JPWO2015141752A1 - 燃料電池装置 - Google Patents

燃料電池装置 Download PDF

Info

Publication number
JPWO2015141752A1
JPWO2015141752A1 JP2016508774A JP2016508774A JPWO2015141752A1 JP WO2015141752 A1 JPWO2015141752 A1 JP WO2015141752A1 JP 2016508774 A JP2016508774 A JP 2016508774A JP 2016508774 A JP2016508774 A JP 2016508774A JP WO2015141752 A1 JPWO2015141752 A1 JP WO2015141752A1
Authority
JP
Japan
Prior art keywords
fuel
oxygen
temperature
amount
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016508774A
Other languages
English (en)
Other versions
JP6247379B2 (ja
Inventor
直輝 川端
直輝 川端
伸彦 鉢木
伸彦 鉢木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2015141752A1 publication Critical patent/JPWO2015141752A1/ja
Application granted granted Critical
Publication of JP6247379B2 publication Critical patent/JP6247379B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】 効率よく再着火することができる燃料電池装置を提供する。【解決手段】 本発明の燃料電池装置は、外部負荷より要求される電力が低下した場合において、燃焼部45での燃焼が失火したと判断された場合に、燃料電池セル19に供給する燃料ガスおよび酸素含有ガスの供給量を、低下した外部負荷より要求される電力に応じて設定された供給量よりも少ない量を供給するように、燃料ガス供給装置および酸素含有ガス供給装置を制御し、かつ着火装置を作動させるように制御する制御装置を備えている。【選択図】 図5

Description

本発明は、燃料電池装置に関する。
近年、次世代エネルギーとして、燃料ガス(水素含有ガス)と酸素含有ガス(空気)とを用いて電力を得ることができる燃料電池セルを複数個配列してなるセルスタックが知られている。また、セルスタックを収納容器内に収納してなる燃料電池モジュールや、燃料電池モジュールを外装ケース内に収納してなる燃料電池装置が種々提案されている(例えば、特許文献1参照。)。
また、このような燃料電池装置においては、燃料電池セルより排出される排ガスを燃焼させるための着火装置や、燃焼後の燃焼ガスを処理するための燃焼触媒や、この燃焼触媒で処理された後の排ガスの温度を測定する処理済み排ガス温度センサ等を備え、この排ガス処理済み温度センサにより測定された処理済み排ガス温度が所定温度以上となった場合に、着火装置を作動させることが提案されている(例えば、特許文献2参照。)。
特開2007−59377号公報 特開2010−153064号公報
ところで、このような燃料電池装置において、外部負荷の要求する電力が低下した場合に、供給される燃料ガス量が低下することに伴って、排ガスを燃焼させるための火が消えてしまう失火を引き起こすおそれがある。
ここで、失火が生じると、燃料電池セルの発電で用いられなかった燃料ガスが不完全燃焼となり、それに伴い燃焼触媒での燃焼反応が増大し、燃焼触媒の劣化が生じるおそれがあった。さらには、燃料電池セルの温度が低下し、発電量が不十分となるおそれがあった。従って、失火が生じたと判断された場合には、効率よく再着火することが求められていた。
それゆえ、本発明では、燃料電池セルが失火した場合に、効率よく再着火することができる燃料電池装置を提供することを目的とする。
本発明の燃料電池装置は、燃料ガスと酸素含有ガスとで、外部負荷に供給する電力を発電する燃料電池セルと、該燃料電池セルに前記燃料ガスを供給する燃料ガス供給装置と、前記燃料電池セルに前記酸素含有ガスを供給する酸素含有ガス供給装置と、前記燃料電池セルより排出された発電に使用されなかった燃料ガスを燃焼する燃焼部と、前記燃料電池セルより排出された発電に使用されなかった燃料ガスを燃焼させるための着火装置と、前記燃料ガス供給装置、前記酸素含有ガス供給装置および前記着火装置の作動を制御する制御装置とを備え、該制御装置は、前記外部負荷より要求される電力の変動に応じて、前記燃料ガスおよび前記酸素含有ガスの供給量を変動させるよう前記燃料ガス供給装置および前記酸素含有ガス供給装置を制御するとともに、前記外部負荷より要求される電力が低下した場合において、前記燃焼部での燃焼が失火したと判断された場合に、前記燃料電池セルに供給する前記燃料ガスおよび前記酸素含有ガスの供給量を、低下した前記外部負荷より要求される電力に応じて設定された供給量よりも少ない量を供給するように、前記燃料ガス供給装置および前記酸素含有ガス供給装置を制御し、かつ前記着火装置を作動させるように制御することを特徴とする。
本発明の燃料電池装置は、燃焼用の火が消えたとしても効率よく再着火することができる。
本実施形態の燃料電池装置を備える燃料電池システムの構成の一例を示す構成図である。 図1に示す燃料電池システムを構成する燃料電池モジュールの一例を示す外観斜視図である。 図2に示す燃料電池モジュールの断面図である。 本実施形態の燃料電池装置の一例を概略的に示す分解斜視図である。 本実施形態の燃料電池装置の運転制御の一例の一部を示すフローチャートである。 図5に示すフローチャートの続きの一例を示すフローチャートである。 図5に示すフローチャートの続きの他の一例を示すフローチャートである。 図5に示すフローチャートの続きのさらに他の一例を示すフローチャートである。
図1は、本実施形態の燃料電池装置を備える燃料電池システムの構成の一例を示す構成図である。図1に示す燃料電池システムは、本実施形態の燃料電池装置の一例である発電ユニットと、熱交換後の湯水を貯湯する貯湯ユニットと、これらのユニット間を水が循環するための循環配管とから構成されている。なお、以降の図において同一の構成については同一の符号を用いて説明する。
図1に示す発電ユニットは、燃料極層、固体電解質層、酸素極層を有する固体酸化物形の燃料電池セルを複数個組み合わせてなるセルスタック5、都市ガス等の原燃料を後述する改質器3に供給する燃料ガス供給装置である原燃料供給ポンプ1を有する原燃料供給ライン、セルスタック5を構成する燃料電池セルに酸素含有ガスを供給するための酸素含有ガス供給装置である酸素含有ガス供給ポンプ(ブロワ)2を有する酸素含有ガス供給ライン、原燃料と水蒸気により原燃料を水蒸気改質する改質器3を備えている。原燃料供給ラインには原燃料供給ポンプ1より供給される原燃料の量を測定する原燃料流量計41が設けられており、また酸素含有ガス供給ラインには、酸素含有ガス供給ポンプ2より供給される酸素含有ガスの量を測定する酸素含有ガス流量計42が設けられている。
なお、図1に示す発電ユニットでは、セルスタック5と改質器3とを収納容器に収納することで燃料電池モジュール4(以下、モジュールという場合がある。)が構成され、図1においては、二点鎖線により囲って示している。また、セルスタック5から排出される発電に使用されなかった排ガスを排出する排ガスラインには、該排ガスを浄化するための燃焼触媒を備える浄化装置43が設けられているほか、図1には示していないが、モジュール4内には発電で使用されなかった燃料ガスを燃焼させるための着火装置(着火ヒーター等)が設けられている。
また、図1に示す発電ユニットにおいては、セルスタック5を構成する燃料電池セルの発電に伴って生じた排ガス(排熱)と水とで熱交換を行なう熱交換器8に水を循環させる循環配管15、熱交換器8で生成された凝縮水を純水に処理するための水処理装置9、水処理装置9にて処理された水(純水)を貯水するための水タンク11とが設けられており、水タンク11と熱交換器8との間が凝縮水供給管10により接続されている。なお、水処理装置9としてはイオン交換樹脂を備えるイオン交換樹脂装置を用いることが好ましい。
水タンク11に貯水された水は、水タンク11と改質器3とを接続する水供給管13に備えられた水ポンプ12により改質器3に供給される。
さらに図1に示す発電ユニットは、モジュール4にて発電された直流電力を交流電力に変換し、変換された電気の外部負荷への供給量を調整するための供給電力調整部(パワーコンディショナ)6、熱交換器8の出口に設けられ熱交換器8の出口を流れる水(循環水流)の水温を測定するための出口水温センサ14のほか、後述する各種機器の動作を制御する制御装置7が設けられており、循環配管15内で水を循環させる循環ポンプ17とあわせて発電ユニットが構成されている。
なお、制御装置7はマイクロコンピュータを有しており、入出力インターフェイス、CPU、RAMおよびROMを備えている。なお、CPUは、燃料電池装置の運転を実施するものであり、RAMはプログラムの実行に必要な変数を一時的に記憶するものであり、ROMはプログラムを記憶するものである。
そして、これら発電ユニットを構成する各装置を、外装ケース内に収納することで、設置や持ち運び等が容易な燃料電池装置とすることができる。なお、貯湯ユニットは、熱交換後の湯水を貯湯するための貯湯タンク16を具備して構成されている。なお、循環ポンプ17は貯湯ユニット側に設けることもできる。
ここで、図1に示した燃料電池システムの運転方法について説明する。
セルスタック5の発電に必要な燃料ガスを生成するにあたり、制御装置7は原燃料供給ポンプ1、水ポンプ12を作動させる。それにより、改質器3に原燃料(天然ガス、灯油等)と水とが供給され、改質器3で水蒸気改質を行なうことにより、水素を含む燃料ガスが生成されて燃料電池セルの燃料極層に供給される。
一方、制御装置7は酸素含有ガス供給ポンプ2を動作させることにより、燃料電池セルの酸素極層に酸素含有ガス(空気)を供給する。
なお、制御装置7はモジュール4において着火装置(図示せず)を作動させることにより、セルスタック5の発電に使用されなかった燃料ガスを燃焼させる。それにより、モジュール内の温度(セルスタック5や改質器3の温度)が上昇し、効率よい発電を行なうことができる。
セルスタック5の発電に伴って生じた排ガスは、燃焼触媒を備える浄化装置43にて浄化された後、熱交換器8に供給され、循環配管15を流れる水とで熱交換される。熱交換器8での熱交換により生じたお湯は、循環配管15を流れて貯湯タンク16に貯水される。一方、熱交換器8での熱交換によりセルスタック5より排出される排ガスに含まれる水が凝縮水となり、凝縮水供給管10を通じて、水処理装置9に供給される。凝縮水は、水処理装置9にて純水とされて、水タンク11に供給される。水タンク11に貯水された水は、水ポンプ12により水供給管13を介して改質器3に供給される。このように、凝縮水を有効利用することにより、水自立運転を行なうことができる。
なお、上述の例においては、貯湯ユニットを備える燃料電池システムの構成の一例を示したが、貯湯ユニットを備えていない、いわゆるモノジェネレーションシステムとすることもできる。この場合、凝縮水を生成するにあたり、ラジエターを備えた構成として、ラジエターにより排ガスを冷却することで、凝縮水を生成してもよい。
さらに、上述の例においては、熱交換器8にて生成される凝縮水のみを改質器3に供給する構成の燃料電池装置を用いて説明したが、改質器3に供給する水として水道水を利用することもできる。この場合、水道水に含まれる不純物を処理するための水処理装置として、例えば、活性炭フィルター、逆浸透膜装置、イオン交換樹脂装置等を、この順に接続することで、純水を効率よく精製することができる。なお、水道水を用いる場合においても、水処理装置にて生成した純水が、水タンク11に貯水されるよう各装置を接続する。
続いて、図1に示すモジュール4の一例について説明する。図2、図3は、本実施形態の燃料電池装置を構成するモジュール4の一例を示し、図2はモジュール4を示す外観斜視図であり、図3は図2に示すモジュール4の断面図である。なお、図2、図3においては、セルスタック5を2つ有するセルスタック装置を用いて説明するが、セルスタック5の数は適宜変更することができ、それに合わせて収納容器の形状も適宜変更すればよい。
図2に示すモジュール4においては、収納容器18の内部に、内部を燃料ガスが流通するガス流路(図示せず)を有する柱状の燃料電池セル19を立設させた状態で一列に配列し、隣接する燃料電池セル19間が集電部材(図示せず)を介して電気的に直列に接続されているとともに、燃料電池セル19の下端をガラスシール材等の絶縁性接合材(図示せず)でマニホールド20に固定してなるセルスタック5を2つ備えるセルスタック装置21を収納して構成されている。なお、セルスタック5の両端部には、セルスタック5(燃料電池セル19)の発電により生じた電気を集電して外部に引き出すための、電気引き出し部を有する導電部材が配置されている(図示せず)。また、収納容器18には、モジュール4の温度を測定するための温度計測手段である熱電対28が設けられている。
また、図2においては、燃料電池セル19として、内部を燃料ガスが長手方向に流通するガス流路を有する中空平板型で、ガス流路を有する支持体の表面に、燃料極層、固体電解質層および酸素極層を順に積層してなる固体酸化物形の燃料電池セル19を例示している。なお、燃料電池セル19においては、内部を酸素含有ガスが長手方向に流通するガス流路を有する形状とすることもでき、この場合、内側より酸素極層、固体電解質層、燃料極層を順に設け、モジュール4の構成は適宜変更すればよい。さらには、燃料電池セルは中空平板型に限られるものではなく、例えば平板型や円筒型とすることもでき、あわせて収納容器18の形状を適宜変更することが好ましい。
また、図2に示すモジュール4においては、燃料電池セル19の発電で使用する燃料ガスを得るために、原燃料供給管25を介して供給される都市ガス等の原燃料を改質して燃料ガスを生成するための改質器3をセルスタック5の上方に配置している。また、改質器3は、効率のよい改質反応である水蒸気改質を行なうことができる構造とすることができ、水を気化させるための気化部23と、原燃料を燃料ガスに改質するための改質触媒(図示せず)が配置された改質部22とを備えている。
そして、改質器3で生成された燃料ガス(水素含有ガス)は、燃料ガス流通管24を介してマニホールド20に供給され、マニホールド20より燃料電池セル19の内部に設けられたガス流路に供給される。なお、セルスタック装置21の構成は、燃料電池セル19の種類や形状により、適宜変更することができ、例えばセルスタック装置21に改質器3を含むこともできる。
また図2においては、収納容器18の一部(前後面)を取り外し、内部に収納されるセルスタック装置21を後方に取り出した状態を示している。ここで、図2に示したモジュール4においては、セルスタック装置21を、収納容器18内にスライドして収納することが可能である。
なお、収納容器18の内部には、マニホールド20に並置されたセルスタック5の間に配置され、酸素含有ガスが燃料電池セル19の側方を下端部から上端部に向けて流れるように、反応ガス導入部材26が配置されている。
図3に示すように、モジュール4を構成する収納容器18は、内壁29と外壁30とを有する二重構造で、外壁30により収納容器18の外枠が形成されるとともに、内壁29によりセルスタック装置21を収納する発電室31が形成されている。さらに収納容器18においては、内壁29と外壁30との間を、モジュール4の底部より供給され、燃料電池セル19に導入する酸素含有ガスが流通する反応ガス流路36としている。なお酸素含有ガスはモジュール4の底部に設けられた酸素含有ガス供給口(図示せず)より供給されて、反応ガス流路36を流れる。
ここで、収納容器18内には、収納容器18の上部より、上端側に酸素含有ガスが流入するための酸素含有ガス流入口(図示せず)とフランジ部39とを備え、下端部に燃料電池セル19の下端部に酸素含有ガスを導入するための反応ガス流出口32が設けられてなる反応ガス導入部材26が、内壁29を貫通して挿入されて固定されている。なお、フランジ部39と内壁29との間には断熱部材33が配置されている。
なお、図3においては、反応ガス導入部材26が、収納容器18の内部に並置された2つのセルスタック5間に位置するように配置されているが、セルスタック5の数により、適宜配置することができる。例えば、収納容器18内にセルスタック5を1つだけ収納する場合には、反応ガス導入部材26を2つ設け、セルスタック5を両側面側から挟み込むように配置することができる。
また、モジュール4においては、燃料電池セル19の発電に使用されなかった燃料ガス、言い換えれば燃料電池セル19を通過した燃料ガスを着火させるための着火装置44が、燃料電池セル19と改質器3との間に位置するように、収納容器18の側面より挿入されている。着火装置44により燃料電池セル19を通過した燃料ガスを燃焼させることにより、モジュール4内の温度を高温とすることができるほか、燃料電池セル19、改質器3の温度を高温に維持することができる。なお、この構成において、燃料電池セル19と改質器3との間が燃焼部45となり、図3においては破線にて示している。
また発電室31内には、モジュール4内の熱が極端に放散され、燃料電池セル19(セルスタック5)の温度が低下して発電量が低減しないよう、モジュール4内の温度を高温に維持するための断熱部材33が適宜設けられている。
断熱部材33は、セルスタック5の近傍に配置することが好ましく、特には、燃料電池セル19の配列方向に沿ってセルスタック5の側面側に配置するとともに、セルスタック5の側面における燃料電池セル19の配列方向に沿った幅と同等またはそれ以上の幅を有する断熱部材33を配置することが好ましい。なお、セルスタック5の両側面側に断熱部材33を配置することが好ましい。それにより、セルスタック5の温度が低下することを効果的に抑制できる。さらには、反応ガス導入部材26より導入される酸素含有ガスが、セルスタック5の側面側より排出されることを抑制でき、セルスタック5を構成する燃料電池セル19間の酸素含有ガスの流れを促進することができる。なお、セルスタック5の両側面側に配置された断熱部材33においては、燃料電池セル19に供給される酸素含有ガスの流れを調整し、セルスタック5の長手方向および燃料電池セル19の積層方向における温度分布を低減するための開口部34が設けられている。なお、複数の断熱部材33を組み合わせて開口部34を形成するようにしてもよい。
また、燃料電池セル19の配列方向に沿った内壁29の内側には、排ガス用内壁35が設けられており、内壁29と排ガス用内壁35との間が、発電室31内の排ガスが上方から下方に向けて流れる排ガス流路37とされている。なお、排ガス流路37は、収納容器18の底部に設けられた排気孔40と通じている。また、排ガス用内壁35のセルスタック5側にも断熱部材33が設けられている。
それにより、モジュール4の運転に伴って生じる排ガスは、排ガス流路37を流れた後、排気孔40より排気される構成となっている。なお、排気孔40は収納容器18の底部の一部を切り欠くようにして形成してもよく、また管状の部材を設けることにより形成してもよい。
ここで、本実施形態の燃料電池装置では、モジュール4と熱交換器8との間に、セルスタック5(モジュール4)より排出される排ガスを浄化するための燃焼触媒を備える浄化装置43を備えている。それにより、モジュール4から排出される排ガスを浄化し、浄化された排ガスを燃料電池装置の外部に排出することができる。なお、図3においては、この浄化装置43が排気孔40内に設けられた例を示しているが、モジュール4と熱交換器8との間に配置されていればよい。なお、浄化装置43には、燃焼触媒の温度を測定するための温度センサ46が設けられている。
また、燃焼触媒としては、一般的に知られているような、多孔質の担体に、白金、パラジウム等の貴金属類の他、マンガン、コバルト、銀、銅、ニッケル等を担持させたものを用いることができる。
本実施形態の燃料電池セル19を、従来知られている中空平板型の燃料電池セルを用いて説明すると、燃料電池セル19は、一対の対向する平坦面をもつ柱状の導電性支持基板(以下、支持基板と略す場合がある)の一方の平坦面上に燃料極層、固体電解質層及び酸素極層を順次積層してなる柱状(中空平板状)からなる。また、燃料電池セル19の他方の平坦面上にはインターコネクタが設けられており、インターコネクタの外面(上面)にはP型半導体層が設けられている。P型半導体層を介して、集電部材をインターコネクタに接続させることにより、両者の接触がオーム接触となり、電位降下を少なくし集電性能の低下を有効に回避することが可能となる。また、支持基板は燃料極層を兼ねるものとし、その表面に固体電解質層および酸素極層を順次積層してセルを構成することもできる。
例えば、燃料極層は、一般的に公知のものを使用することができ、多孔質の導電性セラミックス、例えば希土類元素酸化物が固溶しているZrO(安定化ジルコニアと称し、部分安定化も含むものとする)とNiおよび/またはNiOとから形成することができる。
固体電解質層は、燃料極層、酸素極層間の電子の橋渡しをする電解質としての機能を有していると同時に、燃料ガスと酸素含有ガスとのリークを防止するためにガス遮断性を有することが必要とされ、3〜15モル%の希土類元素酸化物が固溶したZrOから形成される。なお、上記特性を有する限りにおいては、他の材料等を用いて形成してもよい。
酸素極層は、一般的に用いられるものであれば特に制限はなく、例えば、いわゆるABO型のペロブスカイト型酸化物からなる導電性セラミックスから形成することができる。酸素極層はガス透過性を有していることが必要であり、開気孔率が20%以上、特に30〜50%の範囲にあることが好ましい。
支持基板としては、燃料ガスを燃料極層まで透過するためにガス透過性であること、さらには、インターコネクタを介して集電するために導電性であることが要求される。したがって、支持基板としては、導電性セラミックスやサーメット等を用いることができる。燃料電池セル19を作製するにあたり、燃料極層または固体電解質層との同時焼成により支持基板を作製する場合においては、鉄族金属成分と特定希土類酸化物とから支持基板を形成することが好ましい。また、支持基板は、ガス透過性を備えるために開気孔率が30%以上、特に35〜50%の範囲にあるのが好適であり、そしてまたその導電率は300S/cm以上、特に440S/cm以上であるのが好ましい。また、支持基板の形状は柱状であれば良く、円筒状であってもよい。
P型半導体層としては、遷移金属ペロブスカイト型酸化物からなる層を例示することができる。具体的には、インターコネクタを構成する材料よりも電子伝導性が大きいもの、例えば、BサイトにMn、Fe、Coなどが存在するLaMnO系酸化物、LaFeO系酸化物、LaCoO系酸化物などの少なくとも一種からなるP型半導体セラミックスを使用することができる。このようなP型半導体層の厚みは、一般に、30〜100μmの範囲にあることが好ましい。
インターコネクタは、上述したとおり、ランタンクロマイト系のペロブスカイト型酸化物(LaCrO系酸化物)、もしくは、ランタンストロンチウムチタン系のペロブスカイト型酸化物(LaSrTiO系酸化物)が好適に使用される。これらの材料は、導電性を有し、かつ燃料ガス(水素含有ガス)および酸素含有ガス(空気等)と接触しても還元も酸化もされない。また、インターコネクタは支持基板に形成されたガス流路を流通する燃料ガス、および支持基板の外側を流通する酸素含有ガスのリークを防止するために緻密質でなければならず、93%以上、特に95%以上の相対密度を有していることが好ましい。
図4は、外装ケース内に図2で示したモジュール4と、モジュール4を動作させるための補機(図示せず)とを収納してなる本実施形態の燃料電池装置の一例を示す分解斜視図である。なお、図4においては一部構成を省略して示している。
図4に示す燃料電池装置47は、支柱48と外装板49から構成される外装ケース内を仕切板50により上下に区画し、その上方側を上述したモジュール4を収納するモジュール収納室51とし、下方側をモジュール4を動作させるための補機を収納する補機収納室52として構成されている。なお、補機収納室52に収納する補機を省略して示している。
また、仕切板50には、補機収納室52の空気をモジュール収納室51側に流すための空気流通口53が設けられており、モジュール収納室51を構成する外装板49の一部に、モジュール収納室51内の空気を排気するための排気口54が設けられている。
ところで、このような燃料電池装置においては、発電効率が高いことが求められている。それゆえ、制御装置7は、外部負荷より要求される電力(以下、単に外部負荷という場合がある。)の変動に応じて、燃料電池セル19の発電に必要な燃料ガスおよび酸素含有ガスの供給量を変動すべく、原燃料供給ポンプ1および酸素含有ガス供給ポンプ2の動作を制御する。すなわち部分負荷追従運転を行なう。
従って、例えば外部負荷の要求が低減した場合に、制御装置7は、原燃料供給ポンプ1および酸素含有ガス供給ポンプ2より供給される燃料ガスおよび酸素含有ガスを、低下した外部負荷に応じて設定された供給量となるよう、供給量を低減するよう制御する。しかしながら、この場合において、燃料電池セル19より排出される燃料ガスの量が低減し、それに伴って、燃焼部45での燃焼が失火する場合がある。
ここで、燃焼部45で失火が生じると、燃料電池セル19の発電で用いられなかった燃料ガスが不完全燃焼となり、それに伴い燃焼触媒での燃焼反応が増大し、燃焼触媒の劣化が生じるおそれや、燃料電池セル19の温度が低下し、発電量が不十分となるおそれがある。それゆえ、失火が生じたと判断された場合には、効率よく再着火できることが求められている。
そこで、本実施形態の燃料電池装置は、制御装置7が、外部負荷より要求される電力が低下した場合において、燃焼部45での燃焼が失火したと判断された場合に、燃料電池セル19に供給する燃料ガスおよび酸素含有ガスの量を、低下した外部負荷より要求される電力に応じて設定された供給量よりも少ない量を供給するように、燃料ガス供給装置および酸素含有ガス供給装置を制御する。それにより、燃焼部45において効率よく再着火することができる。
なお、燃焼部45での燃焼が失火したと判断するにあたっては、例えば、燃焼触媒の温度を測定するための温度センサ46により測定された温度に基づいて判断するほか、燃焼部45に温度センサを設け該温度センサにより測定された温度に基づいて判断する、モジュール4の温度を測定するための温度計測手段である熱電対28により測定されたモジュール4内の温度に基づいて判断する等、燃料電池装置の構成に基づいて適宜採用することができる。なお、以下の説明においては、燃焼触媒の温度を測定するための温度センサ46により測定された温度に基づいて判断する例を用いて説明する。
また、燃料電池セル19に供給する燃料ガスおよび酸素含有ガスの供給量を、低下した外部負荷より要求される電力に応じて設定された供給量よりも少ない量を供給するにあたっては、低下した外部負荷より要求される電力に応じて設定された供給量よりも少ない量であれば特に制限はないが、例えば、モジュール4内の温度を、発電を直ちに行なうことができる最低温度に保持するための最低流量とすることができる。以下の説明においては、最低流量とする例を用いて説明する。
図5は、本実施形態のモジュール4(燃料電池装置)の運転制御の一例を示すフローチャートである。以下、図に示すフローチャートに基づいて、運転制御について説明する。
まず、制御装置7は、ステップS1において、外部負荷が低下したかどうかを判別する。外部負荷が低下していない場合には、ステップS2に進み、運転状態を維持する。なお、外部負荷の低下については、例えばこのフローチャートをスタートする前の外部負荷に対して、50%以上低下した場合等、適宜設定することができる。なお外部負荷については、供給電力調整部6での値に基づいて判別すればよい。
外部負荷が低下したと判断された場合には、ステップS3に進み、温度センサ46により測定された燃焼触媒の温度が第1の設定温度以上かどうかを判別する。なお、第1の設定温度については、燃焼触媒の種類に応じて適宜設定することができ、例えば多孔質の担体に白金が担持した燃焼触媒の場合、300〜400℃の間で適宜設定することができる。
ここで、燃焼触媒の温度が第1の設定温度未満の場合には、失火が生じていないと判断することができ、ステップS4に進んで運転状態を維持する。
一方で、燃焼触媒の温度が第1の設定温度以上の場合には、失火が生じたと判断し、再着火のステップであるステップS5に進む。
ステップS5では、制御装置7は、燃料ガス量および酸素含有ガス量が最低流量となるように、原燃料供給ポンプ1および酸素含有ガス供給ポンプ2の動作を制御する。あわせて、制御装置7は、着火装置44を作動させる。
ここで、燃焼触媒の温度が第1の設定温度以上の場合とは、言い換えれば燃焼部45にて燃焼していない排ガス量が多いことを意味する。この場合に、単に着火装置44を作動しても、理由は不明ではあるが、着火がうまくいかない場合がある。
そこで、上記ステップS5においては、制御装置7が、燃料ガス量および酸素含有ガス量が最低流量となるように、原燃料供給ポンプ1および酸素含有ガス供給ポンプ2の動作を制御する。それにより、燃焼していない排ガス量を低減でき、燃焼触媒の温度上昇を抑えることで、燃焼触媒の劣化を抑制できるほか、着火装置44での着火が容易となる。
続いて、ステップS6に進み、着火装置44を作動させてから所定時間T1が経過したかどうかを判別する。なお、所定時間T1は1〜10分の間で適宜設定することができる。
所定時間T1が経過していないと判別された場合は、ステップS7を介してステップS6に戻り、燃料ガス量および酸素含有ガス量の最低流量を継続するとともに、着火装置44の作動を継続する。
一方、所定時間T1が経過したと判別された場合には、続いてステップS8に進み、燃焼触媒の温度が、第1の設定温度よりも低く、かつ第1の設定温度よりも低く設定された第2の設定温度以上かどうかを判別する。なお、第2の設定温度についても、上述と同様に燃焼触媒の種類に応じて適宜設定することができるが、例えば第1の設定温度を300〜400℃の間で設定した場合には、第2の設定温度を200〜300℃の間で設定することができる。
ここで、燃焼触媒の温度が、第2の設定温度以上の場合には、失火が継続していると判別して、燃料ガス量および酸素含有ガス量を最低流量に維持し、かつ着火装置44を作動させる制御を維持したまま、続いてステップS9に進み、所定時間T2が経過したかどうかを判別する。なお、所定時間T2は1〜10分の間で適宜設定することができ、ステップS8に進んでからの時間とすればよい。
ステップS9において、所定時間T2が経過していない場合には、ステップS29を介してステップS9に戻り、再度所定時間T2が経過したかどうかを判別する。
一方、ステップS9において、所定時間T2が経過した場合には、着火装置44等に異常が生じている可能性があることから、続いてステップS30に進み、燃料電池装置の運転を停止する。
一方、燃焼触媒の温度が、第2の設定温度未満の場合には、失火が回復したと判別してステップS10に進み、上述の燃料ガス量および酸素含有ガス量が最低流量となるように、原燃料供給ポンプ1および酸素含有ガス供給ポンプ2の動作を制御していた制御を解除する、言い換えれば燃料ガス量および酸素含有ガス量が外部負荷に応じた供給量となるよう、それぞれを増加するように原燃料供給ポンプ1および酸素含有ガス供給ポンプ2の動作を制御する。あわせて、着火装置44の作動を停止する。以上の制御を行なうことにより、効率よく再着火することができる。なお、着火装置44の作動を停止するにあたっては、燃料ガス量および酸素含有ガス量を増加させてから、1〜10分後とすることができる。そして、続いてステップS31に進んで運転状態を維持し、さらにステップS32に進んで、本フローチャートの制御を終了する。
ところで、ステップS10において、燃料ガス量および酸素含有ガス量が増加するように原燃料供給ポンプ1および酸素含有ガス供給ポンプ2の動作を制御するとともに、着火装置44の作動を停止した後は、外部負荷が要求する電流を、定格の範囲内で発電可能な状態に戻ることとなる。しかしながら、この場合に、燃料ガス量および酸素含有ガス量が急激に増加すると再び失火するおそれがある。
それゆえ、例えば図6に示すフローチャートのように、ステップS10の次に、ステップS11に進むことができる。なお、常時、ステップS10の次に、ステップS11に進むこともできる。ステップS11では、制御装置7が、部分負荷追従特性を定常運転時より低減させる低減モードをスタートする。
ここで、外部負荷が増加する場合に、瞬間的にその外部負荷の要求電力を発電することは難しいため、あらかじめ定常運転時において、外部負荷が増加した際の発電電力の増加量を定めていることが好ましい。しかしながら、この定常運転時の発電電力の増加量で増加すると、その増加量が大きく、ひいては燃料ガス量および酸素含有ガス量の増加量も大きいため、再び失火するおそれがある。
それゆえ、ステップS11では、この外部負荷が増加した際の発電電力の増加量を、定常運転時より低減させる低減モードをスタートする。それにより、発電電力の増加量が小さくなり、ひいては、燃料ガス量および酸素含有ガス量の増加量も小さいため、再び失火するおそれを抑制することができる。なお、この低減モードにおける発電電力の増加量は、定常運転時の発電電力の増加量に対して50〜70%の範囲で適宜設定することができる。
一方、外部負荷が増加した際の発電電力の増加量が小さくなると、外部負荷の要求電力に追いつかないため、負荷に追従できない不足分を系統電源より購入する必要があるため、利用者のランニングコストが増加するおそれがある。
そこで、ステップS12に進んで、燃焼触媒が第2の設定温度未満となってから(言い換えれば低減モードを開始してから)所定の期間が経過したかどうかを判定する。もし、この期間を超えていない場合では、ステップS13を介してステップS12に戻ることとなる。なお、この期間は、例えば、低減モードを開始してから1〜10分とすることができる。
一方で、燃焼触媒が第2の設定温度未満となってから所定の期間が経過した場合には、続いてステップS14に進み、低減モードを解除し、発電電力の増加量を定常運転時の増加量となるように制御し、続いてステップS15に進んで、本フローチャートの制御を終了する。
それにより、外部負荷の要求電力に追従できることから、利用者のランニングコストが増加することを抑制することができる。
一方、燃料電池セル19が劣化した場合に、発電量が低下し、燃料電池セル19より排出される排ガス量が増加する場合がある。この場合に、燃焼部45にてすべての燃料ガスを燃焼させることができずに、燃焼触媒での燃焼反応が増加し、燃焼触媒の温度が上昇する場合がある。
そこで、ステップS10の次に、図7に示すフローチャートのように、ステップS16に進むこともできる。
ステップS16においては、温度センサ46にて計測された燃焼触媒の温度が、第2の設定温度未満であるかを確認する。燃焼触媒の温度が、第2の設定温度未満である場合には、燃料電池セル19に劣化が生じていないと判断し、ステップS18に進んで運転状態を維持する。
一方で、温度センサ46にて測定された温度が、第2の設定温度以上である場合には、燃料電池セル19に劣化が生じていると判断し、続いてステップS17に進む。
ステップS17においては、温度センサ46にて計測された燃焼触媒の温度が、第1の設定温度未満であるかを確認する。第1の設定温度以上の場合には、燃料電池セルの劣化度合いが大きいと判断し、ステップS33に進んで燃料電池装置の運転を停止する。
一方、ステップS17において、温度センサ46にて測定された燃焼触媒の温度が、第1の設定温度未満の場合には、燃料電池装置の運転を継続できる範囲で、燃料電池セル19に劣化が生じていると判断する。
この場合において、燃料電池セル19の劣化前と劣化後とで同じ発電量を得るためには、必要となる燃料ガス量が多くなる。それゆえ、ステップS17において、温度センサ46にて測定された温度が、第1の設定温度未満の場合には、燃料ガスと酸素含有ガスとの供給量を増加するように、燃料供給ポンプ1および酸素含有ガス供給ポンプ2の動作を制御し、続いてステップS20に進んで、本フローチャートの制御を終了する。
ここで、常時、ステップS10の次に、ステップS16に進むこともできる。また、始めは図5に示すフローチャートに基づいて制御させ、燃料電池セルに劣化が生じている可能性が高まった時期等に、図5に示すフローチャートのステップS10のあとに、図7に示すフローチャートのステップS16に進む制御をさせるようにしてもよい。この場合、ステップS10とステップS16との間に、例えば、燃料電池装置を作動してから2年〜5年経過後(適宜設定可能)か否かを判断するステップや、例えば1月間で3回以上失火が生じたか否かを判断するステップ、失火が累計で10回以上となったか否かを判断するステップ等を設けて、いずれのステップにおいても該当する場合に、ステップS16に進むように制御してもよい。なお、燃料電池装置の稼働期間や失火の回数等は、制御装置7に記憶させておけばよい。
また、ステップS10にて、燃料ガス量を増加するにあたり、制御装置7が原燃料供給ポンプ1に供給するように指示した指示流量よりも、原燃料流量計41が測定した流量が少ない場合がある。これは、原燃料供給ポンプ1の劣化等により生じる不具合であり、制御装置7が指示した燃料ガス量よりも少ない量が燃料電池セル19に提供されていることとなる。それゆえ、この差が大きいと、再度失火が生じるおそれがあるほか、目的とする発電量が得られないおそれがある。
そこで、ステップS10の次に、図8に示すフローチャートのように、ステップS21に進むことができる。ステップS21では、制御装置7が原燃料供給ポンプ1に指示した指示流量と、原燃料流量計41により測定された流量を比較する。
次にステップS22において、指示流量と流量計の値が同じ値を所定時間経過したかどうかを判別する。ここで、指示流量と流量計の値が同じ値とは、指示流量の値に対して、流量計の値が±10%の範囲に入っていることを意味する。また所定時間とは、1〜10分の間で適宜設定することができる。
ステップS22にて、指示流量と流量計の値が同じ値を所定時間経過した場合には、原燃料供給ポンプ1に劣化等が生じていないと判断することができ、所定の燃料ガス量を供給可能であることから、次にステップS27に進んで、制御装置7は、酸素含有ガス供給量を増加するように、酸素含有ガス供給ポンプ2を制御する。
一方で、ステップS22にて、指示流量と流量計の値が同じ値を所定時間経過しない場合には、ステップS24に進み、原燃料供給ポンプ1に対して、流量計の値が、本来燃料電池セル19に供給したいとして設定していた流量(言い換えれば当初の指示流量、以降の説明において目的量という。)となるように、燃料ガス供給装置1に対して、燃料ガスの供給量を増大もしくは減少するように制御する。
次にステップS25に進み、目的量と流量計の値が同じ値を所定時間経過したかどうかを判別する。ここで、目的量と流量計の値が同じ値とは、目的量の値に対して、流量計の値が±10%の範囲に入っていることを意味する。また所定時間とは、1〜10分の間で適宜設定することができる。
ここで、目的量と流量計の値が同じ値を所定時間経過しない場合には、ステップS26を介してステップS24に戻り、再度、原燃料供給ポンプ1に対して目的量となるように、燃料ガス供給装置1に対して、燃料ガスの供給量を増大もしくは減少するように制御する。
一方で、目的量と流量計の値が同じ値を所定時間経過した場合には、ステップS27に進み、制御装置7は、酸素含有ガス供給量を増加するように、酸素含有ガス供給ポンプ2を制御し、続いてステップS28に進んで、本フローチャートの制御を終了する。
ここで、常時、ステップS10の次に、ステップS21に進むこともできる。また、始めは図5に示すフローチャートに基づいて制御させ、原燃料供給ポンプ1の劣化が生じている可能性が高まった時期に、図5に示すフローチャートのステップS10のあとに、図8に示すフローチャートのステップS21に進む制御をさせるようにしてもよい。この場合、ステップS10とステップS21との間に、例えば燃料電池装置を作動してから2年〜5年経過後(適宜設定可能)か否かを判断するステップを設けて該当する場合に、ステップS21に進むように制御してもよい。なお、燃料電池装置の稼働期間は、制御装置7に記憶させておけばよい。
このような制御を実施することにより、効率よく失火を抑制することができ、かつ発電量が低下することを抑制することができる。
以上、本発明について詳細に説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。
例えば、上述の説明において、燃焼触媒の温度を測定するための温度センサ46により測定された温度に基づいて、燃焼部45での失火を判断する例を用いて説明したが、例えば、燃焼部45に設けた温度センサにより測定された温度に基づいて判断することもできる。この場合、失火の判定基準温度D1を400〜550℃の間で適宜設定し、燃焼部45に設けた温度センサにより測定された温度がD1を下回った場合に、失火が生じたと判断すればよい。一方、再着火したと判断するにあたっては、失火の判定基準温度D1+50℃とすればよい。
従って、図5に示したフローチャートにおいては、「燃焼触媒の温度が第1の設定温度以上か?」を「燃焼部の温度がD1未満か?」と置き換えればよく、また「燃焼触媒の温度が第2の設定温度以上か?」を「燃焼部の温度がD1+50℃未満か?」と置き換えればよい。
同様に、例えば、燃焼部45での失火を判断するにあたり、熱電対28により測定されたモジュール4内の温度に基づいて判断することもできる。この場合、失火の判定基準温度D2を500〜600℃の間で適宜設定し、熱電対28により測定された温度がD2を下回った場合に、失火が生じたと判断すればよい。一方、再着火したと判断するにあたっては、失火の判定基準温度D2+20℃とすればよい。
従って、図5に示したフローチャートにおいては、「燃焼触媒の温度が第1の設定温度以上か?」を「熱電対28にて測定された温度がD2未満か?」と置き換えればよく、また「燃焼触媒の温度が第2の設定温度以上か?」を「熱電対28にて測定された温度がD2+20℃未満か?」と置き換えればよい。
また、図6に示したフローチャートを実行するにあたり、ステップS10とステップS11との間に、図7や図8に示したフローチャートを参照して、燃料電池セルの劣化や原燃料供給ポンプの劣化を判定するフローを加えてもよい。例えば、燃料電池セルの劣化が生じていると判断された場合には、部分負荷追従特性を定常運転時より低減させる低減モードにおける燃料ガス量および酸素含有ガス量を、燃料電池セルの劣化が生じていないと判断される時よりも多く供給することが好ましい。
また、原燃料供給ポンプが劣化していると判断された場合には、燃料ガス量の目的量と流量計の値が同じ値となったことを確認してから、酸素含有ガス量を増加させて、低減モードをスタートすればよい。
また、図8のフローチャートにおいて、S24からS26のステップを数回繰り返したとき等に、燃料電池装置に異常が生じているとして、燃料電池装置の作動を停止することもできる。
さらに、上述の例ではいわゆる中空平板型と呼ばれる燃料電池セル19を用いて説明したが、一般に横縞型と呼ばれる複数の発電素子部を支持体上に設けてなる横縞型の燃料電池セルを用いることもできる。
1:原燃料供給ポンプ
2:酸素含有ガス供給ポンプ
3:改質器
4:燃料電池モジュール
7:制御装置
19:燃料電池セル
43:浄化装置
44:着火装置
46:温度センサ

Claims (9)

  1. 燃料ガスと酸素含有ガスとで、外部負荷に供給する電力を発電する燃料電池セルと、該燃料電池セルに前記燃料ガスを供給する燃料ガス供給装置と、前記燃料電池セルに前記酸素含有ガスを供給する酸素含有ガス供給装置と、前記燃料電池セルより排出された発電に使用されなかった燃料ガスを燃焼する燃焼部と、前記燃料電池セルより排出された発電に使用されなかった燃料ガスを燃焼させるための着火装置と、前記燃料ガス供給装置、前記酸素含有ガス供給装置および前記着火装置の作動を制御する制御装置とを備え、
    該制御装置は、前記外部負荷より要求される電力の変動に応じて、前記燃料ガスおよび前記酸素含有ガスの供給量を変動させるよう前記燃料ガス供給装置および前記酸素含有ガス供給装置を制御するとともに、前記外部負荷より要求される電力が低下した場合において、前記燃焼部での燃焼が失火したと判断された場合に、前記燃料電池セルに供給する前記燃料ガスおよび前記酸素含有ガスの供給量を、低下した前記外部負荷より要求される電力に応じて設定された供給量よりも少ない量を供給するように、前記燃料ガス供給装置および前記酸素含有ガス供給装置を制御し、かつ前記着火装置を作動させるように制御することを特徴とする燃料電池装置。
  2. 前記燃焼部を経由して排出される排ガスを処理するための燃焼触媒と、該燃焼触媒の温度を測定するための温度センサとを備え、前記制御装置は、前記温度センサにより測定された前記燃焼触媒の温度が、第1の設定温度以上となった場合に、前記燃焼部での燃焼が失火したと判断し、前記燃料電池セルに供給する前記燃料ガスおよび前記酸素含有ガスの供給量を、低下した前記外部負荷より要求される電力に応じて設定された供給量よりも少ない量を供給するように、前記燃料ガス供給装置および前記酸素含有ガス供給装置を制御し、かつ前記着火装置を作動させるように制御することを特徴とする請求項1に記載の燃料電池装置。
  3. 前記燃料ガスおよび前記酸素含有ガスの供給量における、前記低下した前記外部負荷より要求される電力に応じて設定された供給量よりも少ない量が最低流量であることを特徴とする請求項2に記載の燃料電池装置。
  4. 前記制御装置は、前記着火装置を作動させてから所定時間経過時に、前記燃焼触媒の温度が、前記第1の設定温度よりも低く、かつ前記第1の設定温度よりも低く設定された第2の設定温度以上の場合に、前記燃料ガス量および前記酸素含有ガス量の最低流量および前記着火装置の作動を継続するように制御することを特徴とする請求項3に記載の燃料電池装置。
  5. 前記制御装置は、前記着火装置を作動させてから所定時間経過後に、前記燃焼触媒の温度が、前記第1の設定温度よりも低く設定された第2の設定温度未満の場合に、前記燃料ガス供給装置および前記酸素含有ガス供給装置からの前記燃料ガス量と前記酸素含有ガス量とを増加させるとともに、前記着火装置の作動を停止するように制御することを特徴とする請求項3に記載の燃料電池装置。
  6. 前記制御装置は、前記燃焼触媒の温度が前記第2の設定温度未満となってからの所定の期間において、前記外部負荷の要求電力が増加した際の発電電力の増加量を、定常運転時と比較して低い値の増加量となるように制御することを特徴とする請求項5に記載の燃料電池装置。
  7. 前記制御装置は、前記所定の期間経過後において、前記外部負荷の要求電力が増加した際の発電電力の増加量を、定常運転時の発電電力の増加量となるように制御することを特徴とする請求項6に記載の燃料電池装置。
  8. 前記制御装置は、前記燃焼触媒の温度が前記第2の設定温度未満となった後に前記温度センサにより測定された温度が、前記第1の設定温度未満でかつ前記第2の設定温度以上となった場合に、前記燃料ガス供給装置および前記酸素含有ガス供給装置からの前記燃料ガスと前記酸素含有ガス量との供給量をさらに増加させるように制御することを特徴とする請求項5に記載の燃料電池装置。
  9. 前記燃料ガス供給装置より供給される前記燃料ガス量を測定するための流量計を備え、前記制御装置は、前記燃焼触媒の温度が前記第2の設定温度未満となった後に前記燃料ガス供給装置および前記酸素含有ガス供給装置からの前記燃料ガス量と前記酸素含有ガス量とを増加させるにあたり、前記燃料ガス供給装置への指示流量値と、前記流量計により測定された流量値とが同じ値を示して所定時間経過後に、前記酸素含有ガスの供給量が増加するように、前記酸素含有ガス供給装置を制御することを特徴とする請求項5に記載の燃料電池装置。
JP2016508774A 2014-03-18 2015-03-18 燃料電池装置 Active JP6247379B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014055021 2014-03-18
JP2014055021 2014-03-18
PCT/JP2015/058147 WO2015141752A1 (ja) 2014-03-18 2015-03-18 燃料電池装置

Publications (2)

Publication Number Publication Date
JPWO2015141752A1 true JPWO2015141752A1 (ja) 2017-04-13
JP6247379B2 JP6247379B2 (ja) 2017-12-13

Family

ID=54144716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016508774A Active JP6247379B2 (ja) 2014-03-18 2015-03-18 燃料電池装置

Country Status (5)

Country Link
US (1) US10396377B2 (ja)
EP (1) EP3121888B1 (ja)
JP (1) JP6247379B2 (ja)
CN (1) CN106068575B (ja)
WO (1) WO2015141752A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015215201A1 (de) * 2015-08-10 2017-02-16 Volkswagen Ag Brennstoffzellenstapel mit interner Partikelzurückhaltefunktion sowie Fahrzeug mit einem solchen Brennstoffzellenstapel
JP6701804B2 (ja) * 2016-02-26 2020-05-27 アイシン精機株式会社 燃料電池システム
JP6611661B2 (ja) * 2016-04-13 2019-11-27 大阪瓦斯株式会社 燃料電池システム
JP6611662B2 (ja) * 2016-04-13 2019-11-27 大阪瓦斯株式会社 燃料電池システム
EP3534447B1 (en) * 2016-10-31 2023-09-27 Kyocera Corporation Fuel cell module and fuel cell device
JP6827363B2 (ja) * 2017-04-28 2021-02-10 大阪瓦斯株式会社 固体酸化物形燃料電池システム
WO2019087833A1 (ja) * 2017-10-31 2019-05-09 京セラ株式会社 燃料電池装置、制御装置および制御プログラム
JP7111158B2 (ja) * 2018-06-01 2022-08-02 日産自動車株式会社 触媒燃焼装置の制御方法及び触媒燃焼システム
AT521838B1 (de) * 2018-10-22 2020-10-15 Avl List Gmbh Brennstoffzellensystem und Verfahren zum Betreiben desselben
CN113519082A (zh) * 2019-02-28 2021-10-19 京瓷株式会社 燃料电池装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168453A (ja) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd 燃料電池の発電量制御装置
JP2006093023A (ja) * 2004-09-27 2006-04-06 Nissan Motor Co Ltd 燃料電池システム及びこれを用いた電力供給システム
JP2008091094A (ja) * 2006-09-29 2008-04-17 Aisin Seiki Co Ltd 燃料電池システム
JP2010153064A (ja) * 2008-12-24 2010-07-08 Kyocera Corp 燃料電池装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3843599B2 (ja) * 1998-04-24 2006-11-08 松下電器産業株式会社 触媒燃焼装置
JP4943037B2 (ja) 2005-07-27 2012-05-30 京セラ株式会社 燃料電池モジュール
US7951501B2 (en) * 2006-08-17 2011-05-31 The Trustees Of Princeton University Fuel cell system and method for controlling current
JP5274650B2 (ja) * 2009-03-31 2013-08-28 パナソニック株式会社 燃料電池システム
JP4692938B2 (ja) * 2009-05-28 2011-06-01 Toto株式会社 固体電解質型燃料電池
JP5608120B2 (ja) * 2011-03-24 2014-10-15 大阪瓦斯株式会社 改質装置およびその制御装置
KR101459815B1 (ko) * 2011-11-30 2014-11-12 현대자동차주식회사 연료전지 시스템의 수소농도 제어 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168453A (ja) * 2001-11-30 2003-06-13 Nissan Motor Co Ltd 燃料電池の発電量制御装置
JP2006093023A (ja) * 2004-09-27 2006-04-06 Nissan Motor Co Ltd 燃料電池システム及びこれを用いた電力供給システム
JP2008091094A (ja) * 2006-09-29 2008-04-17 Aisin Seiki Co Ltd 燃料電池システム
JP2010153064A (ja) * 2008-12-24 2010-07-08 Kyocera Corp 燃料電池装置

Also Published As

Publication number Publication date
US20170084940A1 (en) 2017-03-23
EP3121888A1 (en) 2017-01-25
EP3121888B1 (en) 2018-10-24
JP6247379B2 (ja) 2017-12-13
EP3121888A4 (en) 2017-11-22
CN106068575A (zh) 2016-11-02
CN106068575B (zh) 2018-08-24
US10396377B2 (en) 2019-08-27
WO2015141752A1 (ja) 2015-09-24

Similar Documents

Publication Publication Date Title
JP6247379B2 (ja) 燃料電池装置
JP5253134B2 (ja) 燃料電池装置
JP5787049B2 (ja) 固体電解質型燃料電池
JP4748465B2 (ja) 燃料電池装置
JP6553192B2 (ja) 燃料電池モジュールおよび燃料電池装置
WO2012043645A1 (ja) 燃料電池装置
JP5408994B2 (ja) 燃料電池装置
JP5312224B2 (ja) 燃料電池装置
JP2011009136A (ja) 固体電解質型燃料電池
JP6259128B2 (ja) モジュールおよびモジュール収容装置
JP2010192272A (ja) 燃料電池装置
JP6050036B2 (ja) 燃料電池装置
JPWO2010122868A1 (ja) 燃料電池装置
JP2015185289A (ja) 燃料電池装置
JP6148072B2 (ja) 燃料電池装置
JP5926138B2 (ja) 燃料電池システム
JP6140603B2 (ja) 燃料電池装置
WO2017038893A1 (ja) 燃料電池モジュールおよび燃料電池装置
JP6075766B2 (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP6230925B2 (ja) 燃料電池システム
JP2005285433A (ja) 燃料電池システム
JP2017142944A (ja) 燃料電池システム
JP6643061B2 (ja) 燃料電池装置
JP6211969B2 (ja) 燃料電池装置
JP2012248317A (ja) 燃料電池装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171116

R150 Certificate of patent or registration of utility model

Ref document number: 6247379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150