WO2023282200A1 - ポルフィリン金属錯体及び化学センサ用感応膜材料 - Google Patents

ポルフィリン金属錯体及び化学センサ用感応膜材料 Download PDF

Info

Publication number
WO2023282200A1
WO2023282200A1 PCT/JP2022/026442 JP2022026442W WO2023282200A1 WO 2023282200 A1 WO2023282200 A1 WO 2023282200A1 JP 2022026442 W JP2022026442 W JP 2022026442W WO 2023282200 A1 WO2023282200 A1 WO 2023282200A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive film
metal complex
porphyrin metal
molecule
mss
Prior art date
Application number
PCT/JP2022/026442
Other languages
English (en)
French (fr)
Inventor
マンディープ カウル チャハル
スブラタ マジ
元起 吉川
ジョナサン ピー ヒル
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to JP2023533102A priority Critical patent/JPWO2023282200A1/ja
Publication of WO2023282200A1 publication Critical patent/WO2023282200A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to porphyrin metal complexes, and to sensitive film materials for chemical sensors that recognize ions and molecules.
  • One aspect of the present invention provides a porphyrin metal complex having the following structure. Another aspect of the present invention provides a porphyrin metal complex having the following structure. According to still another aspect of the present invention, a porphyrin metal complex having the following structure is provided. According to still another aspect of the present invention, a porphyrin metal complex having the following structure is provided. According to still another aspect of the present invention, a porphyrin metal complex having the following structure is provided. According to still another aspect of the present invention, a porphyrin metal complex having the following structure is provided. According to still another aspect of the present invention, there is provided a sensitive film material for chemical sensors using any of the porphyrin metal complexes described above.
  • the sensitive film material for chemical sensors may respond to organic compound vapor.
  • the organic compound vapor may be one or more organic compounds selected from the group consisting of carbonyl compounds, alcohols, alkenes and arenes.
  • the organic compound vapor may be acetone.
  • the chemical sensor may detect changes in physical parameters of the sensitive film.
  • the physical parameters include surface stress, stress, force, surface tension, pressure, mass, elasticity, Young's modulus, Poisson's ratio, resonance frequency, frequency, volume, thickness, viscosity, density, magnetic force, magnetic quantity, magnetic field, Magnetic flux, magnetic flux density, electrical resistance, electrical quantity, dielectric constant, power, electric field, charge, current, voltage, potential, mobility, electrostatic energy, capacitance, inductance, reactance, susceptance, admittance, impedance, conductance, plasmon, refraction It may be a parameter or combination of parameters selected from rate, luminous intensity and temperature.
  • the chemical sensor may be a surface stress sensor.
  • porphyrin metal complexes with good porosity are provided, and these porphyrin metal complexes are used to provide, for example, sensitive membranes for chemical sensors having useful properties.
  • Figure 2 shows the formation of the molecule 1-ox (also referred to as 27c-(Ni) according to the numbering convention for the porphyrin metal complexes of the invention described below).
  • molecule 1-ox also referred to as 27c-(Ni)
  • molecule 1-ox Chemical structures of molecule 1 (also referred to as 27b-(Ni)) and molecule 1-ox, and how these molecules are conditioned for interconversion. See Figure 2 for the reverse reduction reaction at -0.4V.
  • c Differential pulse voltammetry results of molecule 1 in 1,2-dichlorobenzene.
  • FIG. 1 shows the entire 1 H NMR spectrum of the molecule 1-ox in toluene at 100°C. Enlarged view of the low field strength region of the 1 H NMR spectrum of the molecule 1-ox shown in FIG. 4A.
  • FIG. 3 shows the temperature dependence of magnetic susceptibility of molecule 1; Note that the flat response on the high temperature side is due to the absence of singlet-triplet transitions.
  • the molecule is shown as a light gray tecton with the t-butyl group removed.
  • the building blocks specifically refer to individual porphyrins, and these building blocks self-assemble to form larger structures.
  • only structurally important heteroatoms are shown in unique colors, that is, N: black, O: dark gray, and Ni(II): slightly light gray.
  • Ni(II)) (d) Diagram showing the formation of a porous structure by dimer-1 units and dimer-2 units (e) formed in the circled portion in (d) above (interaction distance: 3.1572(1) ⁇ (O1...N9)) (f) Coordination geometry in Ni(II) (g). ) Figures showing the longer range hexagonal pore structure in the crystal (pore size: 6.8 A x 11.68 A) See Figures 7-15 for ball-and-stick models of similar structures. A diagram showing the X-ray crystal structure of the molecule 1-ox. (a) Plan view of the crystal structure showing a metalloporphyrin with N-heterocyclic unit-spirohemiquinonoid-linked substituents.
  • (b) shows the saddle structure of the macrocycle with multiple substituents in a nearly radial configuration at opposite meso positions of the porphyrin.
  • (a) to (c) Diagrams showing units of dimer-1 of molecule 1-ox.
  • (a) refer to FIG. 6(b).
  • the elliptical light gray area extending from the upper left to the lower right in the upper part of the figure indicates the units of the ⁇ - ⁇ stacked dimer-1.
  • the circular gray area near the center of the figure shows the units of dimer-2 with saddle-saddle alternating with Ni—O coordination.
  • X-ray crystal structure of molecule 1-ox viewed along the a-axis.
  • (a) A diagram expressed in a ball-and-ball representation.
  • (b) Diagram shown in space-filling representation. A stick and ball representation of the X-ray crystal structure of molecule 1-ox.
  • (a) View along the b-axis direction.
  • X-ray crystal structure of molecule 1-ox viewed along the a-axis. Diagram showing wall binding sites of toluene molecules solvating in molecule 1-ox.
  • 1-ox(crystalline) has a double pore structure, while 1-ox-(CH 2 Cl 2 ) lacks porosity at 0.39 nm.
  • (a) A diagram showing temporal changes in the signal output of the MSS when the sample gas and the purge gas are switched every 30 seconds and supplied to the MSS.
  • FIG. 2 shows the detection response of MSS with a sensitive membrane using molecule 1 at room temperature (25°C) to various vapors.
  • (a) A diagram showing temporal changes in the signal output of the MSS when the sample gas and the purge gas are switched every 30 seconds and supplied to the MSS.
  • (b) Diagram showing normalized relative signal intensities for different vapors.
  • FIG. 4 shows detection signals of MSS with a 1-ox sensitive membrane measured at room temperature (25° C.) under various relative humidity for various vapors.
  • FIG. 10 is a diagram showing the detection response of the MSS with the 42b-(Ni) sensitive film at room temperature (25° C.) to various vapors in “measurement 1” of the example. DMSO was used as a solvent during the preparation of the sensitive film.
  • (a) A diagram showing temporal changes in the signal output of the MSS when the sample gas and the purge gas are switched every 30 seconds and supplied to the MSS.
  • FIG. 10 is a diagram showing the detection response of the MSS with the 42b-(Ni) sensitive film at room temperature (25° C.) to various vapors in “measurement 2” of the example. Toluene was used as a solvent for the preparation of the sensitive film.
  • (a) A diagram showing temporal changes in the signal output of the MSS when the sample gas and the purge gas are switched every 30 seconds and supplied to the MSS.
  • (b) A diagram showing the average signal intensity for various vapors.
  • FIG. 10 is a diagram showing the detection response of the MSS with the 42c-(Ni) sensitive film at room temperature (25° C.) to various vapors, for “measurement 3” of the example.
  • FIG. 10 is a diagram showing the detection response of MSS (Ch4) with a 21c-(Ni) sensitive film to various vapors at room temperature (25° C.) for “measurement 4” of the example. DMF was used as a solvent during the preparation of the sensitive film.
  • FIG. 10 shows the detection response of MSS with a 21c-(Ni) sensitive film at room temperature (25° C.) to the vapor of isopropyl alcohol and toluene-containing isopropyl alcohol solution (toluene concentration: 10 ⁇ 5 M) for “measurement 5” of the example. .
  • Dry nitrogen gas was used as the purge gas and carrier gas.
  • FIG. 10 is a diagram showing the results of "Measurement 5" in Example when wet nitrogen gas is used as the purge gas and carrier gas. The distinction between (a) to (d) is the same as in FIG.
  • FIG. 3 shows the detection response of membrane-attached MSS (Ch2 and Ch1). Dry nitrogen gas was used as the purge gas and carrier gas.
  • (c) and (d) are diagrams showing detection responses when wet nitrogen gas is used as a purge gas and a carrier gas. Also shown is the detection response to pure isopropyl alcohol vapor.
  • biradicals In stark contrast to porous nanomaterials, there is a group of organic compounds known as biradicals. Biradicals have unpaired electrons placed at various sites on the molecule, which give them unique optical and magnetic properties. Such properties result from the fact that the molecule has moieties that support isolated radical electrons (e.g. the antioxidant phenols, which are versatile active ingredients, e.g. 2,6-di-t -butlyphenol) or due to the peculiarity of the electronic structure of the molecule (eg acene with a large number of rings such as heptacene).
  • the biradical character of these molecules generally leads to a certain reactivity or instability (e.g.
  • One of the applications of the porous biradical material according to the present invention is a sensitive film for chemical sensors that selectively responds to and detects solvent vapor.
  • the materials according to the invention exhibit excellent sensitivity and selectivity towards one or more organic compounds selected from the group consisting of carbonyl compounds, alcohols, alkenes and arenes.
  • the material according to the invention exhibits excellent sensitivity and selectivity to acetone, even under high humidity, making it useful for biomedical applications such as monitoring acetone. bring great possibilities.
  • TDtBHPP meso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphyrin
  • molecule 1 is easily oxidized, and is further oxidized using 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) to change to molecule 1-ox.
  • DDQ 2,3-dichloro-5,6-dicyano-p-benzoquinone
  • the molecule 1-ox exists as an open shell biradical indicated by electron absorption at 753 nm in the near-infrared region shown in FIG. 1(b). This electronic absorption appears during spectroelectrochemical measurements of a solution of molecule 1 held at a potential of 1.2 V (initial oxidation, see differential pulse voltammetry (DPV) in FIG. 1(c)).
  • Figure 1(d) shows a comparison of the X-ray crystal structures of molecule 1 and molecule 1-ox. 1-ox) is indicated by a pronounced structural change. This was originally reduced to a closed-shell structure.
  • the general structural formula of the porphyrin metal complex according to the present invention is shown below.
  • the porphyrin metal complexes have three oxidation states (designated a, b, c) and can be classified as benzimidazole-substituted and imidazole-substituted. Due to the large number of possible substituents and complex structures of these complexes, the numbering convention for the structures of these metal complexes is presented below before the structural formulas are presented.
  • the molecules 1 and 1-ox of the porphyrin metal complex mentioned first are given the identification numbers 27b-(Ni) and 27c-(Ni), respectively, according to the above numbering rule.
  • Non-Patent Document 1 the porphyrin TDtBHPP (Non-Patent Document 1 ) is dissolved in CHCl3. To do this, 10 equivalents of Cu(OAc) 2 .H 2 O dissolved in a minimum amount of methanol are added, the mixture is refluxed for 40 minutes and then cooled to room temperature. This solution is then separated from the water. The organic phase is separated and dried over anhydrous sodium sulfate. The solution is filtered to remove sodium sulfate and the solvent is removed under reduced pressure. The remaining crude product is purified by column chromatography using a silica column eluted with CHCl 3 to give compound TDtBHPP(M).
  • Ni(II) complex was prepared by refluxing porphyrin (TDtBHPP) and Ni(OAc) 2.4H 2 ) (10 equivalents) in DMF (N,N-dimethylformamide) for 2 h followed by water. Made by precipitation. The crude product obtained is purified on a silica column using CHCl 3 as eluent.
  • Example 2 A Pt(II) complex is made by refluxing a porphyrin (TDtBHPP) and PtCl2 in benzonitrile for 12 hours. The crude product obtained is purified on a silica column using CHCl 3 as eluent.
  • TDtBHPP porphyrin
  • PtCl2 PtCl2
  • Metal complexes with other metals are prepared by the following method. - Co(II) and Zn(II) complexes: The products from step 5 are separately refluxed with the acetate salts Co(OAc) 2 and Zn(OAc) 2 (dissolved in a minimum of methanol) respectively for 2 hours. Here, Co(OAc) 2 and Zn(OAc) 2 dissolved in minimal methanol are added dropwise into the CHCl 3 solution of porphyrin. The crude product obtained is purified on a silica column using CHCl 3 as eluent.
  • Mn(III)Cl complex 10 equivalents of MnCl 2 .4H 2 in pyridine and N,N-dimethylformamide at reflux at 153° C., then using column chromatography on silica with CHCl 3 as eluent. refine.
  • V ⁇ O complex This complex was prepared using VOSO 4 , refluxed in N,N-dimethylformamide under an argon atmosphere and then purified using column chromatography on silica with CHCl 3 as the eluent.
  • Al(III)Cl complex This complex is prepared according to [4,5] using diethylaluminum chloride ( Et2AlCl ) dissolved in dichloromethane.
  • Sn(IV)Cl 2 complexes Metallation of H2-1 with SnCl 2 in pyridine according to Non-Patent Document 6 gives Sn(IV) porphyrin dichlorides.
  • Pb(II) complexes Lead(II) porphyrins can be prepared by combining lead(II) acetate and free base porphyrins in pyridine or DMF for a short period of time (5-10 minutes) according to Non-Patent Documents 7, 8. ) to reflux.
  • V ⁇ O, Mn(II), Fe(II), Co(II), Zn(II), Pd(II), Al(III)Cl, Mn(III)Cl, Fe(III)Cl, Si( IV) Combine Cl2 , Sn(IV) Cl2 , Pb(II), Pb(IV) Cl2 .
  • the porphyrin metal complex according to the present invention adsorbs and absorbs various gases due to its porosity. Change.
  • physical parameters include, but are not limited to, surface stress, stress, force, surface tension, pressure, mass, elasticity, Young's modulus, Poisson's ratio, resonance frequency, frequency, Volume, thickness, viscosity, density, magnetic force, magnetic quantity, magnetic field, magnetic flux, magnetic flux density, electrical resistance, electrical quantity, permittivity, power, electric field, charge, current, voltage, potential, mobility, electrostatic energy, capacitance, Inductance, reactance, susceptance, admittance, impedance, conductance, plasmon, refractive index, luminosity and temperature.
  • the porphyrin metal complexes of the present invention can be used as the sensitive membrane material for any type of sensor that responds to changes in one or more of such parameters by a sample gas.
  • 27c-(Ni) which is one of the porphyrin metal complexes according to the present invention, is used as the sensitive film of a membrane-type surface stress sensor, which is a type of surface stress sensor, as an example of the sensor.
  • a membrane-type surface stress sensor which is a type of surface stress sensor, as an example of the sensor.
  • suitability as such a sensitive film is not limited to 27c-(Ni), and similar characteristics can be obtained in sensitive films using other porphyrin metal complexes according to the present invention having similar structures. Needless to say.
  • porphyrin metal complexes having structures different from 27c-(Ni) were synthesized and used as sensitive films of membrane-type surface stress sensors. We also showed the results of analyzing the response characteristics of various organic compounds to vapor.
  • Electron spin resonance shown in FIG. 3(b) is characteristic of the phenoxyl radical at all temperatures, with certain structures appearing above 300K.
  • the data also show a broad peak in the range 50K-150K. Although there might be an idea to attribute this peak to another singlet-triplet state at low temperature, no structural change associated with this could be detected between the structures measured at 113K and 200K.
  • molecule 1 the precursor of molecule 1-ox, is predominantly diamagnetic but exhibits a similar response (see Figure 5). This indicates that this is probably due to other phenomena related to ligand interactions around the Ni(II) cation. This feature is currently under investigation.
  • DFT calculation of the molecular orbital structure of the molecule 1-ox shown in FIG. It turns out. The lowest unoccupied molecular orbital is found to be on the electron deficient side of the molecule, indicating substantial D- ⁇ -A character. For triplet states, non-degenerate half-occupied orbitals are also distributed on the biradical moiety.
  • the X-ray structure measured at 113K is shown in FIG. Due to the complexity of the interrelationships of this molecule, it is illustrated in the form of a stylized model. Please refer to FIGS. 7 to 15 for a ball-and-stick model of its detailed overall structure.
  • the structure consists of the interrelationship of two different types of dimer units with allied double mutual nitrile-phenol hydrogen bonding to make up the system.
  • the saddle-shaped 1-ox molecule shown in FIG. 6(a) undergoes two different dimeric interactions.
  • Dimer-1 shown in FIG. It is reinforced by the pi-pi stack between the connecting heterocyclic units.
  • Dimer-2 shown in FIG.
  • FIG. 6(c) is formed from mutual C—O...Ni(II) coordination bonds with biradical meso substitution. These dimer interactions lead to the pore structure shown in FIG. 6(d), but this formation also depends on the nitrile-phenol hydrogen bonding shown in FIG. 6(e).
  • the coordination configuration in Ni(II) is shown in FIG. 6(f) and the growth of the bulk porous structure due to the assembly of these interactions is shown in FIG. 6(g).
  • the molecule shown in light gray is shown with its t-butyl group removed for clarity.
  • FIG. 6(g) the molecule shown in gray contains t-butyl groups, indicating that the presence of these groups impairs porosity only slightly.
  • the significance of this structure lies in the fact that it is formed directly from solution without the need for solvothermal processing.
  • FIGS. 16(a) and (b) The important parameters derived from this data are shown in Table 1.
  • FIG. 16(c) shows toluene enclosed in the pores of the molecule 1-ox viewed from the a-axis direction of the crystal.
  • toluene Three moles of toluene are bound per unit cell, each located at a unique site. Specifically, a. bound in the pore cavities (light grey); b. adsorbed by a ⁇ - ⁇ stack of electron deficient bound imidazopyrazine-[2,3]-diconitrile units (dark grey, see also FIG. 16(d)), and c. It is buried in the C—H...N ⁇ C and C—H... ⁇ interaction moieties that are the pore walls (grey, see also FIG. 16(d)).
  • the solvent exchange properties of 1-ox based on its persistent porous structure enable its application to solvent detection using the Membrane-type Surface stress Sensor (MSS) platform.
  • MSS is a nanomechanical sensor made of a silicon membrane with four embedded piezoresistors. This silicon film is covered with a sensitive film, and detection is performed using surface stress caused by adsorption of volatile gas molecules to the sensitive film. The surface stress induced in this way is converted into a measurable detection signal by means of piezoresistance.
  • a 1-ox DMF solution was deposited on the silicon film of the MSS using a micro-inkjet technique, and the DMF was removed by evaporation to fabricate an MSS with a 1-ox sensitive film. Since the MSS itself is a sensor well known to those skilled in the art, no detailed description is given here.
  • the selectivity and sensitivity to various organic compound vapors at room temperature (25°C) were measured.
  • the sample gas and the purge gas were switched every 30 seconds and supplied to the MSS, the time change of the signal output of the MSS was measured.
  • the sample gas is obtained by flowing dry nitrogen gas as a carrier gas into the vial housing the organic compound to be measured at a flow rate of 20 sccm, thereby removing the headspace gas of the vial, which is the saturated vapor of the organic compound, from the vial.
  • the sample gas supplied to the MSS is a saturated sample gas (headspace gas) in which the vapor of the organic compound to be measured is saturated in nitrogen gas, that is, the vapor pressure of the organic compound to be measured (the It is a gas obtained by diluting a "nitrogen-organic compound mixed gas" in which the partial pressure of the organic compound) is the saturated vapor pressure of the organic compound to 1/5 with pure nitrogen gas.
  • the purge gas only dry nitrogen gas was used, and the flow rate was set to 100 sccm.
  • FIG. 18(a) shows the initial detection response of MSS with a 1-ox sensitive membrane to water vapor as well as alcohols, carbonyl compounds, alkenes and arenes. As shown in this figure, very rapid responses (on the order of seconds) and measurable signals of various intensities were observed for all vapors. Acetone gave the highest signal among the VOC vapors measured, indicating a very strong response, even though the signal did not reach saturation even after 30 seconds of continued vaporization. In addition, they also showed rapid and strong responses to alcohol.
  • the sensitivity of the 1-ox sensitive film is almost four times that of the sensitive film using molecule 1 shown in FIG. 19(a). This is due to the surface stress caused by the adsorption of a significant amount of molecules 1-ox into the nanoporous structure.
  • the composition and flow rate of the sample gas and the purge gas supplied to the MSS with a sensitive film using molecule 1 and the conditions such as the purge-sampling cycle are the same as those described above for the measurement using the MSS with a 1-ox sensitive film. is the same as Due to the similarity in molecular structure, the sensitivities of these two sensitive membranes to various vapors are similar (Fig. 19(b)).
  • FIG. 18(b) shows normalized relative intensities for all vapors.
  • the sensitivity to water vapor is much lower (1/16) than that to acetone vapor, since water vapor has minimal interaction with the porous 1-ox sensitive membrane. be.
  • the crystal structure of 1-ox contains two molecules of water in its cavity, which limits the inclusion of more water into the nanoscale cavity. .
  • This kind of feature is very important for any kind of gas or vapor sensor for real-time measurements under high humidity. For example, there are many requests to analyze gases obtained from living organisms, but such gases, such as exhaled breath and gases emitted from the skin, in most cases contain a considerable amount of water vapor.
  • the 1-ox sensitive membrane shows a strong response to alcohol (methanol, ethanol), which can be attributed to the replacement of water molecules with various small molecules having hydroxyl groups.
  • Intermediate responses to aromatic (toluene) and alkene (hexane, octane) vapors are due to the low vapor pressure and large molecular size of these substances, as well as to these types of VOCs. due to the different diffusivities of A detailed experiment of sensitivity under various humidity conditions (0-90%) was performed for 10 vapors containing similar functional groups.
  • Fig. 18(c) shows the sensitivity to various vapors under various humidity conditions. Interestingly, increasing humidity up to 70% seems to improve sensitivity to all vapors. When the humidity is further increased from 70%, the sensitivity at 90% humidity is also higher than the sensitivity at 0% humidity. Again, the sensitivity of acetone vapor at various humidity levels is greatest compared to other vapors containing carbonyl groups.
  • the limit of detection (LOD) for these various types of steam is calculated by adding the VOC concentration corresponding to 10% saturated steam to the MSS measurement system specific noise level (approximately 1 ⁇ V) and the average output voltage of three consecutive purge-sampling cycles. calculated by multiplying the ratio of .
  • FIG. 18(d) shows the detection limit of the MSS with the 1-ox sensitive membrane, showing a good detection limit of less than 2 ppm for acetone vapor even under a humidity condition of 90%. Additionally, for most of the other vapors, this sensor platform also exhibits LOD's of less than 10 ppm even at maximum humidity levels. However, the detection limit for hexanol is even lower than for acetone, which is associated with the detection signal being detectable even at low vapor concentrations.
  • the purge-sampling cycle in the experiments performed here did not reach the saturation point of the signal, indicating that increasing the time the sensor was exposed to vapor produced a larger signal. Note that you can. Therefore, the detection limit can be extended to the smaller sub-ppm region by increasing the exposure time.
  • such interactions are Ni(II) anionic viladicaloid units (biradicaloid unit) (i.e., the bulky t-butyl group normally prevents the interaction of the phenolic oxygen atom with something else (here, the Ni atom), but the present invention
  • the formation of biradicals increases the phenol bond length, which facilitates interaction with Ni atoms and the like). It is therefore interesting to consider whether similar non-biradical species also form extended coordination structures. This will likely become apparent if other differently structured derivatives of these compounds become available.
  • the molecule 1-ox exhibits its stable porous network morphology due to the intermolecular reciprocal effects of ⁇ - ⁇ stacking/Ni(II)-nitrile coordination dimerization and Ni(II)-carbonyl coordination dimerization.
  • the highest point of the OH...nitrile hydrogen bond manifold and other CH...X interactions form with structural assistance.
  • MEMS strain-induced microelectromechanical system
  • microporous 1-ox with its solvent exchange properties and ease of solution processing, naturally becomes a strong choice for sensitive membranes for strain-induced type sensors.
  • a highly sensitive MSS platform with a 1-ox sensitive membrane gave fast and strong signals to various VOCs.
  • MSS but also strain-induced sensors of other types are affected by the characteristics unique to these sensors, but needless to say, they benefit from the selectivity, sensitivity, etc. provided by the 1-ox sensitive film. .
  • this sensitive membrane material is very insensitive to water vapor due to the presence of water molecules within the microporous cavities.
  • Selectivity to acetone is another important property of sensitive membranes using this material. This may be related to effective replacement of water molecules within the microporous cavity or sustainable acetone-water interactions. Moreover, this kind of solution-processable microporous sensitive membrane with selectivity to various biomarkers is of great importance for real-time applications such as biomedical diagnostics and food quality control. is.
  • the open-shell biradical 1-ox is porous in the crystalline solid state, and the porosity of this compound allows for the removal of toluene and re-adsorption of water, allowing the solvent exchange described above.
  • the sites where solvent adsorption occurs are provided by hydrogen bonding, ⁇ - ⁇ stacking interactions and solvent condensation within tubular cavities in the remaining structure.
  • this molecule provides some interesting guidance for the design of next-generation materials.
  • the morphological change ie, saddle structure
  • significant lack of molecular symmetry induced by the oxidation of molecule 1 are particularly important for the activity of self-assembly into a porous state.
  • the selectivity and sensitivity to various VOC vapors at room temperature (25°C) were measured.
  • ethyl acetate, acetone, ethanol, hexane, and toluene were used as VOCs, and conditions such as the composition and flow rate of the sample gas and purge gas supplied to the MSS, and the purge-sampling cycle were Conditions were similar to those described above for measurements using MSS.
  • wet nitrogen gas containing water vapor was used instead of the sample gas containing VOC vapor. Specifically, this wet nitrogen gas was produced by blowing dry nitrogen gas into water at a flow rate of 100 sccm.
  • FIG. 21(a) is a diagram showing the detection response of the MSS with the 42b-(Ni) sensitive film for measurement 1.
  • FIG. Very rapid responses (on the order of seconds) and measurable signals of various intensities were observed for all vapors, as shown in Figure 21(a).
  • FIG. 21(b) shows the average signal intensity for these vapors.
  • the 42b-(Ni) sensitive membrane showed strong responses to alkenes (hexane) and arenes (toluene), followed by carbonyl compounds (ethyl acetate, acetone) and alcohols (ethanol). showed a response.
  • the signal waveforms for these VOC vapors it can be seen that they tend to reach saturation values at the initial stage of the 30-second sampling time.
  • the sensitivity of the 42b-(Ni) sensitive film to water vapor is much lower than its sensitivity to VOC vapors. This indicates that water vapor has minimal interaction with the porous 42b-(Ni) sensitive membrane, as described above for the measurements on the MSS with the 1-ox(27c-(Ni)) sensitive membrane.
  • the crystal structure of 42b-(Ni) also contains water in its cavities, which restricts the inclusion of more water in the nanoscale cavities. it is conceivable that.
  • FIG. 22(a) is a diagram showing the detection response of the MSS with the 42b-(Ni) sensitive film for measurement 2.
  • FIG. Very rapid responses (on the order of seconds) and measurable signals of various intensities were observed for all VOC vapors, as shown in Figure 22(a). Sensitivity to water vapor is very low, but enough signal is obtained to clearly distinguish between the purge period and the sampling period.
  • Figure 22(b) shows the average signal intensity for these vapors.
  • measurement 1 is the type of solvent used in the preparation of the 42b-(Ni) sensitive film.
  • Measurement 1 used DMSO
  • measurement 2 used toluene.
  • FIGS. 22(a) and (b) show strong responses to carbonyl compounds (ethyl acetate, acetone), followed by arenes (toluene) and alkenes (hexane). , a good response to alcohol (ethanol) has been obtained.
  • FIG. 23(a) is a diagram showing the detection response of the MSS with the 42c-(Ni) sensitive film for measurement 3. Very rapid responses (on the order of seconds) and measurable signals of various intensities were observed for all vapors, as shown in Figure 23(a). Figure 23(b) shows the average signal intensity for these vapors.
  • the 42c-(Ni)-sensitive membrane used in this measurement showed a rapid and strong response to acetone, followed by almost comparable responses to arenes (toluene) and alkenes (hexane). showed good response to alcohol (ethanol) and ethyl acetate.
  • the sensitivity of the 42c-(Ni) sensitive film to water vapor is much lower than the sensitivity to VOC vapor, like the 27c-(Ni) sensitive film and 42b-(Ni) sensitive film described above, and this tendency is , also applies to the 21c-(Ni) sensitive film described later. Therefore, it can be said that one of the important characteristics provided by the porous structure of the present compound system is to suppress the inclusion of water in such nanoscale cavities.
  • FIG. 24(a) is a diagram showing the detection response of MSS (Ch4) with a 21c-(Ni) sensitive film for measurement 4.
  • FIG. Very rapid responses (on the order of seconds) and measurable signals of various intensities were observed for all vapors, as shown in Figure 24(a).
  • FIG. 24(b) shows the average signal intensity for these vapors.
  • the 21b-(Ni) sensitive membrane showed a very strong response to acetone and ethanol, and the sensitivity to ethanol exceeded the sensitivity to acetone in terms of average signal intensity. It then showed a strong response to heptane and toluene, and a good response to methanol and hexane.
  • the sensitivity to each VOC depends on the type and/or oxidation state of the substituents. As described above, not only the static sensitivity (maximum signal intensity), but also the dynamic sensitivity (in the sense of the time-varying waveform of the signal) can change only in measurements using a single sensitive membrane material. However, by performing measurements using multiple sensitive film materials, there is a possibility that the accuracy of measurement for the target detection target and the resolution (discrimination ability) between multiple detection targets can be further improved. suggests that
  • Ch1, Ch2 and Ch3 also gave the same response characteristics as Ch4 described above.
  • all the sensitive films of each channel of MSS before and after the measurement were observed with an optical microscope, all the sensitive films maintained the same state as before the measurement even after a series of measurements. No defects such as detachment of the sensitive film from the silicon film were observed.
  • the sample gas is obtained by pouring a carrier gas (nitrogen gas) into a container containing IPA or a toluene-containing IPA solution at a flow rate of 30 sccm, so that the head space gas (IPA or toluene-containing IPA saturated vapor) of the container is , and mixed with a carrier gas (nitrogen gas) having a flow rate of 70 sccm to obtain a mixed gas with a total flow rate of 100 sccm.
  • a carrier gas nitrogen gas
  • the purge gas dry nitrogen gas was used when dry nitrogen gas was used as the carrier gas, and wet nitrogen gas was used when wet nitrogen gas was used as the carrier gas.
  • FIGS. 25(a) to (d) are diagrams showing the detection response of the MSS with the 21c-(Ni) sensitive membrane (Ch1 to Ch4) when dry nitrogen gas was used as the purge gas and carrier gas in measurement 5, respectively. is.
  • the sensitivity to the toluene-containing IPA solution was higher than that to pure IPA. rice field.
  • 26(a) to (d) are diagrams showing the detection response of the MSS with the 21c-(Ni) sensitive film (Ch1 to Ch4) when wet nitrogen gas was used as the purge gas and carrier gas in measurement 5, respectively. is.
  • FIGS. 26(a) to (d) even when wet nitrogen gas is used, in any channel, as described above with reference to FIGS. 25(a) to (d), The sensitivity to toluene-containing IPA solution (toluene concentration: 10 ⁇ 5 M) was higher than that to pure IPA.
  • comparing channels with the same sensitive film preparation conditions e.g., comparing FIG. 25(a) and FIG.
  • the signal output for the toluene-containing IPA solution is about the same. , and the contribution of toluene contained in the sample gas was extremely small. While the signal output for IPA tended to decrease, it was found that the presence or absence of toluene caused a very large change in signal output, unlike the case of using dry nitrogen gas. As a result, in FIGS. 26(a) to 26(d) when wet nitrogen gas was used, the difference in the signal output value from MSS due to the presence or absence of toluene content became clearer.
  • FIGS. 27(a) and (b) are diagrams showing the detection response of the 21c-(Ni) sensitive membrane attached MSS (Ch2 and Ch1) when dry nitrogen gas is used as the purge gas and carrier gas, respectively.
  • Ch2 and Ch1 provided different signal outputs to the extent that differences in toluene concentration in the toluene-containing IPA solution could be discriminated, and five types of signal waveforms were obtained.
  • the sensitive membrane used here has low responsiveness to toluene in a dry nitrogen atmosphere.
  • FIGS. 27(c) and (d) are graphs showing the detection response of the 21c-(Ni) sensitive membrane attached MSS (Ch2 and Ch1) when wet nitrogen gas is used as the purge gas and carrier gas, respectively. 27(c) and (d) also show the detection response to pure IPA vapor. As shown in FIGS. 27(c) and (d), when wet nitrogen gas is used as the carrier gas and the purge gas, as described above with reference to FIGS.
  • the MSS simply responds strongly to water vapor in the purge gas or the sample gas, masking the contribution of other components to the signal from the MSS.
  • water vapor as a sensitizing additive to the purge gas and sample gas to increase the sensitivity of the MSS to certain components other than water vapor. can be used.
  • the same effect of improving the sensitivity can be obtained even if water vapor is contained only in the sample gas.
  • FIGS. 27(c) and (d) appear to be generally lower values than the signal intensities shown in FIGS. 27(a) and (b).
  • 27(c) and (d) show the signal intensity after baseline correction
  • FIGS. 27(a) and (b) show the signal intensity including the DC offset without baseline correction This is because
  • the porphyrin metal complex according to the present invention has a porous structure, which can be advantageously used for sensitive membranes of various sensors and other applications where porous materials are useful. This makes it possible to provide a sensitive film for detecting acetone and other sensitive films that exhibit high sensitivity even under high humidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)

Abstract

本発明は、新規な多孔質ポルフィリン金属錯体を提供する。本発明のポルフィリン金属錯体は、例えばその多孔性を利用して化学センサ用の高感度感応膜として利用することができる。本発明に係る多孔質ポルフィリン金属錯体の群は、ポルフィリン環の置換基及び酸化状態により、多くの具体的な化合物を含む。本発明の例示的な一態様に係るポルフィリン金属錯体は、以下の構造を有する。

Description

ポルフィリン金属錯体及び化学センサ用感応膜材料
 本発明はポルフィリン金属錯体に関し、またイオンや分子を認識する化学センサ用感応膜材料に関する。
 多孔質材料の超分子化学は今や成熟した分野であり、金属有機構造体(metal-organic-frameworks、MOFs)、多孔性配位高分子(Porous Coordination Polymers、PCP)、超分子集合体(supramolecular assembly)、また多孔性液体(porous liquids)等のいくつかの明確に定義された種類の材料がここ数10年間で得られてきた。これらの物質の長所は、単に審美的な点で魅力的なナノ構造を有するだけではなく、実世界での応用への大きな可能性にもある。この応用の可能性を挙げれば、ゼオライトのような純粋に無機物である多孔質材料からの類推によるものだけではなく、有機化学と錯体化学の合成方法を組み合わせることによりその特性を広い範囲で調節できることにもある。
 これを念頭に置けば、多孔質材料の構成あるいは要素に新たなものを導入することは、とりわけプロセス可能性あるいは構造体の特性のようなパラメータの改善が求められる場合に興味深い課題である。これは一部には、例えばMOF材料の作製のように、比較的厳しいソルボサーマル条件がしばしば適用される方法では、優れた組織特性をもたらすが、通常は操作性に難があるからである。MOF材料のプロセスは進歩したが、溶解方法にはいまだに大きな欠如が見られる。多孔性を維持しながら優れた溶解性を有する材料が求められる。これにより、材料の合成が容易になり、また薄膜化や塗布面での応用が見込め、たとえば化学センサ用の感応膜材料として使用することができる。
 本発明の一側面によれば、以下の構造を有するポルフィリン金属錯体が与えられる。
Figure JPOXMLDOC01-appb-C000007
 本発明の他の側面によれば、以下の構造を有するポルフィリン金属錯体が与えられる。
Figure JPOXMLDOC01-appb-C000008
 本発明のさらに他の側面によれば、以下の構造を有するポルフィリン金属錯体が与えられる。
Figure JPOXMLDOC01-appb-C000009
 本発明のさらに他の側面によれば、以下の構造を有するポルフィリン金属錯体が与えられる。
Figure JPOXMLDOC01-appb-C000010
 本発明のさらに他の側面によれば、以下の構造を有するポルフィリン金属錯体が与えられる。
Figure JPOXMLDOC01-appb-C000011
 本発明のさらに他の側面によれば、以下の構造を有するポルフィリン金属錯体が与えられる。
Figure JPOXMLDOC01-appb-C000012
 本発明のさらに他の側面によれば、前記何れかのポルフィリン金属錯体を用いた化学センサ用感応膜材料が与えられる。
 ここで、前記化学センサ用感応膜材料は有機化合物蒸気に応答してよい。
 また、前記有機化合物蒸気はカルボニル化合物、アルコール、アルケン及びアレーンからなる群から選択された一または複数の有機化合物であってよい。
 また、前記有機化合物蒸気はアセトンであってよい。
 また、前記化学センサは前記感応膜の物理的なパラメータの変化を検出してよい。
 また、前記物理的なパラメータは表面応力、応力、力、表面張力、圧力、質量、弾性、ヤング率、ポアソン比、共振周波数、周波数、体積、厚み、粘度、密度、磁力、磁気量、磁場、磁束、磁束密度、電気抵抗、電気量、誘電率、電力、電界、電荷、電流、電圧、電位、移動度、静電エネルギー、キャパシタンス、インダクタンス、リアクタンス、サセプタンス、アドミッタンス、インピーダンス、コンダクタンス、プラズモン、屈折率、光度及び温度から選択された一のパラメータまたは複数のパラメータの組み合わせであってよい。
 また、前記化学センサは表面応力センサであってよい。
 本発明によれば、良好な多孔性を有する一群のポルフィリン金属錯体が提供され、またこれらのポルフィリン金属錯体を使用して例えば有用な特性を有する化学センサ用感応膜が提供される。
分子1-ox(後述する本発明のポルフィリン金属錯体の付番規則に従って27c-(Ni)とも称する)の形成を示す図。(a)分子1(同じく27b-(Ni)とも称する)及び分子1-oxの化学構造、並びにこれら分子の相互変換の条件付け方法を示す図。-0.4Vにおける逆方向の還元反応については図2を参照のこと。(b)1,2-dichlorobenzene中で、溶液を+1.2Vに維持した際の分子1の分光電気化学測定結果を示す図。ビラジカルによるNIR電子吸収が753nmに現れていることに注意。(c)1,2-dichlorobenzene中での分子1の微分パルスボルタンメトリーの結果を示す図。分子1-oxへの最初の容易な酸化を示している。(d)波打った形状から高度にしわの寄った鞍型構造への分子構成の変化を示す図。図中、下段側の2つの平面図の下端付近にある上向き矢印の方向からこれらの構造を見ることで得られた側面図をそれぞれの上段側に示す。 分子1-oxの電気化学測定の結果を示す図。(a)最初の還元の間に観測された分光電気化学的変化(V=-0.4V)を示す図。分子1によりいくつかのピークが出現していることに注意。414nmのピークは強度が減少し406nmにシフトした。473nmのピークは強度が増大した。516、579、753及び900nmのピークは強度が減少した。新たなピークが616nmに出現した。(b)分子1-oxの微分パルスボルタンメトリー(differential pulsed voltammetry)を示す図。3つの還元ピークはそれぞれ(c)に示す前駆体構造に帰着される。1.21Vでの追加の酸化ピークは、残余のフェノールメソ置換基がかかわる酸化によると考えられる、2,6-di-t-butylpheyl部分の酸化についての特徴電位(characteristic potential)において起こった。(c)-0.34Vにおける分子1への還元、-0.88VにおけるNi-benzimdへの還元及び-1.56Vにおける暫定的にN複素環式β置換基の還元によるものに帰着される種(ただし、Ni(II)からNi(III)への還元もまたこの領域で起こっているかもしれない)という一連の還元により得られる種の化学構造を示す図。 分子1-oxの特性を示す図。(a)各種の溶媒、すなわちテトラヒドロフラン-d(THF-d)、CDCl及びトルエン-d中の分子1-oxのH NMRを示す図。(b)各種の温度における固体状態の分子1-oxの電子スピン共鳴(electron spin resonance、ESR)スペクトルを示す図。(c)分子1-oxの磁化率の温度依存性を示す図。これは熱的に活性化された一重項-三重項遷移を示唆している。データフィッティングはBleaney-Bowersの式を使って行った。(d)一重項状態の分子1-oxの最高被占分子軌道(HOMO)及び最低空分子軌道(LUMO)の構造を示す図。(e)分子1-oxの半占軌道(SOMO)の構造を示す図。 100℃におけるトルエン中での分子1-oxのH NMRスペクトルの全体を示す図。 図4Aに示す分子1-oxのH NMRスペクトルの低磁場強度領域を拡大した図。 分子1の磁化率の温度依存性を示す図。高温側での平坦な応答は一重項-三重項遷移がないためであることに注意。 分子1-oxの単純化したX線構造を示す図。この分子はt-ブチル基を除去した淡灰色の構造ブロック(tecton)で示される。この構造ブロックは具体的には個々のポルフィリンを指し、これらの構造ブロックが自己組織化により大きな構造を形成する。また構造上重要なヘテロ原子だけをそれぞれ固有の色、すなわちN:黒、O:濃灰色、Ni(II):やや淡い灰色、で示している。(a)スピロ結合した単位を含む単量体を示す図(選択された結合距離:1.888Å(N-Niav)、1.2381(1)Å(C50-O2)、1.2332(1)Å(C18-O3))。(b)-C≡N-Ni(II)配位及び結合された複素環単位間のπ-πスタックにより形成された二量体-1単位を示す図(相互作用距離:3.4674(1)Å(C64...N6:最接近)、3.0636(1)Å(N(10)-Ni))。(c)ビラジカルの相互C-O...Ni(II)配位結合から形成される二量体-2単位を示す図(相互作用距離:3.1205(1)Å(C-O...Ni(II))。(d)二量体-1単位と二量体-2単位とによる多孔構造の形成を示す図。(e)上記(d)中の丸で囲んだ部分に形成される水素結合配位マニホールド(manifold)を示す図(相互作用距離:3.1572(1)Å(O1...N9))。(f)Ni(II)における配位形状を示す図。(g)結晶中のより長い範囲での六角細孔構造を示す図(細孔寸法:6.8Å×11.68Å)。類似構造の球棒模型については図7~図15を参照のこと。 分子1-oxのX線結晶構造を示す図。(a)結晶構造の平面図であり、N複素環単位・スピロヘミキノノイド(spiro hemiquinonoid)結合の置換基付きの金属ポルフィリンを示す。(b)ポルフィリンの対向するメソ位置におけるほぼ放射方向の構成の複数の置換基を有する大員環の鞍型構造を示す。 (a)~(c)分子1-oxの二量体-1の単位を示す図。(a)については図6(b)を参照のこと。 ビラジカル単位の鞍型形状の交互配置により形成された分子1-oxの二量体-2の単位を示す図(図6(c)を参照)。 二量体の単位が分子1-ox中でどのように構成されるかを示す図。図のやや上寄りにある左上から右下に伸びる楕円形状の淡灰色領域は、π-π積み重ねした二量体-1の単位を示す。図の中央付近の円形の灰色領域は、Ni-O配位との鞍形状-鞍形状交互配置をともなう二量体-2の単位を示す。 a軸に沿って見た分子1-oxのX線結晶構造を示す図。(a)棒球表現で表現した図。(b)空間充填表現(space-filling representation)で示す図。 分子1-oxのX線結晶構造の棒球表現を示す図。(a)b軸方向に沿って見た図。(b)c軸方向に沿って見た図。 a軸に沿って見た分子1-oxのX線結晶構造を示す図。 分子1-ox中で溶媒和しているトルエン分子の壁結合サイトを示す図。(a)トルエン分子を淡灰色で表し、また砂目入りの淡灰色の破線で示す結合でニトリルとの水素結合及びそのメチル基と隣接するポルフィリン単位との間の可能なC-H...π相互作用を表す図。重要な距離:メチン(H(89))C-H...N(9)(2.8872(1)Å)、メチル(H85(C))C-H...N(10)(3.1945(1)Å)、メチル(H(85A))C-H...N(9)(2.8872(1)Å)、メチル(H85(C))C-H...N(10)(3.1945(1)Å、メチルH(85A))C-H...C(68)(3.0171(3)Å)、メチル(H(85B))C-H...C(65)(3.1535(3)Å)。やや淡い灰色の破線で示す結合は、ハッチング入り濃灰色のトルエンから結合単位への最も近い経路を示す。重要な距離((b)を参照)C201...N(8)(3.3461(5)Å)、C(203)...C(80)(3.4259(5)Å)。(b)Nヘテロ環コンポーネントにおける隣接した細孔中のトルエン分子の積み重なりを示す。(c)この積み重ねの空間充填表現。 水の壁結合サイトを示す図。2つの水分子がトルエン分子(灰色の破線で示す)の水素結合サイトを専有する。重要な距離(左から):N(10)...OW(2)(3.7303(1)Å)、OW(2)...OW(1)(4.3160(1)Å)、N(9)...OW(1)(3.8729(2)Å)。プロトン位置は示せないが、これらの距離はN(9)、N(10)及び互いにインターリーブしている水分子間における水素結合C≡N...H-O水素結合を示す。 結晶状態及び分離された状態での1-oxの多孔性及び溶媒交換を説明する図。(a)1-ox(CHCl)(カラムクロマトグラフィーにより分離されたままの状態)及び1-ox(結晶)(1-oxの熱されたトルエン中の溶液を室温まで冷却したことによって成長させた結晶)の窒素吸着等温線。(b)DFT法を使用して得られた細孔半値幅。1-ox(結晶)は倍細孔構造である一方、1-ox-(CHCl)は0.39nmにおける多孔性を欠如している。(c)1-ox(結晶)の細孔中にカプセル化されたトルエン分子についてのα軸に沿って見た位置。結晶学的に固有な3通りの位置(1つのトルエン分子位置は細孔中心で不規則に配置され、残り2つは細孔壁に接触している位置)は淡灰色、濃灰色(電子欠損結合したimidazopyrazine-[2,3]-dicarbonitrile単位におけるπ-π積層によって吸着される)及び灰色(細孔壁に埋め込まれている、C-H...N≡C相互作用及びC-H...π相互作用)。(d)吸着されたトルエンの位置の詳細。(e)予期していなかったがたまたま溶媒交換された1-ox(結晶)中の水結合サイト。(f)細孔壁に固有に結合された「灰色の」トルエンの位置と一致する細孔中のHOの位置。更に詳しくは図14及び図15を参照のこと。 トルエンから結晶化することによって得られた分子1-ox(図の上側)及び分子1-oxのクロロメタン溶液の蒸発によって得られたままの分子1-ox(図の下側)についての粉末X線回折パターンを示す図。 各種の蒸気に対する室温(25℃)における1-ox感応膜付きMSSの検出応答を示す図。(a)試料ガスとパージガスを30秒毎に切り替えてMSSに供給した際の、MSSのシグナル出力の時間変化を示す図。(b)各種の蒸気に対する正規化された相対的なシグナル強度を示す図。(c)各種の蒸気について室温(25℃)において5通りの湿度条件(測定された蒸気の相対湿度)で測定されたセンサシグナルの湿度依存性を3次元グラフとして示す図。このグラフにおいて、相対湿度は手前から奥へ向かって、0、10、40、70、90%RHである。(d)25℃において(c)に示された各種の湿度条件(測定された蒸気の相対湿度)で測定した各種の蒸気に対する1-ox感応膜付きMSSの検出限界(Limit Of Detection、LOD)を3次元グラフとして示す図。ここで、(c)と同じく、相対湿度はグラフの手前から奥へ向かって0、10、40、70、90%RHである。 各種の蒸気に対する室温(25℃)における分子1を使用した感応膜付きMSSの検出応答を示す図。(a)試料ガスとパージガスを30秒毎に切り替えてMSSに供給した際の、MSSのシグナル出力の時間変化を示す図。(b)各種の蒸気に対する正規化された相対的なシグナル強度を示す図。 各種の蒸気に対する各種の相対湿度における室温(25℃)での測定を行った1-ox感応膜付きMSSの検出シグナルを示す図。(a)水、(b)アセトン、(c)エタノール、(d)クロロホルム、(e)ヘプタン、(f)エチルアセテート。なお、(b)に示すアセトンの測定結果では、相対湿度40%のカーブと相対湿度70%のカーブがほぼ重なっている。 実施例の「測定1」について、各種の蒸気に対する室温(25℃)における42b-(Ni)感応膜付きMSSの検出応答を示す図。感応膜の作製時の溶媒にはDMSOを使用した。(a)試料ガスとパージガスを30秒毎に切り替えてMSSに供給した際の、MSSのシグナル出力の時間変化を示す図。(b)各種の蒸気に対する平均シグナル強度を示す図。 実施例の「測定2」について、各種の蒸気に対する室温(25℃)における42b-(Ni)感応膜付きMSSの検出応答を示す図。感応膜の作製時の溶媒にはトルエンを使用した。(a)試料ガスとパージガスを30秒毎に切り替えてMSSに供給した際の、MSSのシグナル出力の時間変化を示す図。(b)各種の蒸気に対する平均シグナル強度を示す図。 実施例の「測定3」について、各種の蒸気に対する室温(25℃)における42c-(Ni)感応膜付きMSSの検出応答を示す図。感応膜の作製時の溶媒にはDMSOを使用した。(a)試料ガスとパージガスを30秒毎に切り替えてMSSに供給した際の、MSSのシグナル出力の時間変化を示す図。(b)各種の蒸気に対する平均シグナル強度を示す図。 実施例の「測定4」について、各種の蒸気に対する室温(25℃)における21c-(Ni)感応膜付きMSS(Ch4)の検出応答を示す図。感応膜の作製時の溶媒にはDMFを使用した。(a)試料ガスとパージガスを30秒毎に切り替えてMSSに供給した際の、MSSのシグナル出力の時間変化を示す図。(b)各種の蒸気に対する平均シグナル強度を示す図。 実施例の「測定5」について、イソプロピルアルコール及びトルエン含有イソプロピルアルコール溶液(トルエン濃度:10-5M)の蒸気に対する室温(25℃)における21c-(Ni)感応膜付きMSSの検出応答を示す図。パージガス及びキャリアガスとして乾燥窒素ガスを使用した。(a)Ch1、(b)Ch2、(c)Ch3、(d)Ch4。 実施例の「測定5」について、パージガス及びキャリアガスとして湿潤窒素ガスを使用した場合の結果を示す図。(a)~(d)の区別は、図25と同じである。 (a)、(b)実施例の「測定5」について、トルエン含有イソプロピルアルコール溶液(トルエン濃度:10-5M~10-1 M)の蒸気に対する室温(25℃)における21c-(Ni)感応膜付きMSS(Ch2及びCh1)の検出応答を示す図。パージガス及びキャリアガスとして乾燥窒素ガスを使用した。(c)、(d)パージガス及びキャリアガスとして湿潤窒素ガスを使用した場合の検出応答を示す図。純粋なイソプロピルアルコールの蒸気に対する検出応答も併せて示す。
 多孔質ナノ材料とは全く対照的に、ビラジカル(biradical)として知られる有機化合物群が存在する。ビラジカルは分子上の各種のサイトに配置された不対電子を備え、これにより独特な光学的及び磁気的特性がもたらされる。このような特性は、分子が孤立したラジカル電子(radical electron)をサポートする構成部分を有することの結果として(例えば、多用途の活性成分である抗酸化フェノール、例:2,6-di-t-butlyphenol)、あるいは分子の電子構造が特異的であること(例えば、ヘプタセンのような環数の多いアセン)により起こる。これらの分子のビラジカル的な特徴は一般に特定の反応性または不安定性(たとえばOまたはHOへの反応性)をもたらすが、結晶中、あるいは表面上など、媒体に含まれている場合には安定化することもある。本願では、これを、幾分不安定な分子を難分解性の微小孔性(microporous)の結晶ネットワークに取り込むことにより示す。本願は、溶液処理可能な多孔質化合物であって、その特性は独特な磁気及び光学的な性質を含む安定なビラジカルを与える稀有な事例を与える。この系の新規性を更に高めているものは、不対電子が支持要素の間で共有されるとともに最終的には温度により制御されるという、ビラジカルの位置が熱及び溶液によって変調されるという振る舞いである。
 本願発明に係る多孔質ビラジカル材料の用途の一つは、溶媒蒸気などに選択的に応答して検出するための化学センサ用感応膜である。例示的な一態様において、本発明に係る材料は、カルボニル化合物、アルコール、アルケン及びアレーンからなる群から選択された一または複数の有機化合物に対する優れた感度及び選択性を示す。より具体的な一態様において、本発明に係る材料は、たとえ高湿度下であってもアセトンに対する優れた感度及び選択性を示し、これによりアセトンをモニタすること等のバイオメディカル分野への応用の大きな可能性をもたらす。
 本願発明者がmeso-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphyrin(TDtBHPP)の化学合成の性質の研究の過程で、スピロ型の結合(spiro-type linkage。単一の四級炭素原子を含み、この炭素原子だけにより2つのヘテロ環が結合されている)を介してポルフィリンへ結合された2つの周辺置換基を有する新規な分子を見出した。分子内過程により隣接した置換基間の反応を引き起こし、その融合によりスピロ構造を形成して図1に示す分子1がもたらされる。この分子1は以下に示す分子1-oxの前駆物質となる。すなわち、分子1は酸化しやすく、2,3-dichloro-5,6-dicyano-p-benzoquinone(DDQ)を使用して更に酸化することで分子1-oxに変化する。分子1-oxは、図1(b)に示す近赤外領域の753nmにおける電子吸収によって示される開殻ビラジカル(open shell biradical)として存在する。この電子吸収は電位1.2Vに保持された分子1の溶液の分光電気化学測定の間に現れる(最初の酸化。図1(c)の微分パルスボルタンメトリー(DPV)参照)。図1(d)は分子1と分子1-oxのX線結晶構造の比較を示すが、ここで酸化がなされたことが、わずかに波打っている構造(分子1)から鞍型形状(分子1-ox)への顕著な構造変化により示される。これは、当初は閉殻構造に帰着された。
 さらに研究を進めた結果、本願発明者は上で述べた分子1、1-oxに加えて、以下で説明する同様な構造を有するポルフィリン誘導体金属錯体もこれらと類似した性質を示すことを見出した。
<本発明に係るポルフィリン金属錯体の一般構造式>
 本発明に係るポルフィリン金属錯体の一般構造式を以下に示す。このポルフィリン金属錯体は3通りの酸化状態(a、b、cで示す)を有し、またベンゾイミダゾール置換されたもの及びイミダゾール置換されたものに分類できる。これらの錯体は多数の可能な置換基を有し、また構造も複雑なので、構造式を示す前に、これらの金属錯体の構造の附番規則を以下に示す。
Figure JPOXMLDOC01-appb-C000013
以下ではこれらの構造式を酸化状態と置換基との組み合わせで分類して示す。
I.ベンゾイミダゾール置換された酸化状態aの錯体の構造式
Figure JPOXMLDOC01-appb-C000014
II.ベンゾイミダゾール置換された酸化状態bの錯体の構造式
Figure JPOXMLDOC01-appb-C000015
III.ベンゾイミダゾール置換された酸化状態cの錯体の構造式
Figure JPOXMLDOC01-appb-C000016
IV.イミダゾール置換された酸化状態aの錯体の構造式
Figure JPOXMLDOC01-appb-C000017
V.イミダゾール置換された酸化状態bの錯体の構造式
Figure JPOXMLDOC01-appb-C000018
VI.イミダゾール置換された酸化状態cの錯体の構造式
Figure JPOXMLDOC01-appb-C000019
 ここで、最初に挙げたポルフィリン金属錯体の分子1及び分子1-oxは、上述の附番規則に従えばそれぞれ27b-(Ni)及び27c-(Ni)という識別番号が与えられる。
<ポルフィリン金属錯体の製造方法>
 上述した構造の本発明に係るポルフィリン金属錯体の製造方法の例を、順を追って以下に示す。
〇手順1<ポルフィリン合成開始>
 先ず、出発材料のポルフィリンから、中心金属がNi(II)、Cu(II)またはPt(II)である錯体を形成する。ここで、Ni(II)、Cu(II)は酢酸塩として、またPt(II)はPtClとして与える。
Figure JPOXMLDOC01-appb-C000020
〇手順2<特定の金属ポルフィリンTDtBHPP(M)(M=Ni(II)、Cu(II)、Pt(II))のホルミル化>
 非特許文献2に開示された方法を使用して、TDtBHPP(M)(M=Ni(II)、Cu(II)、Pt(II))のポルフィリン2位置にホルミル基(-CHO)を導入する。
 ここにおいて、ポルフィリンTDtBHPP(非特許文献1)をCHClに溶解する。これを行うため、最小量のメタノールに溶けた10等量のCu(OAc)・HOを添加し、この混合物を40分間還流し、その後、室温まで冷却する。次にこの溶液を水と分離する。有機物相を分離して無水硫酸ナトリウムで乾燥させる。この溶液をろ過して硫酸ナトリウムを除去し、溶媒を減圧下で除去する。残された粗生成物を、CHClを溶離液としたシリカカラムを使ったカラムクロマトグラフィーにより精製することで、化合物TDtBHPP(M)が得られる。
 例1:Ni(II)錯体は、ポルフィリン(TDtBHPP)とNi(OAc)・4H)(10等量)とをDMF(N,N-ジメチルホルムアミド)中で2時間還流し、その後水で沈殿させることにより作製する。得られた粗生成物を、CHClを溶離液として使用してシリカカラムで精製する。
 例2:Pt(II)錯体は、ポルフィリン(TDtBHPP)とPtClとをベンゾニトリル中で12時間還流することにより作製する。得られた粗生成物を、CHClを溶離液として使用してシリカカラムで精製する。
Figure JPOXMLDOC01-appb-C000021
〇手順3<2-ホルミル化ポルフィリンの2-フェニレンジアミンとの縮合>
 非特許文献3に従って、2-ホルミル化ポルフィリンをo-フェニレンジアミンと縮合させる。これらのイミダゾール/ベンゾイミダゾール生成物は上述の錯体附番規則で言及した酸化状態のうちの酸化状態「a」のものである。これにより、本発明に係るポルフィリン金属錯体のうちで中心金属がNi(II)、Cu(II)、Pt(II)であり酸化状態aのものが与えられる。
Figure JPOXMLDOC01-appb-C000022
〇手順4<分子内酸化反応によるスピロ基の導入>
 DDQを酸化剤として使用する。前手順の反応によるベンゾイミダゾール置換生成物(1等量)のジクロロメタン溶液に2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(4.0等量)を添加し、その結果の混合物を2時間撹拌する。反応混合物体積を適当な体積に低減させ、CHClを溶離液として使用してクロマトグラフィーカラム(SiO)に与えて分離を行い、酸化状態が「b」で示される生成物を与える。CHClでさら溶離を行うと、酸化状態が「c」で示される生成物も与えられる。
Figure JPOXMLDOC01-appb-C000023
〇手順5<脱金属反応>
 脱金属処理対象の金属ポルフィリンをCHClに溶解し、0℃において強く撹拌しながら濃硫酸を滴下し、その後0℃で1時間撹拌する。この時間期間の最後に、蒸留水を添加する。有機物層を分離して25%アンモニア水溶液で中和する。有機物層を無水硫酸ナトリウムで乾燥させて、小体積に濃縮する。これを、CHClを溶離液として使用してシリカゲルクロマトグラフィーにより精製する。
Figure JPOXMLDOC01-appb-C000024
〇手順6<他の金属による再金属化>
 他の金属との金属錯体を以下の方法により作製する。
・Co(II)及びZn(II)錯体:手順5による生成物をそれぞれ酢酸塩Co(OAc)及びZn(OAc)(最小限のメタノールに溶解)とともに個別に2時間還流する。ここで、最小限のメタノールに溶解したCo(OAc)及びZn(OAc)をポルフィリンのCHCl溶液中に滴下する。得られた粗生成物を、CHClを溶離液として使用して、シリカカラムで精製する。
・Mn(III)Cl錯体:10等量のMnCl・4Hをピリジン及びN,N-ジメチルホルムアミド中で153℃において還流し、その後CHClを溶離液としてシリカによるカラムクロマトグラフィーを使用して精製する。
・V=O錯体:この錯体はVOSOを使用して作製され、アルゴン雰囲気下でN,N-ジメチルホルムアミド中で還流し、その後CHClを溶離液としてシリカによるカラムクロマトグラフィーを使用して精製する。
・Al(III)Cl錯体:この錯体はジクロロメタンに溶解したジエチルアルミニウム塩化物(EtAlCl)を使用し、非特許文献4、5に従って作製する。
・Sn(IV)Cl錯体:H2-1をピリジン中で、SnClで非特許文献6に従って金属化することにより、二塩化Sn(IV)ポルフィリンが得られる。
・Pb(II)錯体:鉛(II)ポルフィリンは、非特許文献7、8に従って、酢酸鉛(II)と遊離塩基ポルフィリン(free base porphyrin)とをピリジンまたはDMF中で短時間(5~10分)還流する。
・シリコン(IV)錯体(ポルフィリンSi(IV)Cl):非特許文献9に従って生成される。
・Pd(II)錯体:PdII-ポルフィリン錯体は、非特許文献10の方法に従って、加熱してH2-1を対応する前駆体PdCl(NCPh)とともに脱ガスしたベンゾニトリル中で還流することにより合成する。
・Fe(III)Cl錯体:この錯体は、非特許文献11に従って作製する。
 すなわち、この手順において、酸化状態bの錯体から直前に行われた手順5により中心金属Ni(II)、Cu(II)、Pt(II)が取り除かれた化合物に、改めて中心金属としてTi=O、V=O、Mn(II)、Fe(II)、Co(II)、Zn(II)、Pd(II)、Al(III)Cl、Mn(III)Cl、Fe(III)Cl、Si(IV)Cl、Sn(IV)Cl、Pb(II)、Pb(IV)Clを結合させる。
Figure JPOXMLDOC01-appb-C000025
〇手順7<金属錯体の酸化>
 PbOを酸化剤として使用する場合:先の反応によりベンゾイミダゾール置換された生成物(1等量)のジクロロメタン溶液を撹拌しながら鉛酸化物(4.0等量)を添加し、その結果できた混合物をさらに2時間撹拌する。この反応混合物の体積を適切な体積に減らしてから、CHClを溶離液として使用してカラムクロマトグラフィー(SiO)で処理し、「c」で示される酸化状態の化合物を得る。
 化合物「a」から作製する場合:「a」で示される化合物(1等量)のジクロロメタン溶液を撹拌しながら鉛酸化物(4.0等量)を添加し、その結果できた混合物をさらに2時間撹拌する。この反応混合物の体積を適切な体積に減らしてから、CHClを溶離液として使用してカラムクロマトグラフィー(SiO)で処理し、「c」で示される酸化状態の化合物を得る。
 この手順により、上述の手順6または手順4により得られた、酸化状態bの錯体から酸化状態cの錯体を生成する。
Figure JPOXMLDOC01-appb-C000026
<本発明に係るポルフィリン金属錯体を使用した化学センサ用感応膜>
 上で説明したところの本発明に係るポルフィリン金属錯体は、その多孔性により各種のガスなどを吸着・吸収するため、吸着・吸収の有無またその量に従ってその各種の物理的な特性(パラメータ)が変化する。このような物理的なパラメータとしては、これに限定するものではないが、例を挙げれば表面応力、応力、力、表面張力、圧力、質量、弾性、ヤング率、ポアソン比、共振周波数、周波数、体積、厚み、粘度、密度、磁力、磁気量、磁場、磁束、磁束密度、電気抵抗、電気量、誘電率、電力、電界、電荷、電流、電圧、電位、移動度、静電エネルギー、キャパシタンス、インダクタンス、リアクタンス、サセプタンス、アドミッタンス、インピーダンス、コンダクタンス、プラズモン、屈折率、光度及び温度が挙げられる。本発明に係るポルフィリン金属錯体は、試料ガスによりこのようなパラメータの一つあるいは複数が変化することに応答するいかなるタイプのセンサに対しても、その感応膜材料として使用することができる。後述の実施例では、センサの例として表面応力センサの一種である膜型表面応力センサの感応膜として、本発明に係るポルフィリン金属錯体の一つである27c-(Ni)を使用したものを使用して、この構成が各種の有機化合物の蒸気、とりわけアセトンに対して、たとえ高湿度下であっても高い感度を有することを示した。なお、各種ガスに対する応答特性については、全てのガス種に対して検証を行ったわけではないため、測定条件などに応じてアセトン以外のガスにも強く応答する可能性もあり、それらのガスの検知に対しても有効に利用できる可能性を排除するものでは無いことは言うまでも無い。
 加えて、このような感応膜としての適性は27c-(Ni)に限られるものではなく、類似した構造を有する本発明に係る他のポルフィリン金属錯体を使用した感応膜でも同様な特徴が得られることは言うまでもない。実際に、後述の実施例では、27c-(Ni)とは異なる構造を有する(酸化状態と置換基との組み合わせが異なる)ポルフィリン金属錯体を合成し、これらを膜型表面応力センサの感応膜として使用し、各種の有機化合物の蒸気に対する応答特性を分析した結果についても示した。
[ポルフィリン金属錯体の構造及び特性]
 以下では上述の分子1及び1-oxを例として、本発明に係るポルフィリン金属錯体の構造及び特性についてさらに具体的に説明する。
 分子1-oxのビラジカル形状は最初H NMR測定により明らかになった(図3(a)及び図4A、図4B参照)。メソ位置換基が顕著なラジカル的な特性を有している場合、このメソ位置換基による共振がブロードになることが知られている。分子1-oxについては、この事態はラジカルを支持できる4個までの置換基の存在により複雑になっている。図3(a)において、プロトンa(スピロキノン(spiro-quinone))、b(フェノール)、c、d(ビラジカル)は溶媒に依存してブロードになる。テトラヒドロフラン-d中ではa及びcがブロードになる(b及びdはシャープである)。これは、ビラジカルは主にスピロキノン上に位置しており、隣接するメソ位置換基からはより遠方にあることを示唆している。CDCl中では、a、c及びdによる共鳴は、ビラジカル特性がこれらの位置上で非局在化しているために、皆ある程度ブロードになっている。他方、トルエン-d中では、a及びbは同じようにシャープであるのに対して、d、cのみがブロードになる。これは、ビラジカル特性を有する単一の種が分子を横切って横方向に分布していることを示す。従って、ビラジカル構成の混合から引き起こされる複雑な事態を回避するため、分子1-oxの全ての処理のための溶媒としてトルエンを選択した。
 図3(b)に示す電子スピン共鳴(ESR)は全ての温度におけるフェノキシルラジカル(phenoxyl radical)の特性であり、ある構造が300K以上で現れる。図3(c)に示す分子1-oxの固体状態での磁化率はBleaney-Bowersの式を使用して-2J=692.1cm-1として温度依存一重項-三重項特性へフィッティングできる。250K以上の高温側ではこのフィッティングはあまり満足できるものではないが、これはおそらくは分子内過程(intramolecular process)によるものであろう。このデータはまた50K~150Kの範囲でブロードなピークを示す。このピークを低温における別の一重項-三重項状態に帰着させるという考え方があるかもしれないが、これに関連付けられる構造変化は113Kと200Kとにおいて測定された構造間で検出できなかった。更に、分子1-oxの前駆体である分子1は主に反磁性であるが同様な応答を示す(図5を参照)。これはおそらくはNi(II)カチオンの周りの配位子相互作用に関係する他の現象に起因することを示す。この特徴については現在調査中である。図3(d)に示す分子1-oxの分子軌道構造のDFT計算により、一重項状態の分子1-oxの最高被占分子軌道がその互いに向き合っているキノン類似置換基上に分布していることが判る。最低空分子軌道はこの分子の電子不足側(electron deficient side)にあることが判るが、これは実質的なD-π-A特性を示している。三重項状態については、非縮退の半占軌道もビラジカル部分上に分布している。
 分子1-oxがトルエン中に溶解した、熱された溶液を冷却してこの化合物の結晶を成長させて、113Kで測定したX線構造を図6に示す。この分子は相互関係が複雑であるため、様式化したモデルの形で図示されている。その詳細な全体構造の球棒模型は図7~図15を参照されたい。この構造は2種類の異なる二量体単位の相互関係から成っていて、結合された二重相互ニトリル-フェノール水素結合(allied double mutual nitrile-phenol hydrogen bonding)でこの系ができ上がる。図6(a)に示す鞍型形状の1-ox分子は2つの異なる二量体相互作用を受ける。ここで、図6(b)に示す二量体-1は、相互ニトリル-Ni(II)配位結合から形成されて平坦で電子欠損のdintrile置換(2,3-ジカーボニトリル置換)された結合複素環単位間のπ-πスタックにより強化されている。図6(c)に示す二量体-2は、ビラジカルメソ位置換を伴う相互C-O...Ni(II)配位結合から形成される。これらの二量体相互作用により図6(d)に示す細孔構造がもたらされるが、この形成はまた図6(e)に示すニトリル-フェノール水素結合にも依存する。Ni(II)における配位構成を図6(f)に示し、またこれらの相互作用が集まることによるバルクの多孔質構造の成長を図6(g)に示す。図6において、淡灰色で示された分子は明確さのため、そのt-ブチル基が除去された形で図示されている。図6(g)では、灰色で示された分子はt-ブチル基を含むが、これらの基が存在しても多孔性はごくわずかしか損なわれないことを示している。この構造の重要性は、これがソルボサーマル処理を必要とせず溶液から直接に形成されるという事実にある。
 周囲溶液(ambient solution)技術を使用して成長させた配位錯体の結晶は、そのもととなる母液(mother liquor)から取り出した場合にその構造的な完全性を失う傾向があり、その結果、細孔のような構造上の特徴が通常は失われる。分子1-oxの場合、驚くべきことに、構造中に含まれるトルエンを減圧下で120℃において24時間乾燥させることにより除去した後でも多孔性が維持されることを見出した。このような処理の後の分子1-oxの組織の特性を、N吸着等温線測定(isothermometry)を使用して測定した結果を図16(a)及び(b)に示す。このデータから導かれる重要なパラメータを表1に示す。図16(c)は分子1-oxの細孔中に封入されたトルエンを結晶のa軸方向から見た様子を示す。3モルのトルエンが、各々が独自のサイトに位置する単位セル毎に結合される。具体的には、a.細孔の空所中に結合される(淡灰色)、b.電子欠損結合したimidazopyrazine-[2,3]-dicarbonitrile単位のπ-πスタックにより吸着される(濃灰色、図16(d)も参照のこと)、及びc.細孔壁であるC-H...N≡C及びC-H...π相互作用部分中に埋められる(灰色、図16(d)も参照のこと)。
Figure JPOXMLDOC01-appb-T000027
 X線結晶学的測定中、トルエン溶媒分子は構造中に各種の化学量論的状況で存在することが確認されたが、このことは、結晶について475m-1(表1)という大きな表面積が測定されたことにより示唆されているように、トルエンを細孔から除去できることを示唆している。実際、溶媒が鉱油中に保存された結晶の試料から蒸発できる場合には、結晶の完全性が損なわれることはなく、結晶がX線結晶回折に適切な温度に冷却された際には、同じ構造がその時点で単位セル当たり2モルのHOを収容することがわかった(図16(e)、(f))。特に、水分子は細孔壁結合サイトにおけるトルエン(灰色)分子を置換する。その上、ジクロロメタン中のその溶液の蒸発によって得られた1-oxの分離された試料もまた大きな表面積(約350m-1、表1)を示すが、これはトルエンによる溶媒和は1-oxの多孔性構造を確立するのに必須ではないことを示唆している。興味深いことに、1-ox(CHCl)の方が、表面積が小さいだけではなく、1-ox(結晶)に現れている最小(半値幅0.392nm)の細孔を欠如しているが、これは1-ox(CHCl)の特異結合サイト(specific binding site)がすでに専有されていることを示唆している(粉末回折、図17)。
 その永続性のある多孔性構造に基づく1-oxの溶媒交換特性により、膜型表面応力センサ(Membrane-type Surface stress Sensor、MSS)プラットフォームを使用した溶媒検出への応用が可能となる。MSSは4つのピエゾ抵抗が埋め込まれたシリコン膜でできたナノメカニカルセンサである。このシリコン膜を感応膜で被覆して、揮発性ガス分子が感応膜に吸着されることにより引き起こされる表面応力を利用してその検出を行う。このように引き起こされた表面応力はピエゾ抵抗により測定可能な検出信号に変換される。ここで、1-oxのDMF溶液を、微小インクジェット技術を使用してMSSのシリコン膜上に堆積させ、DMFをエバポレートにより除去し、1-ox感応膜付きMSSを作製した。なお、MSS自体は当業者によく知られたセンサであるのでここでは詳細な説明は与えないが、必要に応じて例えば特許文献1を参照されたい。
 このようにして作製した1-ox感応膜付きMSSを使用し、室温(25℃)における各種の有機化合物蒸気に対する選択性及び感度を測定した。具体的には、試料ガスとパージガスを30秒毎に切り替えてMSSに供給した際の、MSSのシグナル出力の時間変化を測定した。ここで試料ガスは、測定対象の有機化合物を収容したバイアル瓶にキャリアガスとして乾燥窒素ガスを20sccmの流量で流し込むことにより、当該有機化合物の飽和蒸気であるバイアル瓶のヘッドスペースガスをバイアル瓶から送り出し、これを流量80sccmの乾燥窒素ガスと混合して、合計流量を100sccmとした混合ガスである。言い換えると、MSSに供給した試料ガスは、窒素ガス中に測定対象の有機化合物蒸気が飽和した状態で含まれている飽和試料ガス(ヘッドスペースガス)、つまり測定対象の有機化合物の蒸気圧(当該有機化合物の分圧)が当該有機化合物の飽和蒸気圧になっている「窒素-有機化合物混合ガス」を、純粋な窒素ガスで1/5に希釈したガスである。また、パージガスとしては乾燥窒素ガスのみを使用し、流量を100sccmとした。
 図18(a)は水蒸気並びにアルコール、カルボニル化合物、アルケン及びアレーンに対する1-ox感応膜付きMSSの初期検出応答を示す。この図に示されたように、全ての蒸気に対して非常に迅速な応答(数秒程度)及び各種の強度の測定可能なシグナルが観測された。アセトンは30秒間蒸気を与え続けてもシグナルが飽和値に到達しなかったにもかかわらず、測定したVOC蒸気のうちで最大のシグナルを出力し、非常に強い応答を示した。これ以外に、アルコールに対しても迅速かつ強い応答を示した。
 1-ox感応膜の感度は、図19(a)に示す分子1を使用した感応膜の感度のほぼ4倍である。これは分子1-oxのナノ多孔性構造内へのかなりの量の吸着により引き起こされた表面応力によるものである。なお、当然ながら分子1を使用した感応膜付きMSSに供給した試料ガスおよびパージガスの組成および流量、並びにパージ-サンプリングサイクル等の条件は、1-ox感応膜付きMSSを使用した測定に関して上述したのと同じである。分子構造が類似していることにより、各種の蒸気に対するこれら2種類の感応膜の感度は類似している(図19(b))。図18(b)は全ての蒸気についての正規化した相対強度を示す。興味深いことに、水蒸気に対する感度はアセトン蒸気に対する感度に比べて非常に低い(1/16)が、これは水蒸気が多孔性の1-ox感応膜については極小の相互作用しか有していないからである。これに加えて、1-oxの結晶構造はそのキャビティ内に2分子の水を含んでおり、これによりナノスケールのキャビティ内へのこれ以上の水が含まれるのを規制しているからでもある。この種の特徴は高湿度下での実時間測定のために、どのような種類のガスセンサあるいは蒸気センサにとっても非常に重要である。例えば生体から得られたガスの分析を行いたいという要請は非常に多いが、このようなガスは呼気や皮膚から発するガス等、ほとんどの場合かなりの量の水蒸気を含有する。その他、機械類からの排気や漏出ガス、さらには大気までの、分析対象として考えられるほとんどのガスは水蒸気を含有し、またその水蒸気含有量が必ずしも一定でないものも多い。そのため、特定のガスに対して高い感度を有するとともに水蒸気に対する感度が非常に低いセンサを簡単に実現できる感応膜材料を提供することは極めて望ましい。
 さらには、1-ox感応膜はアルコール(メタノール、エタノール)に対して強い応答を示すが、これは水分子を、ヒドロキシル基を有する各種の小さな分子で置換することに帰着させることができる。芳香族(トルエン)及びアルケン(ヘキサン、オクタン)の蒸気に対しては中間的な応答を示すが、これはこれらの物質は蒸気圧が低いことや分子サイズが大きいこと、またこれらの類のVOCの拡散率がさまざまであることによる。各種の湿度条件(0~90%)の下での感度の詳細な実験を、類似した官能基を含む10種類の蒸気について行った。
 図18(c)は各種の湿度条件下での各種の蒸気に対する感度を示す。興味深いことに、湿度を上昇させていって70%に至るまで、全ての蒸気に対して感度が改善されるように思われる。湿度を70%からさらに上げた場合、湿度90%における感度もまた湿度0%における感度よりも高い。ここでも、各種の湿度におけるアセトン蒸気の感度はカルボニル基を含有する他の蒸気についての感度と比べて最大のものとなる。これら各種の蒸気の検出限界(Limit Of Detection、LOD)を、10%飽和蒸気に対応するVOC濃度にMSS測定システム固有ノイズレベル(1μV程度)と3回の連続したパージ-サンプリングサイクルの平均出力電圧との比を乗算することによって計算した。
 図18(d)は1-ox感応膜付きMSSの検出限界を示すが、ここでアセトン蒸気については90%という湿度条件下であっても2ppm未満と言う良好な検出限界が示されている。これに加えて、他の蒸気の大部分についても、このセンサプラットフォームは最大湿度レベルにおいても10ppm未満のLODを示す。しかし、ヘキサノールの検出限界はアセトンよりもさらに低いが、これは低い蒸気濃度であっても検出シグナルを検知できることに関連付けられる。ここで、図20等から判るように、ここで行った実験におけるパージ-サンプリングサイクルではシグナルが飽和点に到達していないことから、センサが蒸気へ暴露される時間を長くするとより大きなシグナルを生成できるということを注意しておく。従って、検出限界は暴露時間を長くすることでppm未満という更に小さな領域にまで伸ばしていくことができる。
<検討>
 テトラピロール中へ大環状の(macrocyclic)鞍型あるいは湾曲構成を導入することは多孔性構造をもたらすために時々見られるが、このような構成は一般に永続的ではなく、また分子1-oxに最もよく類似した鞍型形状のポルフィリン系はこれまでのところ見当たらない。大員環(macrocycle)が鞍型になることで、構造的な空孔の形成の可能性を改善する必要があるが、分子1-oxはその構造中で複数の相互作用を受ける。これらのうちのあるものは向き合った形でのπ-πスタッキング二量化であり、これによって二重にへこんだ「二次的組立単位(secondary building unit、SBU)」が形成される。この場合、SBUの二量体間相互作用、とりわけNi(II)陽イオンへ配位するかもしれない電気陰性原子にかかわる相互作用の利用可能性を検討することが重要である。1-oxでは、このような相互作用はそのC-O結合距離が、金属ポルフィリン単位がNi(II)陰イオンへ配位を起こすのに十分なだけ長いNi(II)陰イオンビラジカロイド単位(biradicaloid unit)を形成する置換基酸素原子により与えられる(つまり、通常はかさばったt-ブチル基がフェノールの酸素原子と他の物(ここではNi原子)との相互作用を妨げるが、本願発明の化合物においては、ビラジカルの形成によりフェノール結合長が長くなり、これによりNi原子等との相互作用が容易になる)。したがって、類似した非ビラジカル種が拡張された配位構造をも形成するか否かを考えてみるのは興味深いことである。これは他の別様に構造化されたこれらの化合物の誘導体が入手できればおそらくは明らかになるであろう。全体として、分子1-oxは、その安定した多孔質ネットワーク形態を、π-πスタッキング/Ni(II)-ニトリル配位二量化及びNi(II)-カルボニル配位二量化の分子間相互の効果の最高の点により、結びついたOH...ニトリル水素結合マニホールド及び他のC-H...X相互作用による構造の支援の下に形成する。これは超分子溶媒プロセス可能な系で安定した多孔性構造を確立する多点共同性(multipoint cooperativity)の利益を説明している。相互接続された超分子構造を有する多孔性の感応膜は、多成分ガスまたは蒸気検出等に使用される、ひずみ誘起を利用する微小電気機械システム(MEMS)センサにとって大いに望ましい。しかしながら、このカテゴリーの材料の大部分は高度に不活性であって、いかなる種類の溶媒であってもその中に分散させることは極めて困難である。この点で、溶媒交換特性及び溶液処理容易性を有する微小孔性の1-oxは、当然ながらひずみ誘起タイプのセンサ用の感応膜の有力な選択肢となる。1-ox感応膜付きの高感度のMSSプラットフォームは各種のVOCに対して高速で強いシグナルを与えた。もちろん、MSSに限らず他のタイプのひずみ誘起タイプのセンサでもこれらセンサ固有の特性の影響を受けるが、1-ox感応膜が与える選択性、感度等の面でその恩恵を受けることは言うまでもない。最も重要なこととして、この感応膜材料は微小孔キャビティ内に水分子が存在することにより、水蒸気に対する感度が非常に小さくなる。アセトンに対する選択性はこの材料を使用した感応膜の他の重要な特性である。これは微小孔キャビティ内での水分子の効果的な置換あるいは持続可能なアセトン-水相互作用に関連するものであるのかもしれない。そのうえ、この種の溶液処理可能であって各種の生物指標化合物(biomarker)への選択性を有する微小孔感応膜は、生物医学的な診断、食品品質管理のような実時間応用に非常に重要である。
<結論>
 開殻ビラジカル1-oxは結晶性固形状態で多孔性であり、この化合物の多孔性によりトルエンが除去され水を再吸着することで、上で説明された溶媒交換が可能となる。溶媒吸着が起こる箇所は残りの構造中の管状の空所内での水素結合、π-πスタッキング相互作用及び溶媒の濃縮により与えられる。これらの特性により選択的な溶媒の吸着及び検出への応用が示唆される。検出についてはMSS測定システムを使用してアセトン検出についての固体状態の1-oxの拡張された選択性を示した。1-oxの最も注目すべき点は簡単な溶液キャスト法によって多孔性の構造を形成できるという明白な能力であり、この特徴によって本化合物系が多様な検出や他の用途に適したものとなる。この分子が形成されたことは、次世代の材料の設計についてのある興味深い指針が与えられる。ここで、分子1の酸化によって引き起こされた形態の変化(つまり、鞍型構造)及び分子の対称性の大幅な欠如は、とりわけ多孔性の状態への自己組織化の活性にとって重要である。
[異なる構造を有するポルフィリン金属錯体の合成及び特性]
 次に、上述の分子1及び1-oxとは異なる構造を有するポルフィリン金属錯体の合成及びそれらの特性について説明する。これにより、本化合物系が各種の化学センサ用感応膜材料として有用であることがより明らかとなる。なお、以下では、各分子の区別を容易にするために、上述した識別番号を用いることとする。したがって、分子1及び1-oxは、それぞれ、27b-(Ni)及び27c-(Ni)と称される。
<21a-(Ni)の合成>
Figure JPOXMLDOC01-appb-C000028
 DMF(10mL)中の[T(DtBHP)PNi]-CHO(200mg、0.16mmol)及び2,3-ジアミノフェナジン(69mg、0.33mmol)の混合物を、窒素雰囲気下で24時間還流した。反応の完了後、混合物を室温に冷却し、溶媒を減圧下で除去した。残された粗生成物を、CHClとメタノールを99:1の割合で混合した溶液を溶離液として使用してカラムクロマトグラフィー(SiO)により精製し、暗緑色の固体として21a-(Ni)を得た(収量:165mg、収率:71%)。
<21b-(Ni)及び21c-(Ni)の合成>
Figure JPOXMLDOC01-appb-C000029
 丸底フラスコに、上述したようにして得られた21a-(Ni)を200mg(0.14mmol)入れ、20mLのCHClで溶解させ、DDQを130mg(0.57mmol)添加した。この混合物を室温で1時間撹拌し、溶媒を減圧下で除去した。残された粗生成物を、CHClを溶離液として使用してカラムクロマトグラフィー(Al)により精製し、第1の(最初の)分画から、緑色の固体として21b-(Ni)を得(収量:22mg、収率:11%)、次いで、第2の分画から、褐色の固体として21c-(Ni)を得た(収量:50mg、収率:25%)。
<42a-(Ni)の合成>
Figure JPOXMLDOC01-appb-C000030
 DMF(20mL)中の[T(DtBHP)PNi]-CHO(400mg、0.33mmol)及び5,6-ビス(4-ブロモフェニル)ピラジン-2,3-ジアミン(278mg、0.66mmol)の混合物を、窒素雰囲気下で24時間還流した。反応の完了後、混合物を室温に冷却し、溶媒を減圧下で除去した。残された粗生成物を、CHClとヘキサンを7:3の割合で混合した溶液を溶離液として使用してカラムクロマトグラフィー(SiO)により精製し、暗緑色の固体として42a-(Ni)を得た(収量:280mg、収率:53%)。
<42b-(Ni)及び42c-(Ni)の合成>
Figure JPOXMLDOC01-appb-C000031
 丸底フラスコに、上述したようにして得られた42a-(Ni)を100mg(62μmol)入れ、10mLのCHClで溶解させ、DDQを56mg(0.25mmol)添加した。この混合物を室温で1時間撹拌し、溶媒を減圧下で除去した。残された粗生成物を、CHClを溶離液として使用してカラムクロマトグラフィー(SiO)により精製し、緑色の固体として42b-(Ni)を得た(収量:32mg、収率:32%)。次いで、極性を高めた溶離液として、CHClとメタノールを199:1の割合で混合した溶液を使用して精製し、褐色の固体として42c-(Ni)を得た(収量:28mg、収率:28%)。
 上記のようにして得られた21b-(Ni)、21c-(Ni)、42b-(Ni)、42c-(Ni)、並びに、27b-(Ni)及び27c-(Ni)について、窒素ガス吸着法によるガス吸着測定を行い、比表面積(BET法)、細孔径分布及び細孔容積(BJH法)を評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000032
 置換基が同一であって酸化状態が異なる分子同士を比べると、27c-(Ni)と27b-(Ni)、及び、21c-(Ni)と21b-(Ni)では、酸化状態cの錯体の方が、酸化状態bの錯体よりもBET比表面積は大きく、平均細孔径は小さく、かつ、BJH細孔容積は大きい結果が得られている。一方、興味深いことに、42c-(Ni)と42b-(Ni)では、これとは反対の傾向が得られた。
<有機化合物蒸気に対する応答特性>
[測定1]
 42b-(Ni)のDMSO(ジメチルスルホキシド)溶液を調製し、微小インクジェット技術を使用してMSSのシリコン膜上に堆積させ、DMSOをエバポレートにより除去し、42b-(Ni)感応膜付きMSSを作製した。ここで、MSSのシリコン膜上へのDMSO溶液の液滴の滴下回数は300発とした。
 作製した42b-(Ni)感応膜付きMSSを使用し、室温(25℃)における各種のVOC蒸気に対する選択性及び感度を測定した。ここで、VOCとしては、エチルアセテート、アセトン、エタノール、ヘキサン及びトルエンを使用し、MSSに供給した試料ガスおよびパージガスの組成および流量、並びにパージ-サンプリングサイクル等の条件は、1-ox感応膜付きMSSを使用した測定に関して上述したのと同様の条件とした。また、対照として、VOC蒸気を含む試料ガスの代わりに水蒸気を含む湿潤窒素ガスを使用した。具体的には、水中に流量100sccmで乾燥窒素ガスを吹き込むことでこの湿潤窒素ガスを作製した。
[測定2]
 42b-(Ni)をMSSのシリコン膜上に堆積させる際の溶媒としてトルエンを使用したこと以外は上記測定1と同様の手順で42b-(Ni)感応膜付きMSSを作成し、測定1と同様の試料ガス及び対照のガスについて測定を行った。
[測定3]
 42c-(Ni)を使用し、上記測定1と同様の手順で42c-(Ni)感応膜付きMSSを作成し、測定1と同様の試料ガス及び対照のガスについて測定を行った。
 上記測定1~測定3の結果について説明する。
 図21(a)は、測定1について、42b-(Ni)感応膜付きMSSの検出応答を示す図である。図21(a)に示すように、全ての蒸気に対して非常に迅速な応答(数秒程度)及び各種の強度の測定可能なシグナルが観測された。図21(b)には、これらの蒸気に対する平均シグナル強度を示した。
 興味深いことに、42b-(Ni)感応膜は、アルケン(ヘキサン)及びアレーン(トルエン)に対して強い応答を示し、次いで、カルボニル化合物(エチルアセテート、アセトン)、アルコール(エタノール)に対して良好な応答を示した。加えて、これらのVOC蒸気に対するシグナル波形に着目すると、30秒間のサンプリング時間の初期段階で飽和値に到達している傾向が読み取れる。また、42b-(Ni)感応膜の水蒸気に対する感度は、VOC蒸気に対する感度に比べて非常に低い。これは、1-ox(27c-(Ni))感応膜付きMSSでの測定結果について上述したように、水蒸気が多孔性の42b-(Ni)感応膜については極小の相互作用しか有していないことに加えて、42b-(Ni)の結晶構造においてもそのキャビティ内に水を含んでおり、これによりナノスケールのキャビティ内へのこれ以上の水が含まれるのを規制しているからであると考えられる。
 図22(a)は、測定2について、42b-(Ni)感応膜付きMSSの検出応答を示す図である。図22(a)に示すように、全てのVOC蒸気に対して非常に迅速な応答(数秒程度)及び各種の強度の測定可能なシグナルが観測された。水蒸気に対する感度は非常に低いが、パージ期間とサンプリング期間とを明確に区別できる程度のシグナルは得られている。図22(b)には、これらの蒸気に対する平均シグナル強度を示した。
 上述したように、測定1と測定2の違いは、42b-(Ni)感応膜の作製時の溶媒の種類であり、測定1ではDMSOを使用し、測定2ではトルエンを使用したことである。ここで興味深いことに、図22(a)、(b)に示す結果では、カルボニル化合物(エチルアセテート、アセトン)に対して強い応答が得られており、次いで、アレーン(トルエン)、アルケン(ヘキサン)、アルコール(エタノール)に対して良好な応答が得られている。加えて、これらのVOC蒸気に対するシグナル波形に着目すると、カルボニル化合物に対しては、30秒間のサンプリング時間の初期段階で飽和値に到達している傾向が読み取れるが、それ以外のアレーン、アルケン、アルコールに対しては、30秒間のサンプリング時間ではシグナルは飽和値に達していないと思われる。このように、同一の分子を用いた感応膜であっても、感応膜の作製時に使用する溶媒の種類によってVOC蒸気に対する感度の傾向が変化し得ることの知見は、実際の応用の場面において、感応膜の最適化を図る上で重要な指針となり得る。但し、このような感度の傾向の変化は、当該感応膜材料(ここでは42b-(Ni))自体の有用性を否定するものではなく、各種のVOC蒸気に対する感度は良好であるという事実に変わりはないことを強調しておく。逆に、感応膜作成時に使用する溶媒により感応膜の特性を制御できる、すなわち感応膜の応答特性を最適化し、あるいは同じ感応膜材料から測定対象に対して異なる応答特性を示す複数の種類の感応膜を得ることが可能となるという点で、上記特性は有用なものである。
 図23(a)は、測定3について、42c-(Ni)感応膜付きMSSの検出応答を示す図である。図23(a)に示すように、全ての蒸気に対して非常に迅速な応答(数秒程度)及び各種の強度の測定可能なシグナルが観測された。図23(b)には、これらの蒸気に対する平均シグナル強度を示した。
 興味深いことに、本測定で使用した42c-(Ni)感応膜は、アセトンに対して迅速かつ強い応答を示し、次いで、アレーン(トルエン)及びアルケン(ヘキサン)に対してはほぼ同程度の応答を示し、アルコール(エタノール)及びエチルアセテートに対しても良好な応答を示した。加えて、これらのVOC蒸気に対するシグナル波形に着目すると、30秒間のサンプリング時間の初期段階で飽和値に到達している傾向が読み取れる。なお、42c-(Ni)感応膜の水蒸気に対する感度は、上述した27c-(Ni)感応膜及び42b-(Ni)感応膜と同様に、VOC蒸気に対する感度に比べて非常に低く、この傾向は、後述する21c-(Ni)感応膜にも当てはまる。したがって、本化合物系の多孔性構造によってもたらされる重要な特徴の一つは、このようなナノスケールのキャビティ内への水の含有を抑制することにあると言える。
 なお、上記測定1~測定3において、MSS作製時のシリコン膜上への各溶液の液滴の滴下回数を100発及び200発に変化させた場合についても同様の測定を行ったところ、300発の場合と同様の応答特性が得られた。
 また、測定1~測定3の全ての測定において、測定前と測定後の各MSSの感応膜を光学顕微鏡観察したところ、いずれの感応膜も、一連の測定を行った後も測定前と同様の状態を維持しており、シリコン膜から感応膜が脱離するなどの欠陥は見られなかった。
[測定4]
 21c-(Ni)を使用し、上記測定1と同様の手順で21c-(Ni)感応膜付きMSSを作成した。但し、本測定では、4つのチャンネル(Ch1~Ch4)を有するMSSチップを使用し、感応膜の作製時の溶媒にはDMFを用いて、各チャンネルのシリコン膜上へのDMF溶液の液滴の滴下回数を、Ch1は10発、CH2は20発、Ch3は30発及びCh4は40発とした。試料ガスのVOCとして、エチルアセテート、エタノール、ヘプタン、ヘキサン、メタノール及びトルエンを使用して、測定1と同様の測定及び対照のガスについての測定を行った。
 図24(a)は、測定4について、21c-(Ni)感応膜付きMSS(Ch4)の検出応答を示す図である。図24(a)に示すように、全ての蒸気に対して非常に迅速な応答(数秒程度)及び各種の強度の測定可能なシグナルが観測された。図24(b)には、これらの蒸気に対する平均シグナル強度を示した。
 興味深いことに、21b-(Ni)感応膜は、アセトン及びエタノールに対して非常に強い応答を示し、平均シグナル強度ではエタノールに対する感度がアセトンに対する感度を上回った。次いで、ヘプタン及びトルエンに対して強い応答を示し、メタノール及びヘキサンに対しても良好な応答を示した。このように、本願発明の化合物は、VOC蒸気に対する優れた感度を有するという共通の特徴を有しながらも、置換基の種類及び/または酸化状態の違いによって各VOCに対する感度(上でも言及されているように、シグナル強度の最大値という静的な感度だけでなく、シグナルの時間変化波形という意味での動的な感度)が変化し得ることは、単一の感応膜材料を用いた測定のみならず、複数の感応膜材料を用いた測定を行うことによって、目的の検出対象物に対する測定の精度、また複数の検出対象物間の分解能(識別能力)をより高めることができる可能性があることを示唆している。
 なお、本測定において、Ch1、Ch2及びCh3からも、上述したCh4と同様の応答特性が得られた。
 また、本測定において、測定前と測定後のMSSの各チャンネルの感応膜を光学顕微鏡観察したところ、いずれの感応膜も、一連の測定を行った後も測定前と同様の状態を維持しており、シリコン膜から感応膜が脱離するなどの欠陥は見られなかった。
[測定5]
 上記測定4と同様の手順で作製した21c-(Ni)感応膜付きMSSを使用して、試料ガス中に含まれるキャリアガス、及びパージガスの湿度がMSSの応答特性に与える影響について分析した。試料としては、IPA(イソプロピルアルコール)(以下では便宜的に「純粋なIPA」とも称する。)、及びIPAにトルエンを所定の濃度で溶解させた溶液(以下、「トルエン含有IPA溶液」とも称する。)を使用した。ここで試料ガスは、IPAまたはトルエン含有IPA溶液を収容した容器にキャリアガス(窒素ガス)を30sccmの流量で流し込むことにより、当該容器のヘッドスペースガス(IPAまたはトルエン含有IPAの飽和蒸気)を容器から送り出し、これを流量70sccmのキャリアガス(窒素ガス)と混合して、合計流量を100sccmとした混合ガスである。キャリアガスとしての窒素ガスは、乾燥窒素ガス、及び乾燥窒素ガスを水中に通す(すなわち乾燥窒素ガスを水中に吹き込む)ことによって作製した湿潤窒素ガスの2種類を使用した。なお、この湿潤窒素ガスの実際の湿度(水分含有量)は測定しなかった。また、パージガスとしては、キャリアガスとして乾燥窒素ガスを使用する場合には乾燥窒素ガスを使用し、キャリアガスとして湿潤窒素ガスを使用する場合には湿潤窒素ガスを使用した。
 図25(a)~(d)は、それぞれ、測定5においてパージガス及びキャリアガスとして乾燥窒素ガスを使用した場合における、21c-(Ni)感応膜付きMSS(Ch1~Ch4)の検出応答を示す図である。図25(a)~(d)に示すように、いずれのチャンネルにおいても、トルエン含有IPA溶液(トルエン濃度:10-5M)に対する感度は、純粋なIPAに対する感度に比べて高い結果が得られた。
 図26(a)~(d)は、それぞれ、測定5においてパージガス及びキャリアガスとして湿潤窒素ガスを使用した場合における、21c-(Ni)感応膜付きMSS(Ch1~Ch4)の検出応答を示す図である。図26(a)~(d)に示すように、湿潤窒素ガスを使用した場合にも、図25(a)~(d)を参照して上述したのと同様に、いずれのチャンネルにおいても、トルエン含有IPA溶液(トルエン濃度:10-5M)に対する感度は、純粋なIPAに対する感度に比べて高い結果が得られた。ここで興味深いことに、感応膜の作製条件が同じであるチャンネル同士を比べる(例えば、図25(a)と図26(a)とを比較する)と、トルエン含有IPA溶液に対するシグナル出力は同程度であり、試料ガスに含まれているトルエンの寄与は極めて小さかったのに対して、キャリアガス及びパージガスに湿潤窒素ガスを使用した場合には、乾燥窒素ガスを使用した場合に比べて、純粋なIPAに対するシグナル出力が低下する傾向が見られた一方で、トルエン含有の有無は乾燥窒素ガスを使用した場合とは異なりシグナル出力に非常に大きな変化をもたらすことが認められた。その結果、湿潤窒素ガスを使用した場合の図26(a)~(d)においては、トルエン含有の有無に起因する、MSSからのシグナル出力値の差がより明確となった。
 次に、トルエン含有IPA溶液中のトルエン濃度を10-5 M~10-1Mに変化させて、上記と同様の測定を行った。結果を図27に示す。
 図27(a)及び(b)は、それぞれ、パージガス及びキャリアガスとして乾燥窒素ガスを使用した場合における、21c-(Ni)感応膜付きMSS(Ch2及びCh1)の検出応答を示す図である。図27(a)及び(b)に示すように、Ch2及びCh1のいずれも、トルエン含有IPA溶液中のトルエン濃度の違いを判別できる程度に異なるシグナル出力は得られず、5種類のシグナル波形を一つの図で表すと互いにほぼ重なっていることがわかる。言い換えれば、ここで使用している感応膜は、乾燥した窒素雰囲気中ではトルエンに対する応答性は低いことになる。
 図27(c)及び(d)は、それぞれ、パージガス及びキャリアガスとして湿潤窒素ガスを使用した場合における、21c-(Ni)感応膜付きMSS(Ch2及びCh1)の検出応答を示す図である。なお、図27(c)及び(d)には、純粋なIPAの蒸気に対する検出応答も併せて示した。図27(c)及び(d)に示すように、キャリアガス及びパージガスに湿潤窒素ガスを使用した場合には、図25及び図26を参照して上述したように、トルエン含有の有無に起因するMSSからのシグナル強度の差が、トルエン濃度が10-5M(0.9PPM)という非常に低濃度の場合であっても明確であるのみならず、さらに、トルエン含有IPA溶液中のトルエン濃度の違いに起因して、当該トルエン濃度が高くなるにつれてMSSからのシグナル出力値がより高い値となる傾向が広いトルエン濃度範囲に渡って明確に認められた。
 このように、21c-(Ni)感応膜を使用した場合には、単にMSSがパージガスや試料ガス中の水蒸気に強く応答してMSSからのシグナルへの他の成分の寄与をマスキングする等により他の成分の検出の妨げになるというような悪影響を及ぼさないだけではなく、逆に水蒸気以外のある種の成分に対するMSSの感度を増大させるためのパージガスや試料ガスへの増感用添加物として水蒸気を使用することができる。もちろん、試料ガスだけに水蒸気を含ませても同様な感度向上の効果を得ることができる。
 なお、図27(c)及び(d)に示したシグナル強度は、図27(a)及び(b)に示したシグナル強度と比べて全体的に低い値となっているように見えるが、これは図27(c)及び(d)はベースライン補正後のシグナル強度を示しているのに対して、図27(a)及び(b)ではベースライン補正を行っていない直流オフセット込みのシグナル強度を示しているためである。
 以上説明したように、本発明に係るポルフィリン金属錯体は多孔質構造を有し、これにより各種センサの感応膜その他の多孔質が有用な用途に有利に利用可能である。これにより、高湿度下でも高感度を示すアセトン検出用感応膜その他の感応膜を提供することができる。
国際公開公報WO2011/148774A1
Evans, T. A.; Srivatsa, G. S.; Sawyer, D. T.; Traylor, T. G. Inorg. Chem. 1985, 24, 4733-4735. Bonfantini, E. E.; Burrell, A. K.; Campbell, W. M.; Crossley, M. J.; Gosper, J. J.; Harding, M. M.; Officer D. L.; Reid, D. C. W. J. Porphyrins Phthalocyanines, 2002, 6, 708-719. Sharma S.; Nath, M. J. Heterocycl. Chem., 2012, 49, 88-92. Aida, T.; Inoue, S. J. Am. Chem. Soc. 1983, 105, 1304?1309. Aida, T.; Wada, K.; Inoue, S. Macromolecules 1987, 20, 237?241. Manke, A.-M.; Geisel, K.; Fetzer A.; Kurz, P. Phys. Chem. Chem. Phys. 2014, 16, 12029-12042. Barkigia, K. M.; Fajer, J.; Adler, A.; Williams, G. J. B. Inorg. Chem. 1980, 19, 2057-2061. Lemon,  C. M.; Brothers,  P. J.; Boitrel, B. Dalton Trans., 2011,40, 6591-6609. Remello, S. N.; Hirano, T.; Kuttassery, F.; Nabetani, Y.; Yamamoto, D.; Onuki, S.; Tachibana, H.; Inoue, H. J. Photochem. Photobiol. A: Chem. 2015, 313, 176-183. To, W.-P.; Liu, Y.; Lau, T.-C. Chem. Eur. J. 2013, 19, 5654-5664. Ambre, R. B.; Daniel, Q.; Fan, T.; Chen, H.; Zhang, B.; Wang, L.; Ahlquist, M. S. G.; Duan, L.;  Sun, L. Chem. Commun. 2016, 52, 14478-14481.

Claims (13)

  1.  以下の構造を有するポルフィリン金属錯体。
    Figure JPOXMLDOC01-appb-C000001
  2.  以下の構造を有するポルフィリン金属錯体。
    Figure JPOXMLDOC01-appb-C000002
  3.  以下の構造を有するポルフィリン金属錯体。
    Figure JPOXMLDOC01-appb-C000003
  4.  以下の構造を有するポルフィリン金属錯体。
    Figure JPOXMLDOC01-appb-C000004
  5.  以下の構造を有するポルフィリン金属錯体。
    Figure JPOXMLDOC01-appb-C000005
  6.  以下の構造を有するポルフィリン金属錯体。
    Figure JPOXMLDOC01-appb-C000006
  7.  請求項1から6の何れかのポルフィリン金属錯体を用いた化学センサ用感応膜材料。
  8.  有機化合物蒸気に応答する、請求項7に記載の化学センサ用感応膜材料。
  9.  前記有機化合物蒸気はカルボニル化合物、アルコール、アルケン及びアレーンからなる群から選択された一または複数の有機化合物である、請求項8に記載の化学センサ用感応膜材料。
  10.  前記有機化合物蒸気はアセトンである、請求項9に記載の化学センサ用感応膜材料。
  11.  前記化学センサは前記感応膜の物理的なパラメータの変化を検出する、請求項7から10の何れかに記載の化学センサ用感応膜材料。
  12.  前記物理的なパラメータは表面応力、応力、力、表面張力、圧力、質量、弾性、ヤング率、ポアソン比、共振周波数、周波数、体積、厚み、粘度、密度、磁力、磁気量、磁場、磁束、磁束密度、電気抵抗、電気量、誘電率、電力、電界、電荷、電流、電圧、電位、移動度、静電エネルギー、キャパシタンス、インダクタンス、リアクタンス、サセプタンス、アドミッタンス、インピーダンス、コンダクタンス、プラズモン、屈折率、光度及び温度から選択された一のパラメータまたは複数のパラメータの組み合わせである、請求項11に記載の化学センサ用感応膜材料。
  13.  前記化学センサは表面応力センサである、請求項12に記載の化学センサ用感応膜材料。
PCT/JP2022/026442 2021-07-06 2022-07-01 ポルフィリン金属錯体及び化学センサ用感応膜材料 WO2023282200A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023533102A JPWO2023282200A1 (ja) 2021-07-06 2022-07-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-111892 2021-07-06
JP2021111892 2021-07-06

Publications (1)

Publication Number Publication Date
WO2023282200A1 true WO2023282200A1 (ja) 2023-01-12

Family

ID=84801670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026442 WO2023282200A1 (ja) 2021-07-06 2022-07-01 ポルフィリン金属錯体及び化学センサ用感応膜材料

Country Status (2)

Country Link
JP (1) JPWO2023282200A1 (ja)
WO (1) WO2023282200A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117659432A (zh) * 2024-02-01 2024-03-08 四川大学 一种多孔镍卟啉基氢键有机框架材料及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121155A1 (ja) * 2015-01-27 2016-08-04 国立研究開発法人物質・材料研究機構 多孔質材料または粒状材料を受容体層として有するセンサ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121155A1 (ja) * 2015-01-27 2016-08-04 国立研究開発法人物質・材料研究機構 多孔質材料または粒状材料を受容体層として有するセンサ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAHAL MANDEEP K., LABUTA JAN, BŘEZINA VÁCLAV, KARR PAUL A., MATSUSHITA YOSHITAKA, WEBRE WHITNEY A., PAYNE DANIEL T., ARIGA KATSUH: "Knock-on synthesis of tritopic calix[4]pyrrole host for enhanced anion interactions", DALTON TRANSACTIONS, vol. 48, no. 41, 1 January 2019 (2019-01-01), Cambridge , pages 15583 - 15596, XP093020713, ISSN: 1477-9226, DOI: 10.1039/C9DT02365H *
MANDEEP K. CHAHAL, SANKAR MUNIAPPAN: "Switching between porphyrin, porphodimethene and porphyrinogen using cyanide and fluoride ions mimicking volatile molecular memory and the ‘NOR’ logic gate", DALTON TRANSACTIONS, vol. 45, no. 41, 6 September 2016 (2016-09-06), Cambridge , pages 16404 - 16412, XP055738096, ISSN: 1477-9226, DOI: 10.1039/C6DT02506D *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117659432A (zh) * 2024-02-01 2024-03-08 四川大学 一种多孔镍卟啉基氢键有机框架材料及其制备方法与应用
CN117659432B (zh) * 2024-02-01 2024-04-02 四川大学 一种多孔镍卟啉基氢键有机框架材料及其制备方法与应用

Also Published As

Publication number Publication date
JPWO2023282200A1 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
Chen et al. Applications of covalent organic frameworks in analytical chemistry
Liu et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material
Xu et al. An-OH group functionalized MOF for ratiometric Fe3+ sensing
Surya et al. A silver nanoparticle-anchored UiO-66 (Zr) metal–organic framework (MOF)-based capacitive H 2 S gas sensor
Razavi et al. Stimuli‐responsive metal–organic framework (MOF) with chemo‐switchable properties for colorimetric detection of CHCl3
Ishihara et al. Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes
Vriamont et al. Catalysis with gold complexes immobilised on carbon nanotubes by π–π stacking interactions: Heterogeneous catalysis versus the boomerang effect
Shi et al. A new bifunctional electrochemical sensor for hydrogen peroxide and nitrite based on a bimetallic metalloporphyrinic framework
Xie et al. AIE-active metal–organic frameworks: facile preparation, tunable light emission, ultrasensitive sensing of copper (ii) and visual fluorescence detection of glucose
Ameen et al. Visual monitoring of silver ions and cysteine using bi-ligand Eu-based metal organic framework as a reference signal: Color tonality
WO2023282200A1 (ja) ポルフィリン金属錯体及び化学センサ用感応膜材料
Guo et al. One-pot synthesis of a carbon dots@ zeolitic imidazolate framework-8 composite for enhanced Cu 2+ sensing
Liu et al. Ultrasonic-assisted fabrication of thin-film electrochemical detector of H2O2 based on ferrocene-functionalized silver cluster
Altun et al. Gas sensing and electrochemical properties of tetra and octa 2 H-chromen-2-one substituted iron (ii) phthalocyanines
Huang et al. Dual functional rhodamine-immobilized silica toward sensing and extracting mercury ions in natural water samples
Li et al. Rationally designed titanium-based metal–organic frameworks for visible-light activated chemiresistive sensing
EP3529252B1 (en) A crystalline metal organic framework
Chernikova et al. Self-assembly of a ternary architecture driven by cooperative Hg 2+ ion binding between cucurbit [7] uril and crown ether macrocyclic hosts
Günay et al. Novel tetrakis 4-(hydroxymethyl)-2, 6-dimethoxyphenoxyl substituted metallophthalocyanines: Synthesis, electrochemical redox, electrocatalytic oxygen reducing, and volatile organic compounds sensing and adsorption properties
Zhao et al. Supramolecular assembly of a methyl-substituted cucurbit [6] uril and its potential applications in selective sorption
Yuan et al. Construction of an electrochemical aptasensor based on a carbazole-bearing porous organic polymer for rapid and ultrasensitive detection of penicillin
Liu et al. Emerging tetrapyrrole porous organic polymers for chemosensing applications
Chaudhri et al. Synthesis and structural, photophysical, electrochemical redox and axial ligation properties of highly electron deficient perchlorometalloporphyrins and selective CN− sensing by Co (ii) complexes
Ridhi et al. Study of interaction mechanism of metal phthalocyanines dispersed sol-gel glasses with chemical vapours
Autret et al. Synthesis and electrochemistry of 2, 3, 7, 8, 12, 13, 17, 18-octachloro-5, 10, 15, 20-tetrakis (3, 5-dichloro-2, 6-dimethoxyphenyl) porphyrin (H 2 tdcdmpp),[Co II (tdcdmpp)] and [M (tdcdmpp) Cl](M= Fe III or Mn III)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837616

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533102

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE