WO2017038893A1 - 燃料電池モジュールおよび燃料電池装置 - Google Patents

燃料電池モジュールおよび燃料電池装置 Download PDF

Info

Publication number
WO2017038893A1
WO2017038893A1 PCT/JP2016/075564 JP2016075564W WO2017038893A1 WO 2017038893 A1 WO2017038893 A1 WO 2017038893A1 JP 2016075564 W JP2016075564 W JP 2016075564W WO 2017038893 A1 WO2017038893 A1 WO 2017038893A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
reformer
gas
cell stack
Prior art date
Application number
PCT/JP2016/075564
Other languages
English (en)
French (fr)
Inventor
真紀 末廣
直輝 川端
小田 智之
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP16841923.2A priority Critical patent/EP3346533A4/en
Priority to US15/755,126 priority patent/US20180248211A1/en
Priority to JP2017538083A priority patent/JPWO2017038893A1/ja
Priority to CN201680045800.2A priority patent/CN107851823A/zh
Publication of WO2017038893A1 publication Critical patent/WO2017038893A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell module and a fuel cell device.
  • the fuel cell module is configured by housing a cell stack device including a cell stack in which a plurality of fuel cells, which are one type of cells, are arranged in a storage container.
  • the fuel cell module is provided with a combustion section that combusts excess fuel gas discharged from the fuel cell, and heat generated by the combustion is used for heating a reformer that performs a reforming reaction for generating hydrogen.
  • a reformer that performs a reforming reaction for generating hydrogen.
  • the fuel cell module of the present disclosure includes a storage container, a plurality of cell stacks, a reformer, a gas supply unit that supplies an oxygen-containing gas, a heat insulating material, and a combustion unit.
  • the plurality of cell stacks are stored in the storage container, and a plurality of columnar fuel cells are provided along a predetermined arrangement direction, and are arranged in parallel.
  • the reformer is disposed above the cell stack in the storage container and generates fuel gas supplied to the fuel cell.
  • the gas supply unit is disposed between the adjacent cell stacks so as to face the cell stack and the reformer along the arrangement direction of the fuel cells, and is supplied to the fuel cells.
  • a gas flow path in which the contained gas flows from the top to the bottom The heat insulating material is provided on both ends of the cell stack in the arrangement direction, and is disposed so as to sandwich the cell stack.
  • the combustion section is provided in a gap between the cell stack and the reformer, and burns excess fuel gas discharged from the fuel battery cell.
  • the fuel cell module according to the present disclosure is surrounded by the gas supply unit, the heat insulating material, and the reformer at least at one end side in the arrangement direction of the cell stack, and communicates the adjacent gaps. It has a communication part.
  • the fuel cell device of the present disclosure includes the above fuel cell module and an outer case that houses the fuel cell module.
  • FIG. 2A is a side view of the cell stack device shown in FIG. 1
  • FIG. 2B is an enlarged sectional view of a part of FIG.
  • FIG. 5 is a plan view of a part of the fuel cell module shown in FIG. 4.
  • FIG. 7 is a plan view of a part of the fuel cell module shown in FIG. 6.
  • FIG. 9A is a perspective view
  • FIG. 9B is a plan view, showing the reformer housed in the fuel cell module shown in FIG.
  • It is the schematic which looked at an example of the structure provided with the reformer shown in FIG. 9 above the cell stack apparatus from the arrangement direction.
  • It is a perspective view showing roughly an example of a fuel cell device of this embodiment.
  • FIG. 1 is a perspective view showing an example of a cell stack device including a cell stack constituting the fuel cell module of the present embodiment.
  • 2 shows the cell stack apparatus shown in FIG. 1
  • FIG. 2A is a side view
  • FIG. 2B is an enlarged cross-sectional view of a part extracted from FIG. 2A.
  • the description will be made mainly using solid oxide fuel cells as the cells.
  • FIGS. 1 and 2 two cell stacks 2 are juxtaposed.
  • the cell stack 2 is arranged in a line along the arrangement direction (the X direction shown in FIG. 1) with the fuel cells 3 having gas passages 15 through which the fuel gas flows from one end to the other. Has been. Further, the fuel cells 3 adjacent in the X direction are electrically connected in series via the conductive member 6. Further, the lower end of the fuel cell 3 is fixed to the manifold 4 with an insulating adhesive 9.
  • the fuel cell 3 is a hollow flat plate type having a plurality of gas flow paths through which fuel gas flows in the longitudinal direction, and on the surface of the conductive support 14 having the gas flow paths.
  • a solid oxide fuel cell 3 in which a fuel side electrode layer 10, a solid electrolyte layer 11, and an air electrode side electrode layer 12 are sequentially laminated is illustrated.
  • An oxygen-containing gas flows between the fuel cells 3.
  • the configuration of the fuel cell 3 will be described later.
  • the fuel cell 3 may be, for example, a flat plate type or a cylindrical type, and the shape of the cell stack device 1 may be appropriately changed according to the configuration of the fuel cell 3. Can do.
  • the cell stack apparatus 1 includes a cell stack support member 7 (hereinafter abbreviated as a stack support member 7) electrically connected to the fuel cell 3 located on the outermost side of the cell stack 2 via a conductive member 6. ) Is arranged.
  • a protective cover may be provided outside the stack support member 7. The protective cover protects the stack support member 7 and the cell stack 2 against contact with a heat insulating material arranged around the cell stack 2 or impact from the outside.
  • the stack support member 7 is connected to a conductive portion 8 that protrudes outward in the arrangement direction of the cell stack 2.
  • the cell stack device 1 and 2 show the case where the cell stack device 1 includes two cell stacks 2, the number can be changed as appropriate.
  • the cell stack device 1 may include only one cell stack 2.
  • the cell stack apparatus 1 can also include the reformer mentioned later.
  • the manifold 4 stores a fuel gas to be supplied to the fuel cell 3 and includes a gas case having an opening on the upper surface, and a frame body that fixes the fuel cell 3 inside and is fixed to the gas case. ing.
  • One end of the fuel cell 3 (lower end in FIG. 2) is surrounded by a frame, and the outer periphery of the lower end of the fuel cell 3 is formed into a frame by an insulating adhesive 9 filled inside the frame. It is fixed. That is, the cell stack 2 accommodates the plurality of fuel cells 3 side by side inside the frame and is bonded to the frame by the insulating adhesive 9.
  • the insulating adhesive 9 is made of a material such as glass, and a material added with a predetermined filler in consideration of the thermal expansion coefficient can be used.
  • a gas flow pipe 5 through which fuel gas generated by a reformer described later flows is connected to the upper surface of the manifold 4. These fuel gas and water vapor are supplied to the manifold 4 through the gas flow pipe 5 and supplied from the gas case of the manifold 4 to the gas flow path 15 provided in the fuel cell 3.
  • the fuel battery cell 3 is formed on one flat surface of a columnar conductive support 14 (hereinafter sometimes abbreviated as a support 14) having a pair of opposed flat surfaces. It is provided in a columnar shape (hollow flat plate shape or the like) formed by sequentially laminating the fuel side electrode layer 10, the solid electrolyte layer 11, and the air side electrode layer 12.
  • An interconnector 13 is provided on the other flat surface of the fuel cell 3, and a P-type semiconductor layer 16 is provided on the outer surface (upper surface) of the interconnector 13.
  • the contact between the two becomes an ohmic contact, and it is possible to reduce the potential drop and effectively avoid a decrease in the current collection performance.
  • the conductive member 6 and the stack support member 7 are not shown.
  • the support 14 also serves as the fuel-side electrode layer 10, and a cell can be formed by sequentially laminating the solid electrolyte layer 11 and the air-side electrode layer 12 on the surface thereof.
  • porous conductive ceramics for example, ZrO 2 in which a rare earth element oxide is dissolved (referred to as stabilized zirconia, partially stabilized). And Ni and / or NiO.
  • the solid electrolyte layer 11 has a function as an electrolyte that bridges electrons between the fuel-side electrode layer 10 and the air-side electrode layer 12, and at the same time, in order to prevent leakage of fuel gas and oxygen-containing gas It is required to have gas barrier properties, and is formed from, for example, ZrO 2 in which 3 to 15 mol% of a rare earth element oxide is dissolved. Incidentally, as long as having the above properties may be formed by using a material other than ZrO 2 and the like.
  • the air-side electrode layer 12 is not particularly limited as long as it is generally used.
  • the air-side electrode layer 12 can be formed of a conductive ceramic made of a so-called ABO 3 type perovskite oxide.
  • the air-side electrode layer 12 is required to have gas permeability, and the open porosity can be 20% or more, particularly 30 to 50%.
  • the support 14 has gas permeability in order to allow the fuel gas to permeate to the fuel side electrode layer 10, and further has conductivity in order to conduct through the interconnector 13. Therefore, conductive ceramics or cermet can be used as the support 14.
  • the support 14 In producing the fuel cell 3, when producing the support 14 by co-firing with the fuel-side electrode layer 10 or the solid electrolyte layer 11, the support 14 is formed from an iron group metal component and a specific rare earth oxide. May be.
  • the columnar (hollow flat plate) support 14 is a plate-like piece elongated in the standing direction (Y direction shown in FIG. 1). It has circular side surfaces.
  • the support 14 since the support 14 has gas permeability, it can have an open porosity of 30% or more, particularly 35 to 50%.
  • the conductivity of the support 14 can be set to 300 S / cm or more, particularly 440 S / cm or more.
  • the shape of the support body 14 should just be columnar shape, and may be cylindrical shape.
  • An example of the P-type semiconductor layer 16 is a layer made of a transition metal perovskite oxide. Specifically, a material having higher electronic conductivity than the material constituting the interconnector 13, for example, LaMnO 3 -based oxide, LaFeO 3 -based oxide, LaCoO 3 -based oxide in which Mn, Fe, Co, etc. exist at the B site. P-type semiconductor ceramics made of at least one oxide or the like can be used. The thickness of such P-type semiconductor layer 16 can generally be in the range of 30 to 100 ⁇ m.
  • a lanthanum chromite-based perovskite oxide (LaCrO 3 -based oxide) or a lanthanum strontium titanium-based perovskite oxide (LaSrTiO 3 -based oxide) can be used. These materials have conductivity and are neither reduced nor oxidized even when they come into contact with a fuel gas (hydrogen-containing gas) and an oxygen-containing gas (air or the like).
  • the interconnector 13 may be dense so as to prevent leakage of fuel gas flowing through the gas flow path 15 formed in the support 14 and oxygen-containing gas flowing outside the support 14. % Or more, particularly 95% or more.
  • the conductive member 6 and the stack support member 7 that are interposed to electrically connect the fuel cells 3 are a surface required for a member made of an elastic metal or alloy or a felt made of metal fiber or alloy fiber. It can comprise from the member which processed.
  • FIG. 3 is an external perspective view showing an example of the fuel cell module 17 including the cell stack device 1 of the present embodiment
  • FIG. 4 is a cross-sectional view.
  • the cell stack device 1 of the present embodiment is accommodated inside the storage container 19.
  • a reformer 20 for generating fuel gas to be supplied to the fuel cell 3 is disposed above the cell stack device 1.
  • the reformer 20 reforms raw fuel such as natural gas or kerosene supplied via the raw fuel supply pipe 23 to generate fuel gas.
  • the reformer 20 can have a structure capable of performing steam reforming, which is a reforming reaction with good reforming efficiency.
  • the reformer 20 includes a vaporization unit 21 for vaporizing water and a reforming unit 22 in which a reforming catalyst (not shown) for reforming raw fuel into fuel gas is disposed.
  • FIG. 3 shows a state in which a part (front and rear surfaces) of the storage container 19 is removed and the cell stack device 1 stored inside is taken out rearward.
  • the cell stack device 1 can be slid and stored in the storage container 19.
  • an oxygen-containing gas supply member 24 is disposed inside the storage container 19.
  • the oxygen-containing gas supply member 24 is disposed between the cell stacks 2 juxtaposed on the manifold 4 so that the oxygen-containing gas flows between the fuel cells 3.
  • the storage container 19 constituting the fuel cell module 17 has a double structure having an inner wall 25 and an outer wall 26, and an outer frame of the storage container 19 is formed by the outer wall 26.
  • a storage chamber 27 for storing the cell stack device 1 is formed.
  • the storage container 19 includes an oxygen-containing gas introduction portion 28 that is a first gas introduction portion for introducing an oxygen-containing gas introduced from the outside into the storage chamber 27.
  • the oxygen-containing gas introduced into the oxygen-containing gas introduction portion 28 is provided by the inner wall 25 and the outer wall 26 on the side of the storage chamber 27, and the oxygen-containing gas circulation portion 29 communicating with the oxygen-containing gas introduction portion 28 is directed upward. It flows toward. Subsequently, the oxygen-containing gas flows through the oxygen-containing gas distribution section 30 formed by the inner wall 25 and the outer wall 26 above the storage chamber 27 and communicating with the oxygen-containing gas circulation section 29.
  • An oxygen-containing gas supply member 24 that is a gas supply unit is inserted through the inner wall 25 and fixed to the oxygen-containing gas distribution unit 30.
  • the oxygen-containing gas supply member 24 includes an oxygen-containing gas inlet (not shown) through which an oxygen-containing gas flows into the upper end side and a flange portion 31, and contains oxygen at the lower end portion of the fuel cell 3 at the lower end portion.
  • An oxygen-containing gas outlet 32 for introducing gas is provided. Thereby, the oxygen-containing gas distribution part 30 and the oxygen-containing gas supply member 24 are connected.
  • a heat insulating material 33 is disposed between the flange portion 31 and the inner wall 25.
  • the oxygen-containing gas supply member 24 is disposed facing the cell stack 2 and the reformer 20 along the arrangement direction of the fuel cells 3, and the oxygen-containing gas flows downward in the inside.
  • the temperature inside the fuel cell module 17 is kept in the storage chamber 27 so that the heat in the fuel cell module 17 is extremely dissipated and the temperature of the fuel cell 3 (cell stack 2) is lowered to reduce the amount of power generation.
  • the heat insulating material 33 may be disposed in the vicinity of the cell stack 2.
  • the heat insulating material 33 is disposed on the side of the cell stack 2 along the arrangement direction of the fuel cells 3 and the fuel cell on the side of the cell stack 2. You may arrange
  • the heat insulating material 33 may be provided on both ends in the arrangement direction of the cell stack 2 so as to sandwich the cell stack 2. By surrounding the periphery of the cell stack 2 with the heat insulating material 33, it is possible to effectively suppress the temperature of the cell stack 2 from being lowered.
  • the oxygen-containing gas introduced from the oxygen-containing gas supply member 24 can be prevented from being discharged from the side of the cell stack 2, and the flow of oxygen-containing gas between the fuel cells 3 constituting the cell stack 2. Can be promoted.
  • the flow of the oxygen-containing gas supplied to the fuel cell 3 is adjusted, and the longitudinal direction of the cell stack 2 and the stacking direction of the fuel cell 3 are adjusted.
  • An opening 34 is provided to improve the temperature distribution.
  • An exhaust gas inner wall 35 is provided inside the inner wall 25 along the arrangement direction of the fuel cells 3, and the space between the inner wall 25 and the exhaust gas inner wall 35 on the side of the storage chamber 27 is the storage chamber.
  • 27 is an exhaust gas circulation part 36 in which the exhaust gas in 27 flows downward from above.
  • an exhaust gas collecting unit 37 connected to the exhaust gas circulation unit 36 is provided below the storage chamber 27 and above the oxygen-containing gas introduction unit 28.
  • the exhaust gas collecting unit 37 communicates with an exhaust hole 38 provided at the bottom of the storage container 19.
  • a heat insulating material 33 is also provided on the cell stack 2 side of the exhaust gas inner wall 35.
  • the exhaust hole 38 may be formed by cutting out a part of the bottom of the storage container 19 or may be formed by providing a tubular member.
  • thermocouple 39 for measuring the temperature in the vicinity of the cell stack 2 is disposed inside the oxygen-containing gas supply member 24.
  • the thermocouple 39 is arranged such that the temperature measuring section 40 is located at the center in the longitudinal direction of the fuel cell 3 and at the center in the arrangement direction of the fuel cell 3.
  • the combustion unit 50a for burning excess fuel gas and oxygen-containing gas that have not been used for power generation discharged from the gas flow path 15 in the fuel cell 3; 50 b is provided in the gap between the cell stack 2 and the reformer 20.
  • the temperature of the fuel cell 3 can be raised and maintained by the combustion parts 50a and 50b.
  • the reformer 20 disposed above the combustion sections 50a and 50b can be heated by the combustion heat, and the reformer 20 can efficiently perform the reforming reaction.
  • the combustion units 50a and 50b are provided with an ignition device such as a burner or an ignition heater, for example, and ignite and burn surplus gas.
  • the temperature in the fuel cell module 17 is about 500 to 800 ° C. with the combustion and power generation of the fuel cell 3.
  • each flow path through which the oxygen-containing gas flows can have a structure in which the oxygen-containing gas flows efficiently. That is, in the fuel cell module 17 shown in FIG. 4, it is introduced into the oxygen-containing gas introduction section 28, flows on both sides of the storage chamber 27, and is introduced into the oxygen-containing gas supply member 24 through the oxygen-containing gas distribution section 30.
  • the oxygen-containing gas can flow efficiently and can be evenly distributed.
  • a fuel gas, oxygen-containing gas, and exhaust gas such as combustion gas generated by burning the fuel gas in the combustion sections 50a and 50b are generated.
  • This exhaust gas is also efficiently discharged outside the storage container 19, and as a result, the oxygen-containing gas is efficiently supplied to the fuel cell 3.
  • FIG. 5 is a partial plan view of the fuel cell module 17 shown in FIG. In FIG. 5, in order to make the combustion parts 50a and 50b easier to see, the reformer 20 is illustrated. In FIG. 5, the reformer 20 has its outline drawn with a broken line.
  • the two gaps of the combustion parts 50a and 50b are communicated.
  • the communication part 51 to be made is provided.
  • the combustion of the combustion units 50a and 50b is low in temperature and is difficult to start. Even during power generation, if a low-temperature fuel gas or oxygen-containing gas is introduced into the module or water is introduced into the reformer, the temperature will drop and the combustion flame will misfire. There is. Once misfired, it is necessary to ignite by operating an ignition device.
  • the ignition device is operated, for example, after it has been detected that the temperature has dropped below a predetermined temperature or the generated voltage has dropped after misfire. Once misfired, it takes time to be ignited again, during which time power generation efficiency remains low.
  • the two adjacent combustion sections communicate with each other.
  • the structure of the oxygen-containing gas supply member 24 becomes very complicated.
  • the communication portion includes a communication path in a space surrounded by the oxygen-containing gas supply member 24, the heat insulating material 33, and the reformer 20 at least at one end side of both ends in the arrangement direction of the cell stack 2.
  • 51 is constituted.
  • the communication part 51 which connects the clearance gaps of the two combustion parts 50a and 50b is provided. Therefore, when the combustion flame of one combustion part 50a becomes small and is likely to misfire, or even if it is misfiring, the combustion gas filling one combustion part 50a is ignited by the combustion flame of the other combustion part 50b. However, misfire can be suppressed by so-called fire transfer, or it can be ignited again without operating the ignition device even if misfire occurs. Further, at the time of start-up, if the other combustion unit 50b ignites first, the combustion flame of the combustion unit 50b promotes the ignition of the one combustion unit 50a that is not ignited, thereby enabling early ignition.
  • the communication part 51 is configured to include a communication path in a space surrounded by the oxygen-containing gas supply member 24, the heat insulating material 33, and the reformer 20 at least on one end side in the arrangement direction of the cell stack 2.
  • the space can be provided by not arranging a part of the heat insulating material 33 or adjusting the size of the reformer 20 or the oxygen-containing gas supply member 24. Therefore, the communication part 51 can be provided with a simple configuration.
  • the shape and size of the communication portion 51 are not particularly limited, and the communication portion 51 only needs to be formed as a space that allows the combustion gas to flow through the gap between the combustion portions 50a and 50b.
  • combustion misfire is likely to occur particularly in the combustion section located below the vaporization section 21 of the reformer 20.
  • the temperature of the vaporization unit 21 is reduced by supplying low temperature water to the reformer 20 and the vaporization reaction when the water becomes steam is an endothermic reaction. This is because it tends to decrease. Therefore, when providing the communication part 51, it is preferable to provide at least the vaporization part 21 side of the reformer 20 among the both ends of the cell stack 2 in the arrangement direction. Thereby, ignition and re-ignition can be performed efficiently.
  • the communication portions 51 may be provided on both sides of the cell stack 2 in the arrangement direction.
  • FIG. 6 is a cross-sectional view showing another example of the fuel cell module of the present embodiment.
  • the fuel cell module 41 shown in FIG. 6 is different from the fuel cell module 17 shown in FIG. 4 in that the four cell stack devices 43 are stored in the storage chamber 42.
  • the exhaust gas recovery unit 61 that recovers the exhaust gas discharged from the cell 3 is provided, and the exhaust gas recovery unit 61 and the exhaust gas circulation unit 36 are connected to each other as shown in FIG. The difference is that a reformer 45 is provided.
  • symbol is used and description is abbreviate
  • the exhaust gas circulation section positioned on the side of the storage chamber 42 from the fuel cell 3 in the cell stack device 43 positioned on the center portion side.
  • the distance up to 36 becomes longer. In this case, it may be difficult to efficiently discharge the exhaust gas discharged from the fuel cell 3 in the cell stack device 43 located on the center side.
  • an exhaust gas recovery unit that recovers exhaust gas discharged from the fuel cell 3 above the storage chamber 42. 61 is provided, and the exhaust gas recovery part 61 and the exhaust gas circulation part 36 are connected.
  • the exhaust gas discharged from the fuel cell 3 can be efficiently discharged to the outside.
  • the exhaust gas discharged from the fuel cell 3 can exchange heat with an oxygen-containing gas supplied from the outside. As a result, the oxygen-containing gas whose temperature has risen can be supplied to the fuel cell 3 and the power generation efficiency can be improved.
  • a recovery hole 62 connected to the storage chamber 42 is provided on the bottom surface of the exhaust gas recovery unit 61. As a result, the exhaust gas discharged into the storage chamber 42 flows into the exhaust gas recovery unit 61 through the recovery hole 62.
  • the fuel cell module 41 of the present embodiment it is possible to suppress the exhaust gas from staying above the fuel cell 3 and exhaust the exhaust gas efficiently.
  • the cell stack device 43 having the combustion parts 50a and 50b above the fuel battery cell 3 misfire can be suppressed, so that the fuel cell module 41 with improved power generation can be obtained.
  • FIG. 7 is a plan view of a part of the fuel cell module 41 shown in FIG.
  • the fuel cell module 41 shown in FIG. 6 includes four cell stack devices 43.
  • FIG. 7 is a plan view of two adjacent cell stack devices 43.
  • the reformer 45 is shown in FIG. 7, in order to make the combustion parts 50a and 50b easier to see.
  • the reformer 45 has its outline drawn with a broken line.
  • the fuel cell module 41 of the present embodiment also includes two combustion portions 50a and 50b provided in adjacent gaps partitioned by the heat insulating material 33 and the oxygen-containing gas supply member 24.
  • a communication part 51 is provided for communicating the two gaps of the combustion parts 50a, 50b.
  • the combustion gas filling one combustion part 50a is ignited by the combustion flame of the other combustion part 50b, and misfire can be suppressed by the transfer of fire. Moreover, even if it is a case of misfire, it can be ignited again without operating an ignition device. Further, at the time of start-up, if the other combustion unit 50b ignites first, the combustion flame of the combustion unit 50b promotes the ignition of the one combustion unit 50a that is not ignited, thereby enabling early ignition.
  • the communication portion 51 is provided on at least one end side of both ends of the cell stack 2 in the arrangement direction, and is a space surrounded by the oxygen-containing gas supply member 24, the heat insulating material 33, and the reformer 20. It is comprised so that a communicating path may be included.
  • the shape and size of the communication portion 51 are not particularly limited, and the communication portion 51 only needs to be formed as a space that allows the combustion gas to flow through the gap between the combustion portions 50a and 50b.
  • a space can be provided by not arranging a part of the heat insulating material 33 or by adjusting the size of the reformer 45 or the oxygen-containing gas supply member 24, and can communicate with a simple configuration.
  • a portion 51 can be provided.
  • FIG. 8 is a side view of the oxygen-containing gas supply member 24 showing another example of the configuration of the communication portion 51.
  • the communication path of the communication portion 51 provides a space that becomes a communication path by removing a part of the heat insulating material 33 or not arranging the heat insulating material 33.
  • a portion facing the gap of the oxygen-containing gas supply member 24, that is, a portion protruding upward from the cell stack 2 is provided with a cutout portion 24a cut out in the X direction.
  • a communication part 51 including a space defined by the notch 24a as a communication path is provided.
  • the gap between the combustion parts 50a and 50b is also partitioned by the oxygen-containing gas supply member 24, if the notch 24a is formed in the oxygen-containing gas supply member 24, the notched part becomes a space, and combustion occurs. It functions as a communication path of the parts 50a and 50b.
  • the oxygen-containing gas supply member 24 may block a part of the gas flow channel located below the notch 24a.
  • the portion provided with the notch 24a has no gas flow path in the portion of the notch 24a in the gas flow path in the oxygen-containing gas supply member 24.
  • the oxygen-containing gas is supplied from the outside and has a relatively low temperature.
  • the temperature of the cell stack 2 decreases.
  • the temperature distribution itself in the cell stack 2 tends to be low at both ends in the arrangement direction (x direction), and the temperature further decreases when the oxygen-containing gas flows. If the temperature of the cell stack 2 is lowered, the amount of power generation may be reduced, or the combustion flame may be misfired in the combustion units 50a and 50b. Therefore, by closing a part of the gas flow path located below the notch 24a, it is possible to suppress the temperature on both ends of the cell stack 2 from decreasing, and to suppress the combustion flame from misfiring, In addition, the power generation efficiency can be improved.
  • the gap formed between the two flat plates serves as a flow path for the oxygen-containing gas.
  • the two flat plates are recessed in the thickness direction below the notch 24a.
  • the gap may be crushed to close the flow path.
  • a closing portion 24b is provided below the cutout portion 24a.
  • the closing portion 24b deforms the flat plate of the cutout portion 24a to close the flow path.
  • the present invention is not limited thereto, and the gap between the parallel flat plates is filled below the cutout portion 24a. Also good.
  • the member filling the gap since the member filling the gap comes into contact with the oxygen-containing gas, the member filling the gap may be a member that does not react with the oxygen-containing gas and can be fixed to the inner surface of the flat plate.
  • the communication path included in the communication part 51 is a space that allows communication between the two combustion parts 50a and 50b as described above, not only the heat insulating material 33 is removed but the heat insulating material 33 is not provided.
  • the oxygen-containing gas supply member 24 may be provided with a notch 24a. Furthermore, the space provided by removing or not disposing the heat insulating material 33 and the space provided by forming the cutout portion 24a in the oxygen-containing gas supply member 24 may be combined to form a communication path.
  • FIG. 9 shows an extractor of the reformer 45 housed in the fuel cell module 41 shown in FIG. 6,
  • FIG. 9A is a perspective view
  • FIG. 9B is a plan view.
  • FIG. 10 is a schematic view illustrating an example of a configuration including the reformer 45 illustrated in FIG. 9 above the cell stack device 43 from the arrangement direction.
  • the fuel cell module 41 shown in FIG. 6 includes a W-shaped (meander-shaped) reformer 45 shown in FIG. 9 above the four cell stacks 2.
  • the reformer 45 includes a vaporizer 45a that vaporizes water to generate steam, and a reformer that steam-reforms the raw fuel using the steam generated in the vaporizer 45a. 45b.
  • the vaporizing unit 45a includes a tube vaporizing portion forward passage 45a1 in which water vapor flows from one end side to the other end side, and a tube vaporizing portion return passage 45a2 in which water vapor flows from the other end side to one end side.
  • the vaporization part forward path 45a1 includes a cylindrical part 48a projecting inward along the vaporization part forward path 45a1, and a water supply part 48b connected to the one end part and supplying water from the outside to the cylindrical part 48a.
  • the cylindrical portion 48a may be provided so as to protrude inward from the tube constituting the vaporizing portion 45a, and a water supply pipe as the water supply portion 48b may be connected to the cylindrical portion 48a.
  • the water supply pipe 48 may be inserted into the inside from the outside, a part exposed to the outside may be the water supply part 48b, and a part into which the water supply pipe 48 is inserted may be the cylindrical part 48a. In the following description, a description will be given using a configuration in which the water supply pipe 48 is inserted from the outside into the inside.
  • the reforming unit 45b is a reforming unit forward path 45b1 in which a reformed gas generated by reforming the raw fuel supplied from the raw fuel supply pipe 23 which is a raw fuel supply unit flows from one end side to the other end side. And a reforming part return path 45b2 in which the reformed gas flows from the other end side to the one end side.
  • a reformed gas outlet pipe 49 for leading the reformed gas is connected to the reformer return path 45b2.
  • the water supply pipe 48, the raw fuel supply pipe 23, and the reformed gas outlet pipe 49 are all connected to one side of the reformer 45.
  • the other end side of the vaporization section forward path 45a1 and the other end side of the vaporization section return path 45a2 are coupled by a coupling path (hereinafter referred to as a vaporization section coupling path) 45c1.
  • a coupling path hereinafter referred to as a vaporization section coupling path
  • one end side of the vaporization part return path 45a2 and one end side of the reforming part forward path 45b1 are connected by a connection path (hereinafter referred to as a vaporization reforming part connection path) 45c2.
  • the other end side of the reforming part forward path 45b1 and the other end side of the reforming part return path 45b2 are connected by a connecting path (hereinafter referred to as a reforming part connecting path) 45c3.
  • the vaporization section forward path 45a1, the vaporization section return path 45a2, the reforming section forward path 45b1, and the reforming section return path 45b2 are juxtaposed so that the sides face each other.
  • the water supplied to the vaporization part forward path 45a1 becomes steam, and flows in order through the vaporization part connection path 45c1, the vaporization part return path 45a2, the vaporization reforming part connection path 45c2, and the reforming part forward path 45b1. Further, the raw fuel supply pipe 23 is inserted into the vaporization reforming part connection path 45c2, a part exposed to the outside is the raw fuel supply part 23b, and a part into which the raw fuel supply pipe 23 is inserted is cylindrical. Part 23a.
  • the raw fuel When the raw fuel is supplied from the raw fuel supply part 23b, it is introduced from the cylindrical part 23a into the vaporization reforming part connection path 45c2 and mixed with steam, and the reforming part forward path 45b1, the reforming part connection path 45c3, and the reforming A reformed gas (fuel gas) containing hydrogen is generated by the reforming reaction while flowing through the partial return path 45b2, and is led out from the reformed gas outlet pipe 49.
  • the vaporization section forward path 45a1, the vaporization section return path 45a2, the reforming section forward path 45b1, the reforming section return path 45b2, the vaporization section connection path 45c1, the vaporization reforming section connection path 45c2, and the reforming section connection path 45c3 have a rectangular cross section. It consists of a tube.
  • partition plates 45a11 and 45a21 for partitioning the flow paths are respectively provided in the vaporization section forward path 45a1 and the vaporization section return path 45a2, and the space between these partition plates 45a11 and 45a21 is a vaporization chamber.
  • the cylindrical portion 48a of the water supply pipe 48 extends to the vicinity of the upstream side of the partition plate 45a11 and supplies water to a position in front of the vaporization chamber. Ceramic balls are accommodated in the vaporizing chamber to promote vaporization, and the partition plates 45a11 and 45a21 are formed so that water vapor passes but ceramic balls do not pass.
  • the arrangement of the partition plates 45a11 and 45a21 can be appropriately changed according to the structure of the reformer or the structure of the cell stack.
  • partition plates 45b11 and 45b21 for partitioning the flow paths are also arranged in the reforming unit forward path 45b1 and the reforming unit return path 45b2, respectively.
  • the path 45c3 and the reforming section return path 45b2 serve as a reforming chamber.
  • a reforming catalyst is accommodated in the reforming chamber.
  • the partition plates 45b11 and 45b21 are configured so that gas such as water vapor, raw fuel, and reformed gas can pass but the reforming catalyst cannot pass.
  • the arrangement of the partition plates 45b11 and 45b21 can be changed as appropriate according to the structure of the reformer or the structure of the cell stack.
  • the raw fuel supply pipe 23 for supplying the raw fuel is inserted into the vaporization reforming section connecting passage 45c2 between the vaporization section 45a and the reforming section 45b.
  • the raw fuel supply pipe 23 is connected to the vaporization reforming part connection path 45c2 on the downstream side of the vaporization part forward path 45a1 to which the water supply pipe 48 is connected.
  • the point where the fuel is supplied and the point where the raw fuel is supplied are located via a space between the tube constituting the vaporizer forward path 45a1 and the tube constituting the vaporizer return path 45a2, and the water vapor In the flow direction, the length of the flow direction is long.
  • the reformed gas (fuel gas) generated by the reformer 45 is led out from the reformed gas outlet pipe 49 and then supplied to the two manifolds 4 via the manifold 4. To the gas flow path provided inside the fuel cell 3.
  • the reformed gas generated by the reformer 45 is led out from the reformed gas outlet pipe 49, divided into two by the distributor 52, and supplied to the two manifolds 4 as shown in FIG. That is, the reformed gas outlet pipe 49 includes two U-shaped first reformed gas outlet pipes 49a from the reformer 45 to the distributor 52 and two lower manifolds 4 extending from the distributor 52 respectively. And a second reformed gas outlet pipe 49b.
  • the lengths of the two second reformed gas outlet pipes 49b are set to the same length so that the pressure loss is the same in order to supply the reformed gas to the manifold 4 evenly.
  • the communication part 51 at least on the water supply pipe 48 side, which is the water introduction part, of the both ends in the arrangement direction of the cell stack 2.
  • the vaporization unit forward path 45 a 1, the vaporization unit return path 45 a 2, the reforming unit forward path 45 b 1, and the reforming unit return path 45 b 2 correspond to each one of the four cell stacks 2.
  • Combustion sections 50a and 50b are provided in the gaps between each cell stack 2 and the vaporization section forward path 45a1, the vaporization section return path 45a2, the reforming section forward path 45b1, and the reforming section return path 45b2.
  • Each of the forward path 45a1, the vaporization section return path 45a2, the reforming section outbound path 45b1, and the reforming section return path 45b2 can be efficiently heated.
  • FIG. 11 is a perspective view showing an example of a fuel cell device 53 in which one of the fuel cell modules 17 and 41 and an auxiliary machine for operating each fuel cell module are housed in an outer case. In FIG. 10, a part of the configuration is omitted.
  • the fuel cell device 53 shown in FIG. 10 divides the interior of the exterior case composed of the columns 54 and the exterior plate 55 into upper and lower portions by a partition plate 56, and the above-described fuel cell modules 17 and 41 are arranged in the upper space.
  • the fuel cell module storage chamber 57 is stored, and the lower space is configured as an auxiliary machine storage chamber 58 for storing auxiliary equipment for operating each fuel cell module.
  • illustration of the auxiliary machines stored in the auxiliary machine storage chamber 58 is omitted.
  • the partition plate 56 is provided with an air circulation port 59 for flowing the air in the auxiliary machine storage chamber 58 toward the fuel cell module storage chamber 57, and the exterior plate 55 constituting the fuel cell module storage chamber 57 is provided.
  • an exhaust port 60 for exhausting the air in the fuel cell module storage chamber 57 to the outside is provided.
  • the fuel cell device 53 with improved power generation efficiency can be obtained by housing the fuel cell modules 17 and 41 as described above in the outer case.
  • a mode in which the cell stack device in which the two reformers 45 are arranged above the four cell stacks 2 has been described, but for example, one or three or more Alternatively, a cell stack device in which one reformer is disposed above the cell stack 2 may be used. In this case, the shape of the reformer may be changed as appropriate.
  • one cell stack 2 may be arranged in one manifold 4, and one manifold 4 may be arranged in one manifold 4. Three or more cell stacks 2 may be arranged.
  • the fuel cell 3 called a so-called vertical stripe type has been described.
  • a horizontal stripe type fuel cell in which a plurality of power generation element portions generally called a horizontal stripe type are provided on a support may be used. it can.
  • Fuel cell apparatus 2 Cell stack 3 Fuel cell 17, 41 Fuel cell module 19 Storage container 20, 45 Reformer 24 Oxygen-containing gas supply member 24 a Notch 24 b Blocking portion 33 Insulating material 50 a Combustion portion 50 b Combustion portion 51 Communication portion 53 Fuel cell apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本発明の燃料電池モジュールは、収納容器と、複数のセルスタックと、改質器と、酸素含有ガスを供給するガス供給部と、断熱材と、燃焼部と、を含んでいる。複数のセルスタックは、複数の柱状の燃料電池セルが予め定める配列方向に沿って設けられてなり、それぞれが並置されている。改質器は、セルスタックの上方に配設され、燃料電池セルに供給される燃料ガスを生成する。ガス供給部は、隣り合うセルスタックの間に配設され、燃料電池セルに供給される酸素含有ガスが上方から下方に向けて流れるガス流路を有する。断熱材は、セルスタックの配列方向両端側に設けられ、セルスタックを挟み込むように配置されている。燃焼部は、セルスタックと改質器との間の間隙に設けられている。そして、少なくともセルスタックの配列方向における一端側において、ガス供給部、断熱材、改質器により囲まれてなり、隣り合う間隙同士を連通させる連通部を備えている。

Description

燃料電池モジュールおよび燃料電池装置
 本発明は、燃料電池モジュールおよび燃料電池装置に関する。
 近年、次世代エネルギーとして、燃料電池モジュールが種々提案されている。燃料電池モジュールは、セルの1種である燃料電池セルを複数個配列してなるセルスタックを備えるセルスタック装置を収納容器内に収納してなる。燃料電池モジュールにおいては、燃料電池セルから排出される余剰の燃料ガスを燃焼させる燃焼部が設けられ、燃焼によって発生した熱を、水素生成のための改質反応を行う改質器の加熱などに利用している(例えば、特許文献1参照。)。
特開2013-191318号公報
 本開示の燃料電池モジュールは、収納容器と、複数のセルスタックと、改質器と、酸素含有ガスを供給するガス供給部と、断熱材と、燃焼部と、を含んでいる。複数の前記セルスタックは、前記収納容器内に収納され、複数の柱状の燃料電池セルが予め定める配列方向に沿って設けられてなり、それぞれが並置されている。前記改質器は、前記収納容器内の、前記セルスタックの上方に配設され、前記燃料電池セルに供給される燃料ガスを生成する。前記ガス供給部は、隣り合う前記セルスタックの間に、前記燃料電池セルの配列方向に沿って前記セルスタックおよび前記改質器に対向して配設され、前記燃料電池セルに供給される酸素含有ガスが上方から下方に向けて流れるガス流路を有する。前記断熱材は、前記セルスタックの配列方向両端側に設けられ、前記セルスタックを挟み込むように配置されている。前記燃焼部は、前記セルスタックと前記改質器との間の間隙に設けられ、前記燃料電池セルから排出される余剰の燃料ガスを燃焼させる。そして、本開示の燃料電池モジュールは、少なくとも前記セルスタックの前記配列方向における一端側において、前記ガス供給部、前記断熱材、前記改質器により囲まれてなり、隣り合う前記間隙同士を連通させる連通部を備えている。
 本開示の燃料電池装置は、上記の燃料電池モジュールと、前記燃料電池モジュールを収納する外装ケースと、を含む。
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本実施形態の燃料電池モジュールを構成するセルスタックを含むセルスタック装置の一例を示す斜視図である。 図1に示すセルスタック装置を示し、図2Aは側面図、図2Bは図2Aの一部を抜粋して上方からみた拡大断面図である。 本実施形態の燃料電池モジュールの一例を示す斜視図である。 図3に示す燃料電池モジュールの断面図である。 図4に示す燃料電池モジュールの一部の平面図である。 本実施形態の燃料電池モジュールの他の一例を示す断面図である。 図6に示す燃料電池モジュールの一部の平面図である。 他の例の酸素含有ガス供給部材の側面図である。 図6に示す燃料電池モジュールに収納された改質器を抜粋して示し、図9Aは斜視図、図9Bは平面図である。 セルスタック装置の上方に、図9に示す改質器を備える構成の一例を配列方向から見た概略図である。 本実施形態の燃料電池装置の一例を概略的に示す斜視図である。
 以下、図面を用いて本実施形態の燃料電池モジュールおよび燃料電池装置について説明する。なお、異なる図中の共通の構成要素については、同一の符号を付与するものとする。
 図1は、本実施形態の燃料電池モジュールを構成するセルスタックを含むセルスタック装置の一例を示す斜視図である。図2は、図1に示すセルスタック装置を示し、図2Aは側面図、図2Bは図2Aの一部を抜粋して上方からみた拡大断面図である。また、以降の図において、セルとしては、主に固体酸化物形の燃料電池セルを用いて説明する。
 図1、図2に示すセルスタック装置1においては、セルスタック2が2つ並置されている。セルスタック2は、内部を燃料ガスが一端から他端に流通するガス流路15を有する燃料電池セル3を立設させた状態で配列方向(図1で示すX方向)に沿って一列に配列されている。また、X方向に隣接する燃料電池セル3間が導電部材6を介して電気的に直列に接続されている。さらに、燃料電池セル3の下端が絶縁性接着材9でマニホールド4に固定されている。
 なお、図1、2においては、燃料電池セル3として、内部を燃料ガスが長手方向に流通するガス流路を複数有する中空平板型で、ガス流路を有する導電性支持体14の表面に、燃料側電極層10、固体電解質層11および空気極側電極層12を順に積層してなる固体酸化物形の燃料電池セル3を例示している。燃料電池セル3の間には、酸素含有ガスが流通する。燃料電池セル3の構成については後述する。なお、本実施形態の燃料電池モジュールにおいては、燃料電池セル3は、例えば平板型または円筒型とすることもでき、燃料電池セル3の構成にあわせてセルスタック装置1の形状も適宜変更することができる。
 また、セルスタック装置1には、セルスタック2の最も外側に位置する燃料電池セル3に導電部材6を介して電気的に接続されたセルスタック支持部材7(以下、スタック支持部材7と略することがある。)が配置されている。スタック支持部材7の外側には保護カバーを設けることもできる。保護カバーは、セルスタック2の周囲に配置された断熱材との接触または外部からの衝撃に対して、スタック支持部材7およびセルスタック2を保護する。また、スタック支持部材7にはセルスタック2の配列方向外方に突出する導電部8が接続されている。
 なお、図1、2においては、セルスタック装置1が2つのセルスタック2を備えている場合を示しているが、適宜その個数は変更することができる。例えば、セルスタック装置1は、セルスタック2を1つだけ備えていてもよい。また、セルスタック装置1は、後述する改質器を含むものとすることもできる。
 また、マニホールド4は燃料電池セル3に供給する燃料ガスを貯留し、開口部を上面に有するガスケースと、内側に燃料電池セル3を固定するとともに、ガスケースに固定される枠体とを備えている。
 燃料電池セル3の一端部(図2の下端部)は枠体で囲まれており、枠体の内側に充填された絶縁性接着材9で燃料電池セル3の下端部の外周が枠体に固定されている。つまり、セルスタック2は、枠体の内側に複数の燃料電池セル3を並べて収容し、絶縁性接着材9で枠体に接着されている。なお、絶縁性接着材9は、ガラス等の材料からなり、熱膨張係数を考慮して所定のフィラーを添加したものを用いることができる。
 また、マニホールド4の上面には、後述する改質器にて生成された燃料ガスが流通するガス流通管5が接続されている。これら燃料ガスおよび水蒸気は、ガス流通管5を介してマニホールド4に供給され、マニホールド4のガスケースから燃料電池セル3の内部に設けられたガス流路15に供給される。
 ここで、燃料電池セル3は、図2Bに示すように、一対の対向する平坦面をもつ柱状の導電性支持体14(以下、支持体14と略す場合がある)の一方の平坦面上に燃料側電極層10、固体電解質層11及び空気側電極層12を順次積層してなる柱状(中空平板状等)に設けられる。また、燃料電池セル3の他方の平坦面上にはインターコネクタ13が設けられており、インターコネクタ13の外面(上面)にはP型半導体層16が設けられている。P型半導体層16を介して、導電部材6をインターコネクタ13に接続させることにより、両者の接触がオーム接触となり、電位降下を少なくし集電性能の低下を有効に回避することが可能となる。なお、図1では導電部材6、スタック支持部材7の記載を省略している。また、支持体14は燃料側電極層10を兼ねるものとし、その表面に固体電解質層11および空気側電極層12を順次積層してセルを構成することもできる。
 燃料側電極層10は、一般的に公知のものを使用することができ、多孔質の導電性セラミックス、例えば希土類元素酸化物が固溶しているZrO(安定化ジルコニアと称し、部分安定化も含むものとする)とNiおよび/またはNiOとから形成することができる。
 固体電解質層11は、燃料側電極層10、空気側電極層12間の電子の橋渡しをする電解質としての機能を有していると同時に、燃料ガスと酸素含有ガスとのリークを防止するためにガス遮断性を有することが必要とされ、例えば、3~15モル%の希土類元素酸化物が固溶したZrOから形成される。なお、上記特性を有する限りにおいては、ZrO以外の他の材料等を用いて形成してもよい。
 空気側電極層12は、一般的に用いられるものであれば特に制限はなく、例えば、いわゆるABO型のペロブスカイト型酸化物からなる導電性セラミックスによって形成することができる。空気側電極層12はガス透過性を有していることが必要であり、開気孔率が20%以上、特に30~50%の範囲とすることができる。
 支持体14としては、燃料ガスを燃料側電極層10まで透過するためにガス透過性を有しており、さらには、インターコネクタ13を介して導電するために導電性を有している。したがって、支持体14としては、導電性セラミックスまたはサーメット等を用いることができる。燃料電池セル3を作製するにあたり、燃料側電極層10または固体電解質層11との同時焼成により支持体14を作製する場合においては、鉄族金属成分と特定希土類酸化物とから支持体14を形成してもよい。また、図2に示した燃料電池セル3において、柱状(中空平板状)の支持体14は、立設方向(図1に示すY方向)に細長く延びる板状片であり、平坦な両面と半円形状の両側面を有する。また、支持体14は、ガス透過性を備えるために開気孔率が30%以上、特に35~50%の範囲とすることができる。支持体14の導電率は300S/cm以上、特に440S/cm以上とすることができる。また、支持体14の形状は柱状であれば良く、円筒状であってもよい。
 P型半導体層16としては、遷移金属ペロブスカイト型酸化物からなる層を例示することができる。具体的には、インターコネクタ13を構成する材料よりも電子伝導性が大きいもの、例えば、BサイトにMn、Fe、Coなどが存在するLaMnO系酸化物、LaFeO系酸化物、LaCoO系酸化物などの少なくとも一種からなるP型半導体セラミックスを使用することができる。このようなP型半導体層16の厚みは、一般に、30~100μmの範囲とすることができる。
 インターコネクタ13は、ランタンクロマイト系のペロブスカイト型酸化物(LaCrO系酸化物)、もしくは、ランタンストロンチウムチタン系のペロブスカイト型酸化物(LaSrTiO系酸化物)を使用することができる。これらの材料は、導電性を有し、かつ燃料ガス(水素含有ガス)および酸素含有ガス(空気等)と接触しても還元も酸化もされない。また、インターコネクタ13は支持体14に形成されたガス流路15を流通する燃料ガス、および支持体14の外側を流通する酸素含有ガスのリークを防止するために緻密質であればよく、93%以上、特に95%以上の相対密度を有するものとすることができる。
 そして、燃料電池セル3を電気的に接続するために介装される導電部材6およびスタック支持部材7は、弾性を有する金属または合金からなる部材あるいは金属繊維または合金繊維から成るフェルトに所要の表面処理を加えた部材から構成することができる。
 図3は、本実施形態のセルスタック装置1を備えてなる燃料電池モジュール17の一例を示す外観斜視図であり、図4は断面図である。
 図3に示す燃料電池モジュール17においては、収納容器19の内部に、本実施形態のセルスタック装置1が収納されている。なお、セルスタック装置1の上方には、燃料電池セル3に供給する燃料ガスを生成するための改質器20が配置されている。
 改質器20は、原燃料供給管23を介して供給される天然ガスまたは灯油等の原燃料を改質して燃料ガスを生成する。なお、改質器20は、改質効率のよい改質反応である水蒸気改質を行うことができる構造とすることができる。改質器20は、水を気化させるための気化部21と、原燃料を燃料ガスに改質するための改質触媒(図示せず)が配置された改質部22とを備えている。
 また図3においては、収納容器19の一部(前後面)を取り外し、内部に収納されるセルスタック装置1を後方に取り出した状態を示している。ここで、図3に示した燃料電池モジュール17においては、セルスタック装置1を、収納容器19内にスライドして収納することが可能である。
 なお、収納容器19の内部には、酸素含有ガス供給部材24が配置されている。酸素含有ガス供給部材24は、酸素含有ガスが燃料電池セル3間を流れるように、マニホールド4上に並置されたセルスタック2の間に配置されている。
 図4に示すように、燃料電池モジュール17を構成する収納容器19は、内壁25と外壁26とを有する二重構造で、外壁26により収納容器19の外枠が形成されるとともに、内壁25によりセルスタック装置1を収納する収納室27が形成されている。
 ここで、収納容器19は、外部より導入される酸素含有ガスを収納室27に導入するための第1ガス導入部である酸素含有ガス導入部28を備えている。酸素含有ガス導入部28に導入された酸素含有ガスは、収納室27の側方における内壁25と外壁26とにより設けられ、酸素含有ガス導入部28と連通する酸素含有ガス流通部29を上方に向けて流れる。続いて収納室27の上方における内壁25と外壁26とにより形成され、酸素含有ガス流通部29と連通する酸素含有ガス分配部30を、酸素含有ガスが流れる。そして、酸素含有ガス分配部30には、ガス供給部である酸素含有ガス供給部材24が、内壁25を貫通して挿入されて固定されている。酸素含有ガス供給部材24は、上端側に酸素含有ガスが流入するための酸素含有ガス流入口(図示せず)とフランジ部31とを備え、下端部に燃料電池セル3の下端部に酸素含有ガスを導入するための酸素含有ガス流出口32が設けられている。それにより、酸素含有ガス分配部30と酸素含有ガス供給部材24とがつながっている。なお、フランジ部31と内壁25との間には断熱材33が配置されている。酸素含有ガス供給部材24は、燃料電池セル3の配列方向に沿ってセルスタック2および改質器20に対向して配設され、内部を酸素含有ガスが下方向に流れる。
 また収納室27内には、燃料電池モジュール17内の熱が極端に放散され、燃料電池セル3(セルスタック2)の温度が低下して発電量が低減しないよう、燃料電池モジュール17内の温度を高温に維持するための断熱材33が適宜設けられている。
 断熱材33は、セルスタック2の近傍に配置してもよく、特には、燃料電池セル3の配列方向に沿ってセルスタック2の側方に配置するとともに、セルスタック2の側方における燃料電池セル3の配列方向に沿った幅と同等またはそれ以上の幅を有する断熱材33を配置してもよい。あわせて、断熱材33を、セルスタック2の配列方向両端側に設け、セルスタック2を挟み込むように配置してもよい。セルスタック2の周囲を断熱材33に取り囲むことで、セルスタック2の温度が低下することを効果的に抑制できる。さらには、酸素含有ガス供給部材24より導入される酸素含有ガスが、セルスタック2の側方より排出されることを抑制でき、セルスタック2を構成する燃料電池セル3間の酸素含有ガスの流れを促進することができる。なお、セルスタック2の両側方に配置された断熱材33においては、燃料電池セル3に供給される酸素含有ガスの流れを調整し、セルスタック2の長手方向および燃料電池セル3の積層方向における温度分布を改善するための開口部34が設けられている。
 また、燃料電池セル3の配列方向に沿った内壁25の内側には、排ガス用内壁35が設けられており、収納室27の側方における内壁25と排ガス用内壁35との間が、収納室27内の排ガスが上方から下方に向けて流れる排ガス流通部36とされている。
 また、収納室27の下方であって、酸素含有ガス導入部28の上方には、排ガス流通部36とつながる排ガス収集部37が設けられている。排ガス収集部37は、収納容器19の底部に設けられた排気孔38と通じている。また、排ガス用内壁35のセルスタック2側にも断熱材33が設けられている。
 それにより、燃料電池モジュール17の稼動(起動処理時、発電時、停止処理時)に伴って生じる排ガスは、排ガス流通部36、排ガス収集部37を流れた後、排気孔38より排気される構成となっている。なお、排気孔38は収納容器19の底部の一部を切り欠くようにして形成してもよく、また管状の部材を設けることにより形成してもよい。
 また、酸素含有ガス供給部材24の内部には、セルスタック2近傍の温度を測定するための熱電対39が配置されている。熱電対39は、その測温部40が燃料電池セル3の長手方向の中央部でかつ燃料電池セル3の配列方向における中央部に位置するように配置されている。
 また、上述の構成の燃料電池モジュール17においては、燃料電池セル3におけるガス流路15より排出される発電に使用されなかった余剰の燃料ガスと酸素含有ガスとを燃焼させるための燃焼部50a,50bが、セルスタック2と改質器20との間隙に設けられる。燃焼部50a,50bによって、燃料電池セル3の温度を上昇・維持させることができる。あわせて、燃焼熱によって燃焼部50a,50bの上方に配置された改質器20を加熱することができ、改質器20で効率よく改質反応を行なうことができる。燃焼部50a,50bには、例えばバーナーまたは着火ヒータなどの着火装置が設けられており、余剰のガスに着火して燃焼させている。
 通常発電時においては、上記燃焼および燃料電池セル3の発電に伴い、燃料電池モジュール17内の温度は500~800℃程度となる。
 ここで、燃料電池セル3の発電効率を向上するにあたり、酸素含有ガスが流れる各流路は、酸素含有ガスが効率よく流れる構造とすることができる。すなわち、図4に示す燃料電池モジュール17においては、酸素含有ガス導入部28に導入され、収納室27の両側方を流れて、酸素含有ガス分配部30を介して酸素含有ガス供給部材24に導入される酸素含有ガスが効率よく流れ、かつ均等に分配されるような構造とすることができる。
 一方、収納室27においては、発電に利用されなかった燃料ガス、酸素含有ガスおよびその燃料ガスを燃焼部50a,50bで燃焼して生じる燃焼ガス等の排ガス等が生じる。この排ガスについても、効率よく収納容器19の外部に排出することで、結果的に燃料電池セル3に効率よく酸素含有ガスが供給されることとなる。
 図5は、図4に示す燃料電池モジュール17の一部抜粋平面図である。なお、図5では、燃焼部50a,50bを見易くするために、改質器20を透過して記載している。図5において、改質器20は、その外形線を破線で示した。
 本実施形態の燃料電池モジュール17では、断熱材33および酸素含有ガス供給部材24によって仕切られた隣り合う間隙に設けられる2つの燃焼部50a,50bにおいて、燃焼部50a,50bの2つの間隙を連通させる連通部51が設けられている。燃焼部50a,50bの燃焼は、例えば、燃料電池モジュール17の起動時には、温度が低く、燃焼が開始されにくい。また発電中であっても、外部から低温の燃料ガスまたは酸素含有ガスがモジュール内に導入されたり、改質器に水が導入されると温度が低下して、燃焼火炎が失火してしまうことがある。一度失火すると、着火装置などを動作させて着火する必要がある。着火装置は、例えば、失火したのち、予め定める温度よりも低下したことや、発電電圧が下がったことなどが検出された後に動作される。一度失火すると再度着火されるまでに時間を要し、その間は発電効率が低下したままとなる。ここで、例えば酸素含有ガス供給部材24の一部に貫通孔を設けることで、隣り合う2つの燃焼部を連通させることが考えられる。しかしながら、この場合、酸素含有ガス供給部材24の構造が非常に複雑となるという問題がある。
 そこで、本実施形態では、セルスタック2の配列方向両端のうち少なくとも一端側に、酸素含有ガス供給部材24、断熱材33、改質器20により囲まれた空間の連通路を含むように連通部51を構成している。これにより、2つの燃焼部50a,50bの間隙同士を連通する連通部51が設けられている。それゆえ、一方の燃焼部50aの燃焼火炎が小さくなり失火しそうになった場合、または失火してしまっても、他方の燃焼部50bの燃焼火炎によって一方の燃焼部50aに充満する燃焼ガスに着火し、いわゆる火移りによって、失火を抑制できる、または失火しても着火装置を動作させることなく再度着火させることができる。また、起動時には、他方の燃焼部50bが先に着火すると、燃焼部50bの燃焼火炎が、着火していない一方の燃焼部50aの着火を促し、早期の着火が可能となる。
 これにより、起動時または発電中に失火したり、失火するおそれがある場合でも燃焼部50a,50bでの燃焼が改善される。燃焼部50a,50bの燃焼が改善されることによりセルスタック2の温度低下が抑制され、熱の利用効率が改善されて、燃料電池モジュール17の発電効率が向上する。
 特に連通部51を、セルスタック2の配列方向両端のうち少なくとも一端側に、酸素含有ガス供給部材24、断熱材33、改質器20により囲まれた空間の連通路を含むように構成するにあたり、例えば、一部の断熱材33を配置しないことや、改質器20または酸素含有ガス供給部材24の大きさを調整することで空間を設けることができる。よって、簡単な構成で連通部51を設けることができる。なお、連通部51の形状および大きさは特に限定されず、燃焼部50a,50bの間隙間を連通させるものであって、燃焼ガスが流通可能な空間として形成されていればよい。
 ここで、燃焼失火は、特に改質器20の気化部21の下方に位置する燃焼部で生じやすい。これは、改質器20に低温の水が供給されることで気化部21の温度が低下するほか、水が水蒸気になる際の気化反応が吸熱反応であることから、気化部21の温度が低下しやすいためである。それゆえ、連通部51を設けるにあたっては、セルスタック2の配列方向両端のうち少なくとも改質器20の気化部21側に設けることが好ましい。それにより、着火および再着火を効率よく行なうことができる。なお、連通部51をセルスタック2の配列方向の両側に設けてもよいことは言うまでもない。
 図6は、本実施形態の燃料電池モジュールの他の一例を示す断面図である。図6に示す燃料電池モジュール41は、図4に示す燃料電池モジュール17と比較して、収納室42内に4つのセルスタック装置43を収納している点、収納室42の上方に、燃料電池セル3より排出される排ガスを回収する排ガス回収部61を備えており、排ガス回収部61と排ガス流通部36とがつながっている点、4つのセルスタックの上方にわたって図9に示すような1つの改質器45が設けられている点で異なっている。なお、図4に示す燃料電池モジュール17と同じ構成については同じ符号を用い、説明は省略する。
 収納室42内に複数のセルスタック装置43を収納してなる場合には、特に中央部側に位置するセルスタック装置43における燃料電池セル3から、収納室42の側方に位置する排ガス流通部36までの距離が長くなる。この場合、中央部側に位置するセルスタック装置43における燃料電池セル3から排出される排ガスが、効率よく外部に排出することが難しい場合がある。
 特に燃料電池セル3の上方の燃焼部50a,50bにおいて、発電に使用されなかった余剰の燃料ガスを燃焼させて、その燃焼熱によって燃料電池セル3の温度を高温に維持する構成では、燃料電池セル3の上方に排ガスが滞留する場合がある。この場合、燃焼部50a,50bで、発電に使用されなかった燃料ガスをうまく燃焼させることができず、失火が生じるおそれがある。特に失火を生じた場合には、燃料電池セル3の温度が上昇せず、もしくは高温に維持することができず、結果として燃料電池セル3(セルスタック装置43)の発電量が低下してしまうおそれがある。
 それゆえ、図6に示す本実施形態の燃料電池モジュール41においては、上記の排ガス流通部36に加えて、収納室42の上方に、燃料電池セル3より排出される排ガスを回収する排ガス回収部61を設け、該排ガス回収部61と排ガス流通部36とをつなげている。それにより、燃料電池セル3から排出される排ガスを、効率よく外部に排出することができる。燃料電池セル3より排出される排ガスは、外部より供給される酸素含有ガスと熱交換することができる。それにより、温度の上昇した酸素含有ガスを燃料電池セル3に供給できることとなり、発電効率を向上させることができる。
 また、この排ガス回収部61の底面には、収納室42とつながる回収孔62が設けられている。それにより、収納室42に排出された排ガスは、回収孔62を介して排ガス回収部61に流れることとなる。
 本実施形態の燃料電池モジュール41によれば、燃料電池セル3の上方に排ガスが滞留することを抑制でき、排ガスを効率よく排気することができる。燃料電池セル3の上方に燃焼部50a,50bを有する構成のセルスタック装置43においては、失火を抑制することができることから、発電量が向上した燃料電池モジュール41とすることができる。
 図7は、図6に示す燃料電池モジュール41の一部の平面図である。図6に示す燃料電池モジュール41は、4つのセルスタック装置43を備えているが、図7は、そのうちの隣接する2つのセルスタック装置43の平面図である。なお、図7では、燃焼部50a,50bを見易くするために、改質器45を透過して記載している。図7において、改質器45は、その外形線を破線で示した。
 本実施形態の燃料電池モジュール41も、前述の実施形態の燃料電池モジュール17と同様に、断熱材33および酸素含有ガス供給部材24によって仕切られた隣り合う間隙に設けられる2つの燃焼部50a,50bにおいて、燃焼部50a,50bの2つの間隙を連通させる連通部51が設けられている。
 2つの燃焼部50a,50bの間隙同士を連通する連通部51が設けられていることにより、一方の燃焼部50aが失火した、または燃焼火炎が小さくなり失火しそうになった場合であっても、他の燃焼部50bの燃焼火炎によって一方の燃焼部50aに充満する燃焼ガスに着火し、火移りによって失火が抑制できる。また、失火した場合であっても、着火装置を動作させることなく再度着火させることができる。また、起動時には、他方の燃焼部50bが先に着火すると、燃焼部50bの燃焼火炎が、着火していない一方の燃焼部50aの着火を促し、早期の着火が可能となる。
 これにより、起動時または発電中に失火したり、失火するおそれがある場合でも燃焼部50a,50bでの燃焼が改善される。燃焼部50a,50bの燃焼が改善されることによりセルスタック2の温度低下が抑制され、燃料電池モジュール41の発電効率が向上する。
 連通部51は、前述の実施形態と同様に、セルスタック2の配列方向両端のうち少なくとも一端側において設けられ、酸素含有ガス供給部材24、断熱材33、改質器20により囲まれた空間の連通路を含むように構成される。なお、連通部51の形状および大きさは特に限定されず、燃焼部50a,50bの間隙間を連通させるものであって、燃焼ガスが流通可能な空間として形成されていればよい。本実施形態では、たとえば、一部の断熱材33を配置しないこと、または改質器45もしくは酸素含有ガス供給部材24の大きさを調整することで空間を設けることができ、簡単な構成で連通部51を設けることができる。
 図8は、連通部51の構成についての他の例を示す酸素含有ガス供給部材24の側面図である。上記の実施形態では、連通部51の連通路は、断熱材33の一部を除去するか、断熱材33を配置しないことで連通路となる空間を設けている。図8に示す例では、他の例として、酸素含有ガス供給部材24の間隙に臨む部分、すなわちセルスタック2よりも上方に突出した部分が、X方向に切り欠かれた切り欠き部24aを設け、この切り欠き部24aによる空間を連通路として含む連通部51を設けている。
 燃焼部50a,50bの間隙は、酸素含有ガス供給部材24によっても仕切られているので、酸素含有ガス供給部材24に切り欠き部24aを形成すれば、その切り欠かれた部分が空間となり、燃焼部50a,50bの連通路として機能する。
 さらに、酸素含有ガス供給部材24に切り欠き部24aを設けた場合は、酸素含有ガス供給部材24において、切り欠き部24aの下方に位置するガス流路の一部を閉塞してもよい。切り欠き部24aが設けられた部分は、酸素含有ガス供給部材24内のガス流路のうち、切り欠き部24aの部分のガス流路が存在せず、さらにその下方において、ガス流路の一部を閉塞することで、酸素含有ガス供給部材24内のガス流路の少なくともx方向の端部側では、酸素含有ガスが流れにくくなる。酸素含有ガスは外部から供給され、比較的温度が低いガスである。酸素含有ガスが酸素含有ガス供給部材24内のガス流路を流れると、酸素含有ガス供給部材24に隣接するセルスタック2との熱交換により熱を奪い、セルスタック2の温度が低下してしまう。セルスタック2における温度分布自体が、配列方向(x方向)両端部において、温度が低く成り易く、酸素含有ガスが流れるとさらに温度が低下してしまう。セルスタック2において温度が低下すると、発電量が低下したり、燃焼部50a,50bにおいて燃焼火炎が失火してしまうおそれがある。それゆえ、切り欠き部24aの下方に位置するガス流路の一部を閉塞することで、セルスタック2の両端側の温度が低下することを抑制でき、燃焼火炎が失火することを抑制でき、かつ発電効率を向上することができる。
 なお、酸素含有ガス供給部材24は、2枚の平板間に形成される間隙が酸素含有ガスの流路となるので、たとえば、切り欠き部24aの下方において2枚の平板を厚み方向に互いに凹ませることで間隙を潰して流路を閉塞させればよい。図8では、切り欠き部24aの下方に閉塞部24bを設けている。
 上記の例では、閉塞部24bは、切り欠き部24aの平板を変形させて流路を閉塞しているが、これに限らず切り欠き部24aの下方において平行平板間の間隙を埋めるようにしてもよい。この場合、間隙を埋める部材が酸素含有ガスと接触することになるので、間隙を埋める部材は、酸素含有ガスと反応しない部材であって、平板の内面に固着できる部材であればよい。
 上記のように連通部51に含まれる連通路は、2つの燃焼部50a,50b間を連通させる空間であれば、断熱材33を除去したり、断熱材33を設けないようにするだけでなく、本例のように酸素含有ガス供給部材24に切り欠き部24aを設けてもよい。、さらに断熱材33を除去するかまたは配置しないことで設けられる空間と、酸素含有ガス供給部材24に切り欠き部24aを形成することで設けられる空間とを合わせて連通路としてもよい。
 図9は、図6に示す燃料電池モジュール41に収納された改質器45を抜粋して示し、図9Aは斜視図、図9Bは平面図である。図10は、セルスタック装置43の上方に、図9に示す改質器45を備える構成の一例を配列方向から見た概略図である。
 図6に示す燃料電池モジュール41においては、4つのセルスタック2の上方に、図9に示すW字状(ミアンダ形状)の改質器45を備えている。
 改質器45は、図9A、図9Bに示すように、水を気化して水蒸気を生成する気化部45aと該気化部45aで発生した水蒸気を用いて原燃料を水蒸気改質する改質部45bとを具備している。
 気化部45aは、水蒸気が一端側より他端側に流れる管体の気化部往路45a1と、水蒸気が他端側より一端側に流れる管体の気化部復路45a2とを備えている。また、気化部往路45a1には、一端部から気化部往路45a1に沿って内部に突出する筒状部48aと、一端部に接続され、筒状部48aに外部から水を供給する水供給部48bとを備えている。なお、筒状部48aは、気化部45aを構成する管体より内側に突出するように設けて、この筒状部48aに水供給部48bである水供給管を接続する構成であってもよい。水供給管48を外部より内部に挿入して、外部に露出する一部が水供給部48bとなり、水供給管48の挿入された一部が筒状部48aとなる構成であってもよい。以下の説明においては、水供給管48を外部より内部に挿入した構成を用いて説明する。
 また、改質部45bは、原燃料供給部である原燃料供給管23より供給された原燃料を改質して生成された改質ガスが一端側より他端側に流れる改質部往路45b1と、改質ガスが他端側より一端側に流れる改質部復路45b2とを備えている。改質部復路45b2には、改質ガスを導出するための改質ガス導出管49が接続されている。図9に示す改質器45において、水供給管48、原燃料供給管23および改質ガス導出管49は、いずれも改質器45の一方側に接続されている。
 さらに改質器45においては、気化部往路45a1の他端側と気化部復路45a2の他端側とが連結路(以下、気化部連結路という。)45c1で連結されている。また、気化部復路45a2の一端側と改質部往路45b1の一端側とが連結路(以下、気化改質部連結路という。)45c2で連結されている。さらに、改質部往路45b1の他端側と改質部復路45b2の他端側とが連結路(以下、改質部連結路という。)45c3で連結されている。気化部往路45a1と、気化部復路45a2と、改質部往路45b1と、改質部復路45b2とが、側方が対向するように並置されている。
 改質器45では、気化部往路45a1に供給された水が水蒸気となり、気化部連結路45c1、気化部復路45a2、気化改質部連結路45c2、改質部往路45b1を順に流れる。また、気化改質部連結路45c2には、原燃料供給管23が挿入され、外部に露出する一部が原燃料供給部23bであり、原燃料供給管23の挿入された一部が筒状部23aである。
 原燃料供給部23bから原燃料が供給されると、筒状部23aから気化改質部連結路45c2に導入されて水蒸気と混合され、改質部往路45b1、改質部連結路45c3、改質部復路45b2を流れる間に改質反応によって、水素を含む改質ガス(燃料ガス)が生成され、改質ガス導出管49から導出される。
 気化部往路45a1、気化部復路45a2、改質部往路45b1、改質部復路45b2、気化部連結路45c1、気化改質部連結路45c2、改質部連結路45c3は、横断面が矩形状の管体から構成されている。
 また、気化部往路45a1および気化部復路45a2内には、流路を仕切る仕切板45a11、45a21がそれぞれ設けられ、これらの仕切板45a11、45a21間が気化室とされている。水供給管48の筒状部48aは、仕切板45a11の上流側近傍にまで延び、気化室手前の位置に水を供給している。気化室内には、気化を促進するためセラミックボールが収納されており、仕切板45a11、45a21は、水蒸気は通過するが、セラミックボールは通過しないように形成されている。なお、これら仕切板45a11、45a21は、改質器の構造またはセルスタックの構造等に応じて適宜配置を変更することができる。
 さらに、改質部往路45b1および改質部復路45b2内にも、それぞれ流路を仕切る仕切板45b11、45b21が配置され、仕切板45b11、45b21間に位置する改質部往路45b1、改質部連結路45c3、改質部復路45b2が改質室とされる。この改質室には、改質触媒が収納されている。仕切板45b11、45b21は、水蒸気、原燃料、改質ガス等のガスは通過できるが、改質触媒は通過できないように構成されている。なお、これら仕切板45b11、45b21は、改質器の構造またはセルスタックの構造等に応じて適宜配置を変更することができる。
 このような改質器45においては、気化部45aと改質部45bとの間にある気化改質部連結路45c2に、原燃料を供給する原燃料供給管23が挿入されている。このような改質器45においては、原燃料供給管23が、水供給管48が接続された気化部往路45a1よりも下流側の気化改質部連結路45c2に接続されているため、水が供給される地点と原燃料が供給される地点とが、気化部往路45a1を構成する管体と気化部復路45a2を構成する管体との間の空間を介して位置しており、また、水蒸気の流れ方向で見れば、流れ方向の長さが長い。従って、原燃料が低温であったとしても、原燃料が追加混合される時には、供給された水は殆ど気化しており、改質器45の一部(気化部往路45a1)における低温化を抑制できる。それにより、改質効率を向上することができる。
 そして、図10に示すように、改質器45で生成された改質ガス(燃料ガス)は、改質ガス導出管49から導出されたのち、2つのマニホールド4に供給され、マニホールド4を介して燃料電池セル3の内部に設けられたガス流路に供給される。
 なお、改質器45で生成された改質ガスは、図10に示すように、改質ガス導出管49から導出され、分配器52によって2分されて2つのマニホールド4にそれぞれ供給される。すなわち、改質ガス導出管49は、改質器45から分配器52までのU字状の第1改質ガス導出管49aと、分配器52から下方の2つのマニホールド4にそれぞれ延びる2本の第2改質ガス導出管49bとを具備している。2本の第2改質ガス導出管49bの長さは、改質ガスをマニホールド4に均等に供給すべく、同じ圧力損失となるように同じ長さとされている。
 改質器45のような構造では、水供給管48に外部から水が導入されるので、燃焼部50a,50bにおいて、水供給管48の近くで大きく温度が低下して失火し易くなる。したがって、セルスタック2の配列方向における両端側のうち、少なくとも水導入部である水供給管48側に連通部51を設けることが好ましい。失火しやすい側に連通部51を設けることで、失火をより確実に防ぐことができる。
 なお、改質器45において、気化部往路45a1、気化部復路45a2、改質部往路45b1、改質部復路45b2は、4つのセルスタック2のうちの1つのセルスタック2のそれぞれに対応して、各セルスタック2の上方に配置されている。各セルスタック2と気化部往路45a1、気化部復路45a2、改質部往路45b1、改質部復路45b2との間の間隙には、燃焼部50a,50bが設けられており、これにより、気化部往路45a1、気化部復路45a2、改質部往路45b1、改質部復路45b2のそれぞれを効率よく加熱することができる。
 また、他の構成(例えば水供給管48、仕切板の場所等)は適宜変更可能であり、これらの例に限られるものではない。
 図11は、外装ケース内に燃料電池モジュール17,41のいずれかと、各燃料電池モジュールを動作させるための補機とを収納してなる燃料電池装置53の一例を示す斜視図である。なお、図10においては一部構成を省略して示している。
 図10に示す燃料電池装置53は、支柱54と外装板55とから構成される外装ケース内を仕切板56により上下に区画し、その上方側空間を、上述した各燃料電池モジュール17,41を収納する燃料電池モジュール収納室57とし、下方側空間を、各燃料電池モジュールを動作させるための補機類を収納する補機収納室58として構成されている。なお、補機収納室58に収納する補機類の図示は省略して示している。
 また、仕切板56には、補機収納室58の空気を燃料電池モジュール収納室57側に流すための空気流通口59が設けられており、燃料電池モジュール収納室57を構成する外装板55の一部には、燃料電池モジュール収納室57内の空気を外部に排気するための排気口60が設けられている。
 このような燃料電池装置53では、上述したような各燃料電池モジュール17,41を外装ケース内に収納することにより、発電効率を向上した燃料電池装置53とすることができる。
 以上、本発明について詳細に説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。
 例えば、上記形態の燃料電池モジュール41では、4個のセルスタック2の上方に2個の改質器45を配置したセルスタック装置を具備する形態について説明したが、例えば、1個または3個以上のセルスタック2の上方に1個の改質器を配置したセルスタック装置でも良い。この場合、改質器の形状は適宜変更すればよい。
 さらに、1個のマニホールド4に2個のセルスタック2を配置した形態について説明したが、1個のマニホールド4に1個のセルスタック2を配置しても良く、また、1個のマニホールド4に3個以上のセルスタック2を配置しても良い。
 さらに、上述の例ではいわゆる縦縞型と呼ばれる燃料電池セル3を用いて説明したが、一般に横縞型と呼ばれる複数の発電素子部を支持体上に設けてなる横縞型の燃料電池セルを用いることもできる。
 2   セルスタック
 3   燃料電池セル
 17,41  燃料電池モジュール
 19  収納容器
 20、45  改質器
 24  酸素含有ガス供給部材
 24a 切り欠き部
 24b 閉塞部
 33  断熱材
 50a 燃焼部
 50b 燃焼部
 51  連通部
 53  燃料電池装置

Claims (5)

  1.  収納容器と、
     該収納容器内に収納され、複数の柱状の燃料電池セルが予め定める配列方向に沿って設けられてなり、それぞれが並置された複数のセルスタックと、
     前記収納容器内の、前記セルスタックの上方に配設され、前記燃料電池セルに供給される燃料ガスを生成する改質器と、
     隣り合う前記セルスタックの間に、前記燃料電池セルの配列方向に沿って前記セルスタックおよび前記改質器に対向して配設され、前記燃料電池セルに供給される酸素含有ガスが上方から下方に向けて流れるガス流路を有するガス供給部と、
     前記セルスタックの配列方向両端側に設けられ、前記セルスタックを挟み込むように配置された断熱材と、
     前記セルスタックと前記改質器との間の間隙に設けられ、前記燃料電池セルから排出される余剰の燃料ガスを燃焼させる燃焼部と、を含み、
     少なくとも前記セルスタックの前記配列方向における一端側において、前記ガス供給部、前記断熱材、前記改質器により囲まれてなり、隣り合う前記間隙同士を連通させる連通部を備えることを特徴とする燃料電池モジュール。
  2.  前記連通部は、前記ガス供給部の前記間隙に臨む部分が前記配列方向に切り欠かれた切り欠き部を含むことを特徴とする請求項1記載の燃料電池モジュール。
  3.  前記切り欠き部の下方に位置する前記ガス流路の一部が閉塞されていることを特徴とする請求項2に記載の燃料電池モジュール
  4.  前記改質器は水蒸気改質可能とされているとともに、該改質器に水を導入する水導入部が接続されており、
     前記連通部が、前記水導入部側に設けられていることを特徴とする請求項1~3のいずれか1つに記載の燃料電池モジュール。
  5.  請求項1~4のいずれか1つに記載の燃料電池モジュールと、
     前記燃料電池モジュールを収納する外装ケースと、を含むことを特徴とする燃料電池装置。
PCT/JP2016/075564 2015-08-31 2016-08-31 燃料電池モジュールおよび燃料電池装置 WO2017038893A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16841923.2A EP3346533A4 (en) 2015-08-31 2016-08-31 FUEL CELL MODULE AND FUEL CELL DEVICE
US15/755,126 US20180248211A1 (en) 2015-08-31 2016-08-31 Fuel cell module and fuel cell apparatus
JP2017538083A JPWO2017038893A1 (ja) 2015-08-31 2016-08-31 燃料電池モジュールおよび燃料電池装置
CN201680045800.2A CN107851823A (zh) 2015-08-31 2016-08-31 燃料电池模块以及燃料电池装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015170128 2015-08-31
JP2015-170128 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038893A1 true WO2017038893A1 (ja) 2017-03-09

Family

ID=58187638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075564 WO2017038893A1 (ja) 2015-08-31 2016-08-31 燃料電池モジュールおよび燃料電池装置

Country Status (5)

Country Link
US (1) US20180248211A1 (ja)
EP (1) EP3346533A4 (ja)
JP (1) JPWO2017038893A1 (ja)
CN (1) CN107851823A (ja)
WO (1) WO2017038893A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050125A (ja) * 2017-09-11 2019-03-28 日本碍子株式会社 セルスタック装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225454A (ja) * 2009-03-24 2010-10-07 Toyota Motor Corp 燃料電池
JP2010245049A (ja) * 2010-06-24 2010-10-28 Kyocera Corp 燃料電池組立体
JP2013191318A (ja) * 2012-03-12 2013-09-26 Aisin Seiki Co Ltd 燃料電池装置
JP2014056688A (ja) * 2012-09-12 2014-03-27 Jx Nippon Oil & Energy Corp 燃料電池装置
JP2015144091A (ja) * 2014-01-31 2015-08-06 Jx日鉱日石エネルギー株式会社 燃料電池装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331881A (ja) * 2005-05-26 2006-12-07 Kyocera Corp 燃料電池
JP4943037B2 (ja) * 2005-07-27 2012-05-30 京セラ株式会社 燃料電池モジュール
US20090239121A1 (en) * 2006-09-27 2009-09-24 Kyocera Corporation Fuel Cell Stack and Fuel Cell Apparatus
WO2009016857A1 (ja) * 2007-07-27 2009-02-05 Kyocera Corporation 燃料電池モジュールおよびそれを具備する燃料電池装置
WO2009096291A1 (ja) * 2008-01-29 2009-08-06 Kyocera Corporation 燃料電池モジュールおよび燃料電池装置
US8535835B2 (en) * 2008-03-26 2013-09-17 Kyocera Corporation Fuel battery module and fuel battery device
US8172186B2 (en) * 2009-07-17 2012-05-08 Aopen Incorporated Display support seat
US8993194B2 (en) * 2009-10-28 2015-03-31 Kyocera Corporation Fuel cell, cell stack, fuel cell module, and fuel cell device
JP5065367B2 (ja) * 2009-12-15 2012-10-31 トヨタ自動車株式会社 燃料電池モジュール
JP5566405B2 (ja) * 2010-01-26 2014-08-06 京セラ株式会社 燃料電池セル、燃料電池セル装置および燃料電池モジュールならびに燃料電池装置
US9160027B2 (en) * 2010-07-29 2015-10-13 Kyocera Corporation Fuel cell bundle and fuel cell module comprising same
CN103460478A (zh) * 2011-04-06 2013-12-18 吉坤日矿日石能源株式会社 燃料电池模块
CN105164845B (zh) * 2013-05-23 2018-09-11 京瓷株式会社 燃料电池模块以及燃料电池装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225454A (ja) * 2009-03-24 2010-10-07 Toyota Motor Corp 燃料電池
JP2010245049A (ja) * 2010-06-24 2010-10-28 Kyocera Corp 燃料電池組立体
JP2013191318A (ja) * 2012-03-12 2013-09-26 Aisin Seiki Co Ltd 燃料電池装置
JP2014056688A (ja) * 2012-09-12 2014-03-27 Jx Nippon Oil & Energy Corp 燃料電池装置
JP2015144091A (ja) * 2014-01-31 2015-08-06 Jx日鉱日石エネルギー株式会社 燃料電池装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3346533A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050125A (ja) * 2017-09-11 2019-03-28 日本碍子株式会社 セルスタック装置

Also Published As

Publication number Publication date
EP3346533A4 (en) 2019-04-03
US20180248211A1 (en) 2018-08-30
JPWO2017038893A1 (ja) 2018-05-24
CN107851823A (zh) 2018-03-27
EP3346533A1 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP5412960B2 (ja) 燃料電池装置
KR102046842B1 (ko) 연료 전지 모듈 및 연료 전지 장치
JP5744349B2 (ja) 燃料電池モジュールおよび燃料電池装置
JP2008084683A (ja) 燃料電池
JP5319460B2 (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP6259128B2 (ja) モジュールおよびモジュール収容装置
JP5856024B2 (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
WO2017038893A1 (ja) 燃料電池モジュールおよび燃料電池装置
WO2017057151A1 (ja) 燃料電池用改質器、燃料電池モジュールおよび燃料電池装置
JP6121793B2 (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP6622046B2 (ja) 燃料電池モジュールおよび燃料電池装置
JP6075766B2 (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP6462290B2 (ja) 燃料電池モジュールおよび燃料電池装置
JP5926138B2 (ja) 燃料電池システム
JP2012164668A (ja) 燃料電池
JP2017069093A (ja) セルスタック装置、モジュールおよびモジュール収容装置
JP6867209B2 (ja) セルスタック装置、モジュールおよびモジュール収容装置
JP6762112B2 (ja) 燃料電池用改質器、燃料電池モジュールおよびモジュール収容装置
JP2017117533A (ja) モジュールおよびモジュール収容装置
JP6219622B2 (ja) 改質器、セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP5393761B2 (ja) 燃料電池
JP2015050026A (ja) セルスタック装置、燃料電池モジュールおよび燃料電池装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538083

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15755126

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE