてナノ粒子を使用する場合には、センサ本体表面の性質や使用環境、その他のセンサに対する要求仕様によっても異なるが、付着力を増大させる処置を取らなくても良い場合も多い。逆に、粒子サイズが大きい場合には、粒子およびセンサ本体表面の化学修飾等により結合が形成されていることが望ましい場合が多くなる。
粒子の形状としては、等方性でも異方性でも良い。粒子を構成する物質としては、金属などの単体、あるいは酸化物、硫化物などの化合物、高分子、無機有機ハイブリッド、タンパク質などの生体関連材料などから成ってよい。粒子の構造は、緻密な構造、多孔質や中空など疎な構造、コアシェル型の構造などであってよい。さらに、粒状材料の表面には検知対象の物質等に応じて任意の表面修飾基を適宜固定することができる。具体的にはシランカップリング剤やチオール基を有する分子、ホスホン酸などに加え、高分子や生体関連分子と組み合わせてもよい。
また、前記粒状材料はいかなる手法によって合成されるものであってもよい。具体的には、均一溶液中における析出反応や、エマルションを利用した擬似的な均一系における反応から、噴霧乾燥や熱分解を利用した気相での反応、ボールミリングなどの固相反応まで、特に限定されない。
粒状材料受容体層により被覆されるセンサ本体の一例として、表面応力センサが挙げられるが、その形状・材質・サイズ等は特に限定されず、どのような物体でも使用することができる。例えば1箇所または複数個所で支持された薄片状部材を好ましく例示することができる。その他に、例えば、両持ち梁などの2か所あるいはより多くの箇所で支持された薄片状の物体、膜体など、様々な形態のものを採用することができる。
さらには、表面応力センサ以外に、例えばQCMやカンチレバーなどの振動子、表面プラズモン共鳴(Surface Plasmon Resonance, SPR)を利用したセンサなどでも、粒状材料受容体を被覆して上記同様の効果を実現することができる。
粒状材料受容体をセンサ表面に被覆するための手法は、ディップコーティング、スプレーコーティング、スピンコーティング、インクジェットスポッティング、キャスティング、ドクターブレードを用いた被覆など、特に限定されない。
また、受容体層として使用する粒状材料が、それ自体で所望検体分子を効率よく吸着するのであれば、そのような粒状材料をそのまま使用して良い。あるいは、特定の表面修飾基で粒状材料を修飾することにより、所望検体分子を吸着するようにしたり、また吸着効率を向上させたり、または吸着される物質の選択性を高くしたりするなど、検出性能の改善を図ることもできる。また、表面修飾基による修飾は、検体分子の吸着とは直接関係のない目的、例えば粒子相互の結合性や基板との接着性等、粒状材料センサの耐久性、耐環境性等の向上を図るためにも行うことができる。また、具体的には後述するように、粒状材料の表面を複数種類の表面修飾基がナノメートルレベルで混在するように修飾してもよい。
なお、本発明の粒状材料で被覆することにより形成された受容体層では、粒子が集積して受容体層を形成する過程で粒状体を形成する個々の粒子間に隙間が形成され、このような隙間が孔となるため、ほとんどの場合には多孔質となる。このような受容体層は、粒状材料被覆により形成された受容体層であると同時に、粒子が集積した多孔質体の被覆で形成された受容体層でもある。従って、多孔質体材料受容体層について本願明細書で説明する特徴は、明らかに異なる場合を除いて、そのまま粒状材料受容体層にも適用される。逆に、粒状材料被覆により形成された受容体層もそれが多孔質になっている限り、多孔質材料被覆受容体層について説明する特徴を有することに注意されたい。また、上で言及したところの、多孔質材料でできた粒状材料を被覆することで形成された受容体層は、受容体層表面の孔が塞がれていない限り、多孔質材料受容体層と粒状材料受容体層の両方の特徴を兼ね備えることは自明であろう。
なお、粒状材料受容体層であっても多孔質でないという例外的な場合の例としては、粒状体を構成する粒子の径が極端に小さいため、その集積の過程で残される粒子間の孔が検出対象として想定される分子のサイズに比べて小さくなって、検出対象に対して実質的に多孔質材料として機能しない場合、粒子が極端にアスペクト比の大きな平板状をなしていて、受容体層表面のほとんどをこの平板が覆い尽くしているために、その内部に形成された孔が受容体層表面に開口できない場合、粒子がセンサ本体表面を極めて低い密度でしか被覆していないため、粒子間に大きな隙間があいてしまい、「孔」とは言えないような形状の隙間になっている場合、その他、受容体層内部に孔が存在したとしても、何らかの理由で受容体層表面からそのような内部の孔へ到達できない場合、などがあげられる。
本発明の多孔質材料あるいは粒状材料被覆層を受容体とするセンサにより実現可能な事項を以下に例示する。
(1)センサの感度が受容体層の膜厚に依存する場合、任意の手法により多孔質材料あるいは粒状材料を積層させ、膜厚を制御することによって、当該感度を制御することができる。
(2)測定対象が吸着可能な面積を制御できる。具体的には、積層させる多孔質材料の孔径あるいは粒状材料サイズを変えることにより、比表面積を制御することができる。
(3)測定対象が受容体層の内部にまでアクセスできるようにするための空間(経路)を確保できる。具体的には、多孔質材料を使用する場合にはその孔がこのような経路を提供する。粒状材料を使用する場合には、積層させる粒状材料サイズを変えることにより、粒状材料中に形成される空隙サイズを制御することができる。
(4)受容体層として多孔質材料あるいは粒状材料を使用するため、受容体層に使用する物質以外の多くの自由度を与える。具体的には、測定対象に応じて、適した多孔質材料あるいは粒状材料の組成、表面修飾基の種類、あるいは複数種類の多孔質材料あるいは粒状材料の組み合わせなどを選択することができる。
(5)測定環境に応じて、必要とされる親水性/疎水性、耐熱性、耐薬品性などを有する多孔質材料あるいは粒状材料を選択することができる。つまり、従来技術のような一様な層をセンサ表面に被覆する構成に比べて、多孔質材料あるいは粒状材料を付着させる方が、より幅広い性質の材料が選択可能となる。
上記(5)については、例えば従来技術でよく使われるポリマーの場合、多種多様なものが存在するので測定環境に応じて、適したポリマーを選択すれば良いが、ポリマー毎に適した溶媒や被覆の条件等が大きく異なるため、その都度最適条件を検討する必要が生じる。一方、本発明における多孔質材料あるいはナノ粒子等の粒状材料では、異なる修飾基をその表面に複数共存させることにより、一種類の母材だけで様々な性質を実現可能である。
これらの修飾基は必要に応じて適宜選択することができるが、例えば、以下で説明する粒状材料受容体層の実施例では、粒子としてシリカチタニアハイブリッド粒子を使用し、その表面をアルキル基およびアミノ基で修飾している。なお、実施例2で作製したナノ粒子表面の構成で重要なのは、このナノ粒子表面に存在する最長の修飾基はアルキル基であり、そのため巨視的には疎水性となることである。これに対し、微視的にはアミノ基が存在するため、これらも吸着に寄与する。つまりアミノ基を別の修飾基に変えても、あるいはアミノ基に加えてさらに別の修飾基をつけても、アルキル基修飾密度を極めて疎にするか、アルキル基以上の鎖長のものをつけない限りにおいては、巨視的な性質は変わらないため、その都度被覆条件を検討する必要が無い。以上のような理由から、特別な処置を行わなくても、受容体層が吸着する検体分子の選択と受容体層の性質とを互いにほぼ独立に設定・選択することが可能となる。
また、多孔質材料受容体層の場合の修飾基についても基本的に上と同様である。ただし、多孔質材料の場合にはその内表面積(材料内部の空孔の表面積)が外表面積(材料の巨視的な表面の面積)に比べて非常に大きくなる場合があるが、そのような場合には一部状況が異なる。例えば、以下で説明する実施例1における多孔質膜は、スポンジのような構造の膜がセンサ表面に固定されているものである。このスポンジ構造部分は内部の表面積が圧倒的に大きく、一方でその外表面積は小さい。結局、このような場合には修飾基は相対的に内部に非常に多く存在することになるので外表面に露出する修飾基が不足し、その効果が少なくなる可能性がある。例えば上で言及した巨視的な疎水性は細孔内というよりは外表面によって決まると考えられるため、修飾基の被覆密度によっては上で述べた効果が十分に発揮されない可能性がある。
(6)受容体層材料として多様な無機多孔質あるいは無機粒子を使用できることから、受容体層に高い耐熱性を付与することが可能となる。これにより、表面応力センサ等の各種のセンサを用いて高温下で多様な物質を高感度に検出することができる。例えば、半田のリフローを行う際、溶融した半田やその近傍での測定を行う際には、250℃もの高温下で動作し得るセンサが求められる。例として、以下の実施例2で与えられるアミノプロピル基およびオクタデシル基修飾シリカチタニアハイブリッド粒状材料により被覆されたMSSは、修飾基は有機物であるものの、粒子としてはシリカチタニアハイブリッド材料を使用しているため、かなりの高温まで耐えることができ、250℃でも充分に動作する。受容体層に修飾基を使用しない場合には、さらに高い耐熱性が容易に実現可能となる。なお、実施例2は粒状材料受容体層の場合の例であるが、多孔質材料受容体層でも同じである。
以下、実施例に基づいて本発明をさらに詳細に説明するが、当然ながら、本発明はこれら実施例に限定されるものではない。
<実施例1>スプレーコーティングを用いたメソポーラスシリカ被覆により多孔質材料受容体層を形成したMSS
以下では表面応力センサとして上述の膜型表面応力センサ(MSS)を例に挙げ、多孔質材料として数ナノメートルから数十ナノメートルの孔径を有するメソポーラス材料を受容体として被覆した際の効果を説明する。
本実施例では多孔性材料としてメソポーラスシリカ薄膜を使用した。その製造方法は良く知られているが、簡単に説明すれば、先ずメソポーラスシリカ薄膜の作製に際し、有機鋳型(界面活性剤/ブロックコポリマー)、シリカ源,有機溶媒からなる前駆溶液を作り、その前駆溶液を基板上に塗布した。溶媒が揮発するにつれて界面活性剤/ブロックコポリマーが自己組織化し、その周りでシリカの骨格が形成された。焼成することで鋳型が取り除かれ、目的のメソポーラスシリカが得られた。多孔性シリカの孔径は有機鋳型(界面活性剤/ブロックコポリマー)の大きさにより制御可能であり,2nmから100nm程度まで制御可能である。本実施例では図1にそのSEM像を示す平均細孔径が35nmのメソポーラスシリカを使用した。
図2は、上で説明し図1にSEM像を示したメソポーラスシリカをスプレーコーティングによって被覆することで多孔質材料受容体層を形成したMSSを用いて各種ガスを測定し、その結果を主成分分析した結果を示す。測定に当たっては、図4に挙げた各種ガスに対応する溶液が1ml程度入った2mlのバイアル瓶にガス導入テフロン(登録商標)チューブを接続し、乾燥窒素ガスをキャリアガスとして100ml/分の流量で流すことにより、バイアル瓶のヘッドスペースの飽和蒸気とともにメソポーラスシリカが被覆されたセンサチップを設置したチャンバーに10秒間導入した。その後、乾燥窒素ガスを10秒間導入した。これを3回繰り返し、乾燥窒素ガスによって、メソポーラスシリカに吸着したガス分子をパージする際に得られる減衰カーブから、一定間隔の複数のシグナルの値を抽出し、これを用いて主成分分析を行った。ポリマーなどの材料を溶かす有機溶媒の飽和蒸気を用いた測定にもかかわらず、各種ガス成分が識別可能であることが確認できた。また、この結果は、繰り返し測定を行っても、ほとんど影響を受けることなく同様に測定可能であることも確認できた。
図3(a)、(b)は、上述のメソポーラスシリカ被覆MSSを、液体の水およびエタノールに浸した場合の膜形状とシグナルの変化を調べたものである。より具体的には、浸漬前のシグナルは、上記の説明と同様の条件で、ガスとしてはオクタンの飽和蒸気と乾燥窒素を交互に30秒間ずつ100ml/分の流量で流しながら測定して得られたものである。センサチップが設置されている密閉チャンバー内に水を1分間程度流し、引き続いてエタノールを1分間程度流した。これらの操作は全て室温で行った。その後、浸漬前と同じ条件で再度測定を行ってシグナルを得た。これにより、浸漬前後でMSS上の膜形状の外観はほとんど変化せず、またこれらの液体への浸漬は測定結果のシグナルにもほとんど影響を与えないことが確認できた。
このように、多孔質材料を受容体層として利用した場合、高濃度ガスだけでなく、液体の溶媒に浸した場合でも、膜の形状やシグナルにほとんど影響を及ぼすことなく、繰り返し測定が可能であることが確認できた。このような高い耐久性は、本質的には上記実験で使用した多孔質材料として無機材料を使用したことに由来するものである。この実験結果を本発明との関係で評価すれば、本実験により受容体層を多孔質化しても充分高い耐久性を発揮されることがわかり、多孔質化が耐久性に与える悪影響はほとんど確認されなかった。
<実施例2>アミノプロピル基およびオクタデシル基修飾シリカチタニアハイブリッド粒状材料により被覆されたMSS
以下では、上記粒状材料を用いた受容体層作製と測定の一実施例について説明する。一般的に、以下の方法で作製される粒状材料は、通常はその直径が数ナノメートルから数百ナノメートルとなる。従って、本実施例では、使用した粒状材料を「ナノ粒子」と表記する。しかし、本発明における粒状材料は、直径がナノメートルレベルに限定されるものではない。
上記ナノ粒子は、オクタデシルアミン(ODA)が溶解したアンモニア塩基性のイソプロパノール(IPA)水溶液中における、アミノプロピルトリエトキシシラン(APTES)とチタニウムテトライソプロポキシド(TTIP)の共加水分解、縮合重合反応により合成した。上記合成反応は、マイクロメートルサイズのY字型流路を有するテフロン(登録商標)製マイクロリアクタを用いて実施した(図4)(非特許文献4)。前駆溶液は、溶液1:APTES/IPA、溶液2:HO/IPA/アンモニア、溶液3:TTIP/IPA、溶液4:HO/IPAの4つとし、溶液1から溶液4まで体積を揃えて調製した。前駆溶液はシリンジポンプにより同時に一定速度で送液した。溶液1と溶液2、溶液3と溶液4を並列したマイクロリアクタ内でそれぞれ混合し、両リアクタからの吐出液をさらに別のマイクロリアクタ内で混合することにより、1つの反応液とした。反応液は別途調製しておいた前駆溶液5:ODA/HO/IPA中へ吐出し、吐出終了まで一定速度で撹拌した。その後、室温で静置し、上記ナノ粒子分散液を得た。SEMにより観察したナノ粒子像を図5に示す。
上記ナノ粒子分散液を一定量の水と混合することにより粒子濃度を1g/Lに調製し、超音波照射により粒子を分散させた後、すぐにスプレーコーターを用いてセンサ本体を構成するセンサチップ上に噴霧した。センサ本体は特許文献1で提案した膜型構造を有するピエゾ抵抗型MSSを使用した。
本実施例で作製した、ナノ粒子被覆後のMSSの光学顕微鏡像を図6に示す。被覆前と比較することで、膜構造全体が被覆されていることが確認できる。
このようにして形成された受容体層付きMSSを用いて、水および水に易溶/難溶の化学種の測定を行った。具体的には、水、ホルムアルデヒド(ホルマリン)、エタノール、IPA、ヘキサン、ヘプタン、ベンゼン、トルエンの8種類をそれぞれバイアルに分取し、そこへキャリアガスとして窒素を100mL/minで流すことにより、一定量のサンプル蒸気を含んだガスとして、MSSが格納された密閉チャンバーへ導入した。各サンプル蒸気の測定結果を図7に示す。比較対象として、汎用的なポリマーの一例であるPVP(1g/L溶液)を、同一構造のピエゾ抵抗型MSSに、同一のスプレーコーターを用いて被覆して測定を行った結果も図7中に示す。水およびホルムアルデヒドの場合、実施例の受容体層付きMSSでは7〜8mV程度のシグナルが得られたが、比較対象のPVP被覆のMSSでは、6mV程度のシグナルが得られた。エタノールおよびIPAの場合、実施例のMSSではシグナル強度は低下し、3mV程度であったが、PVP被覆のMSSでは6mVを僅かに下回る程度の出力が得られた。一方、水に難溶の化合物であるヘキサン、ヘプタン、ベンゼン、トルエンでは、いずれのMSSでも1mV程度の微弱なシグナルが得られた。このように、ナノ粒子被覆による受容体層付きMSSを、PVPのみを被覆したMSSと比較すると、水系サンプルに対する感度は高く、逆にアルコール系サンプルに対する感度は低かった。これは、PVPが構造中に疎水的な炭化水素鎖と親水的な置換基(N、Oを含む極性基)をもつのに対して、ここで使用した親水的なアミノプロピル基を多く含むナノ粒子は、水を多く吸着したためと考えられる。以上により、ナノ粒子のみを被覆することによっても、汎用のポリマーと同等以上の感度が得られ、また修飾基の種類によって選択性を制御できることが示された。
<実施例3>アミノプロピル基およびオクタデシル基修飾シリカチタニアハイブリッドナノ粒子を積層させることによる高感度化
実施例2で使用したものと同じナノ粒子を、その分散液の濃度が1g/Lとなるように調製し、MSSへの被覆に用いた。スプレーコーターにより5回連続して被覆を行い、受容体層膜厚を増加したMSSを用いて、実施例2と同様、8種類の化合物を測定した。その測定結果を図8に示す。
水に易溶/難溶の化合物に対する応答特性の傾向は実施例2と同様であった。水および水に易溶の化合物に対する感度の絶対値はおよそ5倍程度に増加した。このように、ナノ粒子の被覆量を制御することによって、任意の膜厚を有し、かつ安定した測定が可能なナノ粒子受容体層を作製することが可能であることが実証された。また、この膜厚の増加に伴って、センサ感度を増幅することが可能であることも実証された。
<実施例4>アミノプロピル基およびオクタデシル基修飾シリカチタニアハイブリッドナノ粒子を被覆した受容体層付きMSSの液中使用
実施例2で作製した上記ナノ粒子被覆受容体層付きMSSを水に数秒間浸漬した後、引き上げ、乾燥させてから、再度上記8種類の化合物の測定を行った。まず、水に浸漬前後の光学顕微鏡像を図9に示す。比較として、PVPを被覆したMSSの例も併せて示す。PVPの場合、水に浸漬した後はPVPが完全に溶解してしまっていることが分かる。一方、ナノ粒子被覆MSSの場合、浸漬前後でMSSの様子は全く変化しておらず、目視レベルで受容体層が完全に保持されていることが確認できる。
このように、本実施例では、センサ本体へ被覆を行う際にはナノ粒子を分散させた懸濁液をスプレーしただけであるにもかかわらず、水に浸漬しても流失等の損傷を起こさない強固な粒状材料受容体層が得られた。粒子間に生じうる引力として分子間力や静電引力等が挙げられるが、例えば分子間力を取り上げた場合、粒子半径の2乗に反比例して大きくなるため、粒子は小さければ小さいほど強固に付着する。従って、既に述べたように、付着の際に特別な処置を行ったり、あるいは付着過程でバインダなどの付着を助ける他の物質を使用したりしなくても、ナノ粒子は、表面上に一旦付着すると、表面上に強固に付着して簡単には脱落しない。もちろん、付着強度を更に向上させるための何らかの手段を併用することを妨げるものではない。
続いて、8種類の化合物の測定結果を図10および図11に示す。図10に示すナノ粒子被覆センサの場合、水に難溶の化合物については、水への浸漬前と同様のシグナルが得られた。また、水および水に易溶の化合物に対しては、2倍程度の感度の増加が見られた。これは、ナノ粒子していた余剰なODAが、水への浸漬により洗い流され、より多くの検体分子が吸着可能になったためと考えられる。一方、図11に示すように、PVP被覆MSSの場合、図9でも確認できるように、水への浸漬によってPVP受容体層が水に溶解してしまい、MSS表面上にほとんど残っていないため、全ての化合物についてシグナルはほとんど確認できなかった。
MSSチップを水から引き上げる様子を観察していると、ナノ粒子被覆受容体層付きMSSは完全に水を弾いており、表面が疎水的であることが分かった。しかしながら、水系サンプルに対して高い感度を示す吸着特性は、親水的な表面の存在を示唆している。これは、チタニア表面に固定されたODA由来のオクタデシル基と、シリカ表面に固定されたアミノプロピル基の協奏的な作用の結果と理解できる。つまり、鎖長の長いオクタデシル基の存在によって、巨視的には疎水的であるが、アミノプロピル基が共存することによって、微視的には水を吸着するサイトが多く存在しており、これにより、液体状態などのバルク状の水は弾くが、水蒸気(言い換えれば、気体中に分散した状態の水分子で、バルク状の水ではないもの)は吸着する状態が実現したものと考えられる。オクタデシル基およびアミノプロピル基の鎖長が数Åから1nm程度であることを踏まえると、例えば上記ナノ粒子被覆MSSを、アミノ基と親和性のある分子(タンパク質など)が溶解した水中に設置することにより、水中から検体分子のみを選択的に抜き取るように吸着することができると考えられる。以上により、気中測定のみならず、例えば血液中の各種のガスの濃度を直接測定するなど、これまでに例のない液中測定を実現できることがわかる。
ここで言う「液中測定」をより具体的に説明すれば、以下のとおりである。すぐ上で述べたような親水および疎水基修飾を有する粒子を用いた場合、両修飾基が粒子表面で周期性をもって(あるいは厳密な意味で周期的でなくても、非常に短い間隔で相互に入れ替わって)配置されていると仮定すると、疎水基と親水基とが交互に存在することになる。このような状態の表面にバルクの水が接すると、隣接する疎水基の間には空気を含んだ「ポケット」のような状態ができる可能性がある。上に述べた配置状態の下では疎水基と疎水基との間には親水基が存在するためにこの「ポケット」ができる領域には親水基が存在していて、このような親水基先端とバルク水との距離は1nm弱になると予想される。したがって、液中の溶存分子をこのポケット中に引き抜くことによる当該溶存分子の検出が可能となる。言い換えれば、液中で一種の気中測定を行うことになる。なお、先に「本発明の多孔質材料あるいは粒状材料被覆層を受容体とするセンサにより実現可能な事項」の(5)で説明したことからわかるように、この測定方法は多孔質材料を使用した受容体層でも基本的には実現できるが、多孔質の構造によっては十分に機能しないこともある点に注意されたい。
このような、所謂「液中気体測定」は、気体分子は透過するが液体分子は透過しない性質を持つ材料(例えば、液中の溶存ガス除去のためなどに使用される二次元状に広がった中空糸膜、その他このような性質を有する半透膜などが使用可能)を利用して、センサ素子の周りに上記のような「ポケット」に相当する気体雰囲気ができるようにセンサ素子を包んだ構造にすることによって実現することも可能である。こうすることで、センサ素子は液体試料に触れることなく、液体試料に溶存しているガス成分を検出することが可能となる。この場合、センサ素子に被覆する受容体層は、原理的には気体試料の測定に利用可能なあらゆる材料が利用可能となる。例えば、図9で確認されたように、PVPなどの親水性のポリマーは、水に浸すとすぐに溶解してしまい、液中測定は不可能であるが、ここで説明した中空糸膜などを利用した「液中気体測定」の原理を利用すれば、水中での測定も可能となる。
図14に袋状の中空糸膜中に表面応力センサを収容することにより、液中気体測定を行うための構成例の概念図を示す。図14に示す液中気体センサにおいて、センサ本体としてMSSを使用するとともに、その表面に測定対象の気体分子に適合した受容体層を形成した表面応力センサを袋状の中空糸膜中に収容する。また、MSSが接続されたソケットを介して取り出した検出信号を運ぶ信号線を図に示すように上方に引き出して、図示しない測定器のA/D変換器へ接続する。更に、これらの信号線を収容するチューブの下端付近に中空糸膜の袋を水密的に取り付ける。更に、チューブを介して中空糸の袋に陰圧を印加できるようにする。使用に当たっては、表面応力センサが中空糸膜の袋に収容されたままの状態で、液体試料中に浸漬する。中空糸膜は液体(例えば水)分子は通さないが、膜の組成や構造等で決まるある種の気体分子は透過するため、液体試料中に溶解している気体分子は中空糸膜を透過して中空糸の袋内部のポケット状気体雰囲気中に移動する。この状態でチューブを介して袋に陰圧を印加することにより、気体分子の透過を加速する。また、陰圧の印加により中空糸膜の袋の容積、すなわちポケット状気体雰囲気の体積は内外の圧力差から小さくなる。ポケット状気体雰囲気の体積が小さくなることにより、透過した気体の当該雰囲気中の濃度が平衡状態に短時間で到達できるようになる。
なお、この「液中気体測定」は、液体試料の直上にセンサ素子を設置して、液体試料の蒸気を測定する場合に比べ、以下のような特徴が有る。センサ素子と、その周りの閉じた「ポケット」に相当する気体雰囲気全体を液中に浸すことが可能となるため、蒸気など気体雰囲気の揺らぎの大きい環境に比べて、より安定した環境での測定が可能となる。また、中空糸膜の内部、つまりセンサ素子が設置されている側を、別のポンプなどで吸引することによって陰圧にすることで、「ポケット」に相当する気体雰囲気中に存在している夾雑成分を減らしつつ、液体試料から積極的に気体分子を抽出することが可能になるため、より精度の高い測定が実現する。
また、図14では袋状の膜内に表面応力センサ全体を収容するという構造を示しているが、例えば表面応力センサのセンサ表面だけ(あるいはそれに加えてセンサ表面近傍)を膜で覆う構成とすることで、液中気体センサをコンパクトに構成することができる。
なお、本実施例のナノ粒子表面に親水性の修飾基と疎水性の修飾基とが周期的にあるいはほぼ周期的に混在できるのは、このナノ粒子がシリカチタニアハイブリッドナノ粒子であって、その表面上にそれぞれの修飾基が結合するシリカ部分とチタニア部分とが繰り返し出現しているからである。このように複数種の材料が表面に繰り返し出現するナノ粒子を製造するには、実施例2に示したように、複数種のアルコキシドを有機物存在下で混合して反応させればよい。また、この反応により製造されるナノ粒子のサイズおよび形状を制御するには、例えば実施例2のようにフロー合成の手法を用いればよい。フロー合成手法については例えば非特許文献4で説明されている。なお、多孔質材料の場合も同様にして修飾基のこのような周期的な混在を実現できる。
微視的に親水的となる条件は、粒子上、より一般的には受容体層表面上、の疎水性基の鎖長のほうが粒子上の親水性基より長いことである。これにより、バルクの水は疎水性基によりはね返されるが、分子であれば親水基にもアクセス可能となる。なお、同様の現象は、ナノ粒子で被覆されていない平滑な表面でも理論上は実現できると考えられる。しかし、平滑な基板等の表面を、親水性と疎水性のように互いに逆の性質を有する修飾基を、上述の現象が起こる程度の狭いピッチで混在するように被覆することは、実際には困難である。粒子レベルで親水性と疎水性のように相反する複数の性質を共に有しているということは、実現容易性の点でも有利である。
なお、粒子表面に複数種類の表面修飾基による修飾を行うことによって達成される機能は、上述のようなこれら複数種類の表面修飾基相互の協奏的な作用によるものに限定されるわけではない。例えば、複数種類の修飾基のうちの或るものは、検体分子と結合することで検出感度の向上や選択的な検出を実現し、他の修飾基はセンサ本体表面と結合することでセンサ表面への粒子結合の耐久性、耐環境性を向上させるものであってもよい。
<実施例5>異なる物理パラメータを検出するタイプのセンサへの応用(一例としてQCM)
実施例5では実施例2と同様の手順によりQCMをナノ粒子により被覆し、上記8種類の化合物の測定に供した。センサ本体としてQCMを使用した場合でも、その表面を被覆する受容体層はMSSとほぼ同じ構造を有する。その測定結果を図12に示す。ナノ粒子被覆前のQCMは全ての化合物に対して1〜2Hz程度の共振周波数変化しか示さないのに対し、ナノ粒子被覆後はその数百〜千倍もの共振周波数変化を示した。さらには、それぞれの化合物に対して明らかに異なるシグナル波形を示しており、目視により化合物を判別することも可能である。
比較対象として、PVPを被覆したQCMを用いて、上記8種類の化合物の測定を行った。その結果を図13に示す。共振周波数変化は大きいもので50Hz程度、小さいもので数Hz程度であった。ここで、共振周波数変化はQCM上で生じる質量変化とほぼ比例関係にあることが知られている。今回使用した被覆前のQCMの共振周波数はおよそ8,997,130Hzであり、PVP被覆後は8,991,055Hzとなったことから、被覆に伴う共振周波数変化はおよそ6kHzであった。一方、ナノ粒子被覆後の共振周波数は8,960,410Hzであったため、被覆に伴う共振周波数変化はおよそ36kHzであった。つまり、QCMの電極表面上に存在するナノ粒子は質量換算でPVPの6倍程度多いことになる。このことを踏まえると、PVP被覆したQCMを用いて得られた各化合物の測定結果とナノ粒子被覆したQCMを用いて得られた各化合物の測定結果を比較するためには、被覆している受容体物質の単位質量当たりの比較を行うとすれば前者における共振周波数変化を6倍する必要がある。この場合、共振周波数変化は大きいもので300Hzということになるが、この値でナノ粒子被覆の場合と比較したとしても、依然として6倍程度小さい。
以上により、ナノ粒子を他のセンサ表面に被覆することによっても、高い感度および選択性を実現でき、既存材料を受容体層とした場合を大きく上回ることが示された。多孔質受容体層付きの場合も同様な結果が得られる。
<実施例6>金属有機構造体(MOF)ナノ粒子被覆受容体層付きのMSS
受容体層には上述したもの以外の多様な材料を使用できる。そのような他の材料の例としてMOFナノ粒子で形成した受容体層を有するMSSを作製して、各種の化合物に対するその検出特性を測定した。MOFとしては図15に結晶構造模式図及びナノ粒子のSEM像を示すZIF−7、ZIF−8及びZIF−71を使用した。これらのMOFナノ粒子の製造方法はそれぞれ非特許文献5〜7で説明されているように良く知られている事項であるが、以下で簡単に説明する。
[ZIF−7ナノ粒子の合成]
非特許文献5に基づいて以下のようにしてこのナノ粒子を合成した。先ず、硝酸亜鉛六水和物(302mg、1.02mmol)をN,N−ジメチルホルムアミド(10mL)中に溶解し、これをベンズイミダゾール(769mg、6.4mmol)のN,N−ジメチルホルムアミド(10mL)溶液中に室温で攪拌しながら急速に注ぎ込んだ。攪拌を12時間継続した後、乳白色の懸濁液を15000×gで30分間遠心分離した。上澄みを静かに注ぎ出してメタノールで置換し、この混合物を1分間超音波処理して粒子状物質を再分散させた。遠心分離/洗浄処理を更に3回繰り返した。その結果得られた懸濁液の半量は別途使用するために確保しておき、残りの半量を乾燥させて(大気中において60℃で2〜3時間、続いて真空中において真空引きを続けながら180℃で一晩乾燥)、黄色がかった白色の固形物を104mg得た(Zn基準で収率71%)。
[ZIF−8ナノ粒子の合成]
非特許文献6に基づいて以下のようにしてこのナノ粒子を合成した。先ず、硝酸亜鉛六水和物(297mg、1mmol)をメタノール(20mL)中に溶解し、これを2−メチルイミダゾール(649mg、7.9mmol)のメタノール(20mL)溶液中に攪拌しながら急速に注ぎ込んだ。攪拌を6時間30分継続した後、乳白色の懸濁液を15000×gで1時間遠心分離した。上澄みを静かに注ぎ出して新しいメタノールで置換し、この混合物を5分間超音波処理して粒子状物質を再分散させた。遠心分離/洗浄処理を更に2回繰り返した。その結果得られた懸濁液の半量は別途使用するために確保しておき、残りの半量を乾燥させて(大気中において90℃で2〜3時間、続いて真空中において真空引きを続けながら180℃で一晩乾燥)、淡黄色の固形物を38mg得た(Zn基準で収率35%)。
[ZIF−71ナノ粒子の合成]
非特許文献6に基づいて以下のようにしてこのナノ粒子を合成した。先ず、無水酢酸亜鉛(220mg、1mmol)をN,N−ジメチルホルムアミド(10mL)中に溶解し、これを4,5−ジクロロイミダゾール(960mg、6mmol)のN,N−ジメチルホルムアミド(10mL)溶液中に室温で攪拌しながら急速に注ぎ込んだ。攪拌を4時間継続した後、乳白色の懸濁液を15000×gで30分間遠心分離した。上澄みを静かに注ぎ出してメタノールで置換し、この混合物を1分間超音波処理して粒子状物質を再分散させた。遠心分離/洗浄処理を更に3回繰り返した。その結果得られた懸濁液の半量は別途使用するために確保しておき、残りの半量を乾燥させて(大気中で60℃、続いて真空引きしながら180℃で一晩乾燥)、灰色がかった白色の固体を104mg得た(Zn基準で収率71%)。その結果得られた懸濁液の半量は別途使用するために確保しておき、残りの半量を乾燥させて(大気中において60℃で2〜3時間、続いて真空中において真空引きを続けながら180℃で一晩乾燥)、茶色の粉末を75mg得た(Zn基準で収率46%)。
これら3種類のMOFナノ粒子をそれぞれMSS上に被覆して、それぞれ9種類の化合物、具体的には水(HO)、ホルマリン(HCHOaq)、エタノール(EtOH)、イソプロパノール(IPA)、アセトン(Acetone)、ヘキサン(Hexane)、ヘプタン(Heptane)、ベンゼン(Benzene)、トルエン(Toluene)、の蒸気を所定周期で断続的に与えたときのMSSからの検出出力の時間変化を実施例2と同じ方法で測定した。なお、ZIF−7、ZIF−8及びZIF−71をMSSに被覆する際に使用した方法は同一ではなかったため、MOFの種類が異なるとその受容体層の厚さは異なっていた。従って、異なるMOF間の検出特性の絶対値を比較することはできない。ただし、これ以外の測定条件はできるだけ揃えたため、同一のMOF間を使用した場合の検出特性を比較することはできる。更には検体物質を変えた場合の検出特性の傾向を異なるMOF間で比較することもできる。受容体層がZIF−7、ZIF−8及びZIF−71の場合の検出出力をそれぞれ、図16A及び図16B、図17A及び図17B並びに図18A及び図18Bに示す。
更に、このようにして得られた検出出力の時間変化のピーク値(具体的には試料ガスの導入開始後30秒における検出出力)をプロットしたグラフを図19に示す。ただし、このグラフでは、これらのピーク値はMOFナノ粒子毎に最大のピーク値で正規化してある。このグラフから、極性・無極性化合物に対する各MOFの大凡の親和性を推定することができる。
<実施例7>酸化グラフェン(GO)とポルフィリンとを組み合わせた受容体層付きのMSS
酸化グラフェン(GO)にポルフィリンを組み合わせることで形成した受容体層をMSS上に成膜して、各種の化合物に対する検出出力を測定した。ポルフィリンとしては化学構造式を図20に示すT(3,5−DHP)P(5,10,15,20-tetrakis(3',5'-dihydroxyphenyl)porphyrin、Por−OH)及び化学構造式を図24に示すZn−T(3,5−DHP)P(3',5'-dihydroxyphenyl)porphinatozinc(II)、Zn−Por−OH)を使用した。非特許文献8に記載されているように、GOは多孔質になりやすいという性質が知られている。本実施例の受容体層は、そのような多孔質のGOのネットワーク中にポルフィリン(Por−OH、Zn−Por−OH)を載せた構造になっている。以下で言及するSEM像では、シートの一枚一枚がはっきり見えるようにSi基板上で少量をスピンコートしたものを観察しているが、センサ膜上に載せたものは 非特許文献8のような多孔質状のネットワークが形成されていると考えられる。
[Por−OH + GO]
GO水溶液(約100mg/L)及びPor−OHメタノール溶液(1mM)を準備し、両者の混合比を変えて以下の3種類のPor−OH及びGO混合溶液を作製した。
(1)GO水溶液500μL + Por−OHメタノール溶液10μL
(2)GO水溶液500μL + Por−OHメタノール溶液100μL
(3)GO水溶液500μL + Por−OHメタノール溶液1000μL
混合溶液(1)〜(3)をSi基板にスピンコートによって塗布し乾燥させたもののSEM像を図21の丸付き数字1〜3にそれぞれ示す。
混合溶液(1)〜(3)をそれぞれMSS上にインクジェットにより成膜することにより、受容体層付きMSS Ch1〜Ch3を作製した。
Ch1:混合溶液(1)を250ショット噴射
Ch2:混合溶液(2)を250ショット噴射
Ch3:混合溶液(3)を750ショット噴射
更に比較対象としてMSS上にGO水溶液をインクジェットで250ショット噴射することにより、受容体層付きMSS Ch4を作製した。このようにして作製されたMSS Ch1〜Ch4の表面(インクジェット噴射を行った側)及び裏面(インクジェット噴射を行った面と反対側の面)の顕微鏡写真を図22の(a)及び(b)にそれぞれ示す。
このようにして作製した4種類のMSSを使用して14種類の化合物、すなわち水(HO)、アセトン(acetone)、メチルエチルケトン(MEK)、メタノール(MeOH)、エタノール(EtOH)、イソプロパノール(IPA)、ブタノール(BuOH)、酢酸(CHCOOH)、ヘキサン(hexane)、オクタン(octane)、ベンゼン(benzene)、トルエン(toluene)、テトラヒドロフラン(THF)、酢酸エチル(AcOEt)、についての測定結果のグラフを図23に示す。なお、この測定は直前の実施例である実施例6と同じ条件で行った。このグラフでは、MSS Ch1〜Ch4毎に、各測定値を水の測定値で正規化してある。このグラフにおいてGOにPor−OHを組み合わせた受容体層を有するCh1〜Ch3の検出出力とGOだけで構成された受容体層を有するCh4の検出出力とを比較すると、GOにPor−OHを組み合わせた場合には、GOのみの場合に比べて水への選択性が高くなる(グラフ上で見れば、水以外の化合物への検出出力が小さくなる)ことがわかる。
[Zn−Por−OH + GO]
GO水溶液(約100mg/L)及びZn−Por−OHメタノール溶液(1mM)を準備し、両者の混合比を変えて以下の3種類のPor−OH及びGO混合溶液を作製した。
(1’)GO水溶液500μL + Por−OHメタノール溶液10μL
(2’)GO水溶液500μL + Por−OHメタノール溶液100μL
(3’)GO水溶液500μL + Por−OHメタノール溶液1000μL
混合溶液(1’)〜(3’)をSi基板にスピンコートにより塗布し乾燥させたもののSEM像を図25の丸付き数字1〜3にそれぞれ示す。
混合溶液(1’)〜(3’)をそれぞれMSS上にインクジェットにより成膜することにより、受容体層付きMSS Ch1〜Ch3を作製した。
Ch1:混合溶液(1’)を250ショット噴射
Ch2:混合溶液(2’)を250ショット噴射
Ch3:混合溶液(3’)を750ショット噴射
更に比較対象としてMSS上にGO水溶液をインクジェットで250ショット噴射することにより、受容体層付きMSS Ch4を作製した。このようにして作製されたMSS Ch1〜Ch4の表面(インクジェット噴射を行った側)及び裏面(インクジェット噴射を行った面と反対側の面)の顕微鏡写真を図26の(a)及び(b)にそれぞれ示す。
このようにして作製した4種類のMSSを使用して、Por−OH+GOの場合と同じく14種類の化合物、すなわち水(HO)、アセトン(acetone)、メチルエチルケトン(MEK)、メタノール(MeOH)、エタノール(EtOH)、イソプロパノール(IPA)、ブタノール(BuOH)、酢酸(CHCOOH)、ヘキサン(hexane)、オクタン(octane)、ベンゼン(benzene)、トルエン(toluene)、テトラヒドロフラン(THF)、酢酸エチル(AcOEt)、についての測定結果のグラフを図27に示す。なお、この測定も直前の実施例である実施例6と同じ条件で行った。このグラフでは、MSS Ch1〜Ch4毎に、各測定値を水の測定値で正規化してある。このグラフにおいてGOにPor−OHを組み合わせた受容体層を有するCh1〜Ch3の検出出力とGOだけで構成された受容体層を有するCh4の検出出力とを比較すると、ここでも、GOにZn−Por−OHを組み合わせた場合には、GOのみの場合に比べて水への選択性が高くなる(グラフ上で見れば、水以外の化合物への検出出力が小さくなる)ことがわかる。
国際公開2011/148774号公報
G. Yoshikawa, "Mechanical Analysis and Optimization of a Microcantilever Sensor Coated with a Solid Receptor Film," Appl. Phys. Lett. 98, 173502-1-173502-3 (2011). G. Yoshikawa, C. J. Y. Lee and K. Shiba, "Effects of Coating Materials on Two Dimensional Stress-Induced Deflection of Nanomechanical Sensors," J. Nanosci. Nanotechnol. 14, 2908-2912 (2013). W. Heni, L. Vonna and H. Haidara, "Experimental Characterization of the Nanoparticle Size Effect on the Mechanical Stability of Nanoparticle-Based Coatings," Nano Lett. 15, 442-449 (2015). K. Shiba and M. Ogawa, "Microfluidic syntheses of well-defined sub-micron nanoporous titania spherical particles," Chem. Commun. 6851-6853 (2009). Yan-Shuo Li, Fang-Yi Liang, Helge Bux, Armin Feldhoff, Wei-Shen Yang, and Juergen Caro, "Molecular Sieve Membrane: Supported Metal.Organic Framework with High Hydrogen Selectivity," Angew. Chem. Int. Ed., 49, 548-551 (2010). Janosch Cravillon, Simon Muenzer, Sven-Jare Lohmeier, Armin Feldhoff, Klaus Huber, and Michael Wiebcke, "Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework," Chem. Mater. 21, 1410-1412 (2009). Min Tu, Christian Wiktor, Christoph Roesler and Roland A. Fischer, " Rapid room temperature syntheses of zeoliticimidazolate framework (ZIF). Lili Jiang and Zhuangjun Fan, "Design of advanced porous graphene materials:from graphene nanomesh to 3D architectures," Nanoscale, 6, 1922-1945 (2014).

Claims (23)

  1. 多孔質材料または粒状材料を、物理パラメータを検出するタイプのセンサ本体上に被覆し、
    検体分子を前記多孔質材料または粒状材料が吸着することによる前記物理パラメータの変化により前記検体分子を検出する
    センサ。
  2. 前記多孔質材料または粒状材料は無機物質からなる、請求項1に記載のセンサ。
  3. 前記無機物質はシリカである、請求項2に記載のセンサ。
  4. 前記多孔質材料または粒状材料は平均孔径が1mm以下の多孔質材料である、請求項1から3の何れかに記載の表面応力センサ。
  5. 前記多孔質材料の平均孔径は0.1nm以上500nm以下である、請求項4に記載のセンサ。
  6. 前記シリカはメソポーラスシリカである、請求項3に記載のセンサ。
  7. 前記多孔質材料または粒状材料は無機材料、有機材料、無機有機ハイブリッド材料、金属有機構造体、自己組織化した界面活性剤ミセルを構造中に取り込んだ材料、繊維がプラスチック中に分散した材料、炭素材料、及び生体材料からなる群から選択される、請求項1に記載のセンサ。
  8. 前記無機材料は酸化物、窒化物、硫化物、金属、金からなる群から選択される一もしくは複数の材料、または前記群から選択される複数の材料を任意の割合で複合化したものを含む無機物であり、
    前記有機材料は重合可能な官能基を主鎖として構造中に有し、側鎖に置換基を有する有機物であり、
    前記無機有機ハイブリッド材料は前記無機材料と有機材料とが任意の割合で複合化したものである無機有機ハイブリッドからなる群から選択され、
    前記金属有機構造体は、HKUST−1、IRMOF、MOF、ZIF、UIO、及びMILからなる群から選択され、
    前記自己組織化した界面活性剤ミセルを構造中に取り込んだ材料は、シリカ骨格中に陽イオン性界面活性剤が取り込まれた材料、及び金属骨格中にブロックコポリマーが取り込まれた材料からなる群から選択され、
    繊維がプラスチック中に分散した材料は、繊維強化プラスチックであり、
    前記炭素材料は、sp2炭素原子を骨格とする物質であり、
    前記生体材料はペプチド、タンパク質、酵素、糖、脂質、及びタンパク質から選択される材料またはペプチド、タンパク質、酵素、糖、脂質、及びタンパク質から選択される材料と前記無機材料との複合体である、
    請求項7に記載のセンサ。
  9. 前記無機材料及び前記無機有機ハイブリッド材料の少なくとも一方における前記複合化は、ヤヌス粒子状に不均一接合した形態、コアシェル状の形態、及び一方の粒子内部に他方の粒子が複数個分散した形態からなる群から選択される形態である、請求項8に記載のセンサ。
  10. 前記有機物は、ポリスチレン、ポリメチルメタクリレート、ポリジビニルベンゼン、ポリイソプロピルアクリルアミド、ポルフィリン、ポルフィリン環に置換基が導入された化合物、および遷移金属を有するポルフィリン金属錯体化合物からなる群から選択される、請求項8に記載のセンサ。
  11. 前記多孔質材料または粒状材料の表面を、単一種類のまたは複数種類の表面修飾基で修飾した、請求項1から10の何れかに記載のセンサ。
  12. 前記表面修飾基のうちの少なくとも一種類の表面修飾基は、前記検体分子を吸着する、請求項11に記載のセンサ。
  13. 前記複数種類の表面修飾基中、第1の表面修飾基は疎水性の表面修飾基であり、
    前記複数種類の表面修飾基中、前記第1の表面修飾基と異なる第2の表面修飾基は、親水性であるとともに前記第1の表面修飾基より短い表面修飾基であり、
    もって、前記受容体層の表面を巨視的には疎水性であるが、微視的には親水性とする、
    請求項11または12に記載のセンサ。
  14. 前記第2の表面修飾基はアミノプロピル基であり、
    前記第1の表面修飾基はアミノプロピル基よりも鎖長の長いアルキル基である、
    請求項13に記載のセンサ。
  15. 前記多孔質材料または粒状材料の表面に複数種類の物質が繰り返し出現し、
    前記複数種類の物質はそれぞれ互いに異なる種類の前記表面修飾基により修飾される、
    請求項11から14の何れかに記載のセンサ。
  16. 前記複数種類の物質は少なくともチタニアおよびシリカである、請求項15に記載のセンサ。
  17. 前記多孔質材料または粒状材料はナノ粒子である、請求項1から16の何れかに記載のセンサ。
  18. 前記物理パラメータは表面応力、応力、力、表面張力、圧力、質量、弾性、ヤング率、ポアソン比、共振周波数、周波数、体積、厚み、粘度、密度、磁力、磁気量、磁場、磁束、磁束密度、電気抵抗、電気量、誘電率、電力、電界、電荷、電流、電圧、電位、移動度、静電エネルギー、キャパシタンス、インダクタンス、リアクタンス、サセプタンス、アドミッタンス、インピーダンス、コンダクタンス、プラズモン、屈折率、光度および温度から選択された少なくとも一である、請求項1から17の何れかに記載のセンサ。
  19. 前記センサ本体は表面応力センサまたはQCMである、請求項18に記載のセンサ。
  20. 物理パラメータを検出するタイプのセンサ本体の表面上で前記多孔質材料をその場合成する、請求項1に記載のセンサの製造方法。
  21. センサと、
    前記センサを覆うとともに、液体の分子は透過しないが、少なくとも一部の気体の分子は透過する膜と
    を設け、
    前記センサのセンサ表面と前記膜との間に空隙が形成される、
    液中気体センサ。
  22. 前記膜は中空糸膜または半透膜である、請求項21に記載の液中気体センサ。
  23. 前記空隙に陰圧を印加する手段を有する、請求項21または22に記載の液中気体センサ。
JP2016571666A 2015-01-27 2015-08-31 多孔質材料または粒状材料を受容体層として有するセンサ Active JP6544744B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015013271 2015-01-27
JP2015013271 2015-01-27
JP2015100405 2015-05-15
JP2015100405 2015-05-15
PCT/JP2015/074659 WO2016121155A1 (ja) 2015-01-27 2015-08-31 多孔質材料または粒状材料を受容体層として有するセンサ

Publications (2)

Publication Number Publication Date
JPWO2016121155A1 true JPWO2016121155A1 (ja) 2017-08-31
JP6544744B2 JP6544744B2 (ja) 2019-07-17

Family

ID=56542794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016571666A Active JP6544744B2 (ja) 2015-01-27 2015-08-31 多孔質材料または粒状材料を受容体層として有するセンサ

Country Status (5)

Country Link
US (1) US10564082B2 (ja)
EP (1) EP3208597B1 (ja)
JP (1) JP6544744B2 (ja)
CN (1) CN107407621B (ja)
WO (1) WO2016121155A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566977B2 (en) 2018-12-17 2023-01-31 Kabushiki Kaisha Toshiba Molecular detection apparatus

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10877016B2 (en) 2015-12-08 2020-12-29 National Institute For Materials Science Fuel oil identification sensor equipped with receptor layer composed of hydrocarbon-group-modified particles, and fuel oil identification method
EP3534146B1 (en) * 2016-10-27 2022-12-14 National Institute for Materials Science Gas sensor device and method for removing gas components
CN110691962A (zh) * 2017-05-31 2020-01-14 国立研究开发法人物质材料研究机构 由低吸湿性材料构成的纳米机械传感器用受体及将其作为受体来使用的纳米机械传感器
JP7000433B2 (ja) 2017-07-28 2022-01-19 京セラ株式会社 センサ素子
JP7304606B2 (ja) * 2017-08-10 2023-07-07 国立研究開発法人物質・材料研究機構 膜型表面応力センサーを用いた水素センサー及び水素検出方法
EP3974794A1 (en) * 2017-09-20 2022-03-30 Asahi Kasei Kabushiki Kaisha Surface stress sensor with protrusions or recesses pattern
US11007391B1 (en) * 2018-03-09 2021-05-18 The United States Of America As Represented By The Secretary Of The Army Metal organic framework polymer composites
US11567023B2 (en) 2018-03-22 2023-01-31 Kabushiki Kaisha Toshiba Molecular detection apparatus and molecular detection method
WO2019239324A2 (en) 2018-06-11 2019-12-19 King Abdullah University Of Science And Technology Metal-organic frameworks for sorption and sensing applications
US12007405B2 (en) * 2018-06-11 2024-06-11 National Institute For Materials Science Material analysis method and material analysis apparatus
US11774346B2 (en) * 2018-06-19 2023-10-03 National Institute For Materials Science Receptor response modulation method, and measuring device using receptor response modulation
JP2020016461A (ja) * 2018-07-23 2020-01-30 旭化成株式会社 センサー
JP7271346B2 (ja) * 2018-07-24 2023-05-11 旭化成株式会社 有機無機ハイブリッド膜、表面応力センサ、及び有機無機ハイブリッド膜を製造する方法
JP7106651B2 (ja) * 2018-08-17 2022-07-26 富士フイルム株式会社 センサ
JP7090939B2 (ja) * 2018-09-03 2022-06-27 国立研究開発法人物質・材料研究機構 表面応力センサーの受容体層クリーニング方法
CN109206631B (zh) * 2018-09-07 2021-01-05 南京邮电大学 一种提高共聚合物中刚性链段取向度的方法
CN109141570B (zh) * 2018-09-18 2020-04-07 北京印刷学院 一种用于药物释放的温控型柔性电容传感器及制备方法
JP7080455B2 (ja) * 2018-11-26 2022-06-06 国立研究開発法人物質・材料研究機構 液体試料分析方法及び装置
CN109738408B (zh) * 2019-01-07 2021-06-29 温州大学 一种有机mofs包裹荧光素复合材料及其检测汞离子的应用
CN109626374A (zh) * 2019-01-22 2019-04-16 天津大学 一种氮氧双掺杂分级多孔碳材料的制备方法
US20220196621A1 (en) 2019-02-08 2022-06-23 Asahi Kasei Kabushiki Kaisha Sensor
JP7269837B2 (ja) * 2019-08-29 2023-05-09 旭化成株式会社 センサー
JP7145777B2 (ja) * 2019-02-08 2022-10-03 旭化成株式会社 センサー
JP7273703B2 (ja) * 2019-12-09 2023-05-15 旭化成株式会社 センサー
WO2020175024A1 (ja) * 2019-02-28 2020-09-03 富士フイルム株式会社 センサ
CN110129290B (zh) * 2019-04-03 2022-10-28 江苏大学 金属有机框架材料固定化漆酶及其制备方法和应用
JP7301321B2 (ja) * 2019-04-26 2023-07-03 国立研究開発法人物質・材料研究機構 ポリ(2,6-ジフェニル-p-フェニレンオキシド)を使用したナノメカニカルセンサ用感応膜、この感応膜を有するナノメカニカルセンサ、この感応膜のナノメカニカルセンサへの塗布方法、及びこのナノメカニカルセンサの感応膜の再生方法
US11867567B2 (en) * 2019-06-20 2024-01-09 Netzsch Japan K.K. Thermo-physical property measurement instrument and thermo-physical property measurement method
WO2021075648A1 (ko) * 2019-10-18 2021-04-22 한국과학기술원 코어-쉘 구조의 섬유형 변형률 센서 및 그 제조방법
EP4083599A4 (en) * 2019-12-27 2023-12-20 Aroma Bit, Inc. ODOR SENSOR, ODOR MEASUREMENT SYSTEM AND METHOD FOR PRODUCING AN ODOR SENSOR
US11898988B2 (en) 2020-03-17 2024-02-13 Kabushiki Kaisha Toshiba Molecular sensor, molecular detection device, and molecular detection method
CN113551814A (zh) * 2021-06-23 2021-10-26 浙江工业大学 一种碳/mof三维连续体结构的电极材料的制备方法及应用
WO2023282200A1 (ja) * 2021-07-06 2023-01-12 国立研究開発法人物質・材料研究機構 ポルフィリン金属錯体及び化学センサ用感応膜材料
JPWO2023058539A1 (ja) * 2021-10-05 2023-04-13

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724542U (ja) * 1980-07-16 1982-02-08
JPH0850120A (ja) * 1994-06-03 1996-02-20 Shiseido Co Ltd 液体クロマトグラフィ装置
JPH1062320A (ja) * 1996-08-19 1998-03-06 Rimotetsukusu:Kk 溶存オゾン濃度の測定方法及びその装置
JP2003121329A (ja) * 2001-10-18 2003-04-23 Univ Nagoya 化学センサ、及び化学センサの製造方法
JP2004083501A (ja) * 2002-08-28 2004-03-18 Toyota Central Res & Dev Lab Inc 安定化抗体とこれを利用する免疫反応法及び免疫反応装置
WO2006046509A1 (ja) * 2004-10-27 2006-05-04 Mitsubishi Chemical Corporation カンチレバーセンサ、センサシステム及び検体液中の検出対象物質の検出方法
JP2007529745A (ja) * 2004-03-17 2007-10-25 ベイカー ヒューズ インコーポレイテッド 油層流体の性質を特定するための孔内流体の分析方法及び装置
JP2009103518A (ja) * 2007-10-22 2009-05-14 Toshiba Corp 機能性膜の製造方法
JP2010025728A (ja) * 2008-07-18 2010-02-04 Funai Electric Advanced Applied Technology Research Institute Inc 物質検出装置及び携帯電話機
US20140364325A1 (en) * 2013-06-05 2014-12-11 Matrix Sensors, Inc. Array of Sensors Functionalized with Systematically Varying Receptor Materials

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724542A (en) 1980-07-22 1982-02-09 Toshiba Corp Preparation of resin sealed type semiconductor device
US5719324A (en) * 1995-06-16 1998-02-17 Lockheed Martin Energy Systems, Inc. Microcantilever sensor
GB9801286D0 (en) * 1998-01-21 1998-03-18 Univ Cambridge Tech Sensor
JP4229394B2 (ja) 2003-08-06 2009-02-25 日本電信電話株式会社 多孔質材料を用いた分子の検出方法ならびに該多孔質材料及び該多孔質材料の製造方法
WO2005119233A1 (en) * 2004-06-01 2005-12-15 Cantion A/S Stress sensor with capture coating for detecting a target substance
EP1813946B1 (en) * 2004-09-14 2012-01-25 Mitsubishi Chemical Corporation Biomaterial structure, method of producing the same and uses thereof
US20070127164A1 (en) * 2005-11-21 2007-06-07 Physical Logic Ag Nanoscale Sensor
US8065904B1 (en) * 2007-06-18 2011-11-29 Sandia Corporation Method and apparatus for detecting an analyte
WO2009113314A1 (ja) * 2008-03-13 2009-09-17 国立大学法人 信州大学 ガス分子吸着材料、センサー素子、センサーならびにセンサー素子の製造方法
DE102008039624B4 (de) * 2008-08-25 2010-05-20 Kist-Europe Forschungsgesellschaft Mbh MIP-Nanopartikel-Chipsensor, dessen Verwendung und analytisches Nachweisverfahren
WO2011148774A1 (ja) 2010-05-24 2011-12-01 独立行政法人物質・材料研究機構 表面応力センサ
CN102809452B (zh) * 2011-06-02 2015-05-13 中国科学院上海微系统与信息技术研究所 一种基于双面表面应力的压阻式微纳传感器及其制备方法
FR3002219B1 (fr) * 2013-02-19 2015-04-10 Commissariat Energie Atomique Procede de fabrication d'une structure micromecanique et/ou nanomecanique comportant une surface poreuse
CN103991836B (zh) 2013-02-19 2016-01-13 苏州敏芯微电子技术有限公司 微机电系统传感器的制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724542U (ja) * 1980-07-16 1982-02-08
JPH0850120A (ja) * 1994-06-03 1996-02-20 Shiseido Co Ltd 液体クロマトグラフィ装置
JPH1062320A (ja) * 1996-08-19 1998-03-06 Rimotetsukusu:Kk 溶存オゾン濃度の測定方法及びその装置
JP2003121329A (ja) * 2001-10-18 2003-04-23 Univ Nagoya 化学センサ、及び化学センサの製造方法
JP2004083501A (ja) * 2002-08-28 2004-03-18 Toyota Central Res & Dev Lab Inc 安定化抗体とこれを利用する免疫反応法及び免疫反応装置
JP2007529745A (ja) * 2004-03-17 2007-10-25 ベイカー ヒューズ インコーポレイテッド 油層流体の性質を特定するための孔内流体の分析方法及び装置
WO2006046509A1 (ja) * 2004-10-27 2006-05-04 Mitsubishi Chemical Corporation カンチレバーセンサ、センサシステム及び検体液中の検出対象物質の検出方法
JP2009103518A (ja) * 2007-10-22 2009-05-14 Toshiba Corp 機能性膜の製造方法
JP2010025728A (ja) * 2008-07-18 2010-02-04 Funai Electric Advanced Applied Technology Research Institute Inc 物質検出装置及び携帯電話機
US20140364325A1 (en) * 2013-06-05 2014-12-11 Matrix Sensors, Inc. Array of Sensors Functionalized with Systematically Varying Receptor Materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566977B2 (en) 2018-12-17 2023-01-31 Kabushiki Kaisha Toshiba Molecular detection apparatus

Also Published As

Publication number Publication date
EP3208597A1 (en) 2017-08-23
CN107407621B (zh) 2021-02-09
JP6544744B2 (ja) 2019-07-17
US10564082B2 (en) 2020-02-18
CN107407621A (zh) 2017-11-28
EP3208597A4 (en) 2018-06-06
WO2016121155A1 (ja) 2016-08-04
US20180003604A1 (en) 2018-01-04
EP3208597B1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP6544744B2 (ja) 多孔質材料または粒状材料を受容体層として有するセンサ
Falcaro et al. MOF positioning technology and device fabrication
Nagappan et al. Emerging trends in superhydrophobic surface based magnetic materials: fabrications and their potential applications
Furukawa et al. Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale
Ge et al. Nanomaterials-modified cellulose paper as a platform for biosensing applications
Ariga et al. Nanoarchitectonics for carbon-material-based sensors
Mahouche-Chergui et al. Polymer-immobilized nanoparticles
Kimura et al. Assembly of Gold Nanoparticles into Fibrous Aggregates Using Thiol‐Terminated Gelators
Falcaro et al. Patterning techniques for metal organic frameworks
Carne et al. Nanoscale metal–organic materials
Fendler Self-assembled nanostructured materials
Choi et al. Ag nanoparticle/polydopamine-coated inverse opals as highly efficient catalytic membranes
Konar et al. Molecular architectonics‐guided fabrication of superhydrophobic and self‐cleaning materials
Wang et al. Layer‐by‐layer dendritic growth of hyperbranched thin films for surface Sol–Gel syntheses of conformal, functional, nanocrystalline oxide coatings on complex 3D (Bio) silica templates
Huang et al. The toolbox of porous anodic aluminum oxide–based nanocomposites: from preparation to application
Seo et al. Hierarchical and Multifunctional Three‐Dimensional Network of Carbon Nanotubes for Microfluidic Applications
Hu et al. Magnetic nanoparticle sorbents
Gao et al. In situ growth visualization nanochannel membrane for ultrasensitive copper ion detection under the electric field enrichment
JP6654324B2 (ja) 母材と粒状材料を混合した受容体層を被覆したセンサ
Wang et al. Surface thiolation of Al microspheres to deposite thin and compact Ag shells for high conductivity
Jani et al. Soft and hard surface manipulation of nanoporous anodic aluminum oxide (AAO)
Paunov Assembling carbon nanotubosomes using an emulsion-inversion technique
Agarwal et al. Functionalization of wood/plant-based natural cellulose fibers with nanomaterials: a review
Madhuri et al. Combination of molecular imprinting and nanotechnology: beginning of a new horizon
Matsui et al. Preparation of organic–ceramic–metal multihybrid particles and their organized assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190611

R150 Certificate of patent or registration of utility model

Ref document number: 6544744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250