JPWO2015190480A1 - リチウムイオン二次電池 - Google Patents
リチウムイオン二次電池 Download PDFInfo
- Publication number
- JPWO2015190480A1 JPWO2015190480A1 JP2016527820A JP2016527820A JPWO2015190480A1 JP WO2015190480 A1 JPWO2015190480 A1 JP WO2015190480A1 JP 2016527820 A JP2016527820 A JP 2016527820A JP 2016527820 A JP2016527820 A JP 2016527820A JP WO2015190480 A1 JPWO2015190480 A1 JP WO2015190480A1
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- positive electrode
- capacity
- lithium ion
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
円筒形リチウムイオン二次電池としては、18650型リチウムイオン電池が、民生用リチウムイオン電池として広く普及している。18650型リチウムイオン電池の外径寸法は、直径18mmで、高さ65mm程度の小型である。18650型リチウムイオン二次電池の正極活物質には、高容量、長寿命を特徴とするコバルト酸リチウムが主として用いられており、電池容量は、おおむね1.0Ah〜2.0Ah(3.7Wh〜7.4Wh)程度である。
例えば、下記特許文献1には、円筒形電池容器に正極、負極およびセパレータを捲回した電極捲回群を有する円筒形リチウムイオン二次電池が開示されている。この電池は、放電容量30Ah以上であり、正極には、リチウムマンガン複合酸化物を含む正極活物質合剤が用いられ、負極には、非晶質炭素を含む負極活物質合剤が用いられている。
しかしながら、特許文献1に記載されているリチウムイオン二次電池では、入力特性が十分でないことが、本発明者らの検討結果から明らかとなった。
本発明は、上記課題に鑑みてなされたものであり、入力特性及び寿命特性に優れるリチウムイオン二次電池を提供することにある。
負極の全容量に対して、10時間率充電における定電流領域の充電容量の割合をX%としたとき、下記の式(1)を満たす負極と、リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)を含む正極を備え、前記正極と前記負極との容量比(負極容量/正極容量)Yが下記の式(2)を満たすリチウムイオン二次電池。
70≦X≦95・・・(1)
1≦Y≦1+(1−X/100)・・・(2)
上記において、式(1)のXが、下記式(3)の範囲であると好ましい。
80≦X≦90・・・(3)
また、上記において、負極に易黒鉛化炭素を含み、易黒鉛化炭素を負極活物質の総量に対して、20質量%以上含有すると好ましい。
さらに、上記において、負極に易黒鉛化炭素と難黒鉛化炭素を含み、易黒鉛化炭素と難黒鉛化炭素の混合割合が、易黒鉛化炭素/難黒鉛化炭素(質量比)=100/0〜10/90であると好ましい。
(実施の形態)
まず、リチウムイオン二次電池の概要について簡単に説明する。リチウムイオン二次電池は、電池容器内に、正極、負極、セパレータ及び電解液を有している。正極と負極との間にはセパレータが配置されている。
リチウムイオン二次電池を充電する際には、正極と負極との間に充電器を接続する。充電時においては、正極活物質内に挿入されているリチウムイオンが脱離し、電解液中に放出される。電解液中に放出されたリチウムイオンは、電解液中を移動し、微多孔質膜からなるセパレータを通過して、負極に到達する。この負極に到達したリチウムイオンは、負極を構成する負極活物質内に挿入される。
次いで、本実施の形態のリチウムイオン二次電池の構成要素である正極、負極、電解液、セパレータおよびその他の構成部材に関し順次説明する。
本実施の形態においては、高容量で高入出力のリチウムイオン二次電池に適用可能な以下に示す正極を有する。本実施の形態の正極(正極板)は、集電体及びその上部に形成された正極合材(正極合剤)よりなる。正極合材は、集電体の上部に設けられた少なくとも正極活物質を含む層である。
前記正極活物質としては、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(以下、NMCという場合もある)を含む。NMCは、高容量であり、且つ安全性にも優れる。
安全性の更なる向上の観点からは、NMCとスピネル型リチウムマンガン複合酸化物(以下、sp−Mnという場合もある)との混合活物質を用いることが好ましい。
NMCの含有量は、電池の高容量化の観点から、正極合材全量に対して65質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましい。
Li(1+δ)MnxNiyCo(1−x−y−z)MzO2…(化1)
上記組成式(化1)において、(1+δ)はLi(リチウム)の組成比、xはMn(マンガン)の組成比、yはNi(ニッケル)の組成比、(1−x−y−z)はCo(コバルト)の組成比を示す。zは、元素Mの組成比を示す。O(酸素)の組成比は2である。
元素Mは、Ti(チタン)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、W(タングステン)、Al(アルミニウム)、Si(シリコン)、Ga(ガリウム)、Ge(ゲルマニウム)及びSn(錫)よりなる群から選択される少なくとも1種の元素である。
−0.15<δ<0.15、0.1<x≦0.5、0.6<x+y+z≦1.0、0≦z≦0.1である。
Li(1+η)Mn(2−λ)M’λO4…(化2)
上記組成式(化2)において、(1+η)はLiの組成比、(2−λ)はMnの組成比、λは元素M’の組成比を示す。O(酸素)の組成比は4である。
元素M’は、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Al、Ga、Zn(亜鉛)、及びCu(銅)よりなる群から選択される少なくとも1種の元素であることが好ましい。
0≦η≦0.2、0≦λ≦0.1である。
上記組成式(化2)における元素M’としては、Mg又はAlを用いることが好ましい。Mg又はAlを用いることにより、電池の長寿命化を図ることができる。また、電池の安全性の向上を図ることができる。さらに、元素M’を加えることで、Mnの溶出を低減できるため、貯蔵特性や充放電サイクル特性を向上させることができる。
前記NMC及びsp−Mn以外の正極活物質としては、この分野で常用されるものを使用でき、NMC及びsp−Mn以外のリチウム含有複合金属酸化物、オリビン型リチウム塩、カルコゲン化合物、二酸化マンガン等が挙げられる。リチウム含有複合金属酸化物は、リチウムと遷移金属とを含む金属酸化物又は該金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V、B等が挙げられ、Mn、Al、Co、Ni、Mgが好ましい。異種元素は1種又は2種以上を用いることができる。前記NMC及びsp−Mn以外のリチウム含有複合金属酸化物としては、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1−yO2、LixCoyM1−yOz、LixNi1−yMyOz(前記各式中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、VおよびBよりなる群から選ばれる少なくとも1種の元素を示す。x=0〜1.2、y=0〜0.9、z=2.0〜2.3である。)等があげられる。ここで、リチウムのモル比を示すx値は、充放電により増減する。また、前記オリビン型リチウム塩としては、LiFePO4等が挙げられる。カルコゲン化合物としては、二硫化チタン、二硫化モリブデン等が挙げられる。正極活物質は1種を単独で使用でき又は2種以上を併用できる。
正極活物質としては、前述したように、層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(NMC)が用いられる。これらは粉状(粒状)で用いられ、混合される。
NMC、sp−Mn等の正極活物質の粒子としては、塊状、多面体状、球状、楕円球状、板状、針状、柱状等の形状ものを用いることができる。
NMC、sp−Mn等の正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子のメジアン径d50)は、次の範囲で調整可能である。範囲の下限は、1μm以上、好ましくは3μm以上、より好ましくは5μm以上であり、上限は、30μm以下、好ましくは25μm以下、より好ましくは15μm以下である。
上記下限未満では、タップ密度(充填性)が低下し、所望のタップ密度が得られなくなる可能性があり、上記上限を超えると粒子内のリチウムイオンの拡散に時間がかかるため、電池性能の低下を招く可能性がある。また、上記上限を超えると、電極の形成時において、結着材や導電材等の他の材料との混合性が低下する可能性がある。よって、この混合物をスラリー化し塗布する際に、均一に塗布できず、スジを引く等の問題を生ずる場合がある。なお、メジアン径d50は、レーザー回折・散乱法により求めた粒度分布から求めることができる。
導電材の含有量(添加量、割合、量)について、正極合材の質量に対する導電材の含有量の範囲は次のとおりである。範囲の下限は、0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、上限は、50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下である。上記下限未満では、導電性が不充分となる可能性がある。また、上記上限を超えると、電池容量が低下する可能性がある。
結着材の含有量(添加量、割合、量)について、正極合材の質量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、0.1質量%以上、好ましくは1質量%以上、さらに好ましくは3質量%以上であり、上限は、80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、特に好ましくは10質量%以下である。結着材の含有量が低すぎると、正極活物質を充分に結着できず、正極の機械的強度が不足し、サイクル特性等の電池性能を劣化させてしまう可能性がある。逆に、高すぎると、電池容量や導電性が低下する可能性がある。
正極合材塗布量が110g/m2未満では充放電に寄与する活物質の量が低下し、電池のエネルギー密度が低下する可能性がある。一方、正極合材塗布量が170g/m2を超えると正極合材の抵抗が高くなり、入出力特性が低下する可能性がある。上記のような観点から、正極合材の正極集電体への片面塗布量は、120g/m2以上、160g/m2以下であることがより好ましく、130g/m2以上、150g/m2以下であることが更に好ましい。
上記したような正極合材の正極集電体への片面塗布量及び正極合材密度を考慮すると、正極合材の正極集電体への片面塗布膜厚み([正極の厚み−正極集電体の厚み]/2)は、39〜68μmであることが好ましく、43〜64μmがより好ましく、46〜60μmが更に好ましい。
集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。金属材料については、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料については、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜を用いることが好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、その範囲は次のとおりである。範囲の下限は、1μm以上、好ましくは3μm以上、より好ましくは5μm以上であり、上限は、1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。上記下限未満では、集電体として必要な強度が不足する場合がある。また、上記上限を超えると可撓性が低下し、加工性が劣化する可能性がある。
本実施の形態の負極は、負極の全容量に対して、10時間率充電における定電流領域の充電容量の割合をX%としたとき、下記の式(1)を満たすものであれば特に制限されない。
70≦X≦95・・・(1)
前記負極は、集電体およびその両面(若しくは片面)に形成された負極合材(負極合剤)よりなる。負極合材は、電気化学的にリチウムイオンを吸蔵・放出可能な負極活物質を含有する。
本発明に用いられる負極活物質としては、前記式(1)の範囲内とするために、易黒鉛化炭素(以下、ソフトカーボンという場合もある)を含むことが好ましい。尚、前記式(1)の範囲内であれば、易黒鉛化炭素以外の炭素材料を含んでいてもよい。
炭素材料は、結晶構造がそろった黒鉛系のものと、結晶構造が乱れた非黒鉛系のものに大別され、前者には、天然黒鉛、人造黒鉛があり、後者には結晶構造が乱れてはいるものの、2000〜3000℃の加熱によって黒鉛になりやすい易黒鉛化炭素と、黒鉛になりにくい難黒鉛化炭素(以下、ハードカーボンという場合もある)がある。具体的には、例えば、黒鉛、コークス類(石油系コークス、ピッチコークス、ニードルコークスなど)、樹脂膜焼成炭素、繊維焼成炭素、気相成長炭素等が挙げられる。前記非黒鉛系の炭素材料は、石油ピッチ、ポリアセン、ポリパラフェニレン、ポリフルフリルアルコール、ポリシロキサン等を熱処理することにより製造することが可能であり、焼成温度を変えることによって、ハードカーボンとしたり、ソフトカーボンとしたりすることが可能である。例えば、500℃〜800℃程度の焼成温度はハードカーボンの製造に適しており、800℃〜1000℃程度の焼成温度はソフトカーボンの製造に適している。前記難黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002値が、0.36nm以上、0.40nm以下であると定義する。
前記易黒鉛化炭素は、X線広角回折法により得られるC軸方向の面間隔d002値が、0.34nm以上、0.36nm未満であることが好ましく、0.341nm以上、0.355nm以下であることがより好ましく、0.342nm以上、0.35nm以下であることが更に好ましい。
また、前記易黒鉛化炭素(ソフトカーボン)の平均粒子径(d50)は、2〜50μmであることが好ましい。平均粒子径が2μm以上の場合、比表面積を適正な範囲とすることができ、リチウムイオン二次電池の初回充放電効率が優れると共に、粒子同士の接触が良く入出力特性に優れる傾向がある。一方、平均粒子径が50μm以下の場合、電極面に凸凹が発生しにくく電池の短絡を抑制できると共に、粒子表面から内部へのLiの拡散距離が比較的短くなるためリチウムイオン二次電池の入出力特性が向上する傾向がある。この観点から平均粒子径は、5〜30μmであることがより好ましく、10〜20μmであることがさらに好ましい。なお、例えば、粒度分布は界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD−3000J)で測定することができ、平均粒子径はメジアン径(d50)として算出される。
前記金属複合酸化物としては、リチウムを吸蔵、放出可能なものであれば特に制限はないが、Ti(チタン)、Li(リチウム)またはTi及びLiの双方を含有するものが、高電流密度充放電特性の観点で好ましい。
集電体の形状としては特に制限はなく、種々の形状に加工された材料を用いることができる。具体例としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、金属薄膜が好ましく、銅箔がより好ましい。銅箔には、圧延法により形成された圧延銅箔と、電解法により形成された電解銅箔とがあり、どちらも集電体として用いて好適である。
集電体の厚さに制限はないが、厚さが25μm未満の場合、純銅よりも強銅合金(リン青銅、チタン銅、コルソン合金、Cu−Cr−Zr合金等)を用いることでその強度を向上させることができる。
負極活物質を用いて形成した負極合材の構成に特に制限はないが、負極合材密度の範囲は次のとおりである。負極合材密度の下限は、好ましくは0.7g/cm3以上、より好ましくは0.8g/cm3、さらに好ましくは0.9g/cm3以上であり、上限は、2g/cm3以下、好ましくは1.9g/cm3以下、より好ましくは1.8g/cm3以下、さらに好ましくは1.7g/cm3以下である。
上記上限を超えると、負極活物質の粒子が破壊されやすくなり、初期の不可逆容量の増加や、集電体と負極活物質との界面付近への非水系電解液の浸透性の低下による高電流密度充放電特性の劣化を招く可能性がある。また、上記下限未満では、負極活物質間の導電性が低下するため電池抵抗が増大し、単位容積あたりの容量が低下する可能性がある。
結着材の含有量(添加量、割合、量)について、負極合材の質量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、さらに好ましくは0.6質量%以上である。上限は、20質量%以下、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは8質量%以下である。
上記上限を超えると、電池容量に寄与しない結着材の割合が増加し、電池容量の低下を招く可能性がある。また、上記下限未満では、負極合材の強度の低下を招く可能性がある。
特に、結着材として、SBRに代表されるゴム状高分子を主要成分として用いる場合の負極合材の質量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限は、5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下である。
また、結着材として、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分として用いる場合の負極合材の質量に対する結着材の含有量の範囲は次のとおりである。範囲の下限は、1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上であり、上限は、15質量%以下、好ましくは10質量%以下、より好ましくは8質量%以下である。
増粘材を用いる場合の負極合材の質量に対する増粘材の含有量の範囲は次のとおりである。範囲の下限は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、上限は、5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下である。
上記下限未満では、スラリーの塗布性が低下する可能性がある。また、上記上限を超えると、負極合材に占める負極活物質の割合が低下し、電池容量の低下や負極活物質間の抵抗の上昇の可能性がある。
本実施の形態の電解液は、リチウム塩(電解質)と、これを溶解する非水系溶媒から構成される。必要に応じて、添加材を加えてもよい。
リチウム塩としては、リチウムイオン電池用の非水系電解液の電解質として使用可能なリチウム塩であれば特に制限はないが、以下に示す無機リチウム塩、含フッ素有機リチウム塩やオキサラトボレート塩等が挙げられる。
無機リチウム塩としては、LiPF6、LiBF4、LiAsF6、LiSbF6等の無機フッ化物塩や、LiClO4、LiBrO4、LiIO4等の過ハロゲン酸塩や、LiAlCl4等の無機塩化物塩などが挙げられる。
含フッ素有機リチウム塩としては、LiCF3SO3等のパーフルオロアルカンスルホン酸塩;LiN(CF3SO2)2、LiN(CF3CF2SO2)2、LiN(CF3SO2)(C4F9SO9)等のパーフルオロアルカンスルホニルイミド塩;LiC(CF3SO2)3等のパーフルオロアルカンスルホニルメチド塩;Li[PF5(CF2CF2CF3)]、Li[PF4(CF2CF2CF3)2]、Li[PF3(CF2CF2CF3)3]、Li[PF5(CF2CF2CF2CF3)]、Li[PF4(CF2CF2CF2CF3)2]、Li[PF3(CF2CF2CF2CF3)3]等のフルオロアルキルフッ化リン酸塩などが挙げられる。
オキサラトボレート塩としては、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等が挙げられる。
これらのリチウム塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。中でも、溶媒に対する溶解性、二次電池とした場合の充放電特性、出力特性、サイクル特性等を総合的に判断すると、ヘキサフルオロリン酸リチウム(LiPF6)が好ましい。
非水系電解液中の電解質の濃度に特に制限はないが、電解質の濃度範囲は次のとおりである。濃度の下限は、0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.7mol/L以上である。また、濃度の上限は、2mol/L以下、好ましくは1.8mol/L以下、より好ましくは1.7mol/L以下である。濃度が低すぎると、電解液の電気伝導率が不充分となる可能性がある。また、濃度が高すぎると、粘度が上昇するため電気伝導度が低下する可能性がある。このような電気伝導度の低下により、リチウムイオン二次電池の性能が低下する可能性がある。
環状カーボネートとしては、環状カーボネートを構成するアルキレン基の炭素数が2〜6のものが好ましく、2〜4のものがより好ましい。具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートが挙げられる。中でも、エチレンカーボネート、プロピレンカーボネートが好ましい。
鎖状カーボネートとしては、ジアルキルカーボネートが好ましく、2つのアルキル基の炭素数が、それぞれ1〜5のものが好ましく、1〜4のものがより好ましい。具体的には、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネートの対称鎖状カーボネート類;エチルメチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート等の非対称鎖状カーボネート類が挙げられる。中でも、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートが好ましい。
鎖状エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等が挙げられる。中でも、低温特性改善の観点から酢酸メチルを用いることが好ましい。
環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。中でも、入出力特性改善の観点からテトラヒドロフランを用いることが好ましい。
鎖状エーテルとしては、ジメトキシエタン、ジメトキシメタン等が挙げられる。
これらは単独で用いても、2種類以上を併用してもよいが、2種以上の化合物を併用した混合溶媒を用いることが好ましい。例えば、環状カーボネート類の高誘電率溶媒と、鎖状カーボネート類や鎖状エステル類の低粘度溶媒とを併用するのが好ましい。好ましい組み合わせの一つは、環状カーボネート類と鎖状カーボネート類とを主体とする組み合わせである。中でも、非水系溶媒に占める環状カーボネート類と鎖状カーボネート類との合計が、80容量%以上、好ましくは85容量%以上、より好ましくは90容量%以上であり、かつ環状カーボネート類と鎖状カーボネート類との合計に対する環状カーボネート類の容量が次の範囲であるものが好ましい。環状カーボネート類の容量の下限は、5容量%以上、好ましくは10容量%以上、より好ましくは15容量%以上であり、上限は、50容量%以下、好ましくは35容量%以下、より好ましくは30容量%以下である。このような非水系溶媒の組み合わせを用いることで、電池のサイクル特性や高温保存特性(特に、高温保存後の残存容量および高負荷放電容量)が向上する。
前記その他の分子内に不飽和結合を有する化合物としては、ビニレンカーボネート等が挙げられる。
上記添加材以外に、求められる機能に応じて過充電防止材、負極皮膜形成材、正極保護材、高入出力材等の他の添加材を用いてもよい。
上記他の添加剤により、過充電による異常時の急激な電極反応の抑制、高温保存後の容量維持特性やサイクル特性の向上、入出力特性の向上等を図ることができる。
セパレータは、正極および負極間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性および負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物、ガラス繊維等が用いられる。
樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。非水系電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートまたは不織布等を用いることが好ましい。
無機物としては、アルミナや二酸化珪素等の酸化物類、窒化アルミニウムや窒化珪素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類などが用いられる。例えば、繊維形状または粒子形状の上記無機物を、不織布、織布、微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。薄膜形状の基材としては、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。また、繊維形状または粒子形状の上記無機物を、樹脂等の結着材を用いて複合多孔層としたものをセパレータとして用いることができる。さらに、この複合多孔層を、正極または負極の表面に形成し、セパレータとしてもよい。例えば、90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着材として結着させた複合多孔層を、正極の表面に形成してもよい。
リチウムイオン二次電池のその他の構成部材として、開裂弁を設けてもよい。開裂弁が開放することで、電池内部の圧力上昇を抑制でき、安全性を向上させることができる。
また、温度上昇に伴い不活性ガス(例えば、二酸化炭素など)を放出する構成部を設けてもよい。このような構成部を設けることで、電池内部の温度が上昇した場合に、不活性ガスの発生により速やかに開裂弁を開けることができ、安全性を向上させることができる。上記構成部に用いられる材料としては、炭酸リチウムやポリアルキレンカーボネート樹脂等が挙げられる。ポリアルキレンカーボネート樹脂としては、ポリエチレンカーボネート、ポリプロピレンカーボネート、ポリ(1,2−ジメチルエチレンカーボネート)、ポリブテンカーボネート、ポリイソブテンカーボネート、ポリペンテンカーボネート、ポリヘキセンカーボネート、ポリシクロペンテンカーボネート、ポリシクロヘキセンカーボネート、ポリシクロヘプテンカーボネート、ポリシクロオクテンカーボネート、ポリリモネンカーボネート等が挙げられる。上記構成部に用いられる材料としては、炭酸リチウム、ポリエチレンカーボネート、ポリプロピレンカーボネートが好ましい。
本発明のリチウムイオン二次電池は、放電容量が30Ah以上、99Ah未満の大容量のものに適している。安全性を担保しつつ、高入出力で、高エネルギー密度という観点から、35Ah以上、99Ah未満であることが好ましく、45Ah以上、95Ah未満であることがより好ましい。
本発明において、負極の全容量に対して、10時間率充電における定電流領域の充電容量の割合をX%としたとき、下記の式(1)を満たす負極と、正極との容量比(負極容量/正極容量)Yが下記の式(2)を満たすことが必要である。Xの下限は70であるが、入力特性の観点からは75以上が好ましく、入力特性及び寿命特性の観点からは80以上が好ましい。Xの上限は95であるが、実用的な観点からは92以下が好ましく、90以下がより好ましい。
ここで、10時間率充電とは、0.1Cの電流値で定電流充電を行うということを意味する。
Yの下限は1であるが、安全性の観点からは1.05以上が好ましい。また、Yの上限は1+(1−X/100)である。Yが1+(1−X/100)を超えると、充電において負極が定電圧充電領域に到達する前に正極の電位が高くなる傾向がある。このような場合、充電において負極が定電圧充電領域に到達する前に電池の規定電圧(例えば4.2V)に到達し易くなる。すなわち、Yが1+(1−X/100)を超えると、例えば電池の規定電圧を4.2Vに設定した場合、正極の電位(リチウム基準)は4.2Vを超えることになり、正極起因の容量劣化が生じ、電池の寿命が短くなる可能性が生じる。
70≦X≦95・・・(1)
1≦Y<1+(1−X/100)・・・(2)
負極と正極の容量比は、例えば、「負極の放電容量/リチウムイオン二次電池の放電容量」からも算出することができる。前記リチウムイオン二次電池の放電容量は、例えば、4.2V、0.1〜0.5C、終止時間を2〜5時間とする定電流定電圧(CCCV)充電を行った後、0.1〜0.5Cで2.7Vまで定電流(CC)放電したときの条件で測定できる。前記負極の放電容量は、前記リチウムイオン二次電池の放電容量を測定した負極を所定の面積に切断し、対極としてリチウム金属を用い、電解液を含浸させたセパレータを介して単極セルを作製し、0V、0.1C、終止電流0.01Cで定電流定電圧(CCCV)充電を行った後、0.1Cで1.5Vまで定電流(CC)放電したときの条件で所定面積当たりの放電容量を測定し、これを前記リチウムイオン電池の負極として用いた総面積に換算することで算出できる。この単極セルにおいて、負極活物質にリチウムイオンが挿入される方向を充電、負極活物質に挿入されているリチウムイオンが脱離する方向を放電、と定義する。
尚、Cとは“電流値(A)/電池の放電容量(Ah)”を意味する。
[正極板の作製]
正極板の作製を以下のように行った。正極活物質として層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(BET比表面積が0.4m2/g、平均粒径(d50)が6.5μm)、導電材としてアセチレンブラック(商品名:HS−100、平均粒径48nm(電気化学工業株式会社カタログ値)、電気化学工業株式会社)、結着材としてポリフッ化ビニリデン(商品名:クレハKFポリマー#1120、株式会社クレハ)とを順次添加し、混合することにより正極材料の混合物を得た。質量比は、活物質:導電材:結着材=90:5:5とした。さらに上記混合物に対し、分散溶媒であるN−メチル−2−ピロリドン(NMP)を添加し、混練することによりスラリーを形成した。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の両面に実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、所定密度までプレスにより圧密化した。正極合材密度は2.7g/cm3 とし、正極合材の片面塗布量140g/m2とした。
負極板の作製を以下のように行った。負極活物質として易黒鉛化炭素(d002=0.35nm、平均粒径(d50)=10μm)と、難黒鉛化炭素(d002=0.37〜0.38nm、平均粒径(d50)=9μm)を所定の活物質の質量比(易黒鉛化炭素/難黒鉛化炭素)で混合した。表1には、難黒鉛化炭素の配合比を示した。この負極活物質に結着材としてポリフッ化ビニリデン(商品名:クレハKFポリマー#1120、株式会社クレハ)を添加した。これらの質量比は、負極活物質:結着材=92:8とした。これに分散溶媒であるN−メチル−2−ピロリドン(NMP)を添加し、混練することによりスラリーを形成した。このスラリーを負極用の集電体である厚さ10μmの圧延銅箔の両面に実質的に均等かつ均質に、負極容量/正極容量が表1に示す値になるように塗布した。尚、負極合材密度は1.15g/cm3とした。
上記正極板と上記負極板とを、これらが直接接触しないように厚さ30μmのポリエチレン製のセパレータを挟んで捲回する。このとき、正極板のリード片と負極板のリード片とが、それぞれ捲回群の互いに反対側の両端面に位置するようにする。また、正極板、負極板、セパレータの長さを調整し、捲回群径は65±0.1mmとした。
次いで、図1に示すように、正極板から導出されているリード片9を変形させ、その全てを正極側の鍔部7の底部付近に集合し、接触させる。正極側の鍔部7は、捲回群6の軸芯のほぼ延長線上にある極柱(正極外部端子1)の周囲から張り出すよう一体成形されており、底部と側部とを有する。その後、超音波溶接によりリード片9を鍔部7の底部に接続し固定する。負極板から導出されているリード片9と負極側の鍔部7の底部も同様に接続し固定する。この負極側の鍔部7は、捲回群6の軸芯のほぼ延長線上にある極柱(負極外部端子1’)周囲から張り出すよう一体成形されており、底部と側部とを有する。
その後、粘着テープを用い、正極外部端子1側の鍔部7の側部および負極外部端子1’の鍔部7の側部を覆い、絶縁被覆8を形成した。同様に、捲回群6の外周にも絶縁被覆8を形成した。例えば、この粘着テープを、正極外部端子1側の鍔部7の側部から捲回群6の外周面に亘って、さらに、捲回群6の外周面から負極外部端子1’側の鍔部7の側部に亘って、何重にも巻くことにより絶縁被覆8を形成する。絶縁被覆(粘着テープ)8としては、基材がポリイミドで、その片面にメタクリレート系粘着材を塗布した粘着テープを用いた。捲回群6の最大径部がステンレス製の電池容器5内径よりも僅かに小さくなるように絶縁被覆8の厚さ(粘着テープの巻き数)を調整し、捲回群6を電池容器5内に挿入した。なお、電池容器5の外径は67mm、内径は66mmのものを用いた。
その後、電池蓋4の周端面を電池容器5の開口部に嵌合し、双方の接触部の全域をレーザー溶接する。このとき、正極外部端子1および負極外部端子1’は、それぞれ電池蓋4の中心にある穴(孔)を貫通して電池蓋4の外部に突出している。電池蓋4には、電池の内圧上昇に応じて開裂する開裂弁10が設けられている。なお、開裂弁10の開裂圧は、13〜18kgf/cm2(1.27〜1.77MPa)とした。
次いで、金属製のナット2を正極外部端子1および負極外部端子1’にそれぞれ螺着し、セラミックワッシャ3、金属ワッシャ11、セラミックワッシャ3’を介して電池蓋4を鍔部7とナット2と間で締め付けることにより固定する。このときの締め付けトルク値は70kgf・cm(6.86N・m)とした。なお、締め付け作業が終了するまで金属ワッシャ11は回転しなかった。この状態では、電池蓋4の裏面と鍔部7との間に介在させたゴム(EPDM)製のOリング12の圧縮により電池容器5の内部の発電要素は外気から遮断されている。
その後、電池蓋4に設けられた注液口13から電解液を所定量電池容器5内に注入し、その後、注液口13を封止することにより円筒形リチウムイオン二次電池20を完成させた。
負極の全容量に対して、10時間率充電における定電流領域の充電容量(以下、負極のCC容量という場合もある)の割合の測定は、以下のようにして算出した。まず、前記で作製した負極板を直径15mmの大きさに打ち抜き、片面の負極合剤層を取り除いた。
次に、この負極板と、直径16mmの大きさに打ち抜いた対極(金属リチウム)とを、直径19mmの大きさに打ち抜いたセパレータ及び電解液を介してアルゴン雰囲気下でCR2032型コインセルを作製した。対極の金属リチウムは、表面を研磨して酸化皮膜を除去して使用した。電解液は、非水電解質(1MのLiPF6を含むエチレンカーボネート/メチルエチルカーボネート/ジメチルカーボネート=2/2/3混合溶液(体積比)に、混合溶液全量に対してビニレンカーボネートを0.8質量%添加したもの(商品名:ソルライト、三菱化学株式会社製、「ソルライト」は登録商標。)を0.2mL使用した。セパレータにはポリエチレン製多孔質シートのセパレータ(商品名:ハイポア、旭化成株式会社製、「ハイポア」は登録商標。厚さが30μm。)を使用した。
また、10時間率充電における定電流領域の充電容量は、電流密度0.1Cの定電流で0V(V vs Li/Li+)まで充電したときの容量とした。
25℃の環境下において、充電、放電ともに電流値は0.5Cとした。充電は4.2Vを上限電圧とする定電流定電圧(CCCV)充電で、終止条件を3時間とした。放電は定電流(CC)放電で、2.7Vを終止条件とした。また、充放電間には30分の休止を入れた。これを3サイクル実施し、3サイクル目の充電容量を「電流値0.5Cにおける充電容量」、3サイクル目の放電容量を「電流値0.5Cにおける放電容量」とした。
ここで、負極容量/正極容量は、「負極の放電容量/電流値0.5Cにおける放電容量」から算出した。前記負極の放電容量は、前記「負極の所定面積当たり(1.7671cm2)の放電容量」から、前記リチウムイオン二次電池で作製した負極の総面積に換算して算出した。
入力特性は、上記3サイクル目の放電容量を測定後、3Cの電流値で4.2Vを上限電圧とする定電流定電圧(CCCV)で終止条件を3時間とする充電を行い、この時の充電容量を「電流値3Cにおける充電容量」とし、以下の式により入力特性を算出した。この後、0.5Cの電流値で終止電圧2.7Vの定電流放電を行った。
入力特性=電流値3Cにおける充電容量/電流値0.5Cにおける充電容量入力特性が80%以上を「A」とし、75%以上、80%未満を「B」、75%未満を「C」として評価した。
寿命特性は、25℃の環境下において、0.5Cの電流値で4.2Vまで電池を充電後、50℃の環境下において3ヵ月放置し、25℃の環境下において放置後の放電容量を計測し、放置前後の放電容量比を評価した。放置前後の放電容量比が80容量%以上を「A」とし、75容量%以上、80容量%未満を「B」、75容量%未満を「C」として評価した。上記の実施例及び比較例の結果を表1に示した。
一方、式(1)の70≦X≦95に含まれない比較例1、式(1)には含まれるが、式2の1≦Y≦1+(1−X/100)に含まれない比較例2〜5は、入力特性に劣る傾向にあり、寿命特性で劣る。
Claims (4)
- 負極の全容量に対して、10時間率充電における定電流領域の充電容量の割合をX%としたとき、下記の式(1)を満たす負極と、リチウム・ニッケル・マンガン・コバルト複合酸化物を含む正極を備え、前記正極と前記負極との容量比(負極容量/正極容量)Yが下記の式(2)を満たすリチウムイオン二次電池。
70≦X≦95・・・(1)
1≦Y≦1+(1−X/100)・・・(2) - 式(1)のXが、下記式(3)の範囲である請求項1に記載のリチウムイオン二次電池。
80≦X≦90・・・(3) - 負極に易黒鉛化炭素を含み、易黒鉛化炭素を負極活物質の総量に対して、20質量%以上含有する請求項1または請求項2に記載のリチウムイオン二次電池。
- 負極に易黒鉛化炭素と難黒鉛化炭素を含み、易黒鉛化炭素と難黒鉛化炭素の混合割合が、易黒鉛化炭素/難黒鉛化炭素(質量比)=100/0〜10/90である請求項1または請求項2に記載のリチウムイオン二次電池。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014119173 | 2014-06-10 | ||
JP2014119173 | 2014-06-10 | ||
PCT/JP2015/066597 WO2015190480A1 (ja) | 2014-06-10 | 2015-06-09 | リチウムイオン二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015190480A1 true JPWO2015190480A1 (ja) | 2017-04-20 |
JP6344470B2 JP6344470B2 (ja) | 2018-06-20 |
Family
ID=54833570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016527820A Expired - Fee Related JP6344470B2 (ja) | 2014-06-10 | 2015-06-09 | リチウムイオン二次電池 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6344470B2 (ja) |
WO (1) | WO2015190480A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017068985A1 (ja) * | 2015-10-22 | 2017-04-27 | 日立化成株式会社 | リチウムイオン電池 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005243448A (ja) * | 2004-02-26 | 2005-09-08 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2007317582A (ja) * | 2006-05-29 | 2007-12-06 | Hitachi Vehicle Energy Ltd | エネルギー貯蔵デバイス |
JP2008097894A (ja) * | 2006-10-10 | 2008-04-24 | Gs Yuasa Corporation:Kk | 非水電解質二次電池 |
WO2009022664A1 (ja) * | 2007-08-10 | 2009-02-19 | Showa Denko K.K. | リチウム系二次電池用負極、炭素系負極活物質の製造方法及びリチウム系二次電池及びその用途 |
JP2009176448A (ja) * | 2008-01-22 | 2009-08-06 | Hitachi Vehicle Energy Ltd | 非水電解液二次電池 |
JP2009206000A (ja) * | 2008-02-29 | 2009-09-10 | Hitachi Vehicle Energy Ltd | リチウムイオン二次電池 |
JP2009266706A (ja) * | 2008-04-28 | 2009-11-12 | Hitachi Vehicle Energy Ltd | リチウムイオン二次電池 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9947924B2 (en) * | 2012-12-27 | 2018-04-17 | Sanyo Electric Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
-
2015
- 2015-06-09 JP JP2016527820A patent/JP6344470B2/ja not_active Expired - Fee Related
- 2015-06-09 WO PCT/JP2015/066597 patent/WO2015190480A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005243448A (ja) * | 2004-02-26 | 2005-09-08 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2007317582A (ja) * | 2006-05-29 | 2007-12-06 | Hitachi Vehicle Energy Ltd | エネルギー貯蔵デバイス |
JP2008097894A (ja) * | 2006-10-10 | 2008-04-24 | Gs Yuasa Corporation:Kk | 非水電解質二次電池 |
WO2009022664A1 (ja) * | 2007-08-10 | 2009-02-19 | Showa Denko K.K. | リチウム系二次電池用負極、炭素系負極活物質の製造方法及びリチウム系二次電池及びその用途 |
JP2009176448A (ja) * | 2008-01-22 | 2009-08-06 | Hitachi Vehicle Energy Ltd | 非水電解液二次電池 |
JP2009206000A (ja) * | 2008-02-29 | 2009-09-10 | Hitachi Vehicle Energy Ltd | リチウムイオン二次電池 |
JP2009266706A (ja) * | 2008-04-28 | 2009-11-12 | Hitachi Vehicle Energy Ltd | リチウムイオン二次電池 |
Also Published As
Publication number | Publication date |
---|---|
WO2015190480A1 (ja) | 2015-12-17 |
JP6344470B2 (ja) | 2018-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6213675B2 (ja) | リチウムイオン二次電池 | |
WO2018179817A1 (ja) | 非水電解質二次電池用負極及び非水電解質二次電池 | |
JP6281638B2 (ja) | リチウムイオン電池 | |
WO2015005228A1 (ja) | リチウムイオン電池およびその製造方法 | |
JP2016076317A (ja) | リチウムイオン二次電池 | |
JP6697377B2 (ja) | リチウムイオン二次電池 | |
JP2018113151A (ja) | Ptc層の製造方法 | |
WO2016163282A1 (ja) | リチウムイオン二次電池 | |
JPWO2016104024A1 (ja) | リチウムイオン電池 | |
JP2016139548A (ja) | リチウムイオン電池 | |
WO2016021614A1 (ja) | リチウムイオン電池及びリチウムイオン電池の不良判別方法 | |
JP2016091927A (ja) | リチウムイオン二次電池 | |
WO2017068985A1 (ja) | リチウムイオン電池 | |
WO2017022731A1 (ja) | リチウムイオン二次電池 | |
JP6728582B2 (ja) | リチウムイオン二次電池 | |
JP2017139087A (ja) | リチウムイオン二次電池 | |
JP2017199488A (ja) | リチウムイオン電池 | |
JP6631535B2 (ja) | リチウムイオン電池 | |
JP6344470B2 (ja) | リチウムイオン二次電池 | |
JP2017027813A (ja) | リチウムイオン二次電池 | |
JP2018073579A (ja) | リチウムイオン電池 | |
JP2016046037A (ja) | リチウムイオン電池用負極の製造方法及びその製造方法により得られるリチウムイオン電池 | |
JP2016004683A (ja) | リチウムイオン電池 | |
JP2015046237A (ja) | リチウムイオン電池 | |
US20250174643A1 (en) | Non-aqueous electrolyte secondary battery and method for manufacturing negative electrode binder for non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170919 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180424 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180507 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6344470 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |